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EDONIO: EXTENDED DISTRIBUTED OBJECT NETWORK I/0
LIBRARY

E.F. D’Azevedo
C.H. Romine

Abstract

This report describes EDONIO (Extended Distributed Object Network I/0), an
enhanced version of DONIO (Distributed Object Network I/O Library) optimized
for the Intel Paragon Systems using the new M_ASYNC access mode. DONIO provided
fast file I/O capabilities in the Intel iPSC/860 and Paragon distributed memory
parallel environments by caching a copy of the entire file in memory distributed
across all processors. EDONIO is more memory efficient by caching only a subset of
the disk file at a time. DONIO was restricted by the high memory requirements and
use of 32-bit integer indexing to handle files no larger than 2Gigabytes. EDONIO
overcomes this barrier by using the extended integer library routines provided by
Intel’s NX operating system.

For certain applications, EDONIO may show a ten-fold improvement in perfor-

mance over the native ¥NX I/O routines.




1. Introduction

Multi-megabyte disk input/output operations are commonly a major bottleneck in large
application codes on distributed-memory parallel supercomputers. Our first attempt
to remove this bottleneck produced DONIO [2], a library of routines to provide fast
parallel file I/O capabilities on Intel iPSC/860 and Intel Paragon supercomputers.
DONIC caches the entire disk file across the aggregate memory of the multiprocessor
in shared memory emulated by DOLIB (Distributed Object Library). This approach
imposed a high memory overhead, and the use of 32-bit integer indexing restricted
access to files of at most 2Gigabytes. The new EDONIO library reduces memory overhead
and provides fast I/O on files of arbitrary size. EDONIO is implemented independently
of the Distributed Object Library DOLIB [1] but uses similar IPX remote procedure calls
to implement a large disk cache in the aggregate memory of the multiprocessor.

In contrast to DONIO where the entire file is cache in memory and actual disk I/O
was done only in three routines (do_open, do_flush and do_close), EDONIO caches
only a portion of the disk file. At runtime, as the limited disk cache is filled, data
are immediately written back to the disk in contiguous large blocks of optimal size
(default is 64Kbytes to match the RAID striping parameter) for high I/0 throughput.
Similarly, data not found in the disk cache is dynamically read in large blocks.

The amount of memory dedicated to EDONIO is controlled by the user. A larger disk
cache usually results in better performance; especially if sufficient memory is available
to cache the entire file into memory. In this case EDONIO reverts back to the behavior
of DONIO.

2. Extended Distributed Object Network I/O Library

EDONIO, like DONIO, is designed to speed up the I/O for distributed-memory parallel
applications where all processors open a common multi-megabyte shared file for simul-
taneous access. To access a shared file, each processor positions its own private copy
of the file pointer with 1seek()’s to specific places in the file and then performs in-
put/output operations. (Simultaneous output to overlapping regions in a shared file is
nondeterministic; therefore, we assume that output operations do not overlap among

processors). Such file access patterns are common in finite element codes that are
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based on subdomain decomposition. For example, the ‘data for material properties
or boundary conditions are commonly stored in shared files. This arrangement pro-
vides flexibility in solving the same problem with varying numbers or configurations of
processors without rearranging the data files.

A disadvantage of large shared files is that the overhead induced by many processors
attempting to access the disk file concurrently can be quite large. Machines like the
Intel iPSC/860 and Paragon attempt to support simultaneous access through a special
file system (CF'S for the iPSC/860, PFS for the Paragon). Even with this support, the
cost for concurrent access to the same file can significantly degrade the performance of
a parallel program. It is common for file I/O to be one of the most costly operations
in a parallel application. On the Intel Paragon machines, the default M_UNIX mode
corresponds to standard UNIX file sharing semantics that enforce atomic updates by
serializing all requests. The new M_ASYNC file I/O mode allows multiple simultaneous
read /write requests with no restrictions and dramatically reduces the cost of I/O oper-
ations over the previous M_.UNIX mode. EDONIO is designed to fully exploit the parallel
M_ASYNC I/0 mode by allowing all processors to perform non-overlapping I/O requests.
Moreover, EDONIO uses the aggregate memory of the multiprocessor to implement a
very large high-speed disk cache.

EDONIO is compatible with DONIO and offers a UNIX-like interface consisting of the
‘C’ callable primitives do_open(), do_read(), dowrite(), do_1seek(), do1size(),
do_flush() and do_close(), Which are similar to the open(), cread(), cwrite(),
1seek(), 1size(), flush() and close() routines provided by the Intel NX operating
system. A Fortran callable interface, (e.g., DOREAD() for do_read()), is also provided.
Section 3 describes the use of these EDONIO primitives in more detail. Changing the
names of the I/O subroutines called in an application program from the NX version
to the EDONIO version (leaving the parameters untouched) and then linking in the
EDONIO library is generally all that is required to use the package. An important note:
EDONIO operates only on UNIX binary files, which may be incompatible with Fortran
unformatted fixed-size record files.

Many large-scale applications involving the simulation of time-evolving events are
designed to output a “snapshot” or “checkpoint” of the current state of the simulation

at regular intervals. A lengthy simulation may output tens (or even hundreds) of
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Gigabytes of data for later analysis. The original DONIO was incapable of handling files
larger than 2Gigabytes. EDONIO overcomes this restriction, thereby providing rapid I/0
capabilities on files of practically unlimited size (up to 16Terabytes).

3. User Interface

The following pages provide details on the syntax and behavior of each of the EDONIO

primitives. These pages can be considered the manual for EDONIO.
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do_check ()

do_check() checks the message queues for EDONIO or IPX requests from other

processors, servicing any that are found.

Synopsis
int docheck( )

subroutine docheck( )

Discussion

do_check() checks the calling processor’s message queues for IPX requests from
other processors. If none are found, do_check() returns immediately. Any queued
requests are serviced before do_check() terminates. do_check() is provided to
allow the user to avoid deadlock or slow servicing (starvation) of I/O requests if
a non-interrupt (polling) version of IPX is used. All EDONIO calls automatically
perform a do_check() operation. However, do_check() should be called period-

ically by processors that are not involved in file I/O operations for long periods

of time.
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do_close()

do_close() closes the file associated with the file descriptor and deallocates global
shared resources. do_close() must be called to ensure that all buffered writes are
saved to disk. In C, do_close() returns 0 on success and -1 on failure. An

implicit global synchronization is performed.

Synopsis
int do_close( int £4 )

subroutine doclose( £d )

integer fd

Input parameters

fd -~ £d is the file descriptor obtained from do_open().

Discussion

do_close() deallocates the global shared resources used for caching the file
data associated with the file descriptor £d. For write-only and read-write files,
do.close() first calls do_flush() to write out any cached data to the disk file
before resources are deallocated. (If none of the cached pages are dirty, or if the
file is read-only, no disk I/0 is performed).

Important note: Unlike the UNIX routines, no implicit do_close() calls are per-
formed when the program terminates. Hence, if the user fails to call do_close()
for a given file, any changes made to cached blocks that have not yet been flushed
will be-lost upon program termination! All processors must participate in the

do_close() call. An implicit global synchronization is performed.
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do_csize()

do_csize() sets the sizes of the EDONIO read-only data cache and disk cache. An

implicit global synchronization is performed.

Synopsis
int do_csize( int data_size, int disk_size )

subroutine docsize( datasize, disksize )

integer datasize, disksize

Input parameters

datasize - data_size is the maximum amount of memory in KBytes
to be allocated to the read-only data cache. A value of 0 is
valid, and can be used to disable the read-only cache if no
user files are opened with permission flag 0_RDONLY.

disk size - disk.size is the maximum amount of memory in KBytes
to be allocated to the disk cache. A value of 0 results in an

error.

Discussion

do_csize() determines the mazimum memory usage allowed by EDONIO’s read-
only data cache and disk cache. Actual allocation of memory for the caches is
done only as needed. Tip: The user might call vm statistics() at runtime or
use vm_stat on the service nodes to determine the amount of free memory (or free
pages) available. To avoid excessive paging, parameters for do_csize()should not

exceed the amount of free memory.

All processors must participate in the do_csize(). An implicit global synchro-

nization is performed.
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do_flush()

do_flush() forces EDONIO to write any “dirty” or “modified” blocks associated
with the specified file to the disk. After do_flush(), the disk file and cached
blocks are guaranteed to be consistent. In C, do_flush() returns 0 on success and

-1 on failure. An implicit global synchronization is performed.

Synopsis
int do.flush( int £d )

subroutine doflush( fd )

integer fd

Input parameters

fd - £dis the file descriptor obtained from do_open().

Discussion

do_flush() forces an immediate write of any dirty blocks corresponding to the
specified file to disk. If no changes have been made to the cached file since the
last call to do_flush(), no disk I/O will take place. do_flush() is provided
to support checkpointing, since in the event of a machine malfunction, all data
written to the cached file will be lost. EDONIO automatically keeps track of the
largest byte addressed with do_write(), so the disk file will have the correct size.

However, unwritten bytes (i.e., gaps) in the file will contain garbage.

do_flush() may also enhance performance of write operations. If a cache miss
causes EDONIO to flush a dirty cache block, only that block is written to disk.
Better I/0 performance may be obtained by writing many blocks concurrently

with do_flush().

All processors must participate in the do_flush() call. An implicit global syn-

chronization is performed.
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do_lsize(), do_esize O

do_1size() estimates the size of the write-only or read-write output file associated
with file descriptor £d. In C, do_1size() returns nbytes on success. An implicit

global synchronization is performed.
Synopsis

int dolsize( int fd, int nbytes )

esize t do_esize( int fd, esize_t nbytes )

subroutine dolsize( fd, nbytes )

integer fd, nbytes

subroutine doesize( fd, lnbytes )

integer fd, 1lnbytes(2)

Input parameters

fd — fd is the file descriptor obtained from do_open().
nbytes — nbytes is the estimated file size in bytes.
Discussion

do_1size() tries to increase I/O throughput by attempting to preallocate the
requested disk blocks before starting write operations. Unlike DONIO it is no
longer mandatory to call do_1size(). Overestimation of the file size may cause
overallocation and suboptimal performance, but the actual file generated on disk
will be of correct (minimal) size. Calling do_1size() for files opened for read-only

access results in an error.

All processors must participate in the do_1size(). An implicit global synchro-

nization is performed.
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. ' ] do_lseek(), do_eseek()

do_1seek() (do_eseek()) sets the (local) seek pointer of the open file associated

with the file descriptor and returns the new seek position.

Synopsis

#include <unistd.h>
#include <nx.h>
int do_lseek( int fd, int offset, int whence )

esize_t do_eseek( int fd, esize.t offset, int whence )

include ’fnx.h’
integer function dolseek( fd, offset, whence )

integer fd, offset, whence

subroutine doeseek( fd, loffset, whence, lpos )

integer fd, whence

o

integer loffset(2), lpos(2)

Input parameters

fd — fd is the file descriptor obtained from do_open().

offset - offset is the offset in bytes. Note that EDONIO supports
extended files larger than 2Gigabytes. For these extended
files, the offset and returned value must be an extended
integer (esize_t) in C, or an integer array of length 2 in

FORTRAN.

whence — whence determines the computation with offset. whence is

one of SEEK_SET=0, SEEK_CUR=1 or SEEK_END=2.
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Discussion

do.1seek() (do_eseek()) sets the seek pointer associated with the open file spec-
ified by the descriptor £d according to the value supplied for whence. whence
must be one of SEEK_SET=0, SEEK_CUR=1, SEEK_END=2 defined in <unistd.h> (see
Iseek(2)).

If whence is SEEK_SET, the seek pointer is set to offset bytes. If whence is
SEEK_CUR, the seek pointer is set to its current location plus offset. If whenceis
SEEK_END, the seek pointer is set to the size of the file plus offset. IMPORTANT
NOTE: Calling do_1seek() using whence=SEEK_END is guamﬁteed correct only in
two cases: the file must have been opened with 0 RDONLY, or a call to do_£1lush()
must immediately precede the do_1seek() call. The reason is that the current file

size has no meaning until all buffered writes have been flushed.

dolseek( £fd, O, SEEK_END) (after do_flush(), as described above) returns the
size (in bytes) of the opened file associated with fd.
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do_nio()‘

do_nio() initializes the EDONIOD system. donio() must be called prior to opening

any files with do_open(). In C, donio() returns 0 on success, -1 on failure.
Synopsis

int donio( int myid, int nproc )

subroutine donio( myid, nproc )

integer myid, nproc

Input parameters

myid — myid is the id number of the calling processor.
nproc — nproc is the total number of processors executing.
Discussion

All nodes must call do-nio() toinitialize the EDONIO network I/O library. donio()
sets up internal data structures and initializes the IPX subsystem. Calling donio()

is required before any other calls to EDONIO routines. Failure to do so will result

in an error.
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do_open() ‘ ' .

do_open() returns a non-negative descriptor on success. On failure, it returns

-1. An implicit global synchronization is performed.

Synopsis

#include <sys/fcntl.h>

int do_open( char *path, int flags, int mode )

include ’fnx.h’
integer function doopen( path, flags, mode )}
character*(*) path

integer flags, mode

Input parameters

path - pathis anull-terminated string that contains the pathname

of the file.
flags - <flags contains the access flags. )
mode - mode is the file permission (see chmod(2)) used in creating

the output file. mode is ignored if the file already exists.
Discussion

The routine emulates the UNIX open (see open(2) in the UNIX manual), which
opens the named file specified by path for read-only, write-only or read-write
access, as specified by the flags argument, and returns a descriptor for that file.
For write-only or read-write access, if thé file does not exist, it is created with
permission mode mode (see chmod(2)). Note that do_open() differs from UNIX
open if the write-only file already exists. In that case, the file is first truncated

(see truncate(2)) to an empty file and then rewritten.

All processors must participate in the do_open() call. An implicit global syn-

chronization is performed.

A Fortran example of the use of do_open() is given below:
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mode is set to octal 666,

full read-write permission on file

mode = 8%8%6 + 86 + 6

UNIX flags
O_RDONLY = O, O_WRONLY = 1, O_RDWR = 2

0
1

rflags

wflags
rwflags = 2

be sure path is null terminated

path = ’/pfs/infile’ // char(0)

open the file for read-write access

fd = doopen( path, rwflags, mode )
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do_preload()

do._preload() fills any empty slots in the cache with blocks from the disk file,
starting with the first block referenced by the minimum value of all the local seek

pointers.

An implicit global synchronization is performed.

Synopsis
void do_preload( int fd )

subroutine dopreload( fd )

integer fd

Input parameters

fd - £d is the EDONIO file descriptor for the file opened with
do_open().

Discussion

do_preload{) fills any empty slots in the disk cache with data from the disk.
Preloading the cache is desirable when file access patterns may cause disk I/0 to
be inefficient. For example, if a number of processors attempt to read common
data from the same processor, then there may be significant idle time while
they all wait for the data to be brought in from disk. Preloading the cache
ensures that the initial disk I/O is fully parallel and subsequent read accesses can
proceed at full speed from the disk cache. Preloading starts from the point of the
minimum seek location among all processors. The user can perform a do_1seek()
(do_eseek()) immediately prior to the do_preload() call to ensure that the data
in the cache are relevant to subsequent operations. By default, preloading starts

from the beginning of file.

Note that preloading will not displace data already in the disk cache. In partic-
ular, if the cache is already full, then do_preload() has no effect. However, the
user can force the creation of empty slots either by calling do._csize() to increase

the memory allocated for the cache, or alternatively, the user can force a partial
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purge of the cache by using two consecutive do_csize() calls to contract and

then reset the disk cache size.

All processors must participate in the do_preload() call. An implicit global

synchronization is performed.
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do_read()

do_read() performs a read operation into the specified buffer. In C, do_read()

returns the number of bytes read.

Synopsis
int do.read( int fd, void *buf, int nbytes )
subroutine doread( fd, buf, nbytes )

integer fd, buf(*), nbytes

Input parameters

fd — fd is the file descriptor obtained from do_open().

buf — buf is the buffer.

nbytes — mnbytes is the number of bytes to be read.
Description

do.read() attempts to read nbytes bytes of data from the file referenced by the
descriptor £d into the buffer buf (see read(2)).

The calling process waits (blocks) until the request is completed. Important:
Note that reading past the end of file causes an error instead of partially filling
the buffer. Calling do_read() to read from a write-only file causes an error. The

seek pointer is updated to point to the next byte in the file.

Note that the execution times for the do_read() may vary substantially, depend-

ing on the access pattern and effectiveness of the disk cache.
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do_write()

do_write() performs a write operation from the specified buffer. InC, dowrite()

returns the number of bytes written.

Synopsis
int dowrite( int fd, void *buf, int nbytes )

subroutine dowrite( fd, buf, nbytes )

integer fd, buf(*), nbytes

Input parameters

fd — fd is the file descriptor obtained from do_open().

buf — buf is the buffer.

nbytes -~ nbytes is the number of bytes to be written.
Description

do_write() attempts to write nbytes bytes of data to the file referenced by the
descriptor £d from the buffer buf (see write(2)).

The calling process waits (blocks) until the request is completed. Using do_write()
to write to a read-only file causes an error. The seek pointer is updated to point

to the next byte in the file.

Note that the execution times for do_write() may vary significantly, depending

on the access pattern and effectiveness of the disk cache.
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4. Implérnentafion Details

EDONIO provides a large high-speed disk cache in the aggregate memory of the Intel
multiprocessor. The most important difference between EDONIO and DONIO is that
the entire disk file is no longer kept in memory as in DONIO. Instead, EDONIO acts
more as a true disk cache, reading and writing blocks of the file as needed. Hence
EDONIO no longer requires the user to call do_1size() before do_write(). do1size()
(do_esize()) is now merely a hint to the operating system concerning the eventual
file size. EDONIO automatically keeps track of the highest address actually used. If the
user overestimates the file size in do_1size() (do.-esize()), then the correct (exact)
size file will still be written to disk.

The conceptual view of a disk file in EDONIO is a sequence of blocks, each containing
a fixed number (default 8 pages) of fixed size (default 8KBytes) pages.! Responsibility
for actual disk I/O on the blocks is assigned to the processors in a wrap-mapped fashion.
Thus, in an N-processor configuration, processor p is responsible for satisfying any 1/0
requests involving blocks p,p+ N,p+ 2N,... etc.

EDONIO supplies two separate caches: the disk cache and the read-only data cache.
A processor’s disk cache contains blocks of the disk file that have been most recently
accessed. Note that blocks are only cached in the disk cache by the processor responsible
for the given block, thus eliminating concerns for cache coherency. EDONIO also provides
a read-only data cache for read-only files to reduce message traffic on repeated re-reads
of the same data. Read-only files cannot be updated and is completely free from cache-
coherency restrictions, therefore, the read-only data cache may hold any data that has
been accessed, regardless of assignment (though the actual disk read is still performed
by the assigned processor).

EDONIO uses the least recently used (LRU) strategy for cache management. That
is, if the cache is full when a cache miss occurs, the least recently accessed block in the
disk cache is deleted to make room for the incoming cache block. For the read-only
data cache, merely freeing the memory is sufficient. However, for the disk cache, the
chosen block is first checked to see if it is “dirty” (i.e., has been altered). If so, it
is written out to disk before it is deleted from the cache. This differs markedly from

1The xps35 Intel Paragon uses hardware pagesize of 8Kbytes, and RAID disk stripe size is configured
to be 64Kbytes.
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DONIO, where the cache was set large enough to C(;nta,in the entire file, thus eliminating
the need for disk I/O until the file was closed.

In EDONIQ, all processors must participate concurrently in do_open(), do_lsize()
(do_esize()), do_flush() and do_close(). The processors are synchronized when
opening a shared file with do_open() so that EDONIO can set up common data struc-
tures. They are synchronized in do_flush() and in do_close() to ensure that there
are no outstanding read or write requests.

EDONIC must deviate from the UNIX file system with respect to file permissions.
The UNIX file systems allow a user to open an existing file with flag 0_WRONLY (assuming
the file mode allows write access) in a directory in which the user does not have read
access. EDONIO cannot allow this, since it is impossible for EDONIO to act as a disk
cache on a file without read permission. For simplicity, we assume that the user has
read permission on any files that will be accessed with do_open(). Moreover, although
EDONIO supports a write-only file mode (as a safety check to prevent read operations
on the file), the actual file permissions must allow both reading and writing.

The original DONIO did not support an APPEND mode for file I/0. Instead, the user
was advised to open separate files for each logically separate set of data, largely because
of the inherent limitation on file size in DONIO. With EDONIO, the UNIX O0_APPEND is
still not directly supported but file size is no longer a concern, as we now fully support
files of practically unlimited size (up to 16Terabytes). The user can append to a file
by first seeking to end of file (see description on do_1seek()and do_flush()) before
writing.

With EDONIO, the execution times for do._read() and do_write() may vary signif-
icantly depending on the ratio of cache hits/misses. The user can reduce these times
in several ways. The size of the cache can be increased (see do_csize()) to improve
the probability of cache hits, or preloading of the cache (see do_preload()) can also
improve I/0 performance.

Consider the sequence of events initiated by a do_read() request. First, the disk
blocks involved are identified. If the disk block is assigned to the same calling processor,

the local disk cache is searched. A cache miss causes EDONIO to load these blocks into

the local disk cache, displacing other blocks if necessary. For any blocks assigned to
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other processors, the IPX? system [3] is used to request the‘data from the processors that
“own” those blocks. The read request is satisfied after the remote data are received. If
the file was opened as a read-only file, the incoming data are also placed in the local
read-only cache, to reduce message passing traffic should the same data be referenced
in subsequent read operations. Note the read-only data cache holds only remote (non-
local) data.

A dowrite() operation is similar. Again, the disk blocks to be written are iden-
tified. Blocks assigned to the same processor are loaded into the cache if they are not
already there. EDONIO uses the IPX ‘‘on’’ routine (a type of “remote procedure call”)
to cause other processors to update blocks assigned to them. On the iPSC/860, IPX uses
the NX hrecv() interrupt mechanism to preempt a processor to service IPX requests.
However, on the Intel Paragon, hrecv() is not a true interrupt handler but spawns a
separate thread that executes concurrently with the main computation. The extensive
use of masktrap() for exclusive access to critical sections incurs a very high overhead
on the Paragon. We have chosen to use a more efficient non-interrupt (polling) version
of IPX for use on the Paragon. Because IPX requests are serviced only when the mes-
sage queue is polled, and processors must supply data or update blocks at the request
of other processors, the user must be careful to prevent deadlock or starvation. EDONIO
provides the do_check() routine to examine the message queue for IPX requests. For
example, code that uses a subset of the processors to handle all the disk I/0 will fail
unless the remaining processors periodically call do_check(), since IPX requests to
these processors will not be serviced. See the manual page for do_check() for further
discussion.

We have included a subprogram for preloading the disk-cache to enhance perfor-
mance of the disk I/0. Preloading of the disk-cache is particularly desirable immediately
after opening an existing file, where disk I/O during preloading proceeds in parallel.
Preloading is not guaranteed to improve I/O performance since it depends on the ac-
cess pattern and size of disk cache. See the manual page for do_preload() for further

details.

2IPX is available by anonymous FTP from msg.das.bnl.gov under the directory /pub/ipx.
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5. Expei'imental Results

In this section we present a rough comparison of disk performance by EDONIO versus
native NX routines. The Fortran source code is included in the Appendix. The code
is a contrived example that simulates the disk I/O common in finite element codes by
performing multiple direct access 1seek()’s, cread()’s and cwrite()’s. This example
generates the element-to-vertex list for a three dimensional nez X ney X nez grid.
The elements are assumed to be ordered with z-index varying fastest, then z then .
Elements along the vertical direction are grouped in buffer mibuf before writing to
obtain better disk performance. Note that the element-to-vertex list file is independent
of the number of processors. The same file is later read again.

Since operating system patches and compiler upgrades are regularly applied to the
512-processor xps35 Intel Paragon system at the Oak Ridge National Laboratory, and
EDONIO is currently undergoing performance tuning, the performance numbers listed
should be taken only as approximate and reflect only the current state of affairs (Feb
1995, OS version R1.2.5). Moreover, background disk activity by other concurrently
running applications may also affect the timings. Three problems were used for testing:
a small 100 x 100 x 100 (1,000,000 elements) problem, a medium 200 x 200 x 200
(8,000,000 elements), and a large 300 x 300 x 300 (27,000,000 elements) problem.

Table 5.1 show the effect of varying the amount of memory allocated to the disk
cache in EDONIO on 22 nodes on a 200 x 200 x 200 grid (file size is 256 x 10° bytes).
We see from Table 5.1 that optimal performance is obtained when the aggregate disk
cache can hold the entire file. Table 5.2 shows preloading the disk cache can reduce
I/O time in read for 16 nodes on 121 x 121 x 91 grid (file size is 42,634,592 bytes).
Runtimes are obtained from dclock().

Tables 5.3-5.5 list the runtimes (in seconds) for the three problems. All runs have
EDONIO configured to use 512Kbytés for read-only data cache, 4096Kbytes for disk
cache and with cache preloading. Note that with the default 4096Kbytes allocated for
the disk cache, 8, 62 and 206 processors are needed to hold the small, medium and
large problems (respectively) in memory. The label wopen (wclose) denotes the time
for opening (closing) a file for write-only access; similarly, ropen and rclose apply
to read-only access. Note that read and write times in EDONIO decrease with the

addition of more processors. As more processors are used, fewer messages per processor
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Table 5.1: Effect on disk cache size on EDONIO, all times in seconds.

| Cache (KBytes) | wopen | write | wclose || ropen | preload | read | rclose |

1024 3.0 20.6 0.7 1.6 0.7 ] 55.6 0.2
2048 1.7} 21.2 1.5 1.2 1.3 ] 52.7 0.3
4096 16| 173 3.2 2.2 2.6 | 46.2 0.3
8192 1.5 134 6.2 1.2 55| 294 0.3
12288 1.6 9.6 6.6 2.2 10.3 | 20.3 1.5

Table 5.2: Effect of do_preload()on EDONIO, all times in seconds.

l | wopen | write | wclose || ropen | preload | read | rclose |

With preload 2.2 3.1 2.4 1.3 1.3 | 4.7 0.2
No preload 1.2 3.1 1.8 0.8 0.0 | 253 0.2
NX 14| 385 0.2 0.7 0.0 | 254 0.2

are generated. Moreover, more total aggregate memory (4Mbytes per processor) is
available for the disk cache. wclose and preload involve physical disk activity to
write out or read in data into the aggregate disk cache; hence as the disk cache size
increases with more processors, more data are transfered and more time for disk I/O
may be required.

We see that with a large enough disk cache, EDONIO may offer nearly a ten-fold
improvement over native NX routines. However, if the disk cache is too small to be
effective, performance of EDONIO may be similar to native NX. EDONIO fully exploits the
new M_ASYNC mode in achieving over 20Megabytes per second overall disk throughput
to the /pfs. By comparison, DONIO with the default M_UNIX mode obtained only about
5Megabytes per second disk throughput.

6. Summary

We have described EDONIO, a fast file I/O emulation library for the Intel iPSC and
Paragon distributed memory multiprocessors. EDONIO provides an easy to use interface,
and with minimal change to the source of an iPSC/860 or Paragon parallel program
may improve file I/0 by a ten-fold speedup. Similar to the shared-memory library
DOLIB, EDONID uses the IPX message system to provide a very large high-speed disk



-93-

Table 5.3: Runtimes (in seconds) of EDONIO (NX) routines on 100 x 100 x 100 grid, file
size is 32 x 108 bytes.

l processor [ wopenJ write [ wclose " ropen [ preload | read ] rclose |
111.9(1.0) | 29.1(293.7) { 0.7 (0.1) || 0.7 (0.4) 2.5 | 44.9 (213.7) | 0.1 (0.1)
2 11.5(1.0) | 20.9 (187.8) | 0.6 (0.1) || 0.6 (0.5) 2.8 | 39.5(83.8) ] 0.1(0.1)
412.0(0.9)| 13.2(84.2) | 0.7(0.1) || 0.6 (0.6) 2.8 | 22.6(48.9)]0.1(0.1)
8 (1.4 (0.9) 6.4 (50.5) | 1.2 (0.1) || 0.7 (0.6) 1.9 8.2(34.2) | 0.2 (0.1)
16 | 1.2 (1.5) 3.5 (26.8) | 1.1 (0.2) || 1.0 (0.7). 1.8 4.3 (17.0) | 0.3 (0.2)
32 |2.0(1.6) 2.0 (20.5) | 1.8 (0.4) || 1.3 (1.4) 1.0 2.3 (10.0) | 0.4 (0.4)
64 | 3.1(2.8) 1.3 (22.6) | 2.4 (0.7) |} 2.5 (3.0) 0.9 1.3(9.5) | 0.8 (0.9)

Table 5.4: Runtimes (in seconds) of EDONID (NX) routines on 200 X 200 x 200 grid, file
size is 256 x 10° bytes.

| processor | wopen | write | wclose || ropen | preload | read | rclose |

] 16 | 3.1(1.3) | 3L.3(141.2) | 1.9(0.2) || L.4(0.8) 9.2 | 84.5(80.5) | 0.3(0.2)
32 | 3.1(2.1) | 15.5(122.4) | 3.2(0.4) [| 15(1.3) | 3.6 | 30.1(49.3) | 0.4(0.4)

64 | 3.0(3.5) | 5.3(118.6)| 7.6(0.7) || 2.5(2.1) 7.9 | 7.2(48.0) | 0.8(0.7)

128 | 4.7(4.7) | 3.0(89.2) | 10.7(1.5) || 4.3(3.7) 77| 4.0(47.5) | 1.6(1.4)

Table 5.5: Runtimes (in seconds) of EDONIO (NX) routines on 300 x 300 x 300 grid, file
size is 864 x 10° bytes.

ﬁ)rocessorw wopen ] write | wclose ” ropen ] preload I read | rclose |
32 | 2.1(1.5) | 45.9(262.0) | 5.2(0.4) || 2.6(2.3) 3.4 | 119.5(111.4) | 0.4(0.3)
64 | 2.9(2.8) | 24.1(218.1) | 7.3(0.7) || 2.8(2.2) 6.5 | 56.7(108.8) | 0.8(0.7)
. 128 | 4.9(4.5) | 14.1(360.3) | 23.1(1.5) || 4.6(4.8) 115.8 | 21.4(105.2) | 1.5(1.5)
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cache in the aggregate memory of the multiprocessor. Disk I/O operations are in large
blocks to fully exploit the new M_ASYNC I/O mode. EDONIO is more memory efficient

than DONIO and can access files of practically unlimited size.

7. Obtaining the Software

To obtain the source code for EDONIO the reader should send email to the authors:

e6d@ornl.gov or rominech@ornl.gov.
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8. Appéndix

In this appendix, we list the Fortran source code used in comparing the performance of
EDONIO and NX disk operations. Note that either EDONIO or NX routines can be selected

by a flag at compile time.

program example
P
co== a simple example to illustrate the use of DONIO
c———

include ’fnx.h’
#ifdef USE_NX
Pa——
c——— note: fd is defined as a constant unit number
P
integer fd
parameter(fd=16)

#define M_MODE M_ASYNC

#define IOINIT(myid,nproc)

#define LSEEK lseek

#define ROPEN(fd, filename) call gopen(fd,filename,M_MODE)

#define WOPEN(fd, filename) call gopen(fd,filename,M_MODE)

#define LSIZE(fd, newsize) ierr = lsize( fd, newsize, SIZE_SET )
#define CREAD(fd, ibuffer,nbytes) call cread(fd,ibuffer,nbytes)
#define CWRITE(fd, ibuffer, nbytes) call cwrite(fd, ibuffer, nbytes )
#tdefine CCLOSE(fd) close( £d )

#define GSYNC() call gsync()

#else
integer rflags,wflags,mode
parameter(rflags=0,wflags=(512+1) ,mode=(8*8+6+8%6+6))
integer doopen, doread, dowrite, dolseek
external doopen, doread, dowrite, dolseek
external doclose,dolsize

c_-- -

c——- note: fd is declared as a variable

G

integer fd

#define IOINIT(myid,nproc) = call donio(myid,nproc)
#define LSEEK dolseek :
#define ROPEN( fd, filename) fd = doopen( filename, rflags,mode)




#define
#define
#define
#define
#define

#define
#endif

c——
c——-
c——-

c=——-
c—-—
c——-

- 26 -

WOPEN( fd, filename) fd = doopen( filename, wflags,mode)
LSIZE( fd, newsize ) call dolsize( fd, newsize )

CREAD(fd, ibuffer,nbytes) ierr = doread(fd, ibuffer, nbytes )
CWRITE(fd, ibuffer, nbytes) ierr = dowrite( fd, ibuffer, nbytes )

CCLOSE( fd ) call doclose(fd)

GSYNC() call dogsync()

integer indev,outdev,sizeint,nvertex,maxnez
parameter(indev=5,outdev=6,sizeint=4,nvertex=8,maxnez=1024)

integer data_size,disk_size
integer ipreload

double precision tstart,tend

character*80 filename

integer i, ix,iy,iz, nnx,nny,nnz, nex,ney,nez
integer jx,jy,jz

integer mbuf(nvertex,maxnez)

integer mbuf2(nvertex,maxnez)

integer nbytes, myid,nproc,ihost

real*8 totalbytes

integer mi,miold,ierr,offset, iwork

logical ismine

8 vertices of an hexahedral brick element

integer dx(nvertex),dy(nvertex),dz(nvertex)
data dx /0,1,1,0, 0,1,1,0/
data dy /0,0,1,1, 0,0,1,1/
data dz /0,0,0,0, 1,1,1,1/

integer ijk2mi,ijk2ni
ijk2mi(ix,iy,iz,nex,ney,nez) = iz+(ix-1)*nez+(iy-1)*nez*nex
ijk2ni(ix,iy,iz,nnx,nny,nnz) = iz+(ix-1)*nnz+(iy-1)*nnz+nnx

code begins

myid = mynode()
nproc = numnodes()

#if RX || 1860

#endif

call openO(nproc, myid, ihost )

IOINIT( myid, nproc )
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. ' nex = (o}
ney = 0
nez = 0

1]
(o)

data_size
disk_size

"
o

ipreload = 0

if (myid .eq. 0) then
write(outdev,*) ’enter nex,ney,nez ’
read(indev,*) nex,ney,nez
write(outdev,*) ’nproc, nex,ney,nez ’, nproc,nex,ney,nez

write(outdev,*) ’enter data_size, disk_size (in Kbytes)’
read(indev,*) data_size,disk_size
write(outdev,*) ’data_size,disk_size’,data_size,disk_size

write(outdev,*) ’enter use of preload ’
read(indev,*) ipreload
write(outdev,*) ’ipreload ’,ipreload

endif

call gisum( data_size, 1, iwork )
call gisum( disk_size, 1, iwork)

call docsize( data_size, disk_size )

call gisum( ipreload, 1, iwork )

call gisum(nex,1,iwork)
call gisum(ney,1,iwork)
call gisum(nez,1,iwork)

nnx = nex + 1
nny = ney + 1
nnz = nez + 1

totalbytes = dble(nex*ney*nez)*dble(nvertex*sizeint)

GSYNC()
tstart = dclock()
#ifdef USE_NX
#if RX || 1860
filename = ’/cfs/nxex.bin’




#else
filename = */pfs/nxex.bin’
#endif

#else /* USE_NX */
P
c——= IMPORTANT NOTE: string MUST be null terminated
P
#if RX || 1860

filename = °/cfs/ex.bin’ // char(0)
#else

filename = ’/pfs/ex.bin’ // char(0)

#endif
#endif /#* USE_NX */

WOPEN( fd, filename )

GSYRC()
tend = dclock()
if (myid .eq. 0) then
write(outdev,*) ’> open takes ’, tend-tstart,’ sec’
write(outdev,*) ’ total file size is 7,
& int(totalbytes/1024.0/1024.0),’ Megbytes’
endif

nbytes = nvertex*sizeint
GSYNC()
tstart = dclock()

miold = -1
do iy=1,ney
do ix=1,nex

ismine = (mod( ix+(iy-1)*nex, nproc) .eq. myid )

if (ismine) then
do iz=1,nez
do i=1,nvertex
jx = ix+dx(i)
jy = iy+dy(i)
jz = iz+dz(i)
mbuf (i,iz)=ijk2ni(jx, jy, jz,nnx,nny,nnz)
enddo
enddo

mi = ijk2mi( ix,iy,1, nex,ney,nez)
‘if (miold.eq.-1) then
offset = (mi-1)*nvertex*sizeint
ierr = LSEEK( fd, offset, SEEK_SET )
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. else
offset = (mi-miocld)#*nvertex*sizeint - nbytes
ierr = LSEEK( fd, offset, SEEK_CUR )
endif

miold = mi
nbytes = nezinvertex*sizeint
CWRITE( fd, mbuf(i,1), nbytes )
endif

enddo

enddo

GSYNC()
tend = dclock()
if (myid .eq. 0) then
write(outdev,*) ’ write takes ’, tend - tstart,’ sec’
endif

GSYNC()
tstart = dclock()
CCLOSE( £4 )
GSYRC()
tend = dclock()
if (myid .eq. 0) then
write(outdev,*)’ close for write takes ’,tend-tstart,’ sec’

endif
- R
¢ ——— read the element list back
C ——-
- GSYNC()

tstart = dclock()
ROPEN( fd, filename )
GSYNC()
tend = dclock()
if (myid .eq. 0) then
write(outdev,*)’ open for read takes ’, tend-tstart,’ sec’
endif

if (ipreload.ne.0) then
GSYNC()
tstart = delock()
call dopreload( fd )
GSYNC()
tend = declock()
if (myid.eq.0) then
write(outdev,*) ’preload takes ’,tend-tstart,’ sec’
endif

endif




P
Pa—
¢ ———
9800

nbytes = nvertex*sizeint

GSYNC()

tstart = dclock()
miold = -1

do iy=1i,ney

do ix=1,nex

ismine = (mod( ix+(iy-1)#nex, nproc) .eq. myid )

if (ismine) then
do iz=1,nez

do i=1,nvertex
jx = ix+dx(i)
jy = iy+dy(i)

jz = iz+dz(i)
mbuf2(i,iz)=ijk2ni(jx,jy,jz,nnx,nny,nnz)
enddo

enddo

endif

if (ismine) then
mi = ijk2mi( ix,iy, 1, nex,ney,nez)

if (miold.eq.-1) then
offset = (mi-1)*nvertex*sizeint
ierr = LSEEK( fd, offset, SEEK_SET )
else
offset = (mi-miold)*nvertex*sizeint - nbytes
ierr = LSEEK( fd, offset, SEEK_CUR )
endif

miold = mi
nbytes = nez*nvertex*sizeint

endif

doubl

if (i

endif

CREAD( fd, mbuf(1,1), nbytes )

e check results

smine) then
do iz=1,nez
do i=1,nvertex
if (mbuf2(i,iz).ne.mbuf(i,iz)) then
write(*,9900) i,iz,mbuf2(i,iz) ,mbuf(i,iz)
format(’i,iz,mbuf2(i,iz) ,mbuf(i,iz)?,4(1x,i7))

stop ’** ERROR ** ?
endif
enddo
enddo
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enddo
enddo

GSYRC()
tend = dclock()
if (myid .eq. 0) then
write(outdev,*) ’ all reads take ’,tend-tstart,’ sec’
endif

GSYNC()
tstart = dclock()
CCLOSE( £d )
GSYNC()
tend = dclock()
if (myid .eq. 0) then
write(outdev,*) ’ close for read takes ’, tend-tstart,’ sec’
endif

stop
end

<4
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