Final Report
Grant No DE-FGO02-05ER25667

Adaptive LES Methodology for Turbulent Flow

Simulations

by

Oleg V. Vasilyev

June 2008



Final Report - 2008

Contents
Introduction 1
Background 6
2.1 Large Eddy Simulation . . . . . . . . ... ... L 6
2.2 General Properties of Wavelets . . . . . .. .. ..o 7
2.3 Wavelet Filters . . . . . . . . . 8
2.4  Wavelet Compression and Wavelet De-noising . . . . . . .. ... ... ... 9
2.5 Dynamically Adaptive Wavelet Collocation Method (DAWCM) . . ... .. 10
2.5.1 DAWCM in Complex Geometry . . . . . . . .. ... .. ... .... 12
Stochastic Coherent Adaptive Large Eddy Simulation 14
Global Dynamic SGS Model 16
4.1  Model Scaling . . . . . .. 18
Local Dynamic SGS Models 18
5.1 Lagrangian Dynamic Local SGS Model . . . . . . ... ... ... ... ... 19
5.2 Kinetic Energy Based Modeling . . . . . . .. ... .. ... .. 22
5.3 Local dynamic energy-based eddy-viscosity models . . . . . . . .. ... ... 23
5.3.1 Eddy-viscosity modeling . . . . ... ..o 26
5.3.2 SGS energy dissipation modeling . . . . . ... ..o 27
5.4 Dynamic structure model . . . . . . . ..o 28
Algorithm Development 30
6.1 Data Structures . . . . . . . . .. 30
6.1.1  Working Array Structure . . . . . . . . . ... 31
6.1.2 Tree Structure . . . . . . . . .. 31
6.1.3 Lines Structure . . . . . . . . .. .. 32
6.2 Algorithmic Optimization of the Parallel Wavelet Transform . . . . . . . .. 32
6.2.1 Serial Wavelet Transform . . . . . . . . . ... .. ... ... ..... 33
6.2.2 Parallel Wavelet Transform . . . . . .. ... ... ... ... .. .. 36
6.2.3 Five Algorithmic Modifications . . . . . . . . .. ... ... ... .. 37
6.2.4 General Problem Description . . . . . ... ... ... ... ... 40
6.2.5 Scalability, Compression, and Accuracy . . . . . . . ... . ... ... 43
6.3 Parallelization of DAWC Method . . . . . . ... ... ... .. ....... 48
6.3.1 Input/Output Ideology . . . . . . .. ... . ... ... ... ... .. 49
6.3.2 Domain Decomposition . . . . . . . . . ... o0 50

6.3.3 Load Balancing . . . . . . . . ... 50



6.3.4 Parallel Code Structure . . . . . . . . . . ...
6.3.5 Current Performance and Future Work . . . . . . . . . . .. .. ...

7 Applications

7.1
7.2
7.3
7.4
7.5
7.6

Decaying Isotropic Turbulence . . . . . . . . .. .. ... ... ... ... ..

cvs ...

SCALES Constant Coefficient and Global Dynamic SGS Model . . . . . ..
Lagrangian Dynamic Local SGS Model . . . . . . . ... ... ... .....
Kinetic Energy Based SGS Models . . . . . . .. ... ... ... ... ...

Forced turbulence

8 Achievements and Future Extensions

i



Final Report - 2008

1 Introduction

Although turbulent flows are common in the world around us, a solution to the fundamental
equations that govern turbulence still eludes the scientific community. Turbulence has often
been called one of the last unsolved problem in classical physics, yet it is clear that the need
to accurately predict the effect of turbulent flows impacts virtually every field of science and
engineering. As an example, a critical step in making modern computational tools useful in
designing aircraft is to be able to accurately predict the lift, drag, and other aerodynamic
characteristics in numerical simulations in a reasonable amount of time. Simulations that
take months to years to complete are much less useful to the design cycle. Much work has
been done toward this goal (Lee-Rausch et al. 2003, Jameson 2003) and as cost effective
accurate tools for simulating turbulent flows evolve, we will all benefit from new scientific
and engineering breakthroughs.

The problem of simulating high Reynolds number (Re) turbulent flows of engineering and
scientific interest would have been solved with the advent of Direct Numerical Simulation
(DNS) techniques if unlimited computing power, memory, and time could be applied to each
particular problem. Yet, given the current and near future computational resources that
exist and a reasonable limit on the amount of time an engineer or scientist can wait for a
result, the DNS technique will not be useful for more than “unit” problems for the foreseeable
future (Moin & Kim 1997, Jimenez & Moin 1991). The high computational cost for the DNS
of three dimensional turbulent flows results from the fact that they have eddies of significant
energy in a range of scales from the characteristic length scale of the flow all the way down
to the Kolmogorov length scale. The actual cost of doing a three dimensional DNS scales

94 due to the large disparity in scales that need to be fully resolved. State-of-the-

as Re
art DNS calculations of isotropic turbulence have recently been completed at the Japanese
Earth Simulator (Yokokawa et al. 2002, Kaneda et al. 2003) using a resolution of 40963
(approximately 10'!) grid points with a Taylor-scale Reynolds number of 1217 (Re =~ 10°).
Impressive as these calculations are, performed on one of the world’s fastest super computers,
more brute computational power would be needed to simulate the flow over the fuselage of
a commercial aircraft at cruising speed. Such a calculation would require on the order of
106 grid points and would have a Reynolds number in the range of 108. Such a calculation
would take several thousand years to simulate one minute of flight time on today’s fastest
super computers (Moin & Kim 1997). Even using state-of-the-art zonal approaches, which
allow DNS calculations that resolve the necessary range of scales within predefined “zones”
in the flow domain, this calculation would take far too long for the result to be of engineering
interest when it is finally obtained.

Since computing power, memory, and time are all scarce resources, the problem of sim-
ulating turbulent flows has become one of how to abstract or simplify the complexity of the

(13

physics represented in the full Navier-Stokes (NS) equations in such a way that the “im-
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portant” physics of the problem is captured at a lower cost. To do this, a portion of the
modes of the turbulent flow field needs to be approximated by a low order model that is
cheaper than the full NS calculation. This model can then be used along with a numerical
simulation of the “important” modes of the problem that cannot be well represented by the
model. The decision of what part of the physics to model and what kind of model to use
has to be based on what physical properties are considered “important” for the problem. It
should be noted that “nothing is free”, so any use of a low order model will by definition
lose some information about the original flow.

In an abstract sense the first question to address, when one is looking to develop a
reduced order method for simulating turbulent flows, is how to determine what part of
the physical system will be approximated with a low order model and what part will be
simulated numerically. One choice is to average the behavior of the system over time. This
technique is used in Reynolds Averaged Navier Stokes (RANS) simulations (Durbin & Reif
2001, Pope 2000, Gatski et al. 1996). The main limitation of RANS approach is that it is
highly empirical and sensitive to the model parameters that have to be tuned to the problem.

Another option is to simulate the flow on an adapted grid that is coarser than the grid
necessary to represent the flow down to the Kolmogorov length scale. The goal of this type of
method is to resolve the energetic eddies that dominate the flow physics. Any coarsening of
the grid, either locally or globally, implies that not all the modes or frequencies of the original
flow are resolved. Therefore, these “missing” modes will have to be modeled somehow. We
will refer to this class of methods as Eddy Capturing Methods.

The dominant method in the class of Eddy Capturing Methods is Large Eddy Simula-
tion (LES), where the formal scale separation is obtained by means of a low-pass filtering
operation applied to the Navier-Stokes equations, which leads to the definition of filtered
(or large-scale) and residual (or small-scale) fields. The filtered Navier-Stokes equations are
closed by modeling the subgrid-scale (SGS) stresses that account for the effect of the un-
resolved small-scale eddies. In order to realize the benefit of LES, a low order model for
the SGS stress, which is based on the resolved quantities, is needed. In practice 7;; can be
modeled either deterministically (Smagorinsky 1963, Bardina et al. 1983, Germano et al.
1991, Lesieur & Métais 1996, Meneveau & Katz 2000, Moin 2002) or stochastically (Chasnov
1991). The inherent problem with this working definition for LES is that it resolves the large
scale eddies instead of the coherent energetic eddies. It has been shown that the coherent
energetic eddies in a turbulent flow contain significant energy at all length scales from the
characteristic length scale of the domain down to the Kolmogorov length scale (Jimenez
et al. 1993, Goldstein et al. 2000, Farge et al. 2001, Farge & Schneider 2001). Vorticity
tubes, which seem to be the basic structure of three-dimensional homogeneous turbulence,
are observed at all scales of the flow (Vincent & Meneguzzi 1991). Therefore, when a spectral
cutoff filter or low-pass filter with grid truncation is used with LES, the small scale structure
of the coherent energetic eddies are not resolved. Another problem with LES is that the
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computational grid is commonly defined a priori, based on the physics and geometry of the
problem (Moin 2002, Piomelli 1999, Wang & Moin 2002). Yet in flows of engineering and
scientific importance the large scales of interest often change over the domain of the problem
and in time. As stated in the recent book on turbulence by Pope (Pope 2000), “the ideal
numerical method for LES would include adaptive gridding to ensure automatically that the
grid, and hence the filter, are everywhere sufficiently fine to resolve the energy-containing
motions”. This implies that there is a need for an Eddy Capturing Method that is adaptive
in time and space.

Turbulence is characterized by energetic eddies that are localized in space and scale,
yet the methods discussed so far do not take advantage of this localization. There exists
the possibility of exploiting this localization by “compressing” the turbulence problem such
that a simulation with a subset of the total modes captures the dynamics of the most
energetic eddies in the flow. A new method for simulating turbulence called Coherent Vortex
Simulation, was recently introduced by Farge et al. (Farge et al. 1999). This method uses a
wavelet filter to dynamically resolve and “track” the energetic coherent eddies or vortices in
a turbulent flow. It has been shown that the resulting SGS field with CVS is near Gaussian
white noise (Goldstein et al. 2003, Schneider et al. 2003). Therefore, if only low order
statistics such as SGS dissipation are required, a CVS simulation can be run with no subgrid
scale model. This is possible because a purely incoherent white noise SGS field will result
in zero total SGS dissipation from the resolved field. It is important to note that there
is still significant energy transfer between the resolved and SGS modes and viceversa, but
the statistical average or net energy transfer is zero. If higher order statistics are required,
then a purely stochastic subgrid stress model should be used to reproduce the effect of the
subgrid scales. The use of the stochastic model has not been explored up-to-now in CVS.
One of the challenges with the CVS method is how to determine on the fly during an actual
simulation the “ideal” wavelet compression, which results in a purely incoherent subgrid scale
field. Even if it can be found in a cost effective manner, it is still likely that the associated
adaptive grid will be too fine to be cost effective for simulating high Re number flows, since
the computational cost of CVS falls between DNS and LES.

The main objective of this research project is to develop the adaptive LES methodology.
The new approach inherits the advantages of both the CVS and LES methods: the ability of
the CVS method to dynamically resolve and “track” the most energetic part of the coherent
eddies in a turbulent flow field with a field compression in the range of that used with typical
LES applications. In this project, both the CVS and adaptive LES methods are implemented
using a Dynamically Adaptive Wavelet Collocation method (DAWCM) (Vasilyev & Bowman
2000, Vasilyev 2003). The DAWCM is ideal for CVS and adaptive LES as it combines the
resolution of the energetic coherent modes in a turbulent flow with the simulation of their
temporal evolution (Vasilyev & Kevlahan 2002, Kevlahan et al. 2003, Goldstein et al. 2003,
Kevlahan & Vasilyev 2005). The wavelet collocation method employs wavelet compression
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as an integral part of the solution such that the solution is obtained with the minimum
number of grid points for a given accuracy. When the threshold is chosen simply to satisfy
numerical accuracy (and subgrid scales are not modeled) we call this method Wavelet based
Direct Numerical Simulation, or WDNS.

During the duration of the project our efforts were concentrated in two main areas:
model and algorithm development. The main accomplishments in both of these areas are

summarized below:

Model Development

1. The new global dynamic SGS stress modeling procedure based on a variation of the
classical Smagorinsky (Smagorinsky 1963) model is developed (Goldstein et al. 2005).
In this model the scaling of the eddy viscosity is based on €? (where € is the wavelet
filtering threshold parameter), instead of the standard scaling A (where A is the filter
width). The model uses global dynamic coefficient. The model has been successfully
tested for decaying homogeneous turbulence case. The detailed discussion is presented
in Sections 4, 7.1-7.3.

2. New local SCALES models based on Lagrangian path-line diffusive and path-tube
averaging are developed (De Stefano et al. 2005, Vasilyev et al. 2006, Vasilyev et al.
2008) and assessed in terms of accuracy and efficiency. The models are tested for freely
decaying homogeneous turbulence with initial Rey = 72. It is shown that the SCALES
results, obtained with fewer than 0.4% of the total non-adaptive nodes required for a
DNS with the same wavelet solver, closely match reference DNS data. In contrast to
classical LES, this agreement holds not only for large scale global statistical quantities,
but also for energy and, more importantly, enstrophy spectra up to the dissipative
wavenumber range. The detailed discussion is presented in Sections 5.1 and 7.4.

3. New localized dynamic models for stochastic coherent adaptive large eddy simulation
that involve an evolution equation for the subgrid kinetic energy are developed (Vasi-
lyev et al. 2006, De Stefano et al. 2008). One of the main advantages of this formu-
lation is that the equilibrium assumption between production and dissipation of SGS
energy is not required as in the classical Smagorinsky approach. In contrast, the en-
ergy transfer between resolved and residual motions is directly ensured by solving an
additional transport model equation for the subgrid-scale energy. Some known difficul-
ties, associated with the classical dynamic Germano model are overcome using these
models. Specifically, scaling subgrid scale stress in terms of the SGS kinetic energy
provides a feedback mechanism that makes the numerical simulation stable regardless
of whether an eddy-viscosity or non-eddy viscosity assumption is made. This way, no
averaging procedure is needed in practice and the models stay fully localized in space.
The detailed discussion is presented in Sections 5.2, 5.3, 7.4, 7.5, and 7.6.
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Algorithm Development

1. Three different data-structures have been developed: working array, Lines, and Trees.
All three data-structures are implemented and all solver features are extended to these
data-structures. The preliminary result demonstrate that lines-based data-structure
is more efficient in terms of cash locality. Despite computational savings, the Lines
data-structure adds substantial technical complexity into the algorithm by only having
access to the nearest points along the line, which makes this data structure impractical
for development purposes. The detailed discussion of data-structures is presented in

Section 6.1.
2. A novel modified asynchronous adaptive wavelet transform that completely eliminated

the requirement of level synchronization is developed. The new algorithm completely
eliminated the requirement of synchronizing data between different processors for each
level of wavelet transform, which it turn puts additional requirement on load balancing
of each level of resolution. Instead both the wavelet transform and/or linear operator
can be evaluated in each computational subdomain with only one inter-processor syn-
chronization for each operation. The only disadvantage of such algorithm is the loss
of the zero-mean property of the wavelets in the vicinity of the inter-processor domain
boundary. This drawback is easily compensated by the simplicity of the load balancing
algorithm and possible increase of local resolution in the immediate proximity of the
sub-domain boundary. The detailed discussion of the modified asynchronous wavelet

transform is presented in Section 6.2.
3. A parallel version of the code has been developed. The code was designed to con-

sist of three main parts: the main wavelet code, the data structure, and the parallel
communicators with the required interfaces and external libraries. In addition, all the
information transfers between processors were implemented via collective all-to-all MPI
(message passing interface) communications, which eliminated all the deadlock related
problems. The major trade-off of such an approach was, again, the code performance.
Normally, a processor would require information from several neighboring domains
only, not from all the other processors, therefore replacing all-to-all with point-to-
point communications is an important optimization which will be implemented in the
future. The parallel solver has been assessed in terms of scalability and efficiency and
the ares for future improvements of the solver were identified. The detailed discussion
of parallelization issues and load balancing algorithm Section 6.3.

The rest of the report is organized as follows. A brief review of the background relevant
to this progress report is given in Section 2. The Stochastic Coherent Adaptive Large Eddy
Simulation (SCALES) approach is formulated in Section 3. The global dynamic model for
SCALES is presented in Section 4. The local dynamic models for SCALES are presented in
Section 5. The issues related to algorithm development, data structures, and load balancing
procedure are discussed in Section 6. The results of CVS and SCALES simulaitons with
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global and local dynamic models for decaying isotropic turbulent flow are presented in Section
7. Finally the main achievements and possible future extension of the work are discussed in
detail in Section 8.

2 Background

In the following subsections we briefly discuss background theory relevant to this progress
report. First the Large Eddy Simulation method is introduced followed by the discussion of
the two important properties of wavelets (Sweldens 1996, Sweldens 1998) that are essential
for this project, namely the ability of wavelets to compress and de-noise signals. Then we
will briefly describe dynamically adaptive wavelet collocation method that is used as a base
method for this project.

2.1 Large Eddy Simulation

The large eddy simulation (LES) method is based on the premise that the large scales of a
turbulent flow dominate mixing, heat transfer and other quantities of engineering interest,
while the small scales are only of interest because of how they effect the large scales. The
LES equations for incompressible flow, that describe the evolution of the large scale eddies
in the flow field, can be written as:

ou;
p— ].
0, ()
8@,- n 0(@ ﬂj) _ _1 8]‘9 5 azﬂi B aTij ’ (2)
ot Oz, p Ox; O0r;0x;  Ox;
where
Tij = Uill; — U; Uj (3)

and u; is the velocity field, p is density, v is kinematic viscosity, p is pressure and (+) represents
spatial filtering. As a result of the filtering process the unresolved quantity 7;;, commonly
referred to as the subgrid scale (SGS) stress, is introduced. Note that 7;; is a function of the
unfiltered velocity field u;. In order to close (1-2) and realize the benefit of LES, a low order
model for the SGS stress, which is based on the resolved quantities, is needed. In practice
7;; can be modeled either deterministically (Moin 2002, Lesieur & Métais 1996, Meneveau
& Katz 2000) or stochastically (Chasnov 1991). Most current LES is done using purely
deterministic models of the eddy viscosity type (Pope 2000).

In LES the filter is either explicit or it can be defined implicitly by the computational
grid. Either way, LES uses a reduced computational grid that is capable of supporting (or
representing) only a subset of the total number of active modes in the flow. Current state of
the art LES work uses non-uniformly stretched meshes or zonal grids (Moin 2002, Piomelli
1999, Kravchenko et al. 1996) that are refined a priori to the geometry of the problem.
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Figure 1. Lifted interpolating wavelet ¢, of order 6 (a) and its Fourier transform ¥(¢) (b).

2.2 General Properties of Wavelets

Wavelets are basis functions which are localized in both physical space (due to their finite
support) and wavenumber space (due to their vanishing moments), e.g. Fig. 1. For com-
parison, the classical Fourier transform is based on functions (sines and cosines) that are
well localized in wavenumber, but do not provide localization in physical space due to their
global support. Because of this space/scale localization, the wavelet transform provides both
spatial and scale (frequency) information while the Fourier transform on the other hand only
provides frequency information.
A scalar field f(x) can be represented in terms of wavelet basis functions as

+oo 2"—1
F) =R+ > Y du(x), (4)
le Lo =0 pu=1 kekrj

where ¢ (x) and 1}/ are respectively n-dimensional scaling functions and wavelets of differ-
ent families (1) and levels of resolution (j). One may think of a wavelet decomposition as
a multilevel or multiresolution representation of a function, where each level of resolution j
(except the coarsest one) consists of wavelets ¢f or family of wavelets ¢}’ 7 having the same
scale but located at different positions. Scaling function coefficients represent the averaged
values of the field, while the wavelet coefficients represent the details of the field at different
scales. The wavelet functions have a zero mean, while the scaling functions do not. Note
that in n-dimensions there are 2" — 1 distinctive n-dimensional wavelets (Daubechies 1992).
Also note that due to the local support of both scaling functions and wavelets, there is a
one-to-one correspondence between the location of each scaling function or wavelet with a
grid point. As a result each scaling function coefficient ¢ and each wavelet coefficient d’
is uniquely associated with a single grid point with the indices 1 and k respectively.

7
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Traditionally, one dimensional first generation wavelets wi are defined as translates and
dilates of one basic wavelet ¢, i.e. 1] () = ¢)(27x — k). Second generation wavelets (Sweldens
1996, Sweldens 1998) are a generalization of first generation wavelets that supplies additional
freedom to deal with arbitrary boundary conditions, and irregular sampling intervals. Second
generation wavelets form a Riesz basis for Ly space, with the wavelets being local in both
space and frequency and often having many vanishing polynomial moments, but without
the translation and dilation invariance of their first generation cousins. Despite the loss of
these two fundamental properties of wavelet bases, second generation wavelets retain many
of the useful features of first generation wavelets, including a fast O(N) transform. The
construction of second generation wavelets is based on the lifting scheme that is discussed
in detail by Sweldens (Sweldens 1996, Sweldens 1998).

For this project we use a set of second generation wavelets known in the literature as lifted
interpolating wavelets (Vasilyev & Bowman 2000, Sweldens 1996). In particular, simulations
with the dynamically adaptive wavelet collocation (DAWC) solver are run using a lifted
interpolating wavelet of order 6, which is shown in Fig. 1 along with its Fourier transform.
For a more in-depth discussion on the construction of these wavelets the reader is referred to
the papers by Sweldens (Sweldens 1996, Sweldens 1998), and Vasilyev and Bowman (Vasilyev
& Bowman 2000). For a more general discussion on wavelets we refer the reader to the books
of Daubechies (Daubechies 1992) and Mallat (Mallat 1999).

2.3 Wavelet Filters

Wavelet filtering is performed in wavelet space using wavelet coefficient thresholding, which
can be considered as a nonlinear filter that depends on each flow realization. The wavelet
thresholding filter is defined by,

too 27—1
Freo=) dai)+> > Yo (X)), ()
leLo J=0 p=1 k € KCrid

ldi” | > €l fllwre

where f(x) is a scalar field, ¢ > 0 stands for the non-dimensional (relative) threshold pa-
rameter, and || - ||, being the Wavelet Threshold Filtering (WTF) norm that provides the
(absolute) dimensional scaling for filtered variable f. For instance, in the case of velocity, the
(absolute) dimensional scaling can be specified as the Ly norm (||u;|| e = |lwil|2) or the Lo

norm (||willyre = ||tilloo). Note that once the WIT'F-norm || - is specified, the wavelet

e
thresholding filter (5) is uniquely defined by the nondimensional threshold parameter, e.
The reconstruction error due to wavelet filtering with non-dimensional threshold param-

eter € can be shown to be (Donoho 1992, Vasilyev 2003):

1F () = F®)ll2 < Cell fllwre - (6)
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for a piecewise regular function f(x), where C is of order unity.

As will be shown later, when the wavelet threshold filter is applied to a system of evolution
equations, each variable could be filtered according to Eq. (5). Once filtered, each variable
could be integrated in time. However, this would lead to numerical complications due the
one-to-one correspondence between the location of a wavelet with a grid point. In particular
each variable would be solved on a different grid. In order to avoid this difficulty and make
filtering of each term in the evolution equation easy, in the present study the coupled wavelet
thresholding strategy is used. The mask of significant wavelet coefficients is constructed for
each variable according to thresholding criteria of Eq. (5). The union of these masks will
result in the global thresholding mask, that is used for each dependent variable and each term
in the equation. Note that in some applications additional variables, like vorticity or strain
rate can be used for construction of the global mask. Once this global mask is constructed,
one can view the wavelet filtering as local low-pass filtering, where the high frequencies are
removed according to the global mask. The effective wavelet filter width depends on the choice
of WTF-norm, the spatial distribution of the variables used for defining the coupled wavelet
filter mask and is a function of non-dimensional threshold parameter, e. Such interpretation
of wavelet threshold filtering highlights the similarity between SCALES and classical LES
approaches. However, the wavelet thresholding filter is drastically different from the LES
filters, primarily because it changes in time following the evolution of the solution, which,
in turn, results in an adaptive computational grid that tracks in physical space the areas
of locally significant energy of all variables used for the grid adaptation. However, it is
important to note that, unlike the Fourier modes, there is no one-to-one correspondence
between wave number and wavelet level. Instead, each wavelet level represents a region of
wave numbers. Figure 2 shows the energy spectra of the modes associated with 6 wavelet
scales or levels along with the full energy spectra of a turbulent field, obtained from a 2563
DNS simulation of forced isotropic turbulence (Jimenez et al. 1993) with Rey = 168. Note
that this turbulent field will hereafter be referred to as Fys¢. This figure highlights the fact
that each wavelet scale has energy in a region of wave numbers, and that these regions
overlap.

2.4 Wavelet Compression and Wavelet De-noising

The major strength of wavelet filtering decomposition (5), is the ability to compress signals.
For functions that contain isolated small scales on a large-scale background, most wavelet
coefficients are small, thus, we can retain good approximation even after discarding a large
number of wavelets with small coefficients. Intuitively, the coefficient df 7 will be small unless
u(x) has variation on the scale of j in the immediate vicinity of wavelet ¢/ (x).

Another important property of wavelet analysis used in this project is the ability of
wavelets to de-noise signals. The wavelet de-noising procedure, also called wavelet-shrinkage,
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Figure 2: Energy spectra of turbulent velocity field Fase: ( ), contained in wavelet levels. Level 1: (-——= ), Level 2:
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was introduced by Donoho (Donoho 1993, Donoho 1994) based on orthogonal wavelet de-
compositions. It can be described as follows: given a function that consists of a smooth
function with superimposed noise, one performs a forward wavelet transform and sets to
zero “noisy” wavelet coefficients (i.e. those wavelet coefficients whose modulus squared is
less than the noise variance o), otherwise the wavelet coefficient is kept. This procedure is
known as hard thresholding. Donoho (Donoho 1993) demonstrated that hard thresholding
is optimal for de-noising signals in the presence of Gaussian white noise. In the CVS method
discussed in this report the “noise” is actually the SGS modes.

2.5 Dynamically Adaptive Wavelet Collocation Method (DAWCM)

A key component in the implementation of the SCALES method is the development of a
dynamically adaptive wavelet collocation (DAWC) solver (Vasilyev 2003, Vasilyev & Bow-
man 2000, Kevlahan & Vasilyev 2005, Vasilyev & Paolucci 1997). This solver is ideally
suited to the simulation of turbulence since wavelets adapt the numerical resolution natu-
rally to the localized turbulent structures that exist at all wave numbers in fully developed
turbulence. The wavelet collocation method takes advantage of the fact that wavelets are
localized in both space and scale, and as a result, functions with localized regions of sharp
transition are well compressed using wavelet decomposition. The adaptation is achieved by
retaining only those wavelets, whose coefficients satisfy the thresholding criteria of Eq. (5).
Thus, high resolution computations are carried out only in those regions, where sharp tran-
sitions occur. With this adaptation strategy, a solution is obtained on a near optimal grid
that “tracks” the coherent vortices in the field, i.e. far fewer grid points are needed for

10
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for this a priori test.

wavelets than for conventional finite-difference, finite-element, or spectral methods (Farge
1992). By varying the threshold parameter € this method can be used to implement any of the
wavelet based methods discussed above, namely WDNS, CVS or SCALES. The dynamically
adaptive wavelet collocation algorithm has already been successfully applied to the solu-
tion of thermo-acoustic wave propagation problems (Vasilyev & Paolucci 1997), combustion
problems (Vasilyev 2003, Vasilyev & Bowman 2000), fluid-structure interaction problems
(Kevlahan & Vasilyev 2005), viscoelastic flows (Vasilyev et al. 1997, Vasilyev et al. 2001),
and the compaction phenomenon in a poro-viscoelastic matrix (Vasilyev et al. 1998).

Let us briefly outline the main features of the numerical method. Details can be found
in Refs. (Vasilyev 2003, Vasilyev & Bowman 2000). In the wavelet collocation method there
is a one-to-one correspondence between grid points and wavelets. This makes calculation of
nonlinear terms simple, and allows the grid to adapt automatically to the solution at each
time step by adding or removing wavelets. Very briefly, at each time step we take the wavelet
transform of the solution and apply the global thresholding mask to remove wavelets, which
do not satisfy the thresholding criteria of Eq. (5) for all of the adaptation variables. To
account for the evolution of the solution over one time step the computational grid needs
to be extended to include grid points associated with wavelets whose coefficients are, or
can possibly become, significant during the time integration step (Liandrat & Tchamitchian
1990). To do this we add grid points that are adjacent in both position and scale to each
significant wavelet coefficient. While the cost of this added adjacent zone is significant at low
compression ratios it becomes much less so at higher compression ratios. This diminishing
cost of the adjacent zone with increased compression will be the case for any numerical
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problem that has inherent local structures that dominate the field being simulated. Figure 3
shows the compressifon ratio vs. the wavelet filter threshold parameter e for a wavelet
collocation grid adapted to a DNS field of isotropic turbulence (Rey = 168) with and without
an adjacent zone. For this a prioritest the coupled wavelet filter was applied based on wavelet
thresholding of the velocity components using L., WTF-norm. We can see clearly that the
added overhead of the adjacent zone becomes insignificant for compression ratios over 98%.
This is the case because in turbulent flows, like the one considered, the flow is dominated by
localized energetic coherent vortices. This trend will also hold for other common flows such
as flow fields involving vortices due to fluid—structure interaction or shocks in compressible
flow fields. Since each wavelet corresponds to a single grid point this procedure allows the
grid to automatically follow the evolution of the solution in position and scale. We use
second generation wavelets (Sweldens 1998), which allow the order of the wavelet (and hence
of the numerical method) to be varied easily. The method has a computational complexity
O(N), where N is the number of wavelets retained in the calculation (i.e. the union of those

wavelets with coefficients greater than e|| f; for all adaptation variables, plus nearest

[
neighbors).

In summary, the dynamically adaptive wavelet collocation method is an adaptive, variable
order method for solving partial differential equations with localized structures that change
their location and scale in space and time. Because the computational grid automatically
adapts to the solution (in position and scale), we do not have to know a priori where the
regions of high gradients or structures exist.

2.5.1 DAWCM in Complex Geometry

In order to solve problems in geometries of engineering interest, the DAWCM employs
Brinkman penalization (Khadra et al. 2000) as a way of simulating the presence of arbitrar-
ily complex solid boundaries (which may be moving in time). The Brinkman penalization
technique allows boundary conditions to be enforced to a specified precision, without chang-
ing the numerical method (or grid) used to solve the equations. The main advantage of this
method, compared to other penalization type methods, is that the error can be estimated
rigorously in terms of the penalization parameter. It can also be shown that the solution
of the penalized equations converges to the exact solution in the limit as the penalization
parameter tends to zero (Khadra et al. 2000).

Let us briefly outline the main features of the numerical method on the example of
incompressible Navier-Stokes equations. We consider here the case of the flow around a
number of obstacles O;. The problem is solved in a rectangular domain containing all the
obstacles O;. To model the effect of the no-slip boundary conditions on the obstacles O;
without explicitly imposing them on the boundaries of the obstacles we solve the following

12
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Figure 4: Vorticity field (a) and corresponding computational grid (b) for the direct numerical simulation of flow around
two-dimensional periodic cylinder array at Re = 10* using DAWCM.

set of penalized equations

0 1
kel u,-Vu,+ VP, = vAu, — EXOun, (7)

ot
V-u, = 0 (8)

with appropriate external boundary conditions. Note that Eqs. (7)-(8) are valid in the entire
domain. Here n > 0 is a penalization coefficient and x, denotes the characteristic (or mask)

xo(a:,t)z{ 1ifze 0, o)

function

0 otherwise.

As n — 0, it was proved theoretically (Angot et al. 1999) that the solutions of the penalized
equations (7)-(8) converge to that of the Navier—Stokes equations with the correct boundary
conditions. More precisely, the upper bound on the global L error of the penalization was
shown to be (Angot et al. 1999)

[l — | < C/. (10)

In fact, we find that the actual error is slightly better, O(n). It is important to note that 7 is
an arbitrary parameter, independent of the spatial or temporal discretization, and thus the
boundary conditions can be enforced to any desired accuracy by choosing 7 appropriately.
This property distinguishes the Brinkman method from other penalization schemes and
allows the error to be controlled precisely. We have found that n = 10~* gives drag curves
correct to about 1%.

Due to the fact that the wavelet collocation method does not utilize divergence-free
wavelets, we use a standard split-step method in time, where the first step produces a non-
solenoidal velocity field. This intermediate velocity is then made divergence-free by solving
a Poisson equation for the pressure. It is well-known that solving the Poisson equation is
the most computationally intensive part of split step methods. Thus, in order to solve the
Poisson equation efficiently, we developed a new wavelet collocation multilevel elliptic solver
(Vasilyev & Kevlahan 2005).
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Although it is a very flexible and simple method, Brinkman penalization does have two
drawbacks. First, the large factor 1/n means that the term is stiff and must be solved
implicitly. This is not difficult since the penalization term is simply a mask times the
velocity. A stiffly stable time integration scheme for the penalized equations is used. The
second drawback is that since the penalized equations are defined over the whole domain
they must also be solved inside the obstacle. This adds some extra computational work, but
since the flow penetrates to a skin depth of only O(n'/?) (Kevlahan & Ghidaglia 2001) there
are few grid points inside the obstacle. The sparseness of the grid inside the obstacle is clear
in Fig. 4(b).

3 Stochastic Coherent Adaptive Large Eddy Simulation

The adaptive LES, hereafter referred to as Stochastic Coherent Adaptive Large Eddy Simu-
lation (SCALES) methodology, is based on the premise that the most energetic coherent vor-
tices (or structures) of a turbulent flow dominate mixing, heat transfer and other quantities
of engineering interest, while the smaller incoherent background is only of interest because
of how it effects the energetic coherent vortices (Goldstein & Vasilyev 2004). The SCALES
equations, which describe the space-time evolution of the most energetic coherent eddies in
a turbulent flow, can be formally obtained by applying the wavelet thresholding filter (5) to
the Navier-Stokes equations. Disregarding the commutation error between wavelet-filtering
and differentiation, the SCALES governing equations for incompressible flows are written as
the following filtered continuity and momentum equations

ui>€
=0 11
0, (1)
au—i>e . au—i>e 1 82—9>5 a2u—i>5 aTij
~>e S — 12
ot Y dx; p Oz +V0xj8zj dxj’ (12)

where p and v are the constant density and kinematic viscosity of the fluid, while p stands for
the pressure field. Like in the classical LES formulation, as a result of the filtering process,
the unresolved quantities

Tij = Wy © — ;U (13)
commonly referred to as SGS stresses, are introduced. In this context, they can be thought
of representing the effect of unresolved less energetic eddies on the dynamics of the resolved
energetic coherent vortices. In order to close the filtered equation (12), a SGS model is
required to express the unknown stresses (13) as a given function of the resolved velocity
field. In practice, the isotropic part of the SGS stress tensor is usually incorporated by a
modified filtered pressure variable, so that only the deviatoric part, hereafter noted with a
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star, 75 = T;; — %Tkkdij, is actually modeled. Henceforth, the filtered momentum equation

can be re-written as
_ _ —=>€ _
8u,->6 . 8u,->6 OP a2ui>e 87';;

of Y on, T om Von,or, 0,

(14)

where P~ = ﬁze + %Tkk.

It is worth stressing that for a suitably low value of the wavelet thresholding level e,
the resulting SGS field closely resembles Gaussian white noise and no modeling procedure
is required in practice to recover low order DNS statistics. This approach, referred to as
Coherent Vortex Simulation (CVS), which was originally introduced in (Farge et al. 1999),
has been successfully applied to isotropic turbulence simulation and the results are discussed
in Section 7.2.

Before reviewing the numerical implementation of the SCALES methodology, let us dis-
cuss in more details the wavelet filtering of the Navier-Stokes equations, in terms of both
practical application and formal interpretation. Due to the one-to-one correspondence be-
tween wavelets and grid points, filtering each scalar field variable with the corresponding
absolute scale would lead to numerical complications since each variable should be solved on
a different numerical grid. In the present study, in order to avoid this difficulty, the coupled
wavelet thresholding strategy is adopted. Namely, after constructing the mask of significant
wavelet coefficients for each primary variable, the union of these masks results in a global
thresholding mask that is used as a common mask for filtering all the variables. Moreover,
according to the definition (5), the absolute filtering threshold should be theoretically based
upon the values of the unfiltered variable, whereas, in a real SCALES calculation, the filter-
ing procedure is actually based upon the values of the resolved filtered variable. However, as
demonstrated in (Goldstein et al. 2005), this approximation is fully acceptable. For instance,
regarding the velocity scale, in the homogeneous case one can use U; = <2kres>1/ 2, where the
angular brackets denote volume-averaging and

Fres = lﬂ*ﬂ* (15)
res T o) T
stands for the resolved kinetic energy.

As to wavelet filtering interpretation, one can view the wavelet thresholding procedure
as a local spatially variable time-dependent low-pass filter that removes the high wavenum-
ber components of the flow field. The local characteristic filter width, say A(x,t), which is
implicitly defined by the thresholding procedure and can be extracted from the global mask
during the simulation, is to be interpreted as the actual turbulence-resolution length scale
(Pope 2004). In fact, it is a measure of the local numerical resolution with the minimum
allowable characteristic width corresponding to the highest level ji.x in Eq.(5). The smaller
the value of €, the smaller the length scale A and the greater the fraction of resolved kinetic-
energy in any local region of the domain. In the limit of vanishing e the wavelet-based DNS
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solution is obtained over the whole domain. Such an interpretation of the wavelet threshold-
ing filter highlights the similarity between the SCALES and the classical LES approaches.
However, the wavelet filter is distinctively different from the usual filters adopted in LES,
primarily because it changes in time following the flow evolution. That results in using a
self-adaptive computational grid that tracks the areas of significant energy in the physical
space during the simulation.

4  Global Dynamic SGS Model

The standard Smagorinsky (Smagorinsky 1963) eddy viscosity SGS stress model defines an
eddy viscosity that is proportional to the filter width and the characteristic filtered rate of
strain. In the case of the coupled nonlinear wavelet thresholding filter used in SCALES
the filter width is implicitly defined by the non-dimensional wavelet threshold parameter, €.
Therefore in SCALES, ¢ is used to properly scale the eddy viscosity:

vr = CL%|[S7°|, (16)

where C, is non-dimensional model coefficient, ¢ is the global characteristic length scale, and
. 1 T T

S == ! J 17

) 2(axj+axi) (1)

is the strain rate of the resolved scales. Note that the model units do not depend on «

simply because € is non-dimensional. We will show in section 4.1 that appropriate scaling is
obtained with o = 2. The new linear eddy viscosity model is then used to define a model
for the subgrid scale stress (13),

7'-—]\-4>E = —QI/TS_Z']?6 s (18)

v

where vp is the turbulent eddy viscosity.

The global characteristic length scale ¢ is introduced to obtain the proper units for the
eddy viscosity vp. In addition, the length scale is assumed to be independent of the filter
threshold parameter e. With these two assumptions, the exact definition of ¢ does not need
to be specified, since the whole group C./%¢” is determined by the dynamic procedure. ¢?
can be interpreted as an averaged characteristic length scale which is absorbed into the
dynamic procedure. Currently we are working on the extension of the model that uses a
local characteristic length scale ¢, interpreted as the local characteristic vortical length scale
implicitly defined by the wavelet thresholding filter.

The new Germano dynamic formulation for the model coefficient C. is, thus, based on
the wavelet filter threshold parameter e. For the dynamic procedure the grid filter is defined
as GX and the “test” filter is defined as 6>26. The adjacent zone is excluded in both cases
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to obtain the proper model scaling. The dynamic procedure is then based on the original
SGS stress equation (13), and an alternative subgrid scale stress,

—>2¢ E>2€ q>26 7>26

T, =wu; T~ u; , (19)
which would result from applying the wavelet thresholding test filter (6>2E) to (11-13).
Note that the wavelet filter is a projection operator, so by definition

—>€c ——Sea€B

() =0) : (20)

where €c = max(e4, €p). Filtering (13) at the test filter level and subtracting it from (19)
results in the modified Germano’s identity (Germano et al. 1991)

=—>2¢ —>2¢ —————>2€ ———>2 ———>2¢
E' _ Tij>€ — ui>euj>e _ U‘>€ m ~>€ . (21)

? J

Then, substituting the modeled SGS stresses at the two filter levels into (21) gives

=—>2¢ >2€ ——>2¢ Se>2e

T - o~ T -l (22)

—>2e, —>2¢ ﬁ>2
= 20.02(2e)%[87%|S; 2 = 20022578,

Following Lilly’s (Lilly 1992) notation we define L;; and M;; as follows,

>E>2e _'>E>2e '>6>2e

Lij - u_i>6u_j — Uy U; 5 (23)
15,7, (24)

—se ——=¢>2€ — 9

My2¢ = 2|55, -85

where L;; is the wavelet-filtered analog of the Leonard stress. This results in an overdeter-
mined system of equations that can be used to find C ¢?¢?

Ce£2€2Mij == Lij . (25)

Following Lilly’s (Lilly 1992) least square solution to this system, we obtain the following
expression for the local Smagorinsky model coefficient,

C.l%e = .

(26)
With this model formulation C. /2> can be locally positive or negative, which allows for local
backscatter of energy to resolved scales. In practice it has been found that locally negative
values of C.%2¢* cause numerical instabilities in SCALES, as in LES, so we average over
homogeneous directions:

(Lij Mij)

C.02% = ,
(Mi; M)

(27)
where () denotes volume averaging.
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Figure 5: Tij§>€/(||5>€||5 i %) vs. relative wavelet, threshold parameter ¢ using velocity wavelet filtering, without adjacent
zone ( ) for field Fas6. The dashed line is €2. The Loo WTF-norm was used for this a prwrz test. This range of
e corresponds to a field compression over the range of 78.5% to 99.95%. It can be seen that TUS /(||S>€||S>€S>€) scales
roughly as €2. The scaling begins to deviate at e = 0.001, which corresponds to 99.4% compression.

4.1 Model Scaling

If we make the assumption that, with an appropriate value for «, the eddy viscosity model
(16-18) provides the right dissipation it is easy to show,

(7857

2« 1j

2C ¢ <||S>E||S>ES > (28)
where « is the scaling law and ¢ is taken to be constant over the domain. The correct scaling
is determined from a priori testing, using the isotropic turbulence field Fbss. In Fig. 5
the scaling of — <TwS>E> / <HS>EHS>ES>E> is shown over a range of € that corresponds to a
field compression over the range of 78.5% to 99.95%. The slope of the curve in log-log axis
determines the appropriate e scaling. As can be seen, the quantity <TZ]S>€> / <HS>EHS>ES )
scales roughly as € for a wide range of compressions. However some deviation from this
scaling is observed above 99.4% compression. Based on this a priori test of the scaling,
the new dynamic Smagorinsky-type eddy viscosity model (16) has been implemented. The
results of simulations with this new SGS model are discussed in section 7.

5 Local Dynamic SGS Models

The global dynamic eddy viscosity model described in previous section has a major drawback,
namely the use of a global (spatially non-variable) Smagorinsky model coefficient. The use
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of a global dynamic model unnecessarily limits the SCALES approach to flows with at least
one homogeneous direction. This is unfortunate since the dynamic adaptability of SCALES
is ideally suited to fully inhomogeneous flows. In order to realize the full benefits of SCALES
in highly non-homogenous flows in complex geometries a local SGS model is required. In
this section two different formulations of local dynamic SGS model that were explored are

reported:

1. Modified Germano’s dynamic procedure redefined in terms of wavelet thresholding
filters with a modified Lagrangian path-line/tube averaging procedure (published in
(Vasilyev et al. 2008)), and

2. SGS kinetic energy based model, where an additional transport equation for the SGS
kinetic energy is solved to enforce the energy budget between resolved and unresolved
motions (published in (De Stefano et al. 2008)).

5.1 Lagrangian Dynamic Local SGS Model

As mentioned in previous section, the local dynamic model (26) cause numerical instabilities
in SCALES, as in LES, so the averaging procedure is required to stabilize the model. One way
to achieve this is to average over homogeneous directions, which results in global (spatially
non-variable) dynamic model (27). This limits the applicability of the model to flows with
at least one homogeneous direction. Another way to stabilize the model is to perform
Lagrangian pathline averaging procedure originally introduced in (Meneveau et al. 1996).
To start the SGS stress tensor (18) is rewritten in the following form

T = —203A262}§>6 S " (29)

where %X = % (% + 8?:
characteristic filter lengthscale dynamically defined by the wavelet thresholding filter. Note
that A is distinctively different from the classical LES, where the local filter width is defined
statically. Also note that the variable filter width, A, is the key-parameter in the SCALES

formulation as it strictly reflects the adaptive nature of the method. Once a wavelet threshold

is the resolved rate-of-strain tensor and A(x,t) is the local

is given, the corresponding thresholding mask implicitly defines a point-wise time-dependent
filter width. This is different from classical LES where the local, possibly non-uniform, filter
width is defined a priori and does not depend on the actual flow realization.

Following the modified Germano’s dynamic procedure redefined in terms of two wavelet
thresholding filters, as discussed in Section 4, the SGS stress corresponding to the wavelet
test filter at twice the threshold, noted Uﬂe, is defined as

_ —>2¢ —>2¢ —>2€
T,-j = u,-uj — U; Uj . (30)
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—=>2e
Note that, the wavelet filter being a projection operator, by definition, it holds ()> =
f>2€. Filtering Eq. (13) at the test filter level and combining with Eq. (59) results in the
() g Eq g q
following modified Germano identity for the Leonard stresses:

_ —>2¢ __ ﬁ>25 —>2€ —>25
Lij = 7—‘” Tij = U;” Uy — U, U, (31)

Exploiting the model (29) and the analogous relation for the test filtered SGS stresses

>2€

S (32)

—>2€

T; = —2C5A* (2¢)?

one obtains

>26

20sA22 [T 0 =1Ly (33)

S S0 (2 O[5 [s
ij S

A least square solution to (Eq. 33) leads to the following local Smagorinsky model coefficient

definition: M
2 ig g
_ Y 4
Cslxit)e” = 77 (34)
where ,
ﬁ> € J— €|—— €
My =202 (|55, — 4‘S>2 Sﬁ] . (35)

The coefficient Cs can be actually positive or negative, which allows for local backscatter of
energy from unresolved to resolved modes. However, it has been found that negative values
of C's cause numerical instabilities. To avoid this, for homogeneous flow, one can introduce
an average over homogeneous directions. This procedure results in a global dynamic model
analogous to the one discussed in the previous section.

In this study we follow a Lagrangian dynamic model formulation (Meneveau et al. 1996)
and take the statistical averages over the trajectory of a fluid particle:

Tow (1) = /_ ; T Ly ( (1), 7) My (a (v) , 7) dr, (36)
Tont (@,1) = % /_ ; T M, (m (7),7) My (w (7) , 7) dr, (37)

which leads to the following local Smagorinsky model coefficient:
Cs(x,t)e? IIALJZ (38)

To avoid the computationally expensive procedure of Lagrangian path-line averaging, we
follow (Meneveau et al. 1996) and differentiate Egs. (36) and (37) with respect to time to
obtain the following evolution equations for Zyy, and Zy/:

8ILM - 8ILM 1
—_— ¢ = —(Lii M;; — Trar),

i 7 (LigMij = Tou) (39)
OLvm O 1

—>€

ot * “ 8:cl T(
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As in (Meneveau et al. 1996) the relaxation time scale 7 is defined as
T(x,t) = 0A (ZpaZaar) V8, 0 being a dimensionless parameter of order unity.

The equations (39) and (40) should be solved together with the SCALES equations, (11)
and (12). It should be noticed that both Z;,, and Zysy; have higher frequency content when
compared to the velocity field. This is due to two main factors: the quartic character of
nonlinearity of Zyy; and Zyy, with respect to velocity and the creation of small scales due
to chaotic convective mixing. Thus, in order to adequately resolve both Z,, and Zy/5s, one
needs to have a substantially finer computational mesh than the one required by the velocity
field, which is impractical. To by-pass this problem we consider two different extensions of
the Lagrangian path-line averaging: Lagrangian path-tube averaging and Lagrangian path-
line diffusive averaging.

The Lagrangian path-tube averaging consist of taking the statistical filtered averages over
the trajectory of a fluid particle:

turtat) = ¢ [ [[[ 76 (u-a @ 20) L) My ) dray. (@)
o) = 7 [ [ 76 (y-w, 00) Mo, Mia vy drdy, (2

where G (&, «) is the local, location dependent, low-pass filter with the second variable
denoting filter location. Note that the low-pass filter averages the values in the neighborhood
of the path-line, effectively making it path-tube averaging. Also note that if G (€, x) = 1, i.e.
no additional spatial filter is applied, the formulations are identical to the one in (Meneveau
et al. 1996). This modified averaging procedure leads to the following evolution equations
for the auxiliary variables Z,; and Zyspy:

8ILM _ E&ILM 1 LP
W + Ul> 81’1 - T < LijMij - ILM) ) (43)
0T, 0T, 1 /—1p

P
where (-)  defines low-pass filtering based on G (x, 7).

In the Lagrangian path-line diffusive averaging an additional artificial diffusion term is
added to the evolution equations:

8ILM 8ILM 1 02ILM

€ - Lz"Mi'_I D , 45

o T oy — M~ o) + Pry g (45)
8IMM o 8IMM 1 82IMM

: MM — Tapar) + D | 46

gt T oy~ MM = Taan) + Prgn (46)

To avoid the creation of small scales, the diffusion time scale, A%/Dz, should be smaller than
§>E‘_1, which results in Dy = C7A? }§>6

the convective time scale associated with local strain,
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where C7] is a dimensionless parameter of order unity. Note that the Lagrangian path-line
diffusive averaging procedure can be formally derived by using differential implicit filters as
described in (Vasilyev et al. 2008).

Combining these two approaches results in the Lagrangian path-line/tube averaged equa-

tions:
GILM o GILM 1 ( LP azILM
FLLM | e — (.M, -1 ) D , A7
ot W Tog T\t M) o, (47)
GIMM o 8IMM 1 ( — LP 02IMM
‘ — (MM, —-T ) D . 48
ot M g o \ et MM ) o, (48)

Note that the case G = 1 and C7 = 0 is equivalent to the original Lagrangian formulation
of (Meneveau et al. 1996).

5.2 Kinetic Energy Based Modeling

An alternative mechanism to achieve locality of the SGS model is to solve an additional
transport equation for the subgrid scale kinetic energy, kggs.

In order to take full advantage of the SCALES methodology for simulating complex
turbulent flows, the development of localized closure models appears necessary. For this
purpose, a modeling mechanism that takes into account the local kinetic energy transfer
back and forth between resolved and unresolved eddies can be exploited. In fact, as the
closure model is mainly required to provide the right rate of energy dissipation from the
resolved field, the model coefficient can be calibrated upon the energy level of the residual
motions. It has been demonstrated in (Ghosal et al. 1995) that energy-based localized
models for LES can be successfully constructed by incorporating a transport model equation
for the residual kinetic energy. Moreover, the use of the kinetic energy variable appears as
a natural choice in the present context, given the main feature of the SCALES approach,
which consists in solving for the significant part of the energy content of the flow-field, while
modeling the effect of the less-energetic background flow. In this work the use of both local
eddy-viscosity and non-eddy viscosity kinetic energy-based models in the context of SCALES
is explored.

In order to address some issues about the local energy transfer between resolved and
residual motions, let us first consider the balance equation for the resolved kinetic energy,
i.e. , according to Eq.(12),

akres —>€ akres o a 82 kres

+ = [T (7] 4+ P 0j) | 4+ v — s — I, 49
at J (9:17]- 8172 [ J ( K Z])} (9:17]-8:17]- res ( )
where €..s = V%ag: stands for the rate of resolved viscous dissipation and II = —Ti’;-g;e

represents the rate at which energy is transferred to unresolved residual motions. As to
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resolved viscous dissipation, it is worth pointing out that €. is not negligible for SCALES,
in contrast to what typically happens for classical LES. This is mostly due to the adaptive
nature of the SCALES approach, which results in the presence of significant energy at small
scales, as demonstrated in the Sections 7.4, 7.5, and 7.6. Note also that the local energy
transfer II can show both signs, even though energy is globally transferred from resolved
to residual motions, e.g., (II) > 0 for isotropic turbulence. For this reason, II is commonly
referred to as SGS dissipation.

The subgrid-scale kinetic energy, say kg, is formally defined as the difference between
the wavelet filtered energy and the kinetic energy of the filtered velocity field, k.., that is

1
hsgs = 5 (W — 0w ") - (50)

The above energy variable is simply related to the trace of the SGS stress tensor, being

Fsgs = %7‘“ Note that the adopted terminology is in some way inappropriate as this quantity
1
2
u, = u; — u; ¢ being the residual velocity field. The evolution of ks can be modeled by

does not stand for the kinetic energy associated with the SGS motions, which is Lufu!

means of the following transport equation (e.g., (Ghosal et al. 1995))

Oksgs +H?68ksgs . 0 kisgs
81& J 81’]' 8xj8xj

— €55 + 11, (51)

where €5 stands for the viscous dissipation rate of the SGS kinetic energy that is the unclosed
term

(52)

_ (0w O™ O e
Esgs N (9:17]- Oxj (9:17]- (9:17]- ’

In order to close the energy equation (51), a further model for the SGS viscous dissipation
€sgs Must be introduced, as discussed in the following section.

The SGS energy production II takes a fundamental role in modeling procedures based
on the kinetic energy variable. As it contributes with different sign to both resolved (49)
and SGS (51) energy balance, it can be exploited to develop a built-in feedback mechanism
that automatically stabilizes the numerical solution. This way, no averaging procedure is
needed and the full locality of the model is achieved. Namely, one can assume the SGS
dissipation to be a monotonic increasing function of k,,s so that, for example, if there is
energy backscatter from unresolved to resolved motions (i.e. , IT < 0) the resolved kinetic
energy locally increases while the residual one decreases, but the SGS forcing decreases as
well so leading to the suppression of the reverse flow of energy.

5.3 Local dynamic energy-based eddy-viscosity models

The first step in building localized SGS models is taken by considering eddy-viscosity models
where the turbulent viscosity no longer depends upon the resolved rate-of-strain, as in the
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Smagorinsky approach, but on the SGS kinetic energy. In eddy viscosity based models the
unknown SGS stress tensor in Eq.(12) is approximated by

T —2VtS_7;j>€ y (53)

1]

where S_Z-j>5 = % (‘(%T;: + %) is the resolved rate-of-strain tensor and v, stands for the
turbulent viscosity, which is the model parameter to be expressed in terms of the resolved
field. Similarly to what done in (Ghosal et al. 1995), let us take the square root of ks as
the velocity scale and the wavelet-filter characteristic width A as the length scale for the

turbulent eddy-viscosity definition that is

v = O, AkL2 (54)

sgs

C,, being the dimensionless coefficient to be determined. This way, Eq.(53) is rewritten as
T = =20, AKZS (55)

sgs
and the SGS dissipation rate is approximated in terms of the SGS kinetic energy as
1= C,AKL2S™ (56)

where [S7°| = 2@7?;. Note that the SGS dissipation rate can show both signs, thus
allowing for the simulation of local energy backscatter.

Given the eddy-viscosity nature of the model, when solving for the SGS energy, the
additional diffusion due to the turbulent viscosity is considered, so that the energy equation
(51) is rewritten as

Okugs . Ouge 0oy
8t +uj a.flfj —<V Vt)&l‘jal’j

— €5 + 11 (57)

As mentioned above, in addition to the SGS stress model, the SGS energy dissipation model
for € is needed. The latter variable can be modeled, using simple scaling arguments, as

Fogs
e (55)

C. being the second dimensionless model coefficient (e.g., (Schumann 1975, Ghosal et al.

€sgs — Ce

1995)) to be determined. Another possibility, not taken here, would be to consider an
additional evolution model equation for ey, as done for instance in (Pomraning & Rutland
2002).

The wavelet-filtered Navier-Stokes equations (12) and the SGS kinetic energy equation
(57) stand for a closed system of coupled equations that is solved with the AWCM methodol-
ogy briefly described in Section 2.5. In particular, the global thresholding mask for wavelet
filtering can be constructed by considering both the velocity and the SGS kinetic energy
fields.
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In a first lighter version of the model, in order to save computational resources, the model
parameters C, and C, are a-priori prescribed. In particular, the unit value for C. is fixed,
as typically done in LES based on a similar approach. Also, the empirical value C, = 0.06
is prescribed for the turbulent viscosity coefficient, as a result of acceptable global matching
with the wavelet-filtered DNS solution for the numerical experiments carried out in this work.
This one-equation model will be referred to as the localized kinetic energy-based model (for
following discussion, LKM). It is worth stressing that, though the model coefficients are
fixed, the LKM procedure is nevertheless “dynamic” in some way as it implicitly takes
into account the local energy transfer between the resolved and unresolved motions for the
ongoing simulation.

A fully dynamic version of the kinetic energy-based eddy-viscosity model, with the model
coefficients not prescribed but derived from the actual resolved field using the classical Ger-
mano dynamic approach (Germano et al. 1991), is developed as illustrated in the following.
Let us introduce a secondary test-filter with a characteristic filter width A > A, formally
denoting the test-filtered resolved velocity as uil\>€ The stress tensor at the test level is given
by

e —Se—>¢
T,-j = u,-uj — Uy Uj s (59)

so that, filtering (13) at the test level and combining with (59), results in the following
definition for the Leonard stresses

Ly = % =0 (60)
or, equivalently, the popular Germano identity
Ty =75 = Lij - (61)

Once the test-filter is given, the Leonard stresses are directly computable upon the resolved
velocity field and can be exploited to determine the model coefficient with no a-priori pre-
scriptions. Differently from what is done in (Goldstein et al. 2005), here a low-pass discrete
filter is used. Specifically, the discrete low-pass test-filter is constructed using the adjacent
grid-points ensuring the proper filter width and positivity of the filter weights.

The unresolved kinetic energy at the test level, which is referred to as the subtest-scale
(STS) kinetic energy is defined as

—_—

- o
ksts = W — w7 U (62)

that is kg = %Tu By analogy with (51), the transport model equation for kg can be written
as

aksts % aksts 82 ksts
= — T sts 11
ot T Oz, (vt v1) Oz ;0x; Cots T s (63)
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where the STS energy viscous dissipation rate is

—

- 7 € iy Ny
8Ui 8u2 8Ui>e <3ui>5

€sts = U — 64
: 81’]' 8:@ 81’]' 81’]' ( )
. . *—/> —/> 1 au—/_;s 6u_/-;€
and Il stands for the STS energy production that is —TZ-jSZ-j Sy =3 ( o+ 5L
J 7

being the resolved rate-of-strain tensor at the test level. In a similar manner, the kinetic
energy that is resolved at the test level can be defined as

_—Z—= e
krts = ui>6ui>6 - ui>6ui>e ; (65)

or, equivalently, k. = %Lzz‘, owing to the Leonard stress definition (60). It is worth noting
that, thanks to the positiveness of the employed test-filter, the variable k. is always non-
negative in the flow-field. This way, the Germano identity (61) can be re-written in terms

of the kinetic energy variable as it follows
ksts - Es; - krts . (66)

The above relation allows for the STS kinetic energy to be directly expressed in terms of
resolved quantities, which are the velocity and the SGS energy fields. After defining the
resolved viscous dissipation at the test level

Ou7 Ou 0u O
s = V| 5 — , (67)
&€ 01']- (9:17]- (9:17]-
a similar Germano identity relates the energy dissipation rates at test and grid levels
€sts — G/s\gs = €rts - (68)

Again, due to the positiveness of the test-filter, the variable €. is always non-negative in the
flow-field. It is worth pointing out that the identity (68) is actually unusable for classical
LES formulations, since the scale separation acts in the inertial range and the resolved LES
field does not contain significant contribution from dissipative scales (Ghosal et al. 1995).
Conversely, equation (68) can be successfully exploited in the SCALES approach, where also
the small-scale energetic structures are resolved.

Different fully dynamic versions of the energy-based eddy-viscosity modeling procedure
are presented in the following sections. They are based on either a Bardina-like or a Germano-
like approximation for the dynamic determination of the model coefficients C,, and C. as
space-time functions.

5.3.1 Eddy-viscosity modeling

Two different dynamic procedures are proposed to determine the unknown model coefficient
for the turbulent eddy-viscosity (54).
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Bardina-like model By analogy with (55), let us assume the Leonard stress can be ap-
proximated in terms of the resolved test-scale kinetic energy as follows

¥ o Rl/2e e
L}, = —20,Ak2S; (69)
where, as usual, the star denotes the deviatoric part. The above expression represents a sys-

tem of five independent equations with the unique unknown C),, which can be approximately
solved by exploiting a least-square methodology. That leads to

L;-kjalj
20, (x,t) = (70)
Oin0in
where, for simplifying the notation, the known tensor o;; = —ozAkit/SzS_i-x is defined (Kim

& Menon 1999), a = A/A being the test filter to grid ratio.

Germano-like model As an analog of (55), let us assume the STS stress can be approx-
imated in terms of the STS kinetic energy as follows

sts

. o N 1)2e—>¢
T > 20, ARYPS (71)

Therefore, according to the Germano identity (61), combining (55) and (71), it holds that

—_—

o 1/25—>¢ T1jrae *
20, AKYTS  CARES = L

(72)

where the coefficient C', is assumed to vary slowly in space so that it can be taken out of the
test filtering operation. By exploiting the identity (66) and defining

Mij - k‘islg/s?’j>€ - a(krts + @)1/25—”?6 ) (73)

a least square solution to (72) leads to the determination of the following local model coef-

ficient .

Mlann ‘

It is worth stressing that both the present modeling procedures, though based on the same

20, (2, t)A = (74)

SGS energy-based eddy-viscosity concept, nevertheless are very different from the dynamic
localization model proposed in (Ghosal et al. 1995), where the model coefficient was deter-
mined by solving an integral equation in the framework of a constrained variational problem.

5.3.2  SGS energy dissipation modeling

Two different dynamic procedures are proposed to determine the unknown model coefficient
for the SGS energy dissipation (58).
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Bardina-like model According to a Bardina-like approach, by analogy with (58), let us
assume the resolved test-scale energy dissipation can be approximated as

3/2
s = C 25 75
6 A (75)

The above equation can be solved for the unknown C. resulting in the following local model

coefficient Co (1)
€ ma Ql€rig
A = 72 (76)

rts

Germano-like model According to a Germano-like approach, as an analog of (58), let us
assume the STS energy dissipation can be approximated as

]{?3/2
Ests = € 25 . (77)

This way, by exploiting the identity (68), after some calculus, the following determination
for the SGS energy dissipation coefficient is obtained

Ce €T, t Q€rig
(A - — = (78)
(krts + ksgs)3/2 - aksg/s

In principle, the above dynamic procedures for determining the model coefficients C,, and
C. can be adopted independently, leading to four different model combinations. Here, only
two different localized dynamic kinetic energy-based models (LDKM) are actually considered
for the numerical experiments. The former one (for discussion: LDKM-B) exploits both the
Bardina-like dynamic determinations (70) and (76), while the other one (for discussion:
LDKM-G) uses both the Germano-like dynamic coefficients (74) and (78).

5.4 Dynamic structure model

In this section, a dynamic one-equation non-eddy viscosity SGS model is developed for the
SCALES methodology. The model, recently introduced for LES (e.g., (Pomraning & Rut-
land 2002, Chumakov & Rutland 2005)), is based on the “dynamic structure” assumption.
Namely, it borrows the structure of the unknown SGS stress tensor directly from the resolved
Leonard stress (60), without involving the resolved rate-of-strain tensor. The significant sim-
ilarity between the SGS and the Leonard stresses, which has been observed in real as well
as numerical experiments (e.g., (Liu et al. 1994)), is exploited in the model. Thanks to this
similarity, one can consider 7;;/7; = L;;/Lpp, so that the following approximation holds

ksgs

SIS 79
krts J ( )

Tij =
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acronym SGS stress model SGS kinetic energy dissipation model

LKM eddy-viscosity, fixed coefficient fixed coefficient
LDKM-G | eddy-viscosity, dynamic Germano | dynamic Germano
LDKM-B | eddy-viscosity, dynamic Bardina dynamic Bardina
DSM dynamic structure model fixed coefficient

Table 1. Summary of the different SGS one-equation models.

that corresponds, in particular, to the algebraic form of the model proposed in (Pomraning
& Rutland 2002).

Clearly, the solution of an additional transport equation for kg is still an integral part
of the modeling procedure. However, due to the non-eddy viscosity nature of the dynamic
structure model, the original version (51) is used in this case. According to (79) the modeled
SGS dissipation becomes proportional to kg

Kgs -, =
E LS, (80)

kt g~y o
rts

me —

and again can show both signs. Note that the present approach does not involve the definition
of any model coefficient while, for the SGS kinetic energy dissipation ey, the model (58)
can be used together with one of the dynamic procedures discussed in Section 5.3.2.

Like for the above eddy-viscosity models, the dynamic structure model (79), coupled
with the solution of the energy equation (51), provides a positive feedback mechanism that
automatically stabilizes the numerical solution. However, according to some authors the
dynamic structure model (for subsequent discussion, DSM), which is in some ways similar to
the classical scale-similarity Bardina model (Bardina et al. 1983), does not provide sufficient
SGS dissipation for LES and therefore should be used as part of a mixed model (e.g., (Kim
& Menon 1999)). Nevertheless, as already pointed out in (Pomraning & Rutland 2002), the
pure DSM can be successfully used for decaying isotropic turbulence simulation. That is
confirmed by the results of the present study (see next Section 7).

Finally, let us address some general issues about the use of the auxiliary variable kg in
SCALES, apart from the particular model implemented. When numerically solving the evo-
lution equation for the SGS kinetic energy by means of the AWCM numerical method, owing
to the non-linearity of the definition (50), additional small scales are created with respect to
the solution of the primary variables. Given the adopted coupled wavelet thresholding strat-
egy, discussed in Section 3, that automatically leads to an increase in the local grid fineness,
with the unavoidable deterioration of the SCALES grid compression. As practically experi-
enced by the authors, one can obtain a field compression comparable to that one of the CVS
solution (e.g., see (Goldstein et al. 2005)), so invalidating the use of the SGS model. To by-
pass the problem, as already successfully tested for local modeling based on the Lagrangian
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approach (Vasilyev et al. 2006), an artificial diffusion term can be added to the right-hand-
side of the energy equation, namely a%j (Dk%k—;g_s). To stem the creation of small scales in
ksgs field, the artificial diffusion time-scale, A?/Dj, must be smaller than the convection
Fx‘_l that results in fixing D), = CkAQ‘FX

Cr being a dimensionless parameter of order unity. In practice, for the present numerical

time-scale associated with the local strain,

Y

experiments, the value C; = 0.1 has been verified to suffice for the purpose.

Another important aspect that needs to be mentioned is the sensitivity of the SGS energy-
based models to the initial value of ky. Setting the initial kg too high can result in excessive
SGS dissipation leading to an incorrect energy evolution. That is particularly dangerous for
transient flows, like homogeneous decaying turbulence, while it is negligible for statistically
steady turbulent flows like forced turbulence, as demonstrated by the results discussed in
Section 7.6. A way to make the solution less sensitive to the initial condition is under study
and will be the subject of a future work.

6 Algorithm Development

In this section we briefly describe the efforts that were undertaken in the area of parallel al-
gorithm development. In order to make a substantial progress on this front we have attacked
the problems on three main fronts, namely developing efficient and easily parallelizable data
structure, developing parallel version of the solver and exploring more efficient parallel im-
plementation of adaptive wavelet transform, which are essential in improving the efficiency
and scalability of the parallel solver.

6.1 Data Structures

Efficiency of adaptive solvers strongly depends on the access time to the large datasets and
the ability to make efficient parallel implementation of the data structure. Three different
data structures has been developed for the large datasets storage: working array, Tree and
Lines. The working array is mainly used for algorithm development, due to ease of testing
new algorithms. Once the algorithm is tested, we rewrite it for both Tree and Lines data
structures. Thus, Tree and Lines data structures or their hybrid are primarily planned to
be used for large scale simulations. Both structures have been implemented in C/C++ and
Fortran 90. Tree data structure provides convenient access to a node with given coordinates
and therefore it is relatively easy to merge Tree with wavelet transform, with its intrinsically
random data access pattern, without significant changes of the solver code. Lines data struc-
ture, on the other hand, provides fast access to an array of nodes on a line with given D — 1
coordinates, where D is the dimensionality of the problem. Lines data structure minimizes
the amount of solver-database interactions, although it requires significant modification of
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Figure 6: Tree structure for 12 nodes: root nodes (big circles) and active links (solid lines). All possible links for one of the
root node are shown by dotted lines. For simplicity, we do not show the links between the nodes with the same wavelet type,
level, and the type of the boundary condition.

the solver code.

6.1.1 Working Array Structure

Working array structure is used primarily to minimize the logistics of data access. Before the
wavelet transform or derivative calculations, compressed data are copied into the working
array, then the calculations are performed on a subset of the nodes of the working array and
data are copied back to the compressed resulting array. The use of the working array data
structure for large scale computations is impractical.

6.1.2 Tree Structure

The schematic diagram of currently implemented Tree structure is presented at Fig. 6. A
node of level J may have up to (Jmax — J)(2P — 1) links to the nodes of the higher levels.
Level 1 corresponds to the coarse mesh and level J,,., corresponds to the finest mesh. Tree
roots residue at the level Jio. which may be higher than the coarse mesh level. By setting
Jiree t0 be equal to Jy.x we get a nonadaptive array storage for the mesh at the finest
level of resolution. In addition to the tree structure, all the nodes belonging to the same
wavelet type (0, ..., 2P — 1), level (1, ..., Jmax), and the node-type (internal, face, edge,
vertex) (1, ..., 3P) are incorporated into a correspondent bidirectional link-list, thus forming
Jmax6” link-lists. Single node is accessed by its coordinates. The access operation takes at
most Jyax — Jiree steps along the tree and requires (Jpmax — Jiree)D comparisons for the
correspondent bits of the node coordinates. A group of the nodes of the same wavelet
type, level, and relation to the domain boundary is accessed through the traversing the
correspondent link-list.
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Figure 7: Lines for 12 nodes: Face nodes (big circles) and active links (solid lines). For simplicity, we show all the nodes on a
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line linked together; in reality, separate link-lists are created for the nodes of different levels.

6.1.3 Lines Structure

The schematic diagram of currently implemented Lines data structure is presented at Fig. 7.
A face is introduced for each dimension D as an array of face nodes of the dimension D — 1.
Each face node contains the beginnings of .J,,.x one-directional link-lists. Each link-list joins
the nodes of the same level on the given line. Nodes are accessed in groups only. A typical
access operation will copy the data associated with the nodes of a given line and given level
into a corresponding array. After being processed by a specially designed version of wavelet
transform, the whole line of the nodes is written back to the Lines data structure.

6.2 Algorithmic Optimization of the Parallel Wavelet Transform

When parallelizing the solver, the main cost is associated with adaptive wavelet transform,
since the wavelet transform requires synchronization of wavelet coefficients at one level prior
of performing next level wavelet transform. This makes load balancing extremely hard, since
load balancing is required at each level of resolution. One way to achieve efficient paralleliza-
tion is to modify wavelet transform in such a way that it can be performed anarthrously.
This way the load balancing only depends on the total number of grid points in the domain
and inter-processor communication cost. Five different algorithmic modifications of parallel
wavelet transform are investigated. In order to avoid modification of the actual code, the
non-adaptive wavelet transforms were considered. Once the strategy was developed, it was
implemented in actual adaptive wavelet transform used in the adaptive wavelet collocation
solver. The algorithmic modifications are discussed next. In order not to complicate the
discussion, the algorithms are discussed in one dimension, while the actual implementation

was carried out in two dimensions.
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Figure 8: The dyadic grid in one dimension, which shows the multi-level assignment of the points used in the wavelet transform.

6.2.1 Serial Wavelet Transform

The wavelet transform is currently being used in the AWCM to dynamically adapt the
grid over which a simulation is performed. It has proven to be a successful way to use
computational resources efficiently while obtaining accurate solutions to complex fluid flow
systems. The wavelet transform is performed on a dyadic grid, which is shown in Figure
8. This grid separates the domain into multiple levels of resolution. All points are initially
placed on the finest level of resolution (j = 3 in the figure). Then, every other point (an
even point) is carried down to the next lower level, leaving all the odd points at the higher

level.

o= (81)
This step is repeated until the lowest level of resolution is achieved. Therefore, every
level has twice as many points as the next lower level. The resolution difference between the
highest and lowest levels of resolution is vast, which accommodates all sizes of structures
that may exist in the system. For visualization reasons, the dyadic grid will show points
only at their lowest levels of resolution for the rest of this report. Therefore, the resolution
at a level is actually twice better than what is shown.
The simplified forward wavelet transform is as follows:

. 1 . o
d?c = B) (C;;:-il-l - Z wi,z%ﬁzl) (82)
!

a = o (83)
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Figure 9: The predict stage of the forward wavelet transform assuming 4th order interpolating wavelets. A circled point is

“te

predicted using the interpolated value calculated from the associated squared points on the next lower level. The lower right
plot shows the first three plots all put together.

Here, the ¢} values are the function values at location k on level j. The w] , are weights
associated with the wavelet interpolating functions. Therefore, a wavelet coefficient, dk, is a
measure of the difference between the function representation at a level and its approximation
(using the wavelets) at the next lower level. This is called a predict stage, since the wavelet
coefficient is calculated by predicting the function value using the interpolated points on the
next lower level. The predict stage of the wavelet transform is illustrated in Figure 9.

The description of the forward wavelet transform given above is a simplified case. The
full forward wavelet transform includes an update stage following the predict stage.

&, =

< 2k+1 Zwkl 2k+2l (84)
+
k

1

2

G = C; wkl et (85)
The predict stage remains the same, but the c-values that get carried down to the next
lower level of resolution are updated using the wavelet coefficients that were calculated during
the predict stage. This process is illustrated in Figure 10. The update stage guarantees that

the wavelet interpolating functions have zero mean, which ensures an accurate transform.
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Figure 10: The predict (red) and update (green) stages of the forward wavelet transform. A circled point is predicted using
the interpolated value calculated from the associated squared points on the next lower level. A point with a diamond is updated
using the triangular wavelet coefficients on the next higher level of resolution. The lower right plot shows the first three plots
all put together. The dark green vertical lines represent a hypothetical domain decomposition. The local subdomain consists
of the points within the two lines and the points outside the lines make up a buffer zone added for accurate computation.

In fact, the interpolating wavelets of order N when using the update stage have N vanishing
moments. This allows for faster implementation of the wavelet transform by a factor of
two. Also, with the addition of the update stage, the inverse wavelet transform is simple
to implement. The order of operations are reversed, and the inverse wavelet transform is
performed from low to high levels of resolution as opposed to high to low for the forward
wavelet transform. However, the drawback is that the inter-level connection required by this

update stage is a main issue in parallelizing the wavelet transform.

For problems of arbitrary dimension (greater than one), the wavelet transform is per-
formed by transforming each dimension independently. As the levels of resolution are de-
scended (or ascended in the inverse wavelet transform) in one dimension, the transform is
completed over the entire domain at that level of resolution. Therefore, in the three dimen-
sion case, the transform is completed first in the x-direction. During the j-th level of the
x-direction transform, the points in the y- and z-directions that are transformed are also
on the j-th level of resolution. Once the x-directional transform in complete, the wavelet
transform is performed, in a similar fashion, in the y-direction, and finally in the z-direction.
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Method 1 - No Update
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Figure 11. An illustration of the No Update Method. This method skips the update stage over the entire domain.

6.2.2  Parallel Wavelet Transform

In order to completely and accurately perform the update stage of the wavelet transform
(obtaining the correct c-values at each level of resolution), the points must be synchronized
across subdomain boundaries. This is shown in Figure 10 by the dark green subdomain
boundaries. The points lying outside of the boundaries are buffer zones added for proper
interpolation. At lower levels of resolution, the cascading of this synchronization becomes
even greater. At some level (depending on processor count and global domain size), the
entire domain must be synchronized on all processors to complete the update stage. The
synchronization is necessary once for every level of resolution (after each update stage)
and also for every dimension. Therefore, for a three dimensional problem with 5 levels of
resolution, 15 communication stages are required to simply perform one forward wavelet
transform. The inverse wavelet transform requires the same amount of stages resulting in
30 synchronization stages for one time step while using the AWCM. It is expected that the
cost of so much communication is likely to be too expensive.

Figure 10 illustrates the amount of interplay between subdomains. At each level of
resolution, the points near the boundaries (the left point in the figure) must have access to
points in the neighboring processor’s local subdomain. At lower levels, the points required
from neighboring processors are far into the domain on the finest level of resolution. The
addition of the update stage requires the use of all points on every level, up to the finest
level of resolution, associated with the neighboring subdomain’s points, in order to have an
accurate value when the local subdomain points near the boundaries use them. Therefore,
either a lot of communication is necessary, or the wavelet transform must be modified so that
the interplay between subdomains has less of an effect. We have considered five different
parallel implementations with the idea that the performance of these different methods will
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Method 2 - No Update near Boundaries
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Figure 12: An illustration of the No Boundary Update Method. This method skips the update stage only for points near the
local subdomain boundary. If a local point needs a point from a neighboring subdomain, the update stage is not performed.

shed light on how to modify the wavelet transform so that its parallel implementation is
fully optimized.

6.2.3 Five Algorithmic Modifications

The five algorithmic modification of the parallel wavelet transform that are studied all have
their own unique advantages and disadvantages. Some of the characteristics are fully antic-
ipated, while others have yet to be investigated.

The first method should be considered as a base case, and it involves not performing an
update stage over the entire global domain. This implementation will be referred to as the No
Update Method. This method is currently implemented in actual adaptive wavelet transform
reported in Section 6.3. The buffer zone exists on each subdomain so that the predict
stage can be properly implemented. This requires a small amount of extra computation
for problems in multiple dimensions, since the buffer zone must also be transformed in all
but the final dimension so that the proper values are available when the local subdomain
needs them during the predict stage. However, due to the lack of the update stage, the
computational time is also cut down since the algorithm takes half as many steps. Also,
there is no inter-level communication required. The results from the No Update Method
should exactly match the results from the serial case with no update. The main drawback
for this method is a loss of zero-mean properties of the interpolating wavelet. The No Update
Method is illustrated in Figure 11.

The second implementation reduces the disadvantages of the No Update Method. The
second method performs the update stage within the local subdomain. For points that would
require wavelet coefficients from outside the local subdomain during the update stage, no
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Method 3 — One Sided Predict and Update Near Boundaries
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Figure 13: An illustration of the One Sided Transform Method. This method segregates all processors from each other. All
subdomains are treated as a small global domain with one sided predict and update stages near the boundaries.

update is performed. Therefore, this method is called the No Boundary Update Method. The
second is more difficult to implement in adaptive wavelet transform due to increased level
of bookkeeping. However, the No Boundary Update Method method is a candidate to be
used in actual adaptive wavelet transfrom, once No Update Method is implemented and fully
optimized. It is an improvement from the previous method since the zero mean properties
are kept for the wavelets in almost the entire domain. However, near the boundaries, the
update stage is not performed and the wavelets have no vanishing moments. As No Update
Method the No Boundary Update Method requires no inter-level communication, and there
is a slight drop in computational cost due to the increased buffer zone near the boundary
that need to be synchronized only at the beginning of the transform. Figure 12 shows the
No Boundary Update Method.

The third method improves the excess computational costs from the previous methods
by completely segregating each local subdomain. Therefore, each processor’s subdomain is
treated as in the serial case with a small global domain. There is no connection to other
regions of the actual global field. If a point does not exist in the local subdomain, it has no
impact on the wavelet transform for that processor. One sided predict and update stages are
performed near the subdomain boundaries, just as would occur near the boundaries of the
global domain in the serial case. Therefore, this implementation will be referred to as the One
Sided Transform Method. The huge advantage for this method is the low computational cost
due to the lack of a buffer zone. There is also no inter-level communication, and the update
stage is performed over the entire domain (although one sided near the boundaries) ensuring
the zero mean properties for the wavelets. The main drawback of this method is that it
results in discontinuous derivative at the subdomain boundaries. As a result the method
is not a candidate for use in actual adaptive wavelet collocation solver and the inclusion of
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Method 4 - Buffer Zone
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Figure 14: An illustration of the Buffer Zone Method. This method uses a buffer zone that contains points from neighboring
subdomains. The buffer zone points are transformed using a one sided predict and update.

it into this study is of pure academic interest. Figure 13 gives a representation of the One
Sided Transform Method in one dimension.

The fourth method extends the idea of the One Side Transform Method to include a
buffer zone. For this method, referred to as the Buffer Zone Method, the information from
neighboring subdomains is available to the points in a local subdomain. This should help
with accuracy and the negative effects of the one sided transform near the boundaries of
the local subdomain and could be used in connection of Schwartz domain decomposition
iterative method. Extra computation is required since the update stage is performed every-
where, including the buffer zone where a one sided transform is carried out. Therefore, the
work required to perform the update stage within the buffer zone is also being done in the
neighboring subdomain. This method improves the loss of derivative continuity properties,
however as in the previous method does not guarantee the continuous derivatives across the
subdomain boundaries. In the Buffer Zone Method, the update stage is performed over the
entire domain, keeping the zero mean wavelet properties, and no inter-level communication
is required. The Buffer Zone Method is displayed in Figure 14.

The final implementation may be considered as another base case. For this method, the
appropriate buffer zone points are passed to neighboring processors after each update stage
in every dimension. The results obtained from this Complete Communication Method should
exactly match those obtained from the serial case, even with an update stage. However, it is
anticipated that the communication cost from the inter-level inter-dimension synchronization
of the local subdomains will be severe. The Complete Communication Method is demon-
strated in Figure 15. Due to its high computational cost this method is not a candidate for
implementation in parallel adaptive wavelet collocation code.
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Method 5 — Complete Communication
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Figure 15: An illustration of the Complete Communication Method. Communication of the buffer zone is completed after
each update stage in every dimension. This method will obtain the exact same solution as the serial case.

6.2.4 General Problem Description

When studying the performance of different implementations of parallel wavelet transforms,
a few restrictions were placed on the global system. First, for simplicity, the number of
processors must evenly divide the d-dimensional global field in a checkerboard type decom-

position. Therefore,

=

pd = integer. (86)

Second, as another simplifying assumption, the number of processors in one dimension should
evenly divide the number of points on the coarsest level in one dimension.

M; —1
p

= integer. (87)

=

This ensures that each processor has an even number of coarsest-level intervals. Lastly, the
problem is also made simpler by restricting the minimum number of coarsest-level intervals
so that the nearest neighboring processors contain the points needed for both the predict

and update stages.
M; —1
1 Z max [npredict - ]-7 nupdate] ) (88)
pd

where the n values are the number of points on each side used for the interpolation during
the predict and update stages. The order of the wavelets is then 2n. Therefore, a processor
does not need to communicate with more than one other processor for each boundary of its
local subdomain. With all of these restrictions in place, for a two dimensional field, as used
for all cases reported here, it was found that the processor count, p, could only take only
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Figure 16: The On-Boundary Function. A surface plot in the upper left shows the sharp localized peaks overlaid on the

smooth large structured sinusoids. The other three images show a contour plot for processor counts of 1, 16, and 1024. The
processor boundaries cut through every one of the sharp peaks.

even powers of 2. This is a result of restricting the total number of points in each direction
(N) and the number of coarsest level points in each direction (M) to powers of 2. So,

M,—1=M-—1=2" (89)

N—1=N-1=2" (90)

From this restriction, setting the finest level of resolution is trivial:

jmax =n+1-— m, (91)

where the coarsest level of resolution is 7 = 1. It is easy to see that when n = m, there is
only one level of resolution and no transform will be performed.

The fields for which the wavelet transform acts on is an important consideration. The field
should have some regions with sharp transitions and other areas where the structures are not
localized. The placement of the sharp transitions may affect the ability of certain methods
to accurately perform its modified wavelet transform. Therefore, two functions are tested.
Both fields have sinusoids in the x- and y-directions with sharp Gaussian peaks dispersed
throughout the domain. The sinusoids act as large structures, while the sharp Gaussian
peaks represent localized structures that are well compressed by the wavelet transform.
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Figure 17: The Off-Boundary Function. A surface plot in the upper left shows the sharp localized peaks overlaid on the

smooth large structured sinusoids. The other three images show a contour plot for processor counts of 1, 16, and 1024. The
peaks are offset from all the processor boundaries so that none of the peaks are split between local subdomains.

For both functions, the total number of Gaussian peaks overlaying the sinusoids is twelve.
The difference between the two functions is the placement of the Gaussian peaks. In the
first function, the peaks are located directly on the processor subdomain boundaries. This
function is referred to as the On-Boundary Function (func=2 in the plots in Section 6.2.5)
and is illustrated in Figure 16. The second function sees a shift in the peaks so that no
processor boundary goes through any of the peaks. This function is then referred to as the
Off-Boundary Function (func=4 in the plots in Section 6.2.5) and is displayed in Figure 17.
In the Off-Boundary Function, no peak is shared amongst multiple subdomains, even for
large processor counts.

The general process for this study is to take our field and perform the appropriate modified
forward wavelet transform for each of our five implementations. Then, the wavelet coefficients
are analyzed and those that are deemed insignificant via the e thresholding (dJ, < €) are set
to zero (di = 0). Next, the appropriate inverse wavelet transform in applied to get the
functional values once again. The accuracy can then be tested by calculating the error
between the initial field and the resulting field after the inverse wavelet transform. Both L.,
and Lo errors are reported. Another related and important characteristic for the transform
is the compression. Since the wavelet transform is used for data compression and adapting
grids, a high level of compression is always attractive. The compression will be calculated
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6 Processor | 2 Function | 3 Fixed Global | 3 Fixed Local

5 Methods Counts Types Field Sizes Field Sizes
1.) No Update 1 On-Boundary 257 x 257 9%x9
2.) No Boundary Update 4 Off-Boundary 513 x 513 33 x 33
3.) One Sided Transform 16 1025 x 1025 129 x 129
4.) Buffer Zone 64
5.) Complete Communication 256

1024

Table 2: This table lists all the runs performed for the parallel wavelet transform. A total of 340 runs were completed in
parallel mode.

as follows: N
. >
1 — Compression = ———,
total

(92)

which is the ratio of significant wavelet coefficients to the total number of points. The timing
performance of the implementations is also investigated. Therefore, the process of forward
wavelet transform, € thresholding, and inverse wavelet transform is performed for a number
of iterations to ensure accurate timing statistics. The average time per iteration is calculated
and reported. Also, since communications are involved, the first iteration is not timed so
that all communication links have an iteration to get warmed up.

All reported runs used a two dimensional field with € = 1075, The wavelets used were 4"
order by setting npredict = 2 and Nypdate = 2 (Nupdate = 0 when no update is performed). Also,
the m value was chosen so that the finest level of resolution was always 3. Therefore, two
transform steps are taken in each dimension for each wavelet transform. For the reported
results the main parameter is the method type and the processor count. The function type
and the field sizes were also varied. Table 2 gives a complete summary of all the parallel
cases that were run. Table 3 then lists the types of serial cases that were completed. All
runs were completed on the BG/L machine.

6.2.5 Scalability, Compression, and Accuracy

Many runs for each of the five implementations were completed and compiled with the
main goal of comparing the different methods and their characteristics. Of importance are
the timing performance, accuracy, and compression as processor count is increased, type of
function is varied, and field size is increased. One important note is that in actual adaptive
wavelet transform the timing performance would greatly depend on the compression. Since
this study focuses on the non-adaptive wavelet transform only, the compression value is only
a statistical property that does not affect the computational cost. A point that is deemed
insignificant via the € thresholding still has its functional value found by the inverse wavelet
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1 Processor 2 Function 3 Fixed Global | 3 Fixed Local

2 Methods Count Types Field Sizes Field Sizes
A.) Without Update 1 On-Boundary 257 x 257 9x9
B.) With Update Off-Boundary 513 x 513 33 x 33

1025 x 1025 129 x 129

Table 3: This table lists all the runs performed for the serial wavelet transform. A total of 24 runs were completed in serial
mode.

transform.

In looking at all the plots, it is important to remember that all implementations should
be compared against the appropriate serial case. Therefore, the No Update Method should
be compared against the serial case with no update, whereas the rest of the methods should
be compared against the serial case with the update stage. Also, when comparing the results
for the different types of functions, the change in the difference from the serial case is more
important that the absolute difference between the two function cases.

In terms of timing performance, the results match expectations fairly closely. Figure 18
shows the average per iteration timing for a small fixed local field size for the Off-Boundary
Function. Overall, it shows an obvious disparity between most of the methods. The green
line corresponds to the One Sided Transform Method. This method remains very close to
the average time per iteration for a single processor. Since the local field size is fixed for this
plot, and the One Sided Transform Method has no buffer zone to add extra computation,
the time does not increase. The red line is the No Update Method. This method is a little
slower than the One Sided Transform Method, since it has a buffer zone that adds extra
computation. However, it does not do an update stage, so some of the computational cost is
given back. The blue and purple lines overlap in this figure. These two lines correspond to
the No Boundary Update Method and the Buffer Zone Method. Both these methods have a
buffer zone, which adds computational cost. The Buffer Zone Method performs an update
stage in the buffer zone, whereas the No Boundary Update Method does not. Therefore,
upon zooming in on the plot, the Buffer Zone Method is slightly slower. Finally, the cyan
line, representing the Complete Communication Method, shows a much worse performance
for this implementation. This method performs an update stage everywhere and, therefore,
has the same computational cost as previous methods. The extra time can be attributed to
the high level of communication necessary to synchronize the buffer zone after each update
stage in each dimension.

The speed up and efficiency are also studied. Figure 19 illustrates those characteristics
for each method for all three fixed global field sizes. As expected, the performance shown
in these plots matches the order in the average per iteration timing analysis. At large
processor counts, the speed up appears to be growing linearly for all methods, just with
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Average per lteration Timing for fixed local field size of...9x9...func=4
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Figure 18: Plot of average per Iteration Timing for a small local fixed field size. All the timing plots look very similar to this,
with an obvious separation between the methods.

different slopes. As the fixed global field size is increased, the spread between the methods
grows. Therefore, for larger domains, the One Sided Transform Method does better than
the rest at a growing rate. The Complete Communication Method is the only method that
has a decreasing efficiency as the global field size increases. This is due to the fact that this
method must communicate a great deal of data many times for each wavelet transform. For
larger global field sizes, the amount of data that must be sent is increased, which in turn
increases the time required to complete an iteration. Thus, efficiency is lowered.

The type of function had essentially no effect of the timing performance for all methods.
This can be attributed to the fact that the transform is being performed non-adaptively. The
same number of computations and communications will take place regardless of the function
used and the value of wavelet coefficients after the forward wavelet transform.

Unlike the timing performance, the accuracy and compression could change with a depen-
dence of the type of function. Figure 20 uses the L, norm error to represent the accuracy for
a large fixed global field size. As stated previously, the L, norm is a measure of the average
error over the entire domain. The figure displays the accuracy for both the On-Boundary
Function (func=2, left) and the Off-Boundary Function (func=4, right). The No Update
Method (red) has the worst error since there is no update in the entire domain. The lack of
a vanishing moment is causing a loss in accuracy. This method does follow closely to the no
update serial case, as expected.

The next best method is the No Boundary Update Method (blue). As the processor count
increases, the error gets worse. The lack of an update stage near the boundaries is causing
a loss in accuracy. The Buffer Zone Method (purple) follows very closely to the Complete
Communication Method (cyan), which gives exactly the same results as the serial case (with
update stage). The added buffer zone is doing a good job maintaining the accuracy. This
also acts as a check that the Complete Communication Method is working properly. The
One Sided Transform Method (green) actually does the best at very high processors. It has
the lowest error with 1024 processors and competitive errors for lower processor counts. In
comparing the two function types, almost all the methods keep their same difference from
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Speed Up using serial run for base case for fixed global field size of...257x257...func=2
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Figure 19: Speed Up and Efficiency plots for increasing fixed global size. The scales remain the same for all three field sizes.
There is an overall spreading between the best and worst method performance as field size increases.
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Accuracy with L2 Norm Error for fixed global field size of...1025x1025...func=2 Accuracy with L2 Norm Error for fixed global field size of...1025x1025...func=4
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Figure 20: The accuracy using the La norm error is compared for the implementations and for the two functions. In comparing
dependence of accuracy of the type of function, one must view how far a method is from the serial case. Method 1 should be
compared with the serial case with no update. All other methods should be compared with the serial case with the update
stage.

the appropriate serial case. This signifies no dependence on type of function, since that
particular method has a similar accuracy as compared to the serial case for both functions.
As compared with the serial case (with update stage), the green line shows a worse accuracy
for the Off-Boundary Function.

Figure 21 is another accuracy plot, except this one uses the L., norm error, which is a
maximum error for the domain. All methods perform similar to the Ly norm error accuracy
plot except for the One-Sided Transform Method. Whereas in Figure 20 the One Sided
Transform Method appears to have one of the lowest errors, here the green line towers above
the rest. This signifies high local errors, despite having a low average error. The high local
errors most likely occur near the local subdomain boundaries where a one sided transform is
being used. It appears that doing one sided transforms well within the global boundaries and
having no interconnection between subdomains is causing high local errors. Again, it does

worse for the Off-Boundary Function. It may have more trouble accurately interpolating
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Figure 21: The accuracy using the Lo, norm error is compared for the implementations and for the two functions. In comparing
the dependence of the accuracy on the type of function, one must view how far a method is from the serial case. Method 1
should be compared with the serial case with no update. All other methods should be compared with the serial case with the
update stage.
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Compression for fixed global field size of...1025x1025...func=2 Compression for fixed global field size of...1025x1025...func=4
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Figure 22: The compression is compared for the implementations and for the two functions. In comparing the dependence of
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the compression on the type of function, one must view how far a method is from the serial case. Method 1 should be compared
with the serial case with no update. All other methods should be compared with the serial case with the update stage.

the tails of the sharp Gaussian peaks (Off-Boundary Function) with the one sided transform
at the local subdomain boundary than the center of the peaks, which occurs for the On-
Boundary Function. The Buffer Zone Method in the Off-Boundary Function plot actually
performs better than the Complete Communication Method and therefore the serial case.

The final wavelet transform characteristic to be investigated is compression. The com-
pression statistics for a large fixed global field size and for both types of function are shown
in Figure 22. All of the methods show similar compression values except for the One Sided
Transform Method, which has a relatively large ratio of significant points to total points.
This is an unattractive characteristic, as the lower this ratio is, the greater memory saved
once the adaptive wavelet transform is implemented. The lower compression could account
for the average error being less than the other methods. The One Sided Transform Method
has more points using their actual wavelet coefficient values, lowering the average error.
However the high local errors from the L., norm accuracy plot cannot be justified. A low
compression can only account for lower accuracies. This figure also shows that all methods
have a common shift in comparing the two types of functions (even the One Sided Trans-
form Method). The shifts match the shifts in the serial cases. It appears that the difference
between these two types of functions does not affect the compression.

6.3 Parallelization of DAWC Method

When parallelizing the code the following important issues need to be considered: asyn-
chronous events on different processors, concurrency and possible deadlocks. In order to
facilitate faster parallel code development the following strategy has been used. The code
was designed to consist of three main parts: the main wavelet code, the data structure, and
the parallel communicators with the required interfaces and external libraries (Fig. 23).
Keeping these three parts separate simplifies code structure and facilitates debugging,
though inhibit code performance. In addition, all the information transfers between pro-
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Figure 23. Code structure. Arrows represent the direction of function calls.

cessors were implemented via collective all-to-all MPI (message passing interface) commu-
nications, which eliminated all the deadlock related problems. The major trade-off of such
an approach was, again, the code performance. Normally, a processor would require infor-
mation from several neighboring domains only, not from all the other processors, therefore
replacing all-to-all with point-to-point communications is an important optimization which

will be implemented in the future.

6.3.1 Input/Output Ideology

Our parallel adaptive wavelet based code as well as visualization tool can be run on several
processors using MPI library. Input/output ideology is the following: if we are using N
processors we expect to read single input file and, if necessary, N result files. The code
running on N processors will produce N output files (.res, .log, .vtk, or others). An extension
is added to output files to indicate the processor number that file has been written by (e.g.
p000, p001, p002, etc).
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Figure 24: Geometric decomposition of 8 X 8 domain of trees for different number of processors N. First subdivision occurs
perpendicular to the vertical axis on vV N sub-domains.
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6.3.2 Domain Decomposition

We have implemented a geometric domain decomposition based on the maximum possible
number of wavelets inside each of the sub-domains. In short, a rectangular d-dimensional
computational domain has to be distributed among a given number, N, of processors for a
given set of active wavelets. First of all, the domain is subdivided perpendicular to the first
axis on rounded to the nearest integer v/N sub-domains. The available N processors are
distributed among these sub-domain according to the number of active wavelets inside each
of the sub-domains. Then, the first step is repeated, i.e. each of the previously obtained
sub-domains is subdivided perpendicular to the second axis on rounded to the nearest integer
VN’ number of sub-sub-domains, where N’ is the number of processors previously assigned
to that particular sub-domain. This recursion steps are repeated d times and results in a
quite balanced decomposition of the initial domain. An example of decomposition of 2-D
square domain is presented at Fig. 24 schematically. The actual mesh and corresponding
solution are shown in Figs. 25-27.

User can control domain decomposition via the input parameter file. Domain splitting
may happen only along the predefined directions. For example, providing three dimensional
parameter domain_split = 0,1,0, where non-zero component allows domain subdivision
in that direction, would force domain decomposition into slabs perpendicular to y-axis.

6.3.3 Load Balancing

Load balancing is closely connected to the domain decomposition. Currently, we do not
perform any load balancing. Initial domain decomposition is performed based on the regular
grid of active wavelets and is not updated while the code runs.

This will not be the case in the nearest future. Load balancing is an important issue to
address. The computational load of a processor nearly linearly depends on the number of
active wavelets inside that processor domain. Poorly loaded processor inevitably creates a
significant source of bottlenecking and drastically impedes code performance.

We plan to start by implementing a simple approach that would perform domain de-
composition after a given number of time-steps. Then trees, which are the finest elements
the decomposition deals with (we will consider the trees in details in Section 6.3.4), are to
be transported to their newly assigned processors. Another approach would be to perform
new domain decomposition and trees reassignment in alternating direction one at a time,
i.e. in z-direction, then after several time-steps in y-direction, etc. This could minimize
communications between the processors inside load balancing subroutines.

More complicated procedures have to be implemented for the distributed systems with
non-uniform communication delay or memory access. Neighboring processors are to be
assigned taking into account communication delays as well as the number of active wavelets
inside each processor’s domain has to be related to the performance of the current processor.
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Figure 25: Geometric decomposition of 8 x 8 domain of trees for different number of processors N. First subdivision occurs
perpendicular to the vertical axis on v N sub-domains. Grid is shown.

Figure 26: Geometric decomposition of 8 X 8 domain of trees for different number of processors N. First subdivision occurs
perpendicular to the vertical axis on vV N sub-domains. Wavelets are shown.
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Figure 27. Solution: grid and wavelets.

Efficient load balancing is currently under investigation.

6.3.4 Parallel Code Structure

The code consists of three main parts: the data structure, the parallel communicators, and
the main wavelet code (Fig. 23).

In the current implementation each processor’s data structure contains a regular array of
quad-tree roots of the whole domain initiated at level j.oo. When a new node of some level j
to be added to the domain, a link is inserted into the correspondent quad-tree node of level
j — 1. Maximum access time of any node through such a structure is obviously linear to the
maximum level of wavelets, i.e. O(jmax — Jroot)- Each tree node has at most 24 active links
to the nodes of the higher level, where d is the dimension of the computational domain.

While traversing a tree structure during a node access, we are normally getting a cache
miss each time we are following a link to a higher level node. In order to decrease the number
of cache misses, and improve code performance, a cache-friendly storage for the tree nodes
has been implemented. Starting from the finest level of resolution, nodes of each two levels
are stored together; hence no cache miss occurs during the link following between these two
levels.

This data structure has been developed for the serial implementation of the wavelet
based code. The parallel version uses the same data structure without any changes, with
each processor having its own tree-structure containing all tree roots. The question whether
to keep some neighboring tree roots instead of all of the tree roots of the whole domain is
currently under investigation. It might happen that the tree structure has to be adjusted for
the parallel code requirements. However, taking into account that the storage overhead of
having empty roots is insignificant, the algorithm simplicity and an ease of inter-processor
communication are the good reasons to keep the current implementation.

Parallel communicators have been implemented via collective all-to-all MPI calls, which
eliminated all the deadlock related problems and facilitated code debugging. From the other
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Figure 28: An example of 1-D boundary zone of processor 0 generated by a single active wavelet node (black dot) consists of
nodes required for wavelet transform in that active node (gray dots) and nodes required to find the derivatives in that node
(white circles) for nprdcet = ndig = 2 and nypqy = 0. Thus, processor 0 has to transfer 5 points before wavelet transform, and
at least 5 (up to 9, depending on the distribution of active wavelets on processor 1) points before derivative calculations.

hand, the major trade-off of such an approach is the performance of the code. Since a
processor would require information from several neighboring domains only, not from all the
other processors, replacing all-to-all with point-to-point communications has good chances
to improve code performance (especially for a large number of processors).

Currently, all communicators are written to be independent from the quad-tree data
structure and kept in one file for simplicity. Data structure independence could facilitate
future development of the parallel code with different underlying data structures. Also for
simplicity of development, throughout the code parallel related things are surrounded by
preprocessor statements #ifdef MULTIPROC.

Numerous changes have been introduced into the main wavelet code as well as into the
main code - data structure interface. In short, following the domain decomposition ideology,
each processor controls wavelets located inside the processor sub-domain. In addition, each
processor has a boundary zone around the sub-domain to store and exchange information
between the processors. The origin of the boundary zone lays in wavelet transform and
derivative calculations (Fig 28). In order to find derivatives in a point we need a prescribed
number of points on each side of that point. Similarly, to perform a wavelet transform inside
a sub-domain we need a predefined number of points on each side of each point where wavelet
coefficient is calculated during the predict stage.

Having an update stage imposes tight coupling between the neighboring sub-domains
and requires multiple information exchanges between the sub-domains (namely, at each level
of the wavelet transform). This drastically decreases code performance and therefore to be
avoided. For more detailed discussion of explored possible parallel extension of the algorithm
see Section 6.2. In the current implementation we are not using update during wavelet
transform, which results in a slight increase of the approximation errors. Though, wavelet
threshold value has a stronger effect on the approximation errors, and a smaller threshold
would easily compensate the absence of update during wavelet transform. Nevertheless, the
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System N  Time, s Efficiency, %
1 node, 1 1215 100
128 xItanium2, 8 236 64
NUMA, shared 16 237 32
27 267 17
1 node, 1 607 100
4xXeon, 2 330 92
shared 3 278 73
4 228 66
267 nodes, 1 762 100
4x Opteron, 4 261 73
Myrinet 8 180 53
16 172 28

Table 4. Scalability results for Parallel Adaptive Wavelet Collocation Solver.

necessity of the parallel wavelet transform with both predict and update stages for some
applications is currently under investigation.

All points required for wavelet transform are points inside the sub-domain (so called
“significant” points of the current sub-domain) are added to the data structure and marked
as “adjacent”. All points from the derivatives stencils, as well as the points required to
make wavelet transform in these points, are added to the data structure as “ghosts”. By the
end of the grid adaptation subroutine each processor has the access to these lists and, after
synchronization, to the lists of the other processors. Thus, in all the following information
exchanges on the current grid, e.g. during numerous wavelet transforms and derivative
calculations, each processor will know which nodes it has to send and which nodes it is
going to receive from other processors. Therefore, value synchronization during wavelet
transform require a single all-to-all MPI communication to transfer “adjacent” nodes. The
synchronization during derivative calculations require transfer of “adjacent” and “ghosts”
nodes.

It should be noted that “ghosts” values, otherwise zeroes, are initialized during that
inverse transform only. Value at some “ghost” point could be changed, and therefore need
to be synchronized before the inverse transform, if and only if that “ghost” has participated
in the previous direct forward transform, i.e. that “ghost” is “significant” or “adjacent” at
some other processor. All the other “ghosts” are safely removed from the synchronization
lists to decrease the communication cost.

In addition to grid adaptation and derivatives, solvers are the important parts of the
main code to run in parallel. In the current implementation we extensively use MPI global
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Figure 29: Energy decay for Casere, =72 with partial ad- Figure 30: Field compression for Casere, =72 with par-
jacent zone for CVS with no SGS model (-——--), SCALES tial adjacent zone for CVS with no SGS model (-——-) and
with no SGS model (—-—) and for comparison DNS SCALES with no SGS model (—-—).
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field is approximately 0.1. Two stations are shown at which

). Large eddy turn over time for the initial DNS

energy spectra will be presented.
reduction operations (mainly, summation) inside the solvers.

6.3.5 Current Performance and Future Work

Current parallel implementation has been tested on several systems: single node NUMA
(non-uniform memory access) shared memory system with 128 Itanium2 processors, single
shared memory node with 4 Xeon processors, and a cluster of 267 4xOpteron nodes in-
terconnected by Myrinet 2g network. Timing results are presented in Table 4 for different
number of processors N. Efficiency is measured relative to a perfect application which would
run N times faster on N processors. In short, current parallel implementation of wavelet
based code runs efficiently on up to 8 processors. Future work is required to improve the
performance of the parallel code.

Future work includes the following (in order of importance): (1) Extensive profiling and
bottleneck detection. (2) Tree structure tunning. (3) Replacing all-to-all with point-to-
point communications. (4) Load balancing. (5) Additional optimization of parallel solvers
is required. (6) Parallel wavelet transform with non-zero nypdate-

7 Applications

7.1 Decaying Isotropic Turbulence

To validate the CVS and SCALES methods, numerical simulations of decaying incompress-
ible isotropic turbulence are considered. For this project the incompressible Navier—Stokes
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Figure 31: Total resolved viscous dissipation (—vS;;S;;) for Casere, =72 with partial adjacent zone for CVS with no SGS
model (——--), SCALES with no SGS model (—-—) and for comparison DNS ( ).

equations (11-13) are solved with the DAWC solver. Continuity (13) is enforced using
a multi-step pressure correction time integration method (Guermond & Shen 2003). An
adaptive wavelet collocation multilevel elliptic solver (Vasilyev & Kevlahan 2005) is used in
solving the Poisson equation for pressure at each time step.

Results of decaying incompressible isotropic turbulence with initial Rey, = 72 are pre-
sented. The simulations were initialized with a 1283 forced isotropic turbulence DNS field
from a de-aliased pseudo-spectral code. The DNS simulation was run using a resolution of
1283 and had an initial eddy-turnover time of approximately 0.1. The spectral content of
the initial DNS field is fully resolved by doubling the non-adaptive field resolution to 2563
in the simulations. This is required because the DAWC solver uses finite differences, which
cannot resolve the full spectral content of the spectral DNS field at the original resolution.
The results are compared to a full DNS performed with the de-aliased pseudo-spectral code
used to generate the initial DNS field. Currently we are experimenting with larger runs with
effective resolution 10243 for both CVS and SCALES simulations. What is remarkable that
SCALES simulations with such high resolution use less than 2GB memory, which is very
encouraging, since it points out to the great compression achieved by the algorithm due to
high intermittency of turbulent flows.

In running these simulations it has been determined that a more “complete” adjacent
zone, than the partial adjacent zone described in Section 2.5, is needed to limit the numerical
and aliasing error at the high field compression used in SCALES. In the original adjacent
zone, neighboring points on the level above, the current level, and the level below are added
around each active wavelet. From this point on, we will refer to this as a partial adjacent
zone. This partial adjacent zone is used in the CVS simulations presented in Section 2.5.
For the high compression SCALES simulations presented in Section 7.3, 7.4, 7.4, 7.5, and
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Figure 32: Energy spectra for Casere, —72 with partial adjacent zone for CVS with no SGS model (-—--), SCALES with no
SGS model (—-—) and for comparison DNS ( ), at time t = 0.08 (left), and ¢ = 0.16 (right). A k—5/3 straight dashed

black line is shown to indicate the inertial range.

7.6 we have defined a complete adjacent zone that, in addition to the immediate neighbors,
adds the diagonal neighbors.

For all SCALES and CVS results in this report the Ly WTF-norm was used in the coupled
wavelet filtering for grid adaptation based on the velocity field and for grid and test filtering
in the model. Tests were also run using L., WTF-norm but it was determined that this was

considerably nosier due to temporal intermittency.

7.2 CVS

CVS simulations of decaying incompressible isotropic turbulence have been performed with
no SGS stress model to validate the method’s ability to dynamically resolve and track the
coherent energetic eddies in a turbulent flow. A partial adjacent zone has been used for these
simulations. In figures 29 through 32 the results of CVS and SCALES with no SGS stress
model, for brevity called SCALES,, a1, are compared to DNS . It can be seen in Fig. 29
that the energy decay for CVS is nearly identical to the DNS. The SCALES,,_ a1 case is seen
to be under dissipative. Figure 30 shows the field compression for CVS and SCALES, o mai-
The compression stated is always with respect to the maximum field resolution, which in
this case is 2563. It can be seen that CVS is able to reproduce the DNS energy decay with a
compression ranging from a minimum of 98.2% to 99.8% as the flow becomes laminar. This
means that a maximum of 1.8% of the total modes are resolved in the CVS simulation. This
variation of field compression over the course of the simulation reflects the decreasing amount
of small scale structures as the turbulence intensity decreases. In these simulations € is set to
0.15 for CVS and 0.5 for SCALES,,_ma1. The value of € for CVS was chosen iteratively to find
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Figure 33: Energy decay for Casere, =72 with complete ad- Figure 34: Field compression for Casere, =72 with com-
jacent zone for SCALES with dynamic SGS model (———-— plete adjacent zone for SCALES with dynamic SGS model
), SCALES with SGS model coefficient Cef2¢? = 0.0001 (===-), SCALES with SGS model coefficient Ccf?¢? =
(—-—), LES with dynamic SGS model (— ) and for 0.0001 (—=-—) and LES with dynamic SGS model (— ).
comparison DNS ( ). Large eddy turn over time for The complete interpretation of the LES compression based
the initial DNS field is approximately 0.1 . Two stations are on the 3/2 rule is shown as small circles.

shown at which energy spectra will be presented.

the maximum value for which the energy decay over the simulation period closely matched
that obtained with the DNS. For comparison CVS simulations (not shown) with Rey = 48
have been run. For these Rey, = 48 simulations 6% of the modes were required to match the
DNS energy decay. This trend of compression scaling between Re), = 48 and Rey = 72 is
believed to be indicative of the expected scaling of CVS compression with Reynolds number.
More data points are needed at higher Reynolds number to validate this possible level of
scaling. In this CVS simulation the skewness of the first velocity derivative is maintained to
within 10% of the DNS value, which reflects the fact that the CVS is resolving most of the
DNS energy dissipation. In Fig. 31 we see directly that, after an initial period where the
small scales are being recovered from the initial field projection, the total viscous dissipation
of CVS closely matches the DNS. This confirms the hypothesis that with CVS the total SGS
dissipation is minimal. This also indicates that the CVS is capturing the coherent structures,
allowing the CVS simulation to at least partially resolve the energy cascade over all active
wavenumbers. In Fig. 32 the energy spectra for CVS, SCALES,,_naq and DNS are shown
for two stations. The first station is at ¢ = 0.08 and the second station is at ¢ = 0.16. These
stations are also shown on Fig. 29. The CVS spectra closely matches that of the unfiltered
DNS at both stations. Notice how with CVS the full energy spectra is closely resolved over
the full spectral range. The spectra for the SCALES,,_,q case is seen to build up energy
due to lack of SGS dissipation.
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Figure 35: Dynamic SGS model coefficient for Casere,=72 with complete adjacent zone for SCALES with dynamic SGS
model, Ccf2e? (-——-), SCALES with SGS model coefficient Ccf?e? = 0.0001 (—-—) and LES with a classical dynamic SGS
model, CsA2(— ).
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Figure 36: Resolved and SGS dissipation for SCALES with the dynamic model (left) and SCALES with SGS model coefficient
Cc#?e2 = 0.0001 (right) for Casegre, =72 with complete adjacent zone. On both plots the DNS viscous dissipation is shown
( )with the viscous dissipation (——--), SGS dissipation (— ) and viscous + SGS dissipation (—-—).

7.3 SCALES Constant Coefficient and Global Dynamic SGS Model

SCALES simulations have been performed with the constant coefficient Smagorinsky eddy
viscosity model, equation (16), and the new dynamic Smagorinsky eddy viscosity SGS stress
model described in Section 4. The model coefficient (C.¢?¢? = 0.0001) for the SCALESc case
was chosen to best match the DNS results. For the SCALESg,, case the volume averaged
version of the dynamic model coefficient is used (27). These SCALES simulations, hereafter
for brevity called SCALES¢s and SCALESy, respectively, are compared to DNS and LES
simulations. For both SCALES¢s and SCALESgy, cases € is set to 0.5. The LES simula-
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Figure 37: Resolved and SGS dissipation for LES with the dynamic model for Casere, =72. The DNS viscous dissipation is
shown ( ) with the viscous dissipation (———-), SGS dissipation (— ) and viscous + SGS dissipation (—-—).

energy density
energy density

1 1
wavenumber wavenumber

Figure 38: Energy spectra for Casere,—72 with complete adjacent zone for LES with dynamic SGS model (-——-) at time
t = 0.08 (left), and ¢t = 0.16 (right). For comparison the DNS ( ) and filtered DNS ( o ) are shown. A k—5/3 straight

dashed black line is shown to indicate the inertial range.

tion is performed in the DAWC solver with a regular 643 grid using the classical dynamic
Smagorinsky model. The simulation is de-aliased by performing a wavelet transform on the
velocity field and zeroing the highest level wavelet coefficients, thus resulting in a 32 solution
at the end of the time step. This is more expensive than the 3/2 rule used in pseudo-spectral
simulations. Figure 33 shows that the resolved kinetic energy decay for the SCALES,y, and
SCALES¢s cases closely matches that of the DNS. The LES deviates slightly more from the
DNS. Note that due to the similarity of the SCALES4y, and SCALEScg results the lines are
difficult to distinguish on Fig. 33. The SCALES4y, and SCALESc results lines are those just
below the DNS line and above the LES line. In Fig. 34 the compression for the SCALESy.,,
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Figure 39: Energy spectra for Casere, =72 with complete adjacent zone for SCALES with SGS model coefficient Cl2e? =
0.0001 (——--) at time ¢t = 0.08 (left), and ¢ = 0.16 (right). For comparison the DNS ( ) and filtered DNS ( o ) are
shown. A k—5/3 straight dashed black line is shown to indicate the inertial range.
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Figure 40: Energy spectra for Casere, —72 with complete adjacent zone for SCALES with dynamic SGS model (———-) at time

) and filtered DNS ( o ) are shown. A k—5/3 straight

t = 0.08 (left), and ¢t = 0.16 (right). For comparison the DNS (
dashed black line is shown to indicate the inertial range.

SCALESqs and LES cases are shown. If we consider the overhead of the modes used for de-
aliasing, the LES may be considered to have a compression of 98.44%. The modes used for
de-aliasing in LES can be considered as analogous to the adjacent zone in SCALES, so for a
realistic comparison we can consider that if the LES was performed in a spectral code, using
the 3/2 rule for de-aliasing, the effective compression would be 99.34% (shown in Fig. 34 as
small circles). This is 0.35% higher than the initial compression of the SCALESy, simu-
lation. However, as the SCALES simulations progress the adaptive compression increases,
surpassing that of the LES. Therefore, it can be said that the SCALESy, and SCALESc
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simulations were able to capture the energy decay with a compression similar to a de-aliased
LES simulation. In Fig. 35 we see that the dynamic model coefficient for SCALESgy, is
more variable in comparison to the LES case. We conjecture that this variability could
reflect the sensitivity of the SCALES,y,, model to actual localized events, such as energetic
coherent vortex interactions that cause local high resolved stresses. These events must be
included to properly characterize the instantaneous SGS dissipation. Further research is
needed to understand this phenomenon. In Figs. 36 and 37 the viscous and SGS dissipations
are presented for SCALESgy,, SCALESs and LES. The variability of the SCALES4y,, model
coefficient is reflected in the SCALES4y, SGS dissipation. In Figs. 38-40 the energy spectra
for the two stations shown in Fig. 33 are compared to the appropriately filtered DNS for
the SCALESgy,, SCALEScs and LES cases. For comparison to LES the DNS is filtered
using a spherical Fourier cutoff filter equivalent to the maximum wave number resolved in
the LES calculation. In the case of the SCALES simulations the appropriate DNS filtering
for comparison is a wavelet thresholding filter with equivalent threshold parameter to that
used in the SCALES simulations. It can be seen that, while there is reasonable agreement
for the LES case (Fig. 38), the agreement with the filtered DNS is significantly improved for
the SCALES¢s (Fig. 39) and SCALESy, cases (Fig. 40). At both stations, in the dissipative
range, the SCALEScy and SCALESy,, simulations reproduce more of the high wave number
energy. At the second station it can be seen in the inertial range that the LES has dissipated
slightly more then the SCALES¢s and SCALESy,, cases. It is of particular interest to note
that the wavelet filtered DNS in figures 39 and 40 are closer to the full DNS spectra over the
full spectral range. Thus, the ability of SCALES to closely recover the filtered DNS results
in a solution that has a spectral content close to the original unfiltered DNS solution over
the whole DNS spectral range.

7.4 Lagrangian Dynamic Local SGS Model

In this section we apply the local Lagrangian SCALES model to incompressible isotropic
decaying turbulence. Though the localized models are specifically designed to simulate com-
plex inhomogeneous turbulent flows, it is nevertheless enlightening to test them for a case
for which well known theoretical and experimental results exist. In addition, the homoge-
neous turbulence case allows a detailed comparison with the existing reference solutions for
DNS, LES, and SCALES (with global dynamic model). Moreover, decaying turbulence is
a challenging example of statistically unsteady flow that stands as a good test-case for a-
posteriori verifying the accuracy of the proposed SGS stress model. The initial velocity field
is a realization of a statistically stationary turbulent flow at Rey, = 72 (A being the Taylor
microscale) that is provided by a fully de-aliased pseudo-spectral DNS with 128 Fourier
modes (De Stefano et al. 2005). Due to the finite difference nature of the AWCM solver, the
initial SCALES resolution in each direction must be doubled in order to retain the spectral
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Figure 41: Energy decay for SCALES with the Lagrangian path-line diffusive (———- ) and path-tube averaging (———-—- )
models, SCALES with global dynamic model ( ), SCALES with no model (— ), reference LES with global dynamic

model (— — ), and wavelet filtered DNS (o).

energy content. In other words, SCALES is run using a maximum resolution corresponding
to 2562 grid points. Note that due to the nature of the decaying turbulence, 2563 resolution
is only required during initial times with gradual decrease of the maximum level of resolution
as turbulence kinetic energy decays and Taylor microscale Reynolds number decreases.

The choice of the thresholding parameter, €, in (5) is somewhat arbitrary: the smaller it
is, the weaker the SGS dissipation is, with SCALES approaching Coherent Vortex Simulation
(Farge et al. 1999, Goldstein et al. 2005) and wavelet-based DNS for even smaller values of
e < 1073, On the other hand, when € is too large, too many modes are discarded and the
energy cascade is no longer captured. All the SCALES results reported in this report have
been obtained using the wavelet thresholding parameter e = 0.43 as a compromise between
these limits.

The Lagrangian local modelling variables are initialized as Zp;n = MppMp, and
T = Co€Tarar, where Cj is the volume averaged Smagorinsky model coefficient (34). For
the relaxation time scale, the value 6 = 0.75 suggested by (Meneveau et al. 1996) is chosen.
For Lagrangian path-line diffusive averaging, a diffusion coefficient C7 > 5 has been found to
produce acceptable results while approaching the global dynamic model for very large values
of the coefficient. In the case of Lagrangian path-tube averaging, the same stabilizing effect
is obtained by means of local volume averaging along the path-line, provided that the linear
cross-sectional dimensions of the path-tube are not smaller than the local characteristic filter
width, A.

In figures 41-43 the resolved kinetic energy decay, grid compression (percentage of the
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Figure 42: Field compression: SCALES with the Lagrangian path-line diffusive (———— ) and path-tube averaging
(-————- ) models, SCALES with global dynamic model ( ), and SCALES with no model (— )

discarded grid points), and modelled SGS dissipation (percentage of the total dissipation)
for proposed SCALES are compared to: a-posteriori wavelet filtered DNS, classical LES,
SCALES with global dynamic model, and SCALES with no model. The LES is performed
using the non-adaptive wavelet collocation solver on a regular 64° grid. The solution is
de-aliased by performing a wavelet transform on the velocity field and zeroing the highest
level wavelet coefficients for each time step. As to figure 41, the resolved kinetic energy is
normalized with respect to the initial unfiltered DNS energy content. The grid compression
is evaluated with respect to the maximum field resolution. The time scale used to report the
results corresponds to approximately ten initial eddy-turnover times.

As can be seen from the energy decay plot in figure 41, the case of SCALES with no model
is only slightly under-dissipative. From figure 44 we see that this case accurately captures
the energy and enstrophy spectra. By examining the grid compression reported in figure 42
we can see that due to the adaptive nature of the numerical algorithm, the absence of SGS
dissipation results in energy transfer to the small scales, where the energy is dissipated by
viscous stresses. This process results in an increase in the number of the degrees of freedom
and causes the solution to approach CVS (Goldstein et al. 2005). This effect would be
more pronounced for higher Reynolds number flows, since SCALES with no model would
have to resolve all the scales up to Kolmogorov scale and would rely on molecular viscosity
as the only dissipative mechanism. The adaptive nature of the AWCM makes comparison
of simulations tricky because the algorithm itself attempts to add resolution if the physical
problem is under resolved. In this case good results are obtained at the cost of increased
resolution. Another interesting observation is that despite the similar initial compression,
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Figure 43: Percentage of SGS (modelled) dissipation: SCALES with the Lagrangian path-line diffusive (———= ) and path-
tube averaging (————= ) models, SCALES with global dynamic model ( ), and reference LES with global dynamic

model (—— ).

the local Lagrangian models show a higher level of SGS dissipation because they capture
the local structure of the flow, rather than simply providing the necessary mean energy
dissipation (as in the case of both the global dynamic model and LES). This, in turn, results
in higher compression for larger times. It worth noting that the level of SGS dissipation of
SCALES closely matches that of the global model and reference LES.

Another crucial feature of the SCALES approach is seen in the energy and, more impor-
tantly, enstrophy spectra, which are shown respectively in figures 44 and 45 for two different
times. In contrast to classical LES, the SCALES results match not only in terms of temporal
evolution of the total resolved turbulent kinetic energy, but also in terms of the DNS energy
and enstrophy density spectra up to the dissipative wavenumber range. It is important to
emphasize that this close match is achieved using less than 0.4% of the total non-adaptive
nodes required for a DNS with the same wavelet solver. To highlight the significance of
such a close match, it is interesting to compare these results with those of an LES with the
global dynamic Smagorinsky model. Despite the fact that LES uses almost four times the
number of modes (1.56%), it fails to capture the small-scale features of the spectrum. In
addition, the total resolved LES kinetic energy is noticeably below the filtered DNS curve
for moderate and high wavenumbers. These differences are even more pronounced for the
enstrophy spectra.

It is worth stressing the unique feature of the SCALES approach, nameley the coupling
of modelled SGS dissipation to grid compression: more grid points are used for models
with lower levels of SGS dissipation. In other words, the SCALES approach compensates
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Figure 44: Energy density spectra at ¢ = 0.08 (left) and ¢ = 0.16 (right): SCALES with the Lagrangian path-line diffusive
(=——=- ) and path-tube averaging (——-—- ) models, SCALES with global dynamic model ( ), SCALES with no

model (— ), spectral DNS ( ), wavelet filtered DNS (o), and reference LES with global dynamic model (—— ).

for inadequate SGS dissipation by increasing the local resolution and, hence, the level of
resolved viscous dissipation. This can be seen clearly by comparing to the SCALES results
with no SGS model.

As stated earlier, the absence of SGS dissipation results in the transfer of energy from
low to high wavenumbers, filling the entire wavenumber range, bringing the energy and
enstrophy spectra close to the wavelet filtered DNS spectrum. This processes continues until
the lack of SGS dissipation is balanced by the viscous dissipation. Recall that enstrophy
and viscous dissipation spectra are identical if properly normalized. Thus, an accurate
enstrophy spectrum ensures proper viscous dissipation. On the other hand, the increase
of energy in high wavenumber range results in an increase of degrees of freedom (active
wavelet coefficients or grid points), as seen in figure 42. The energy and enstrophy spectra
for SCALES with local Lagrangian models closely match each other and agree reasonably
well with the spectra for filtered DNS. The non-local character of the dissipation of the global
dynamic model results in over-dissipation at small scales and, subsequently, smaller wavelet
coefficients on the finest level of resolution, which ultimately results in the earlier removal
of the finest level of resolution from the adaptive computational grid.

Finally, SCALES with the local dynamic Smagorinsky model with both types of La-
grangian averaging are virtually identical, which highlights the similarities of both averaging

approaches.

7.5 Kinetic Energy Based SGS Models

In this section, the results of the numerical experiments are presented and discussed. The
proposed one-equation models, summarized for the sake of clarity in Table 1, are evaluated
by performing SCALES of incompressible isotropic freely decaying turbulence in a cubic box
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with periodic boundary conditions. Though these localized models are specifically designed
to simulate complex non-homogeneous turbulent flows, it is nevertheless enlightening to test
them for a case for which well known theoretical and experimental results exist. Moreover,
decaying turbulence is a challenging example of statistically unsteady flow and is a good
test-case for a-posteriori verifying the accuracy of both the SGS stress and the SGS energy
dissipation models.

The simulation settings are chosen as follows. The initial velocity field is a realization of
a statistically steady turbulent flow at Rey = 72 (X being the Taylor microscale) as provided
by a fully de-aliased pseudo-spectral DNS solution with 128% Fourier modes (De Stefano
et al. 2005). The simulation of decaying turbulence is conducted for a temporal range of
approximately ten initial eddy-turnover times that corresponds to a final value of Re) =2 22.
The relative threshold for wavelet-filtering (5) is set to e = 0.43 as in Lagrangian dynamic
model. Due to the finite-difference nature of the AWCM solver, the initial resolution has
been doubled in each direction in order to keep the DNS spectral energy content intact. In
other words, SCALES is run using a maximum resolution corresponding to 256% grid points
that corresponds to have jp.x = 8 in Eq.(5).

As regards the energy equation, the following initial condition has been used for the
SGS kinetic energy: kygs(x,0) = ﬁk%—ijk&s’ where £ and kS, are evaluated, according to
definitions (15) and (65), upon the initial wavelet filtered DNS field (Vasilyev et al. 2006).
The coefficient [, determines the initial ratio between residual and resolved energy that
corresponds to the desired turbulence resolution. Based upon previous a-priori studies, it is
set for the present experiments to 3, = 0.1.

In Fig. 46, the kinetic energy decay for the different models is illustrated, along with the
reference GDM and wavelet-filtered DNS solutions. All the new proposed models capture
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the energy decay slightly better than the global model. As to energy spectral distribution,
Figs. 47 and 48 show the spectra at two different time instants or, equivalently, two different
Rey, namely, Rey =46 (t = 0.08) and Rey = 35 (t = 0.16). The localized dynamic SCALES
solutions generally show acceptable energy spectra when compared to wavelet-filtered DNS
at different times. Note that for the cases where there are no significant wavelet coefficients
above level j = 6, the energy spectra lines stop at wavenumber 32.

Before going on with the discussion of the results, it is worth stressing the fact that
modeled solutions showing the right energy decay as well as the correct energy spectra is not
sufficient by itself to assess the effectiveness of the modeling procedure. In fact, the AWCM
solver used in SCALES allows automatic refinement of the numerical mesh in flow regions
where the model does not provide the adequate dissipation. For this reason, a deeper insight
must be gained by examining the actual grid compression. As mentioned in Section 2.4, the
compression can be defined as the ratio between the number of discarded and total allowable
wavelets coefficients (or, equivalently, the same ratio in terms of grid-points). In order for
the SCALES approach to be successful, the number of grid-points actually used during the
simulation must be less than that required for a CVS solution of the same problem with no
model. Otherwise, the adoption of a SGS model would appear useless, if not inappropriate.

The effectiveness of the SGS modeling is first demonstrated by making a comparison with
the no-model solution. The latter has been found to be initially under-dissipative (see the
following Fig. 52), thus confirming the need for the extra dissipation provided by the SGS
model. However, the absence of modeled SGS dissipation results in energy transfer to the
small scales, where the energy is dissipated by viscous stresses. Owing to the self-adaptive
nature of the numerical method, this process results in increasing the number of resolved
modes that causes the solution in practice to evolve towards the DNS approach.

As shown in Fig. 49, the gain in terms of compression with respect to the no-model
solution is clear. The present grid compression is above 99.5% for all the different proposed
models at all time instants, which corresponds to retaining about 1% of the 1923 modes
used for de-aliasing by the pseudo-spectral DNS (De Stefano et al. 2005). The achieved
compression is comparable to the reference global dynamic model (Goldstein et al. 2005).
The fact that different models show different compression, though using the same relative
wavelet thresholding level, is not surprising because the adaptive-gridding is closely coupled
to the flow physics and, therefore, it is strongly affected by the presence and type of the SGS
stress model forcing.

The direct coupling of grid compression with resolved and SGS dissipation can be clearly
seen by examining the corresponding Figs. 49, 50 and 51. The decrease of SGS dissipation (in
the DSM case) results in the decrease of grid compression and the increase of resolved energy
dissipation. That reenforces the above discussion about the effectiveness of the model. Also
note that, despite the initial similar compression and similar initial level of SGS dissipation,
the compression for the global dynamic model is higher. In fact, the non-local character
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of the GDM results in over-dissipation at small scales and fewer wavelet coefficients on the
finest levels, which ultimately results in the earlier complete removal of the highest level
of resolution from the adaptive computational grid, as clearly seen in Figs. 47 and 48. In
contrast to the global model, the new models are capable of capturing the local structure of
the flow, rather than providing only the mean energy dissipation.

We want to emphasize that, differently from classical LES, the SCALES solution matches
the filtered DNS not only in terms of temporal evolution of the total resolved energy (or other
global quantities), but also in terms of recovering the DNS energy and enstrophy spectra up
to the dissipative wavenumber range. This close match is achieved using less than 0.5% of
the total non-adaptive nodes required for a DNS calculation with the same wavelet solver.
To highlight the significance of such an agreement, one can compare the present results as
shown in Figs. 46 and 47 with those of 643 finite-difference non-adaptive LES supplied with
either the global dynamic Smagorinsky model (as reported in (Vasilyev et al. 2006)) or the
present energy-based ones. Despite the fact that LES solutions use about three times the
number of modes, they fail to capture the small-scale features of the flow and the resolved
kinetic energy spectrum is noticeably lower than the filtered DNS one for moderate and high
wavenumbers. This leads to the under-estimation of the energy content of the flow-field so
that the LES solutions appear over-dissipative for the first half of the simulation period as
illustrated in Fig. 52, where the energy evolution and energy spectra for non-adaptive LES
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supplied with energy-based models are reported. These differences are more pronounced for
the enstrophy spectra, which are illustrated in Fig. 53 (for ¢ = 0.08). That is even more
important since the enstrophy spectra, if properly normalized, coincide with the viscous
dissipation spectra, so that the close agreement provided by wavelet-based adaptive LES
ensures proper spectral distribution of resolved viscous dissipation.

Finally, it is instructive to discuss the “unexpected”, by classical LES standards, good
performance of the dynamic structure model. In fact, in LES formulations, pure similarity
models fail in providing the right SGS dissipation, leading to under-dissipative solutions,
and therefore they require an eddy-viscosity model to be used in conjunction with them.
In this work, the capability of the SCALES method to resolve small dissipative scales, at
the small additional cost of slightly lower compression, makes it possible to avoid the use
of an additional dissipative mechanism as in mixed formulations. Even though the present
results are certainly affected by the low Reynolds-number nature of the flow, one can expect
a similar good behavior to hold also for higher Reynolds-number simulations. That is one

of the objectives of future work on the subject.
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7.6 Forced turbulence

In order to test the energy-based modeling procedure for a statistically steady flow, let us
consider the case in which a forcing term f; is added at the right-hand-side of the momentum
equation (12). Namely, following the linear forcing scheme proposed by Lundgren (Lundgren
2003), let the force be proportional to the velocity, f; = Qu;”¢, @ being a constant parameter
that can be determined from the energy balance corresponding to the steady state. This way,
the solution is continuously supplied with the amount of energy necessary to keep the total
resolved energy (statistically) constant in time. In fact, the parameter ) can be showed to
be directly linked to the eddy turnover time of the turbulent velocity field (e.g., (Rosales &
Meneveau 2005)). For the present numerical experiments () = 6 is used, which corresponds
to have 7,44y, = 0.056. The initial velocity field is obtained by wavelet-filtering of the fully de-
aliased pseudo-spectral 1282 DNS statistically steady solution with Rey = 60. The simulation
is conducted for a temporal range of approximately one hundred eddy-turnover times.

The kinetic energy evolution for the LDKM-B solution of linearly forced homogeneous
turbulence is illustrated, along with the reference unfiltered pseudo-spectral DNS; on the left
side of Fig. 54. The corresponding time-averaged energy spectra are shown on the right side
of the same figure. Once again, it is worth stressing how the wavelet-based solution is able
to reproduce to some extent the energy of the small-scale motions. The SCALES solution
shows a grid compression that is in average as high as 97%, while the SGS dissipation is
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of the same order of magnitude as the resolved viscous dissipation. Moreover, by properly
redefining the Taylor microscale in terms of the total energy dissipation, resolved viscous
dissipation plus SGS dissipation, the wavelet-based solution provides the same Reynolds-
number as the reference DNS. These results demonstrate the effectiveness and efficiency of

the energy-based SGS model in the forced case.

Finally, to definitely verify the stabilizing action of the built-in feedback mechanism as-
sociated with the dynamic energy-based modeling procedure, the following experiment is
conducted: the initial SGS kinetic energy content of the flow is artificially altered by multi-
plying the variable ks (x, 0) by a factor of either 102 or 1072, This way, the initial SGS energy
is either much more or less than the equilibrium value provided by the wavelet-filtered DNS
solution. Nevertheless, the LDKM procedure is able to provide a flow evolution that con-
verges after some time toward the unaltered stable solution so that the equilibrium levels are
restored. This is clearly illustrated by inspection of Fig. 55, where the evolutions of resolved
and SGS energy are reported, on the left and the right side, respectively. This demonstrates
that the energy-based method works in practice: solving a subgrid energy transport equation
properly represents the energy transfer between resolved and SGS motions, both forward and

backscatter.
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8 Achievements and Future Extensions

This project has advanced the Adaptive Large Eddy Simulation methodology by developing
multiple local subgrid scale models, implementing them in Stochastic Coherent Adaptive
Large Eddy Simulation solver, and validating them in the context of homogeneous turbu-
lence. The progress made in this project, both in the area of model and parallel algorithm
development, has positioned us to take a next step and start applying the approach to more
challenging problems of engineering interest, mainly high Reynolds number turbulent flows
in complex geometries. To achieve this goal, the method needs to be extended to include
Brinkman penalization and the models need to be tested, validated for bounded flows. Par-
allel Dynamically Adaptive Wavelet Collocation solver developed as a part of this project
can be applied to other areas of physics and engineering, where localized structures play an
important role. Obvious applications are in the area of chemical engineering, atmospheric
sciences, material sciences, and bio-engineering.

The research program funded by the project provided opportunities for four graduate and
one postdoctoral students to participate in multidisciplinary research and work together with
a team of international researchers: Prof. Nicholas K.-R. Kevlahan (McMaster University,
Canada), Prof. Giuliano De Stefano (Seconda Universitd di Napoli, Italy), and Dr. Daniel E.
Goldstein (Northwest Research Associates). These students received research experience and
training in fluid mechanics, wavelet theory, and numerical simulations. Two Ph.D. students
involved in this project have graduated. The results of this research have been presented
at professional meetings (APS, DLES6) and at universities and research centers around the
world. The methodology and findings are documented in archival journals such as Physics of
Fluids (De Stefano et al. 2008) and Journal of Turbulence (Goldstein et al. 2005, Vasilyev
et al. 2008) as well as in conference proceedings (De Stefano et al. 2005, Vasilyev et al.
2006).
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