skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Rhodium-105 Bombesin Analogs for Prostate Cancer Radiotherapy

Technical Report ·
DOI:https://doi.org/10.2172/951630· OSTI ID:951630

Over the period of this grant (11/01/2001 to 12/31/2005), the consistent and reproducible production of Rh-105, synthesis and evaluation of three new chelate systems based on hydroxymethyl phosphines, development of a new non-hydroxymethyl phosphine N{sub 2}P{sub 2} chelate system, conjugation of two of the chelates to the bombesin peptide analog BBN[7-14]NH{sub 2}, evaluation of the bombesin conjugates and their Rh-105 complexes for stability, cell binding affinity, and in vivo biodistribution in normal mice has been developed. The BBN analogs bind to GRP receptors that are overexpressed on PC-3 prostate tumor cells. A dedicated glove box is used for the separation and isolation of {sup 105}Rh from the target ({sup 104}Ru). All tubing/connections/valves from the point of the Cl{sub 2} tank are made of Teflon to minimize/eliminate the introduction of any metal into the process (e.g., iron from stainless steel corrosion). The separation of {sup 105}Rh produced from the enriched {sup 104}Ru target involves oxidation of the enriched {sup 104}Ru metal target to ruthenium tetroxide with chlorine gas and sodium hydroxide solution to generate hypochlorite in situ. The RuO4 is removed by distillation and the {sup 105}Rh remaining in the reaction vial is converted into {sup 105}Rh-chloride by acidification with hydrochloric acid and heating. The {sup 105}Rh production process has become reproducible over the past year to consistently make 10-30 mCi of {sup 105}Rh from 1-3 mg of an enriched (99.21%) {sup 104}Ru target. The process itself involves irradiation of the enriched {sup 104}Ru target in the core of the reactor (University of Missouri Research Reactor (MURR)) for one week to yield 16-40 mCi of {sup 105}Rh. The irradiated target is processed to separate the Rh-105 in high specific activity from the {sup 104}Ru target. The irradiated target is dissolved in NaOH (2M, 3 mL) by bubbling Cl{sub 2} gas through the solution (generating NaOCl in situ) to generate RuO{sub 4} and Rh(III). The RuO{sub 4} is distilled from the solution into an HCl trap to allow for recovery of the enriched Ru as RuO{sub 2}. The {sup 105}Rh remains in the reaction vessel, and on acidification with 0.1 M HCl, {sup 105}Rh-chloride is available for use. A schematic of the purification and Ru-104 recovery process is shown.

Research Organization:
The University of Missouri
Sponsoring Organization:
USDOE
DOE Contract Number:
FG02-01ER63192
OSTI ID:
951630
Report Number(s):
DOE-ER63192- FINAL REPORT; MU Projects: CG004257/CG004258/CG004259/ CG004260; TRN: US201001%%573
Country of Publication:
United States
Language:
English