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1 Introduction

Although turbulent flows are common in the world around us, a solution to the fundamental

equations that govern turbulence still eludes the scientific community. Turbulence has often

been called one of the last unsolved problem in classical physics, yet it is clear that the need

to accurately predict the effect of turbulent flows impacts virtually every field of science and

engineering. As an example, a critical step in making modern computational tools useful in

designing aircraft is to be able to accurately predict the lift, drag, and other aerodynamic

characteristics in numerical simulations in a reasonable amount of time. Simulations that

take months to years to complete are much less useful to the design cycle. Much work has

been done toward this goal (Lee-Rausch et al. 2003, Jameson 2003) and as cost effective

accurate tools for simulating turbulent flows evolve, we will all benefit from new scientific

and engineering breakthroughs.

The problem of simulating high Reynolds number (Re) turbulent flows of engineering and

scientific interest would have been solved with the advent of Direct Numerical Simulation

(DNS) techniques if unlimited computing power, memory, and time could be applied to each

particular problem. Yet, given the current and near future computational resources that

exist and a reasonable limit on the amount of time an engineer or scientist can wait for a

result, the DNS technique will not be useful for more than “unit” problems for the foreseeable

future (Moin & Kim 1997, Jimenez & Moin 1991). The high computational cost for the DNS

of three dimensional turbulent flows results from the fact that they have eddies of significant

energy in a range of scales from the characteristic length scale of the flow all the way down

to the Kolmogorov length scale. The actual cost of doing a three dimensional DNS scales

as Re9/4 due to the large disparity in scales that need to be fully resolved. State-of-the-

art DNS calculations of isotropic turbulence have recently been completed at the Japanese

Earth Simulator (Yokokawa et al. 2002, Kaneda et al. 2003) using a resolution of 40963

(approximately 1011) grid points with a Taylor-scale Reynolds number of 1217 (Re ≈ 106).

Impressive as these calculations are, performed on one of the world’s fastest super computers,

more brute computational power would be needed to simulate the flow over the fuselage of

a commercial aircraft at cruising speed. Such a calculation would require on the order of

1016 grid points and would have a Reynolds number in the range of 108. Such a calculation

would take several thousand years to simulate one minute of flight time on today’s fastest

super computers (Moin & Kim 1997). Even using state-of-the-art zonal approaches, which

allow DNS calculations that resolve the necessary range of scales within predefined “zones”

in the flow domain, this calculation would take far too long for the result to be of engineering

interest when it is finally obtained.

Since computing power, memory, and time are all scarce resources, the problem of sim-

ulating turbulent flows has become one of how to abstract or simplify the complexity of the

physics represented in the full Navier-Stokes (NS) equations in such a way that the “im-
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portant” physics of the problem is captured at a lower cost. To do this, a portion of the

modes of the turbulent flow field needs to be approximated by a low order model that is

cheaper than the full NS calculation. This model can then be used along with a numerical

simulation of the “important” modes of the problem that cannot be well represented by the

model. The decision of what part of the physics to model and what kind of model to use

has to be based on what physical properties are considered “important” for the problem. It

should be noted that “nothing is free”, so any use of a low order model will by definition

lose some information about the original flow.

In an abstract sense the first question to address, when one is looking to develop a

reduced order method for simulating turbulent flows, is how to determine what part of

the physical system will be approximated with a low order model and what part will be

simulated numerically. One choice is to average the behavior of the system over time. This

technique is used in Reynolds Averaged Navier Stokes (RANS) simulations (Durbin & Reif

2001, Pope 2000, Gatski et al. 1996). The main limitation of RANS approach is that it is

highly empirical and sensitive to the model parameters that have to be tuned to the problem.

Another option is to simulate the flow on an adapted grid that is coarser than the grid

necessary to represent the flow down to the Kolmogorov length scale. The goal of this type of

method is to resolve the energetic eddies that dominate the flow physics. Any coarsening of

the grid, either locally or globally, implies that not all the modes or frequencies of the original

flow are resolved. Therefore, these “missing” modes will have to be modeled somehow. We

will refer to this class of methods as Eddy Capturing Methods.

The dominant method in the class of Eddy Capturing Methods is Large Eddy Simula-

tion (LES), where the formal scale separation is obtained by means of a low-pass filtering

operation applied to the Navier-Stokes equations, which leads to the definition of filtered

(or large-scale) and residual (or small-scale) fields. The filtered Navier-Stokes equations are

closed by modeling the subgrid-scale (SGS) stresses that account for the effect of the un-

resolved small-scale eddies. In order to realize the benefit of LES, a low order model for

the SGS stress, which is based on the resolved quantities, is needed. In practice τij can be

modeled either deterministically (Smagorinsky 1963, Bardina et al. 1983, Germano et al.

1991, Lesieur & Métais 1996, Meneveau & Katz 2000, Moin 2002) or stochastically (Chasnov

1991). The inherent problem with this working definition for LES is that it resolves the large

scale eddies instead of the coherent energetic eddies. It has been shown that the coherent

energetic eddies in a turbulent flow contain significant energy at all length scales from the

characteristic length scale of the domain down to the Kolmogorov length scale (Jimenez

et al. 1993, Goldstein et al. 2000, Farge et al. 2001, Farge & Schneider 2001). Vorticity

tubes, which seem to be the basic structure of three-dimensional homogeneous turbulence,

are observed at all scales of the flow (Vincent & Meneguzzi 1991). Therefore, when a spectral

cutoff filter or low-pass filter with grid truncation is used with LES, the small scale structure

of the coherent energetic eddies are not resolved. Another problem with LES is that the
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computational grid is commonly defined a priori, based on the physics and geometry of the

problem (Moin 2002, Piomelli 1999, Wang & Moin 2002). Yet in flows of engineering and

scientific importance the large scales of interest often change over the domain of the problem

and in time. As stated in the recent book on turbulence by Pope (Pope 2000), “the ideal

numerical method for LES would include adaptive gridding to ensure automatically that the

grid, and hence the filter, are everywhere sufficiently fine to resolve the energy-containing

motions”. This implies that there is a need for an Eddy Capturing Method that is adaptive

in time and space.

Turbulence is characterized by energetic eddies that are localized in space and scale,

yet the methods discussed so far do not take advantage of this localization. There exists

the possibility of exploiting this localization by “compressing” the turbulence problem such

that a simulation with a subset of the total modes captures the dynamics of the most

energetic eddies in the flow. A new method for simulating turbulence called Coherent Vortex

Simulation, was recently introduced by Farge et al. (Farge et al. 1999). This method uses a

wavelet filter to dynamically resolve and “track” the energetic coherent eddies or vortices in

a turbulent flow. It has been shown that the resulting SGS field with CVS is near Gaussian

white noise (Goldstein et al. 2003, Schneider et al. 2003). Therefore, if only low order

statistics such as SGS dissipation are required, a CVS simulation can be run with no subgrid

scale model. This is possible because a purely incoherent white noise SGS field will result

in zero total SGS dissipation from the resolved field. It is important to note that there

is still significant energy transfer between the resolved and SGS modes and viceversa, but

the statistical average or net energy transfer is zero. If higher order statistics are required,

then a purely stochastic subgrid stress model should be used to reproduce the effect of the

subgrid scales. The use of the stochastic model has not been explored up-to-now in CVS.

One of the challenges with the CVS method is how to determine on the fly during an actual

simulation the “ideal” wavelet compression, which results in a purely incoherent subgrid scale

field. Even if it can be found in a cost effective manner, it is still likely that the associated

adaptive grid will be too fine to be cost effective for simulating high Re number flows, since

the computational cost of CVS falls between DNS and LES.

The main objective of this research project is to develop the adaptive LES methodology.

The new approach inherits the advantages of both the CVS and LES methods: the ability of

the CVS method to dynamically resolve and “track” the most energetic part of the coherent

eddies in a turbulent flow field with a field compression in the range of that used with typical

LES applications. In this project, both the CVS and adaptive LES methods are implemented

using a Dynamically Adaptive Wavelet Collocation method (DAWCM) (Vasilyev & Bowman

2000, Vasilyev 2003). The DAWCM is ideal for CVS and adaptive LES as it combines the

resolution of the energetic coherent modes in a turbulent flow with the simulation of their

temporal evolution (Vasilyev & Kevlahan 2002, Kevlahan et al. 2003, Goldstein et al. 2003,

Kevlahan & Vasilyev 2005). The wavelet collocation method employs wavelet compression
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as an integral part of the solution such that the solution is obtained with the minimum

number of grid points for a given accuracy. When the threshold is chosen simply to satisfy

numerical accuracy (and subgrid scales are not modeled) we call this method Wavelet based

Direct Numerical Simulation, or WDNS.

During the duration of the project our efforts were concentrated in two main areas:

model and algorithm development. The main accomplishments in both of these areas are

summarized below:

Model Development

1. The new global dynamic SGS stress modeling procedure based on a variation of the

classical Smagorinsky (Smagorinsky 1963) model is developed (Goldstein et al. 2005).

In this model the scaling of the eddy viscosity is based on ǫ2 (where ǫ is the wavelet

filtering threshold parameter), instead of the standard scaling ∆
2

(where ∆ is the filter

width). The model uses global dynamic coefficient. The model has been successfully

tested for decaying homogeneous turbulence case. The detailed discussion is presented

in Sections 4, 7.1-7.3.

2. New local SCALES models based on Lagrangian path-line diffusive and path-tube

averaging are developed (De Stefano et al. 2005, Vasilyev et al. 2006, Vasilyev et al.

2008) and assessed in terms of accuracy and efficiency. The models are tested for freely

decaying homogeneous turbulence with initial Reλ = 72. It is shown that the SCALES

results, obtained with fewer than 0.4% of the total non-adaptive nodes required for a

DNS with the same wavelet solver, closely match reference DNS data. In contrast to

classical LES, this agreement holds not only for large scale global statistical quantities,

but also for energy and, more importantly, enstrophy spectra up to the dissipative

wavenumber range. The detailed discussion is presented in Sections 5.1 and 7.4.

3. New localized dynamic models for stochastic coherent adaptive large eddy simulation

that involve an evolution equation for the subgrid kinetic energy are developed (Vasi-

lyev et al. 2006, De Stefano et al. 2008). One of the main advantages of this formu-

lation is that the equilibrium assumption between production and dissipation of SGS

energy is not required as in the classical Smagorinsky approach. In contrast, the en-

ergy transfer between resolved and residual motions is directly ensured by solving an

additional transport model equation for the subgrid-scale energy. Some known difficul-

ties, associated with the classical dynamic Germano model are overcome using these

models. Specifically, scaling subgrid scale stress in terms of the SGS kinetic energy

provides a feedback mechanism that makes the numerical simulation stable regardless

of whether an eddy-viscosity or non-eddy viscosity assumption is made. This way, no

averaging procedure is needed in practice and the models stay fully localized in space.

The detailed discussion is presented in Sections 5.2, 5.3, 7.4, 7.5, and 7.6.
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Algorithm Development

1. Three different data-structures have been developed: working array, Lines, and Trees.

All three data-structures are implemented and all solver features are extended to these

data-structures. The preliminary result demonstrate that lines-based data-structure

is more efficient in terms of cash locality. Despite computational savings, the Lines

data-structure adds substantial technical complexity into the algorithm by only having

access to the nearest points along the line, which makes this data structure impractical

for development purposes. The detailed discussion of data-structures is presented in

Section 6.1.
2. A novel modified asynchronous adaptive wavelet transform that completely eliminated

the requirement of level synchronization is developed. The new algorithm completely

eliminated the requirement of synchronizing data between different processors for each

level of wavelet transform, which it turn puts additional requirement on load balancing

of each level of resolution. Instead both the wavelet transform and/or linear operator

can be evaluated in each computational subdomain with only one inter-processor syn-

chronization for each operation. The only disadvantage of such algorithm is the loss

of the zero-mean property of the wavelets in the vicinity of the inter-processor domain

boundary. This drawback is easily compensated by the simplicity of the load balancing

algorithm and possible increase of local resolution in the immediate proximity of the

sub-domain boundary. The detailed discussion of the modified asynchronous wavelet

transform is presented in Section 6.2.
3. A parallel version of the code has been developed. The code was designed to con-

sist of three main parts: the main wavelet code, the data structure, and the parallel

communicators with the required interfaces and external libraries. In addition, all the

information transfers between processors were implemented via collective all-to-all MPI

(message passing interface) communications, which eliminated all the deadlock related

problems. The major trade-off of such an approach was, again, the code performance.

Normally, a processor would require information from several neighboring domains

only, not from all the other processors, therefore replacing all-to-all with point-to-

point communications is an important optimization which will be implemented in the

future. The parallel solver has been assessed in terms of scalability and efficiency and

the ares for future improvements of the solver were identified. The detailed discussion

of parallelization issues and load balancing algorithm Section 6.3.

The rest of the report is organized as follows. A brief review of the background relevant

to this progress report is given in Section 2. The Stochastic Coherent Adaptive Large Eddy

Simulation (SCALES) approach is formulated in Section 3. The global dynamic model for

SCALES is presented in Section 4. The local dynamic models for SCALES are presented in

Section 5. The issues related to algorithm development, data structures, and load balancing

procedure are discussed in Section 6. The results of CVS and SCALES simulaitons with
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global and local dynamic models for decaying isotropic turbulent flow are presented in Section

7. Finally the main achievements and possible future extension of the work are discussed in

detail in Section 8.

2 Background

In the following subsections we briefly discuss background theory relevant to this progress

report. First the Large Eddy Simulation method is introduced followed by the discussion of

the two important properties of wavelets (Sweldens 1996, Sweldens 1998) that are essential

for this project, namely the ability of wavelets to compress and de-noise signals. Then we

will briefly describe dynamically adaptive wavelet collocation method that is used as a base

method for this project.

2.1 Large Eddy Simulation

The large eddy simulation (LES) method is based on the premise that the large scales of a

turbulent flow dominate mixing, heat transfer and other quantities of engineering interest,

while the small scales are only of interest because of how they effect the large scales. The

LES equations for incompressible flow, that describe the evolution of the large scale eddies

in the flow field, can be written as:
∂ui
∂xi

= 0 , (1)

∂ui
∂t

+
∂(ui uj)

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

− ∂τij
∂xj

, (2)

where

τij = uiuj − ui uj (3)

and ui is the velocity field, ρ is density, ν is kinematic viscosity, p is pressure and (·) represents

spatial filtering. As a result of the filtering process the unresolved quantity τij , commonly

referred to as the subgrid scale (SGS) stress, is introduced. Note that τij is a function of the

unfiltered velocity field ui. In order to close (1–2) and realize the benefit of LES, a low order

model for the SGS stress, which is based on the resolved quantities, is needed. In practice

τij can be modeled either deterministically (Moin 2002, Lesieur & Métais 1996, Meneveau

& Katz 2000) or stochastically (Chasnov 1991). Most current LES is done using purely

deterministic models of the eddy viscosity type (Pope 2000).

In LES the filter is either explicit or it can be defined implicitly by the computational

grid. Either way, LES uses a reduced computational grid that is capable of supporting (or

representing) only a subset of the total number of active modes in the flow. Current state of

the art LES work uses non-uniformly stretched meshes or zonal grids (Moin 2002, Piomelli

1999, Kravchenko et al. 1996) that are refined a priori to the geometry of the problem.
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Figure 1. Lifted interpolating wavelet ψ, of order 6 (a) and its Fourier transform Ψ(ξ) (b).

2.2 General Properties of Wavelets

Wavelets are basis functions which are localized in both physical space (due to their finite

support) and wavenumber space (due to their vanishing moments), e.g. Fig. 1. For com-

parison, the classical Fourier transform is based on functions (sines and cosines) that are

well localized in wavenumber, but do not provide localization in physical space due to their

global support. Because of this space/scale localization, the wavelet transform provides both

spatial and scale (frequency) information while the Fourier transform on the other hand only

provides frequency information.

A scalar field f(x) can be represented in terms of wavelet basis functions as

f(x) =
∑

l∈L0

c0lφ
0
l (x) +

+∞∑

j=0

2n−1∑

µ=1

∑

k∈Kµ,j

dµ,jk ψµ,jk (x) , (4)

where φ0
k(x) and ψµ,jl are respectively n-dimensional scaling functions and wavelets of differ-

ent families (µ) and levels of resolution (j). One may think of a wavelet decomposition as

a multilevel or multiresolution representation of a function, where each level of resolution j

(except the coarsest one) consists of wavelets ψjl or family of wavelets ψµ,jl having the same

scale but located at different positions. Scaling function coefficients represent the averaged

values of the field, while the wavelet coefficients represent the details of the field at different

scales. The wavelet functions have a zero mean, while the scaling functions do not. Note

that in n-dimensions there are 2n− 1 distinctive n-dimensional wavelets (Daubechies 1992).

Also note that due to the local support of both scaling functions and wavelets, there is a

one-to-one correspondence between the location of each scaling function or wavelet with a

grid point. As a result each scaling function coefficient c0l and each wavelet coefficient dµ,jk

is uniquely associated with a single grid point with the indices l and k respectively.
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Traditionally, one dimensional first generation wavelets ψjk are defined as translates and

dilates of one basic wavelet ψ, i.e. ψjk(x) = ψ(2jx− k). Second generation wavelets (Sweldens

1996, Sweldens 1998) are a generalization of first generation wavelets that supplies additional

freedom to deal with arbitrary boundary conditions, and irregular sampling intervals. Second

generation wavelets form a Riesz basis for L2 space, with the wavelets being local in both

space and frequency and often having many vanishing polynomial moments, but without

the translation and dilation invariance of their first generation cousins. Despite the loss of

these two fundamental properties of wavelet bases, second generation wavelets retain many

of the useful features of first generation wavelets, including a fast O(N) transform. The

construction of second generation wavelets is based on the lifting scheme that is discussed

in detail by Sweldens (Sweldens 1996, Sweldens 1998).

For this project we use a set of second generation wavelets known in the literature as lifted

interpolating wavelets (Vasilyev & Bowman 2000, Sweldens 1996). In particular, simulations

with the dynamically adaptive wavelet collocation (DAWC) solver are run using a lifted

interpolating wavelet of order 6, which is shown in Fig. 1 along with its Fourier transform.

For a more in-depth discussion on the construction of these wavelets the reader is referred to

the papers by Sweldens (Sweldens 1996, Sweldens 1998), and Vasilyev and Bowman (Vasilyev

& Bowman 2000). For a more general discussion on wavelets we refer the reader to the books

of Daubechies (Daubechies 1992) and Mallat (Mallat 1999).

2.3 Wavelet Filters

Wavelet filtering is performed in wavelet space using wavelet coefficient thresholding, which

can be considered as a nonlinear filter that depends on each flow realization. The wavelet

thresholding filter is defined by,

f
>ǫ

(x) =
∑

l∈L0

c0l φ
0
l (x) +

+∞∑

j=0

2n−1∑

µ=1

∑

k ∈ Kµ,j

|dµ,j
k

| > ǫ‖f‖
WTF

dµ,jk ψµ,jk (x) , (5)

where f(x) is a scalar field, ǫ > 0 stands for the non-dimensional (relative) threshold pa-

rameter, and ‖ · ‖
WTF

being the Wavelet Threshold Filtering (WTF) norm that provides the

(absolute) dimensional scaling for filtered variable f . For instance, in the case of velocity, the

(absolute) dimensional scaling can be specified as the L2 norm (‖ui‖WTF
= ‖ui‖2) or the L∞

norm (‖ui‖WTF
= ‖ui‖∞). Note that once the WTF-norm ‖ · ‖

WTF
is specified, the wavelet

thresholding filter (5) is uniquely defined by the nondimensional threshold parameter, ǫ.

The reconstruction error due to wavelet filtering with non-dimensional threshold param-

eter ǫ can be shown to be (Donoho 1992, Vasilyev 2003):

‖f(x) − f
>ǫ

(x)‖2 ≤ Cǫ‖f‖
WTF

, (6)
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for a piecewise regular function f(x), where C is of order unity.

As will be shown later, when the wavelet threshold filter is applied to a system of evolution

equations, each variable could be filtered according to Eq. (5). Once filtered, each variable

could be integrated in time. However, this would lead to numerical complications due the

one-to-one correspondence between the location of a wavelet with a grid point. In particular

each variable would be solved on a different grid. In order to avoid this difficulty and make

filtering of each term in the evolution equation easy, in the present study the coupled wavelet

thresholding strategy is used. The mask of significant wavelet coefficients is constructed for

each variable according to thresholding criteria of Eq. (5). The union of these masks will

result in the global thresholding mask, that is used for each dependent variable and each term

in the equation. Note that in some applications additional variables, like vorticity or strain

rate can be used for construction of the global mask. Once this global mask is constructed,

one can view the wavelet filtering as local low-pass filtering, where the high frequencies are

removed according to the global mask. The effective wavelet filter width depends on the choice

of WTF-norm, the spatial distribution of the variables used for defining the coupled wavelet

filter mask and is a function of non-dimensional threshold parameter, ǫ. Such interpretation

of wavelet threshold filtering highlights the similarity between SCALES and classical LES

approaches. However, the wavelet thresholding filter is drastically different from the LES

filters, primarily because it changes in time following the evolution of the solution, which,

in turn, results in an adaptive computational grid that tracks in physical space the areas

of locally significant energy of all variables used for the grid adaptation. However, it is

important to note that, unlike the Fourier modes, there is no one-to-one correspondence

between wave number and wavelet level. Instead, each wavelet level represents a region of

wave numbers. Figure 2 shows the energy spectra of the modes associated with 6 wavelet

scales or levels along with the full energy spectra of a turbulent field, obtained from a 2563

DNS simulation of forced isotropic turbulence (Jimenez et al. 1993) with Reλ = 168. Note

that this turbulent field will hereafter be referred to as F256. This figure highlights the fact

that each wavelet scale has energy in a region of wave numbers, and that these regions

overlap.

2.4 Wavelet Compression and Wavelet De-noising

The major strength of wavelet filtering decomposition (5), is the ability to compress signals.

For functions that contain isolated small scales on a large-scale background, most wavelet

coefficients are small, thus, we can retain good approximation even after discarding a large

number of wavelets with small coefficients. Intuitively, the coefficient dµ,jl will be small unless

u(x) has variation on the scale of j in the immediate vicinity of wavelet ψµ,jl (x).

Another important property of wavelet analysis used in this project is the ability of

wavelets to de-noise signals. The wavelet de-noising procedure, also called wavelet-shrinkage,

9
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Figure 2: Energy spectra of turbulent velocity field F256: ( ), contained in wavelet levels. Level 1: ( ), Level 2:

( ◦ ), Level 3: ( ), Level 4: ( ), Level 5: ( ), Level 6: ( ⋄ )

was introduced by Donoho (Donoho 1993, Donoho 1994) based on orthogonal wavelet de-

compositions. It can be described as follows: given a function that consists of a smooth

function with superimposed noise, one performs a forward wavelet transform and sets to

zero “noisy” wavelet coefficients (i.e. those wavelet coefficients whose modulus squared is

less than the noise variance σ2), otherwise the wavelet coefficient is kept. This procedure is

known as hard thresholding. Donoho (Donoho 1993) demonstrated that hard thresholding

is optimal for de-noising signals in the presence of Gaussian white noise. In the CVS method

discussed in this report the “noise” is actually the SGS modes.

2.5 Dynamically Adaptive Wavelet Collocation Method (DAWCM)

A key component in the implementation of the SCALES method is the development of a

dynamically adaptive wavelet collocation (DAWC) solver (Vasilyev 2003, Vasilyev & Bow-

man 2000, Kevlahan & Vasilyev 2005, Vasilyev & Paolucci 1997). This solver is ideally

suited to the simulation of turbulence since wavelets adapt the numerical resolution natu-

rally to the localized turbulent structures that exist at all wave numbers in fully developed

turbulence. The wavelet collocation method takes advantage of the fact that wavelets are

localized in both space and scale, and as a result, functions with localized regions of sharp

transition are well compressed using wavelet decomposition. The adaptation is achieved by

retaining only those wavelets, whose coefficients satisfy the thresholding criteria of Eq. (5).

Thus, high resolution computations are carried out only in those regions, where sharp tran-

sitions occur. With this adaptation strategy, a solution is obtained on a near optimal grid

that “tracks” the coherent vortices in the field, i.e. far fewer grid points are needed for
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Figure 3: Field compression vs. relative wavelet threshold parameter, ǫ, using velocity wavelet filtering, without adjacent zone

( ) and with adjacent zone ( ) for field F256. It can be seen that as ǫ increases the loss in compression due to the

adjacent zone becomes less significant. The (absolute) dimensional scaling ‖ui‖WTF
= ‖ui‖∞ was used in the wavelet filtering

for this a priori test.

wavelets than for conventional finite-difference, finite-element, or spectral methods (Farge

1992). By varying the threshold parameter ǫ this method can be used to implement any of the

wavelet based methods discussed above, namely WDNS, CVS or SCALES. The dynamically

adaptive wavelet collocation algorithm has already been successfully applied to the solu-

tion of thermo-acoustic wave propagation problems (Vasilyev & Paolucci 1997), combustion

problems (Vasilyev 2003, Vasilyev & Bowman 2000), fluid–structure interaction problems

(Kevlahan & Vasilyev 2005), viscoelastic flows (Vasilyev et al. 1997, Vasilyev et al. 2001),

and the compaction phenomenon in a poro-viscoelastic matrix (Vasilyev et al. 1998).

Let us briefly outline the main features of the numerical method. Details can be found

in Refs. (Vasilyev 2003, Vasilyev & Bowman 2000). In the wavelet collocation method there

is a one-to-one correspondence between grid points and wavelets. This makes calculation of

nonlinear terms simple, and allows the grid to adapt automatically to the solution at each

time step by adding or removing wavelets. Very briefly, at each time step we take the wavelet

transform of the solution and apply the global thresholding mask to remove wavelets, which

do not satisfy the thresholding criteria of Eq. (5) for all of the adaptation variables. To

account for the evolution of the solution over one time step the computational grid needs

to be extended to include grid points associated with wavelets whose coefficients are, or

can possibly become, significant during the time integration step (Liandrat & Tchamitchian

1990). To do this we add grid points that are adjacent in both position and scale to each

significant wavelet coefficient. While the cost of this added adjacent zone is significant at low

compression ratios it becomes much less so at higher compression ratios. This diminishing

cost of the adjacent zone with increased compression will be the case for any numerical

11
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problem that has inherent local structures that dominate the field being simulated. Figure 3

shows the compressifon ratio vs. the wavelet filter threshold parameter ǫ for a wavelet

collocation grid adapted to a DNS field of isotropic turbulence (Reλ = 168) with and without

an adjacent zone. For this a priori test the coupled wavelet filter was applied based on wavelet

thresholding of the velocity components using L∞ WTF-norm. We can see clearly that the

added overhead of the adjacent zone becomes insignificant for compression ratios over 98%.

This is the case because in turbulent flows, like the one considered, the flow is dominated by

localized energetic coherent vortices. This trend will also hold for other common flows such

as flow fields involving vortices due to fluid–structure interaction or shocks in compressible

flow fields. Since each wavelet corresponds to a single grid point this procedure allows the

grid to automatically follow the evolution of the solution in position and scale. We use

second generation wavelets (Sweldens 1998), which allow the order of the wavelet (and hence

of the numerical method) to be varied easily. The method has a computational complexity

O(N), where N is the number of wavelets retained in the calculation (i.e. the union of those

wavelets with coefficients greater than ǫ‖fi‖WTF
, for all adaptation variables, plus nearest

neighbors).

In summary, the dynamically adaptive wavelet collocation method is an adaptive, variable

order method for solving partial differential equations with localized structures that change

their location and scale in space and time. Because the computational grid automatically

adapts to the solution (in position and scale), we do not have to know a priori where the

regions of high gradients or structures exist.

2.5.1 DAWCM in Complex Geometry

In order to solve problems in geometries of engineering interest, the DAWCM employs

Brinkman penalization (Khadra et al. 2000) as a way of simulating the presence of arbitrar-

ily complex solid boundaries (which may be moving in time). The Brinkman penalization

technique allows boundary conditions to be enforced to a specified precision, without chang-

ing the numerical method (or grid) used to solve the equations. The main advantage of this

method, compared to other penalization type methods, is that the error can be estimated

rigorously in terms of the penalization parameter. It can also be shown that the solution

of the penalized equations converges to the exact solution in the limit as the penalization

parameter tends to zero (Khadra et al. 2000).

Let us briefly outline the main features of the numerical method on the example of

incompressible Navier-Stokes equations. We consider here the case of the flow around a

number of obstacles Oi. The problem is solved in a rectangular domain containing all the

obstacles Oi. To model the effect of the no-slip boundary conditions on the obstacles Oi

without explicitly imposing them on the boundaries of the obstacles we solve the following

12



Final Report - 2008

(a) (b)

Figure 4: Vorticity field (a) and corresponding computational grid (b) for the direct numerical simulation of flow around

two-dimensional periodic cylinder array at Re = 104 using DAWCM.

set of penalized equations

∂uη

∂t
+ uη · ∇uη + ∇Pη = ν∆uη −

1

η
χ0uη, (7)

∇ · uη = 0, (8)

with appropriate external boundary conditions. Note that Eqs. (7)-(8) are valid in the entire

domain. Here η > 0 is a penalization coefficient and χ0 denotes the characteristic (or mask)

function

χ0(x, t) =

{
1 if x ∈ Oi,

0 otherwise.
(9)

As η → 0, it was proved theoretically (Angot et al. 1999) that the solutions of the penalized

equations (7)-(8) converge to that of the Navier–Stokes equations with the correct boundary

conditions. More precisely, the upper bound on the global L∞ error of the penalization was

shown to be (Angot et al. 1999)

||u − uη|| ≤ Cη1/4. (10)

In fact, we find that the actual error is slightly better, O(η). It is important to note that η is

an arbitrary parameter, independent of the spatial or temporal discretization, and thus the

boundary conditions can be enforced to any desired accuracy by choosing η appropriately.

This property distinguishes the Brinkman method from other penalization schemes and

allows the error to be controlled precisely. We have found that η = 10−4 gives drag curves

correct to about 1%.

Due to the fact that the wavelet collocation method does not utilize divergence-free

wavelets, we use a standard split-step method in time, where the first step produces a non-

solenoidal velocity field. This intermediate velocity is then made divergence-free by solving

a Poisson equation for the pressure. It is well-known that solving the Poisson equation is

the most computationally intensive part of split step methods. Thus, in order to solve the

Poisson equation efficiently, we developed a new wavelet collocation multilevel elliptic solver

(Vasilyev & Kevlahan 2005).
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Although it is a very flexible and simple method, Brinkman penalization does have two

drawbacks. First, the large factor 1/η means that the term is stiff and must be solved

implicitly. This is not difficult since the penalization term is simply a mask times the

velocity. A stiffly stable time integration scheme for the penalized equations is used. The

second drawback is that since the penalized equations are defined over the whole domain

they must also be solved inside the obstacle. This adds some extra computational work, but

since the flow penetrates to a skin depth of only O(η1/2) (Kevlahan & Ghidaglia 2001) there

are few grid points inside the obstacle. The sparseness of the grid inside the obstacle is clear

in Fig. 4(b).

3 Stochastic Coherent Adaptive Large Eddy Simulation

The adaptive LES, hereafter referred to as Stochastic Coherent Adaptive Large Eddy Simu-

lation (SCALES) methodology, is based on the premise that the most energetic coherent vor-

tices (or structures) of a turbulent flow dominate mixing, heat transfer and other quantities

of engineering interest, while the smaller incoherent background is only of interest because

of how it effects the energetic coherent vortices (Goldstein & Vasilyev 2004). The SCALES

equations, which describe the space-time evolution of the most energetic coherent eddies in

a turbulent flow, can be formally obtained by applying the wavelet thresholding filter (5) to

the Navier-Stokes equations. Disregarding the commutation error between wavelet-filtering

and differentiation, the SCALES governing equations for incompressible flows are written as

the following filtered continuity and momentum equations

∂ui
>ǫ

∂xi
= 0 , (11)

∂ui
>ǫ

∂t
+ uj

>ǫ∂ui
>ǫ

∂xj
= −1

ρ

∂p>ǫ

∂xi
+ ν

∂2ui
>ǫ

∂xj∂xj
− ∂τij
∂xj

, (12)

where ρ and ν are the constant density and kinematic viscosity of the fluid, while p stands for

the pressure field. Like in the classical LES formulation, as a result of the filtering process,

the unresolved quantities

τij = uiu
>ǫ
j − u>ǫ

i u>ǫ
j , (13)

commonly referred to as SGS stresses, are introduced. In this context, they can be thought

of representing the effect of unresolved less energetic eddies on the dynamics of the resolved

energetic coherent vortices. In order to close the filtered equation (12), a SGS model is

required to express the unknown stresses (13) as a given function of the resolved velocity

field. In practice, the isotropic part of the SGS stress tensor is usually incorporated by a

modified filtered pressure variable, so that only the deviatoric part, hereafter noted with a
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star, τ ∗ij = τij − 1
3
τkkδij , is actually modeled. Henceforth, the filtered momentum equation

can be re-written as

∂ui
>ǫ

∂t
+ uj

>ǫ∂ui
>ǫ

∂xj
= −∂P

>ǫ

∂xi
+ ν

∂2ui
>ǫ

∂xj∂xj
−
∂τ ∗ij
∂xj

, (14)

where P
>ǫ

= p>ǫ

ρ
+ 1

3
τkk.

It is worth stressing that for a suitably low value of the wavelet thresholding level ǫ,

the resulting SGS field closely resembles Gaussian white noise and no modeling procedure

is required in practice to recover low order DNS statistics. This approach, referred to as

Coherent Vortex Simulation (CVS), which was originally introduced in (Farge et al. 1999),

has been successfully applied to isotropic turbulence simulation and the results are discussed

in Section 7.2.

Before reviewing the numerical implementation of the SCALES methodology, let us dis-

cuss in more details the wavelet filtering of the Navier-Stokes equations, in terms of both

practical application and formal interpretation. Due to the one-to-one correspondence be-

tween wavelets and grid points, filtering each scalar field variable with the corresponding

absolute scale would lead to numerical complications since each variable should be solved on

a different numerical grid. In the present study, in order to avoid this difficulty, the coupled

wavelet thresholding strategy is adopted. Namely, after constructing the mask of significant

wavelet coefficients for each primary variable, the union of these masks results in a global

thresholding mask that is used as a common mask for filtering all the variables. Moreover,

according to the definition (5), the absolute filtering threshold should be theoretically based

upon the values of the unfiltered variable, whereas, in a real SCALES calculation, the filter-

ing procedure is actually based upon the values of the resolved filtered variable. However, as

demonstrated in (Goldstein et al. 2005), this approximation is fully acceptable. For instance,

regarding the velocity scale, in the homogeneous case one can use Ui = 〈2kres〉1/2, where the

angular brackets denote volume-averaging and

kres =
1

2
u>ǫ
j u>ǫ

j (15)

stands for the resolved kinetic energy.

As to wavelet filtering interpretation, one can view the wavelet thresholding procedure

as a local spatially variable time-dependent low-pass filter that removes the high wavenum-

ber components of the flow field. The local characteristic filter width, say ∆(x, t), which is

implicitly defined by the thresholding procedure and can be extracted from the global mask

during the simulation, is to be interpreted as the actual turbulence-resolution length scale

(Pope 2004). In fact, it is a measure of the local numerical resolution with the minimum

allowable characteristic width corresponding to the highest level jmax in Eq.(5). The smaller

the value of ǫ, the smaller the length scale ∆ and the greater the fraction of resolved kinetic-

energy in any local region of the domain. In the limit of vanishing ǫ the wavelet-based DNS
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solution is obtained over the whole domain. Such an interpretation of the wavelet threshold-

ing filter highlights the similarity between the SCALES and the classical LES approaches.

However, the wavelet filter is distinctively different from the usual filters adopted in LES,

primarily because it changes in time following the flow evolution. That results in using a

self-adaptive computational grid that tracks the areas of significant energy in the physical

space during the simulation.

4 Global Dynamic SGS Model

The standard Smagorinsky (Smagorinsky 1963) eddy viscosity SGS stress model defines an

eddy viscosity that is proportional to the filter width and the characteristic filtered rate of

strain. In the case of the coupled nonlinear wavelet thresholding filter used in SCALES

the filter width is implicitly defined by the non-dimensional wavelet threshold parameter, ǫ.

Therefore in SCALES, ǫ is used to properly scale the eddy viscosity:

νT = Cǫℓ
2ǫα‖S>ǫ‖ , (16)

where Cǫ is non-dimensional model coefficient, ℓ is the global characteristic length scale, and

Sij
>ǫ

=
1

2

(
∂ui

>ǫ

∂xj
+
∂uj

>ǫ

∂xi

)
(17)

is the strain rate of the resolved scales. Note that the model units do not depend on α

simply because ǫ is non-dimensional. We will show in section 4.1 that appropriate scaling is

obtained with α = 2. The new linear eddy viscosity model is then used to define a model

for the subgrid scale stress (13),

τMij
>ǫ ≡ −2νTSij

>ǫ
, (18)

where νT is the turbulent eddy viscosity.

The global characteristic length scale ℓ is introduced to obtain the proper units for the

eddy viscosity νT . In addition, the length scale is assumed to be independent of the filter

threshold parameter ǫ. With these two assumptions, the exact definition of ℓ does not need

to be specified, since the whole group Cǫℓ
2ǫα is determined by the dynamic procedure. ℓ2

can be interpreted as an averaged characteristic length scale which is absorbed into the

dynamic procedure. Currently we are working on the extension of the model that uses a

local characteristic length scale ℓ, interpreted as the local characteristic vortical length scale

implicitly defined by the wavelet thresholding filter.

The new Germano dynamic formulation for the model coefficient Cǫ is, thus, based on

the wavelet filter threshold parameter ǫ. For the dynamic procedure the grid filter is defined

as (·)>ǫ
and the “test” filter is defined as (·)>2ǫ

. The adjacent zone is excluded in both cases
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to obtain the proper model scaling. The dynamic procedure is then based on the original

SGS stress equation (13), and an alternative subgrid scale stress,

Tij
>2ǫ

= uiuj
>ǫ>2ǫ − ui

>ǫ>2ǫ
uj

>ǫ>2ǫ
, (19)

which would result from applying the wavelet thresholding test filter ((·)>2ǫ
) to (11–13).

Note that the wavelet filter is a projection operator, so by definition

(·)>ǫC ≡ (·)>ǫA
>ǫB

, (20)

where ǫC = max(ǫA, ǫB). Filtering (13) at the test filter level and subtracting it from (19)

results in the modified Germano’s identity (Germano et al. 1991)

Tij
>2ǫ − τij

>ǫ>2ǫ
= ui

>ǫuj
>ǫ>2ǫ − ui

>ǫ>2ǫ
uj

>ǫ>2ǫ
. (21)

Then, substituting the modeled SGS stresses at the two filter levels into (21) gives

Tij
>2ǫ − τij

>ǫ>2ǫ ≈ TMij
>2ǫ − τMij

>ǫ>2ǫ

(22)

= 2Cǫℓ
2(2ǫ)2‖S>2ǫ‖Sij

>2ǫ − 2Cǫℓ
2ǫ2‖S>ǫ‖Sij

>ǫ>2ǫ

.

Following Lilly’s (Lilly 1992) notation we define Lij and Mij as follows,

Lij = ui
>ǫuj

>ǫ>2ǫ − ui
>ǫ>2ǫ

uj
>ǫ>2ǫ

, (23)

Mijℓ
2ǫ2 = 2‖S>ǫ‖Sij

>ǫ>2ǫ

− 8‖S>2ǫ‖Sij
>2ǫ

, (24)

where Lij is the wavelet-filtered analog of the Leonard stress. This results in an overdeter-

mined system of equations that can be used to find Cǫℓ
2ǫ2

Cǫℓ
2ǫ2Mij = Lij . (25)

Following Lilly’s (Lilly 1992) least square solution to this system, we obtain the following

expression for the local Smagorinsky model coefficient,

Cǫℓ
2ǫ2 =

LijMij

MijMij
. (26)

With this model formulation Cǫℓ
2ǫ2 can be locally positive or negative, which allows for local

backscatter of energy to resolved scales. In practice it has been found that locally negative

values of Cǫℓ
2ǫ2 cause numerical instabilities in SCALES, as in LES, so we average over

homogeneous directions:

Cǫℓ
2ǫ2 =

〈LijMij〉
〈MijMij〉

, (27)

where 〈·〉 denotes volume averaging.
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Figure 5: τijS
>ǫ
ij /(‖S

>ǫ‖S>ǫ
ij S

>ǫ
ij ) vs. relative wavelet threshold parameter ǫ using velocity wavelet filtering, without adjacent

zone ( ) for field F256. The dashed line is ǫ2. The L∞ WTF-norm was used for this a priori test. This range of

ǫ corresponds to a field compression over the range of 78.5% to 99.95%. It can be seen that τijS
>ǫ
ij /(‖S

>ǫ‖S>ǫ
ij S

>ǫ
ij ) scales

roughly as ǫ2. The scaling begins to deviate at ǫ = 0.001, which corresponds to 99.4% compression.

4.1 Model Scaling

If we make the assumption that, with an appropriate value for α, the eddy viscosity model

(16–18) provides the right dissipation it is easy to show,

2Cǫℓ
2ǫα = −

〈
τijS

>ǫ

ij

〉
〈
‖S>ǫ‖S>ǫ

ij S
>ǫ

ij

〉 , (28)

where α is the scaling law and ℓ is taken to be constant over the domain. The correct scaling

is determined from a priori testing, using the isotropic turbulence field F256. In Fig. 5

the scaling of −
〈
τijS

>ǫ

ij

〉
/
〈
‖S>ǫ‖S>ǫ

ij S
>ǫ

ij

〉
is shown over a range of ǫ that corresponds to a

field compression over the range of 78.5% to 99.95%. The slope of the curve in log-log axis

determines the appropriate ǫ scaling. As can be seen, the quantity
〈
τijS

>ǫ

ij

〉
/
〈
‖S>ǫ‖S>ǫ

ij S
>ǫ

ij

〉

scales roughly as ǫ2 for a wide range of compressions. However some deviation from this

scaling is observed above 99.4% compression. Based on this a priori test of the scaling,

the new dynamic Smagorinsky-type eddy viscosity model (16) has been implemented. The

results of simulations with this new SGS model are discussed in section 7.

5 Local Dynamic SGS Models

The global dynamic eddy viscosity model described in previous section has a major drawback,

namely the use of a global (spatially non-variable) Smagorinsky model coefficient. The use
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of a global dynamic model unnecessarily limits the SCALES approach to flows with at least

one homogeneous direction. This is unfortunate since the dynamic adaptability of SCALES

is ideally suited to fully inhomogeneous flows. In order to realize the full benefits of SCALES

in highly non-homogenous flows in complex geometries a local SGS model is required. In

this section two different formulations of local dynamic SGS model that were explored are

reported:

1. Modified Germano’s dynamic procedure redefined in terms of wavelet thresholding

filters with a modified Lagrangian path-line/tube averaging procedure (published in

(Vasilyev et al. 2008)), and

2. SGS kinetic energy based model, where an additional transport equation for the SGS

kinetic energy is solved to enforce the energy budget between resolved and unresolved

motions (published in (De Stefano et al. 2008)).

5.1 Lagrangian Dynamic Local SGS Model

As mentioned in previous section, the local dynamic model (26) cause numerical instabilities

in SCALES, as in LES, so the averaging procedure is required to stabilize the model. One way

to achieve this is to average over homogeneous directions, which results in global (spatially

non-variable) dynamic model (27). This limits the applicability of the model to flows with

at least one homogeneous direction. Another way to stabilize the model is to perform

Lagrangian pathline averaging procedure originally introduced in (Meneveau et al. 1996).

To start the SGS stress tensor (18) is rewritten in the following form

τ ∗ij
∼= −2CS∆

2ǫ2
∣∣S>ǫ∣∣Sij

>ǫ
, (29)

where Sij
>ǫ

= 1
2

(
∂ui

>ǫ

∂xj
+

∂uj
>ǫ

∂xi

)
is the resolved rate-of-strain tensor and ∆(x, t) is the local

characteristic filter lengthscale dynamically defined by the wavelet thresholding filter. Note

that ∆ is distinctively different from the classical LES, where the local filter width is defined

statically. Also note that the variable filter width, ∆, is the key-parameter in the SCALES

formulation as it strictly reflects the adaptive nature of the method. Once a wavelet threshold

is given, the corresponding thresholding mask implicitly defines a point-wise time-dependent

filter width. This is different from classical LES where the local, possibly non-uniform, filter

width is defined a priori and does not depend on the actual flow realization.

Following the modified Germano’s dynamic procedure redefined in terms of two wavelet

thresholding filters, as discussed in Section 4, the SGS stress corresponding to the wavelet

test filter at twice the threshold, noted (·)>2ǫ
, is defined as

Tij = uiuj
>2ǫ − ui

>2ǫ uj
>2ǫ. (30)
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Note that, the wavelet filter being a projection operator, by definition, it holds (·)>ǫ>2ǫ

≡
(·)>2ǫ

. Filtering Eq. (13) at the test filter level and combining with Eq. (59) results in the

following modified Germano identity for the Leonard stresses:

Lij ≡ Tij − τij
>2ǫ = ui

>ǫuj
>ǫ>2ǫ − ui

>2ǫ uj
>2ǫ. (31)

Exploiting the model (29) and the analogous relation for the test filtered SGS stresses

T ∗
ij
∼= −2CS∆

2 (2ǫ)2
∣∣∣S>2ǫ

∣∣∣Sij
>2ǫ
, (32)

one obtains

2CS∆2ǫ2
∣∣S>ǫ∣∣Sij

>ǫ>2ǫ

− 2CS∆
2 (2ǫ)2

∣∣∣S>2ǫ
∣∣∣Sij

>2ǫ
= L∗

ij . (33)

A least square solution to (Eq. 33) leads to the following local Smagorinsky model coefficient

definition:

CS(x, t)ǫ
2 =

L∗
ijMij

MnkMnk
, (34)

where

Mij ≡ 2∆2

[∣∣S>ǫ∣∣Sij
>ǫ>2ǫ

− 4
∣∣∣S>2ǫ

∣∣∣Sij
>2ǫ
]
. (35)

The coefficient CS can be actually positive or negative, which allows for local backscatter of

energy from unresolved to resolved modes. However, it has been found that negative values

of CS cause numerical instabilities. To avoid this, for homogeneous flow, one can introduce

an average over homogeneous directions. This procedure results in a global dynamic model

analogous to the one discussed in the previous section.

In this study we follow a Lagrangian dynamic model formulation (Meneveau et al. 1996)

and take the statistical averages over the trajectory of a fluid particle:

ILM (x, t) =
1

T

∫ t

−∞
e

τ−t
T Lij (x (τ) , τ)Mij (x (τ) , τ) dτ, (36)

IMM (x, t) =
1

T

∫ t

−∞
e

τ−t
T Mij (x (τ) , τ)Mij (x (τ) , τ) dτ, (37)

which leads to the following local Smagorinsky model coefficient:

CS(x, t)ǫ
2 =

ILM
IMM

. (38)

To avoid the computationally expensive procedure of Lagrangian path-line averaging, we

follow (Meneveau et al. 1996) and differentiate Eqs. (36) and (37) with respect to time to

obtain the following evolution equations for ILM and IMM :

∂ILM
∂t

+ u>ǫ
l

∂ILM
∂xl

=
1

T
(LijMij − ILM), (39)

∂IMM

∂t
+ u>ǫ

l

∂IMM

∂xl
=

1

T
(MnkMnk − IMM). (40)
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As in (Meneveau et al. 1996) the relaxation time scale T is defined as

T (x, t) = θ∆ (ILMIMM)−1/8, θ being a dimensionless parameter of order unity.

The equations (39) and (40) should be solved together with the SCALES equations, (11)

and (12). It should be noticed that both ILM and IMM have higher frequency content when

compared to the velocity field. This is due to two main factors: the quartic character of

nonlinearity of ILM and IMM with respect to velocity and the creation of small scales due

to chaotic convective mixing. Thus, in order to adequately resolve both ILM and IMM , one

needs to have a substantially finer computational mesh than the one required by the velocity

field, which is impractical. To by-pass this problem we consider two different extensions of

the Lagrangian path-line averaging: Lagrangian path-tube averaging and Lagrangian path-

line diffusive averaging.

The Lagrangian path-tube averaging consist of taking the statistical filtered averages over

the trajectory of a fluid particle:

ILM (x, t) =
1

T

∫ t

−∞

∫∫∫

D

e
τ−t
T G

(
y − x (τ) , x (τ)

)
Lij (y, τ)Mij (y, τ) dτdy, (41)

IMM (x, t) =
1

T

∫ t

−∞

∫∫∫

D

e
τ−t
T G

(
y − x (τ) , x (τ)

)
Mhk (y, τ)Mhk (y, τ) dτdy, (42)

where G (ξ, x) is the local, location dependent, low-pass filter with the second variable

denoting filter location. Note that the low-pass filter averages the values in the neighborhood

of the path-line, effectively making it path-tube averaging. Also note that if G (ξ,x) = 1, i.e.

no additional spatial filter is applied, the formulations are identical to the one in (Meneveau

et al. 1996). This modified averaging procedure leads to the following evolution equations

for the auxiliary variables ILM and IMM :

∂ILM
∂t

+ u>ǫ
l

∂ILM
∂xl

=
1

T

(
LijMij

LP
− ILM

)
, (43)

∂IMM

∂t
+ u>ǫ

l

∂IMM

∂xl
=

1

T

(
MnkMnk

LP
− IMM

)
, (44)

where (·)
LP

defines low-pass filtering based on G (x, τ).

In the Lagrangian path-line diffusive averaging an additional artificial diffusion term is

added to the evolution equations:

∂ILM
∂t

+ u>ǫ
l

∂ILM
∂xl

=
1

T
(LijMij − ILM) + DI

∂2ILM
∂xj∂xj

, (45)

∂IMM

∂t
+ u>ǫ

l

∂IMM

∂xl
=

1

T
(MnkMnk − IMM) + DI

∂2IMM

∂xj∂xj
. (46)

To avoid the creation of small scales, the diffusion time scale, ∆2/DI , should be smaller than

the convective time scale associated with local strain,
∣∣S>ǫ∣∣−1

, which results in DI = CI∆
2
ǫ

∣∣S>ǫ∣∣ ,
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where CI is a dimensionless parameter of order unity. Note that the Lagrangian path-line

diffusive averaging procedure can be formally derived by using differential implicit filters as

described in (Vasilyev et al. 2008).

Combining these two approaches results in the Lagrangian path-line/tube averaged equa-

tions:

∂ILM
∂t

+ u>ǫ
l

∂ILM
∂xl

=
1

T

(
LijMij

LP
− ILM

)
+ DI

∂2ILM
∂xj∂xj

, (47)

∂IMM

∂t
+ u>ǫ

l

∂IMM

∂xl
=

1

T

(
MnkMnk

LP
− IMM

)
+ DI

∂2IMM

∂xj∂xj
. (48)

Note that the case G = 1 and CI = 0 is equivalent to the original Lagrangian formulation

of (Meneveau et al. 1996).

5.2 Kinetic Energy Based Modeling

An alternative mechanism to achieve locality of the SGS model is to solve an additional

transport equation for the subgrid scale kinetic energy, ksgs.

In order to take full advantage of the SCALES methodology for simulating complex

turbulent flows, the development of localized closure models appears necessary. For this

purpose, a modeling mechanism that takes into account the local kinetic energy transfer

back and forth between resolved and unresolved eddies can be exploited. In fact, as the

closure model is mainly required to provide the right rate of energy dissipation from the

resolved field, the model coefficient can be calibrated upon the energy level of the residual

motions. It has been demonstrated in (Ghosal et al. 1995) that energy-based localized

models for LES can be successfully constructed by incorporating a transport model equation

for the residual kinetic energy. Moreover, the use of the kinetic energy variable appears as

a natural choice in the present context, given the main feature of the SCALES approach,

which consists in solving for the significant part of the energy content of the flow-field, while

modeling the effect of the less-energetic background flow. In this work the use of both local

eddy-viscosity and non-eddy viscosity kinetic energy-based models in the context of SCALES

is explored.

In order to address some issues about the local energy transfer between resolved and

residual motions, let us first consider the balance equation for the resolved kinetic energy,

i.e. , according to Eq.(12),

∂kres

∂t
+ u>ǫ

j

∂kres

∂xj
= − ∂

∂xi

[
uj

>ǫ
(
τ ∗ij + P

>ǫ
δij
)]

+ ν
∂2kres

∂xj∂xj
− ǫres − Π , (49)

where ǫres = ν ∂ui
>ǫ

∂xj

∂ui
>ǫ

∂xj
stands for the rate of resolved viscous dissipation and Π = −τ ∗ijS

>ǫ

ij

represents the rate at which energy is transferred to unresolved residual motions. As to
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resolved viscous dissipation, it is worth pointing out that ǫres is not negligible for SCALES,

in contrast to what typically happens for classical LES. This is mostly due to the adaptive

nature of the SCALES approach, which results in the presence of significant energy at small

scales, as demonstrated in the Sections 7.4, 7.5, and 7.6. Note also that the local energy

transfer Π can show both signs, even though energy is globally transferred from resolved

to residual motions, e.g., 〈Π〉 > 0 for isotropic turbulence. For this reason, Π is commonly

referred to as SGS dissipation.

The subgrid-scale kinetic energy, say ksgs, is formally defined as the difference between

the wavelet filtered energy and the kinetic energy of the filtered velocity field, kres, that is

ksgs =
1

2
(uiui

>ǫ − ui
>ǫui

>ǫ) . (50)

The above energy variable is simply related to the trace of the SGS stress tensor, being

ksgs = 1
2
τii. Note that the adopted terminology is in some way inappropriate as this quantity

does not stand for the kinetic energy associated with the SGS motions, which is 1
2
u′iu

′
i

>ǫ
,

u′i = ui − ui
>ǫ being the residual velocity field. The evolution of ksgs can be modeled by

means of the following transport equation (e.g., (Ghosal et al. 1995))

∂ksgs

∂t
+ u>ǫ

j

∂ksgs

∂xj
= ν

∂2ksgs

∂xj∂xj
− ǫsgs + Π , (51)

where ǫsgs stands for the viscous dissipation rate of the SGS kinetic energy that is the unclosed

term

ǫsgs = ν

(
∂ui
∂xj

∂ui
∂xj

>ǫ

− ∂ui
>ǫ

∂xj

∂ui
>ǫ

∂xj

)
. (52)

In order to close the energy equation (51), a further model for the SGS viscous dissipation

ǫsgs must be introduced, as discussed in the following section.

The SGS energy production Π takes a fundamental role in modeling procedures based

on the kinetic energy variable. As it contributes with different sign to both resolved (49)

and SGS (51) energy balance, it can be exploited to develop a built-in feedback mechanism

that automatically stabilizes the numerical solution. This way, no averaging procedure is

needed and the full locality of the model is achieved. Namely, one can assume the SGS

dissipation to be a monotonic increasing function of ksgs so that, for example, if there is

energy backscatter from unresolved to resolved motions (i.e. , Π < 0) the resolved kinetic

energy locally increases while the residual one decreases, but the SGS forcing decreases as

well so leading to the suppression of the reverse flow of energy.

5.3 Local dynamic energy-based eddy-viscosity models

The first step in building localized SGS models is taken by considering eddy-viscosity models

where the turbulent viscosity no longer depends upon the resolved rate-of-strain, as in the
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Smagorinsky approach, but on the SGS kinetic energy. In eddy viscosity based models the

unknown SGS stress tensor in Eq.(12) is approximated by

τ ∗ij
∼= −2νtSij

>ǫ
, (53)

where Sij
>ǫ

= 1
2

(
∂ui

>ǫ

∂xj
+

∂uj
>ǫ

∂xi

)
is the resolved rate-of-strain tensor and νt stands for the

turbulent viscosity, which is the model parameter to be expressed in terms of the resolved

field. Similarly to what done in (Ghosal et al. 1995), let us take the square root of ksgs as

the velocity scale and the wavelet-filter characteristic width ∆ as the length scale for the

turbulent eddy-viscosity definition that is

νt = Cν∆k
1/2
sgs , (54)

Cν being the dimensionless coefficient to be determined. This way, Eq.(53) is rewritten as

τ ∗ij
∼= −2Cν∆k

1/2
sgs S

>ǫ

ij (55)

and the SGS dissipation rate is approximated in terms of the SGS kinetic energy as

Π ∼= Cν∆k
1/2
sgs |S

>ǫ| (56)

where |S>ǫ| = 2S
>ǫ

ij S
>ǫ

ij . Note that the SGS dissipation rate can show both signs, thus

allowing for the simulation of local energy backscatter.

Given the eddy-viscosity nature of the model, when solving for the SGS energy, the

additional diffusion due to the turbulent viscosity is considered, so that the energy equation

(51) is rewritten as

∂ksgs

∂t
+ u>ǫ

j

∂ksgs

∂xj
= (ν + νt)

∂2ksgs

∂xj∂xj
− ǫsgs + Π . (57)

As mentioned above, in addition to the SGS stress model, the SGS energy dissipation model

for ǫsgs is needed. The latter variable can be modeled, using simple scaling arguments, as

ǫsgs = Cǫ
k

3/2
sgs

∆
, (58)

Cǫ being the second dimensionless model coefficient (e.g., (Schumann 1975, Ghosal et al.

1995)) to be determined. Another possibility, not taken here, would be to consider an

additional evolution model equation for ǫsgs, as done for instance in (Pomraning & Rutland

2002).

The wavelet-filtered Navier-Stokes equations (12) and the SGS kinetic energy equation

(57) stand for a closed system of coupled equations that is solved with the AWCM methodol-

ogy briefly described in Section 2.5. In particular, the global thresholding mask for wavelet

filtering can be constructed by considering both the velocity and the SGS kinetic energy

fields.
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In a first lighter version of the model, in order to save computational resources, the model

parameters Cν and Cǫ are a-priori prescribed. In particular, the unit value for Cǫ is fixed,

as typically done in LES based on a similar approach. Also, the empirical value Cν = 0.06

is prescribed for the turbulent viscosity coefficient, as a result of acceptable global matching

with the wavelet-filtered DNS solution for the numerical experiments carried out in this work.

This one-equation model will be referred to as the localized kinetic energy-based model (for

following discussion, LKM). It is worth stressing that, though the model coefficients are

fixed, the LKM procedure is nevertheless “dynamic” in some way as it implicitly takes

into account the local energy transfer between the resolved and unresolved motions for the

ongoing simulation.

A fully dynamic version of the kinetic energy-based eddy-viscosity model, with the model

coefficients not prescribed but derived from the actual resolved field using the classical Ger-

mano dynamic approach (Germano et al. 1991), is developed as illustrated in the following.

Let us introduce a secondary test-filter with a characteristic filter width ∆̂ > ∆, formally

denoting the test-filtered resolved velocity as ûi
>ǫ. The stress tensor at the test level is given

by

Tij = ûiuj
>ǫ − ûi

>ǫ ûj
>ǫ , (59)

so that, filtering (13) at the test level and combining with (59), results in the following

definition for the Leonard stresses

Lij = ̂ui
>ǫuj

>ǫ − ûi
>ǫ ûj

>ǫ , (60)

or, equivalently, the popular Germano identity

Tij − τ̂ij = Lij . (61)

Once the test-filter is given, the Leonard stresses are directly computable upon the resolved

velocity field and can be exploited to determine the model coefficient with no a-priori pre-

scriptions. Differently from what is done in (Goldstein et al. 2005), here a low-pass discrete

filter is used. Specifically, the discrete low-pass test-filter is constructed using the adjacent

grid-points ensuring the proper filter width and positivity of the filter weights.

The unresolved kinetic energy at the test level, which is referred to as the subtest-scale

(STS) kinetic energy is defined as

ksts = ûiui
>ǫ − ûi

>ǫûi
>ǫ , (62)

that is ksts = 1
2
Tii. By analogy with (51), the transport model equation for ksts can be written

as
∂ksts

∂t
+ ûj

>ǫ∂ksts

∂xj
= (ν + νt)

∂2ksts

∂xj∂xj
− ǫsts + Πsts , (63)
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where the STS energy viscous dissipation rate is

ǫsts = ν




̂∂ui
∂xj

∂ui
∂xj

>ǫ

− ∂ûi
>ǫ

∂xj

∂ûi
>ǫ

∂xj


 (64)

and Πsts stands for the STS energy production that is −T ∗
ij

̂Sij
>ǫ

, ̂Sij
>ǫ

= 1
2

(
∂dui

>ǫ

∂xj
+

∂duj
>ǫ

∂xi

)

being the resolved rate-of-strain tensor at the test level. In a similar manner, the kinetic

energy that is resolved at the test level can be defined as

krts = ̂ui
>ǫui

>ǫ − ûi
>ǫûi

>ǫ , (65)

or, equivalently, krts = 1
2
Lii, owing to the Leonard stress definition (60). It is worth noting

that, thanks to the positiveness of the employed test-filter, the variable krts is always non-

negative in the flow-field. This way, the Germano identity (61) can be re-written in terms

of the kinetic energy variable as it follows

ksts − k̂sgs = krts . (66)

The above relation allows for the STS kinetic energy to be directly expressed in terms of

resolved quantities, which are the velocity and the SGS energy fields. After defining the

resolved viscous dissipation at the test level

ǫrts = ν

(
̂∂ui
>ǫ

∂xj

∂ui
>ǫ

∂xj
− ∂ûi

>ǫ

∂xj

∂ûi
>ǫ

∂xj

)
, (67)

a similar Germano identity relates the energy dissipation rates at test and grid levels

ǫsts − ǫ̂sgs = ǫrts . (68)

Again, due to the positiveness of the test-filter, the variable ǫrts is always non-negative in the

flow-field. It is worth pointing out that the identity (68) is actually unusable for classical

LES formulations, since the scale separation acts in the inertial range and the resolved LES

field does not contain significant contribution from dissipative scales (Ghosal et al. 1995).

Conversely, equation (68) can be successfully exploited in the SCALES approach, where also

the small-scale energetic structures are resolved.

Different fully dynamic versions of the energy-based eddy-viscosity modeling procedure

are presented in the following sections. They are based on either a Bardina-like or a Germano-

like approximation for the dynamic determination of the model coefficients Cν and Cǫ as

space-time functions.

5.3.1 Eddy-viscosity modeling

Two different dynamic procedures are proposed to determine the unknown model coefficient

for the turbulent eddy-viscosity (54).
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Bardina-like model By analogy with (55), let us assume the Leonard stress can be ap-

proximated in terms of the resolved test-scale kinetic energy as follows

L∗
ij
∼= −2Cν∆̂k

1/2
rts

̂Sij
>ǫ
, (69)

where, as usual, the star denotes the deviatoric part. The above expression represents a sys-

tem of five independent equations with the unique unknown Cν , which can be approximately

solved by exploiting a least-square methodology. That leads to

2Cν(x, t) =
L∗
ijσij

σlnσln
, (70)

where, for simplifying the notation, the known tensor σij = −α∆k
1/2
rts

̂Sij
>ǫ

is defined (Kim

& Menon 1999), α = ∆̂/∆ being the test filter to grid ratio.

Germano-like model As an analog of (55), let us assume the STS stress can be approx-

imated in terms of the STS kinetic energy as follows

T ∗
ij
∼= −2Cν∆̂k

1/2
sts

̂Sij
>ǫ
. (71)

Therefore, according to the Germano identity (61), combining (55) and (71), it holds that

−2Cν∆̂k
1/2
sts

̂Sij
>ǫ

+ Cν
̂

∆k
1/2
sgs S

>ǫ

ij = L∗
ij , (72)

where the coefficient Cν is assumed to vary slowly in space so that it can be taken out of the

test filtering operation. By exploiting the identity (66) and defining

Mij =
̂

k
1/2
sgs Sij

>ǫ − α(krts + k̂sgs)
1/2̂Sij

>ǫ
, (73)

a least square solution to (72) leads to the determination of the following local model coef-

ficient

2Cν(x, t)∆ =
L∗
ijMij

MlnMln
. (74)

It is worth stressing that both the present modeling procedures, though based on the same

SGS energy-based eddy-viscosity concept, nevertheless are very different from the dynamic

localization model proposed in (Ghosal et al. 1995), where the model coefficient was deter-

mined by solving an integral equation in the framework of a constrained variational problem.

5.3.2 SGS energy dissipation modeling

Two different dynamic procedures are proposed to determine the unknown model coefficient

for the SGS energy dissipation (58).
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Bardina-like model According to a Bardina-like approach, by analogy with (58), let us

assume the resolved test-scale energy dissipation can be approximated as

ǫrts ∼= Cǫ
k

3/2
rts

∆̂
. (75)

The above equation can be solved for the unknown Cǫ resulting in the following local model

coefficient
Cǫ(x, t)

∆
=
αǫrts

k
3/2
rts

. (76)

Germano-like model According to a Germano-like approach, as an analog of (58), let us

assume the STS energy dissipation can be approximated as

ǫsts ∼= Cǫ
k

3/2
sts

∆̂
. (77)

This way, by exploiting the identity (68), after some calculus, the following determination

for the SGS energy dissipation coefficient is obtained

Cǫ(x, t)

∆
=

αǫrts

(krts + k̂sgs)3/2 − αk̂
3/2
sgs

. (78)

In principle, the above dynamic procedures for determining the model coefficients Cν and

Cǫ can be adopted independently, leading to four different model combinations. Here, only

two different localized dynamic kinetic energy-based models (LDKM) are actually considered

for the numerical experiments. The former one (for discussion: LDKM-B) exploits both the

Bardina-like dynamic determinations (70) and (76), while the other one (for discussion:

LDKM-G) uses both the Germano-like dynamic coefficients (74) and (78).

5.4 Dynamic structure model

In this section, a dynamic one-equation non-eddy viscosity SGS model is developed for the

SCALES methodology. The model, recently introduced for LES (e.g., (Pomraning & Rut-

land 2002, Chumakov & Rutland 2005)), is based on the “dynamic structure” assumption.

Namely, it borrows the structure of the unknown SGS stress tensor directly from the resolved

Leonard stress (60), without involving the resolved rate-of-strain tensor. The significant sim-

ilarity between the SGS and the Leonard stresses, which has been observed in real as well

as numerical experiments (e.g., (Liu et al. 1994)), is exploited in the model. Thanks to this

similarity, one can consider τij/τll ∼= Lij/Lhh, so that the following approximation holds

τij ∼=
ksgs

krts
Lij , (79)
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acronym SGS stress model SGS kinetic energy dissipation model

LKM eddy-viscosity, fixed coefficient fixed coefficient

LDKM-G eddy-viscosity, dynamic Germano dynamic Germano

LDKM-B eddy-viscosity, dynamic Bardina dynamic Bardina

DSM dynamic structure model fixed coefficient

Table 1. Summary of the different SGS one-equation models.

that corresponds, in particular, to the algebraic form of the model proposed in (Pomraning

& Rutland 2002).

Clearly, the solution of an additional transport equation for ksgs is still an integral part

of the modeling procedure. However, due to the non-eddy viscosity nature of the dynamic

structure model, the original version (51) is used in this case. According to (79) the modeled

SGS dissipation becomes proportional to ksgs

Π ∼= −ksgs

krts
L∗
ijS

>ǫ

ij , (80)

and again can show both signs. Note that the present approach does not involve the definition

of any model coefficient while, for the SGS kinetic energy dissipation ǫsgs, the model (58)

can be used together with one of the dynamic procedures discussed in Section 5.3.2.

Like for the above eddy-viscosity models, the dynamic structure model (79), coupled

with the solution of the energy equation (51), provides a positive feedback mechanism that

automatically stabilizes the numerical solution. However, according to some authors the

dynamic structure model (for subsequent discussion, DSM), which is in some ways similar to

the classical scale-similarity Bardina model (Bardina et al. 1983), does not provide sufficient

SGS dissipation for LES and therefore should be used as part of a mixed model (e.g., (Kim

& Menon 1999)). Nevertheless, as already pointed out in (Pomraning & Rutland 2002), the

pure DSM can be successfully used for decaying isotropic turbulence simulation. That is

confirmed by the results of the present study (see next Section 7).

Finally, let us address some general issues about the use of the auxiliary variable ksgs in

SCALES, apart from the particular model implemented. When numerically solving the evo-

lution equation for the SGS kinetic energy by means of the AWCM numerical method, owing

to the non-linearity of the definition (50), additional small scales are created with respect to

the solution of the primary variables. Given the adopted coupled wavelet thresholding strat-

egy, discussed in Section 3, that automatically leads to an increase in the local grid fineness,

with the unavoidable deterioration of the SCALES grid compression. As practically experi-

enced by the authors, one can obtain a field compression comparable to that one of the CVS

solution (e.g., see (Goldstein et al. 2005)), so invalidating the use of the SGS model. To by-

pass the problem, as already successfully tested for local modeling based on the Lagrangian
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approach (Vasilyev et al. 2006), an artificial diffusion term can be added to the right-hand-

side of the energy equation, namely ∂
∂xj

(
Dk

∂ksgs
∂xj

)
. To stem the creation of small scales in

ksgs field, the artificial diffusion time-scale, ∆2/Dk, must be smaller than the convection

time-scale associated with the local strain,
∣∣S>ǫ∣∣−1

that results in fixing Dk = Ck∆2
∣∣S>ǫ∣∣,

Ck being a dimensionless parameter of order unity. In practice, for the present numerical

experiments, the value Ck = 0.1 has been verified to suffice for the purpose.

Another important aspect that needs to be mentioned is the sensitivity of the SGS energy-

based models to the initial value of ksgs. Setting the initial ksgs too high can result in excessive

SGS dissipation leading to an incorrect energy evolution. That is particularly dangerous for

transient flows, like homogeneous decaying turbulence, while it is negligible for statistically

steady turbulent flows like forced turbulence, as demonstrated by the results discussed in

Section 7.6. A way to make the solution less sensitive to the initial condition is under study

and will be the subject of a future work.

6 Algorithm Development

In this section we briefly describe the efforts that were undertaken in the area of parallel al-

gorithm development. In order to make a substantial progress on this front we have attacked

the problems on three main fronts, namely developing efficient and easily parallelizable data

structure, developing parallel version of the solver and exploring more efficient parallel im-

plementation of adaptive wavelet transform, which are essential in improving the efficiency

and scalability of the parallel solver.

6.1 Data Structures

Efficiency of adaptive solvers strongly depends on the access time to the large datasets and

the ability to make efficient parallel implementation of the data structure. Three different

data structures has been developed for the large datasets storage: working array, Tree and

Lines. The working array is mainly used for algorithm development, due to ease of testing

new algorithms. Once the algorithm is tested, we rewrite it for both Tree and Lines data

structures. Thus, Tree and Lines data structures or their hybrid are primarily planned to

be used for large scale simulations. Both structures have been implemented in C/C++ and

Fortran 90. Tree data structure provides convenient access to a node with given coordinates

and therefore it is relatively easy to merge Tree with wavelet transform, with its intrinsically

random data access pattern, without significant changes of the solver code. Lines data struc-

ture, on the other hand, provides fast access to an array of nodes on a line with given D − 1

coordinates, where D is the dimensionality of the problem. Lines data structure minimizes

the amount of solver-database interactions, although it requires significant modification of

30



Final Report - 2008

Figure 6: Tree structure for 12 nodes: root nodes (big circles) and active links (solid lines). All possible links for one of the

root node are shown by dotted lines. For simplicity, we do not show the links between the nodes with the same wavelet type,

level, and the type of the boundary condition.

the solver code.

6.1.1 Working Array Structure

Working array structure is used primarily to minimize the logistics of data access. Before the

wavelet transform or derivative calculations, compressed data are copied into the working

array, then the calculations are performed on a subset of the nodes of the working array and

data are copied back to the compressed resulting array. The use of the working array data

structure for large scale computations is impractical.

6.1.2 Tree Structure

The schematic diagram of currently implemented Tree structure is presented at Fig. 6. A

node of level J may have up to (Jmax − J)(2D − 1) links to the nodes of the higher levels.

Level 1 corresponds to the coarse mesh and level Jmax corresponds to the finest mesh. Tree

roots residue at the level Jtree which may be higher than the coarse mesh level. By setting

Jtree to be equal to Jmax we get a nonadaptive array storage for the mesh at the finest

level of resolution. In addition to the tree structure, all the nodes belonging to the same

wavelet type (0, . . . , 2D − 1), level (1, . . . , Jmax), and the node-type (internal, face, edge,

vertex) (1, . . . , 3D) are incorporated into a correspondent bidirectional link-list, thus forming

Jmax6
D link-lists. Single node is accessed by its coordinates. The access operation takes at

most Jmax − Jtree steps along the tree and requires (Jmax − Jtree)D comparisons for the

correspondent bits of the node coordinates. A group of the nodes of the same wavelet

type, level, and relation to the domain boundary is accessed through the traversing the

correspondent link-list.
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Figure 7: Lines for 12 nodes: Face nodes (big circles) and active links (solid lines). For simplicity, we show all the nodes on a

line linked together; in reality, separate link-lists are created for the nodes of different levels.

6.1.3 Lines Structure

The schematic diagram of currently implemented Lines data structure is presented at Fig. 7.

A face is introduced for each dimension D as an array of face nodes of the dimension D− 1.

Each face node contains the beginnings of Jmax one-directional link-lists. Each link-list joins

the nodes of the same level on the given line. Nodes are accessed in groups only. A typical

access operation will copy the data associated with the nodes of a given line and given level

into a corresponding array. After being processed by a specially designed version of wavelet

transform, the whole line of the nodes is written back to the Lines data structure.

6.2 Algorithmic Optimization of the Parallel Wavelet Transform

When parallelizing the solver, the main cost is associated with adaptive wavelet transform,

since the wavelet transform requires synchronization of wavelet coefficients at one level prior

of performing next level wavelet transform. This makes load balancing extremely hard, since

load balancing is required at each level of resolution. One way to achieve efficient paralleliza-

tion is to modify wavelet transform in such a way that it can be performed anarthrously.

This way the load balancing only depends on the total number of grid points in the domain

and inter-processor communication cost. Five different algorithmic modifications of parallel

wavelet transform are investigated. In order to avoid modification of the actual code, the

non-adaptive wavelet transforms were considered. Once the strategy was developed, it was

implemented in actual adaptive wavelet transform used in the adaptive wavelet collocation

solver. The algorithmic modifications are discussed next. In order not to complicate the

discussion, the algorithms are discussed in one dimension, while the actual implementation

was carried out in two dimensions.
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Figure 8: The dyadic grid in one dimension, which shows the multi-level assignment of the points used in the wavelet transform.

6.2.1 Serial Wavelet Transform

The wavelet transform is currently being used in the AWCM to dynamically adapt the

grid over which a simulation is performed. It has proven to be a successful way to use

computational resources efficiently while obtaining accurate solutions to complex fluid flow

systems. The wavelet transform is performed on a dyadic grid, which is shown in Figure

8. This grid separates the domain into multiple levels of resolution. All points are initially

placed on the finest level of resolution (j = 3 in the figure). Then, every other point (an

even point) is carried down to the next lower level, leaving all the odd points at the higher

level.

xjk = xj+1
2k (81)

This step is repeated until the lowest level of resolution is achieved. Therefore, every

level has twice as many points as the next lower level. The resolution difference between the

highest and lowest levels of resolution is vast, which accommodates all sizes of structures

that may exist in the system. For visualization reasons, the dyadic grid will show points

only at their lowest levels of resolution for the rest of this report. Therefore, the resolution

at a level is actually twice better than what is shown.

The simplified forward wavelet transform is as follows:

djk =
1

2

(
cj+1
2k+1 −

∑

l

wjk,lc
j+1
2k+2l

)
(82)

cjk = cj+1
2k . (83)
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Figure 9: The predict stage of the forward wavelet transform assuming 4th order interpolating wavelets. A circled point is

predicted using the interpolated value calculated from the associated squared points on the next lower level. The lower right

plot shows the first three plots all put together.

Here, the cjk values are the function values at location k on level j. The wjk,l are weights

associated with the wavelet interpolating functions. Therefore, a wavelet coefficient, djk, is a

measure of the difference between the function representation at a level and its approximation

(using the wavelets) at the next lower level. This is called a predict stage, since the wavelet

coefficient is calculated by predicting the function value using the interpolated points on the

next lower level. The predict stage of the wavelet transform is illustrated in Figure 9.

The description of the forward wavelet transform given above is a simplified case. The

full forward wavelet transform includes an update stage following the predict stage.

djk =
1

2

(
cj+1
2k+1 −

∑

l

wjk,lc
j+1
2k+2l

)
(84)

cjk = cj+1
2k +

∑

l

w̃jk,ld
j
k+l (85)

The predict stage remains the same, but the c-values that get carried down to the next

lower level of resolution are updated using the wavelet coefficients that were calculated during

the predict stage. This process is illustrated in Figure 10. The update stage guarantees that

the wavelet interpolating functions have zero mean, which ensures an accurate transform.
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Figure 10: The predict (red) and update (green) stages of the forward wavelet transform. A circled point is predicted using

the interpolated value calculated from the associated squared points on the next lower level. A point with a diamond is updated

using the triangular wavelet coefficients on the next higher level of resolution. The lower right plot shows the first three plots

all put together. The dark green vertical lines represent a hypothetical domain decomposition. The local subdomain consists

of the points within the two lines and the points outside the lines make up a buffer zone added for accurate computation.

In fact, the interpolating wavelets of order N when using the update stage have N vanishing

moments. This allows for faster implementation of the wavelet transform by a factor of

two. Also, with the addition of the update stage, the inverse wavelet transform is simple

to implement. The order of operations are reversed, and the inverse wavelet transform is

performed from low to high levels of resolution as opposed to high to low for the forward

wavelet transform. However, the drawback is that the inter-level connection required by this

update stage is a main issue in parallelizing the wavelet transform.

For problems of arbitrary dimension (greater than one), the wavelet transform is per-

formed by transforming each dimension independently. As the levels of resolution are de-

scended (or ascended in the inverse wavelet transform) in one dimension, the transform is

completed over the entire domain at that level of resolution. Therefore, in the three dimen-

sion case, the transform is completed first in the x-direction. During the j-th level of the

x-direction transform, the points in the y- and z-directions that are transformed are also

on the j-th level of resolution. Once the x-directional transform in complete, the wavelet

transform is performed, in a similar fashion, in the y-direction, and finally in the z-direction.
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Figure 11. An illustration of the No Update Method. This method skips the update stage over the entire domain.

6.2.2 Parallel Wavelet Transform

In order to completely and accurately perform the update stage of the wavelet transform

(obtaining the correct c-values at each level of resolution), the points must be synchronized

across subdomain boundaries. This is shown in Figure 10 by the dark green subdomain

boundaries. The points lying outside of the boundaries are buffer zones added for proper

interpolation. At lower levels of resolution, the cascading of this synchronization becomes

even greater. At some level (depending on processor count and global domain size), the

entire domain must be synchronized on all processors to complete the update stage. The

synchronization is necessary once for every level of resolution (after each update stage)

and also for every dimension. Therefore, for a three dimensional problem with 5 levels of

resolution, 15 communication stages are required to simply perform one forward wavelet

transform. The inverse wavelet transform requires the same amount of stages resulting in

30 synchronization stages for one time step while using the AWCM. It is expected that the

cost of so much communication is likely to be too expensive.

Figure 10 illustrates the amount of interplay between subdomains. At each level of

resolution, the points near the boundaries (the left point in the figure) must have access to

points in the neighboring processor’s local subdomain. At lower levels, the points required

from neighboring processors are far into the domain on the finest level of resolution. The

addition of the update stage requires the use of all points on every level, up to the finest

level of resolution, associated with the neighboring subdomain’s points, in order to have an

accurate value when the local subdomain points near the boundaries use them. Therefore,

either a lot of communication is necessary, or the wavelet transform must be modified so that

the interplay between subdomains has less of an effect. We have considered five different

parallel implementations with the idea that the performance of these different methods will
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Method 2 − No Update near Boundaries
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Figure 12: An illustration of the No Boundary Update Method. This method skips the update stage only for points near the

local subdomain boundary. If a local point needs a point from a neighboring subdomain, the update stage is not performed.

shed light on how to modify the wavelet transform so that its parallel implementation is

fully optimized.

6.2.3 Five Algorithmic Modifications

The five algorithmic modification of the parallel wavelet transform that are studied all have

their own unique advantages and disadvantages. Some of the characteristics are fully antic-

ipated, while others have yet to be investigated.

The first method should be considered as a base case, and it involves not performing an

update stage over the entire global domain. This implementation will be referred to as the No

Update Method. This method is currently implemented in actual adaptive wavelet transform

reported in Section 6.3. The buffer zone exists on each subdomain so that the predict

stage can be properly implemented. This requires a small amount of extra computation

for problems in multiple dimensions, since the buffer zone must also be transformed in all

but the final dimension so that the proper values are available when the local subdomain

needs them during the predict stage. However, due to the lack of the update stage, the

computational time is also cut down since the algorithm takes half as many steps. Also,

there is no inter-level communication required. The results from the No Update Method

should exactly match the results from the serial case with no update. The main drawback

for this method is a loss of zero-mean properties of the interpolating wavelet. The No Update

Method is illustrated in Figure 11.

The second implementation reduces the disadvantages of the No Update Method. The

second method performs the update stage within the local subdomain. For points that would

require wavelet coefficients from outside the local subdomain during the update stage, no
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Method 3 − One Sided Predict and Update Near Boundaries
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Figure 13: An illustration of the One Sided Transform Method. This method segregates all processors from each other. All

subdomains are treated as a small global domain with one sided predict and update stages near the boundaries.

update is performed. Therefore, this method is called the No Boundary Update Method. The

second is more difficult to implement in adaptive wavelet transform due to increased level

of bookkeeping. However, the No Boundary Update Method method is a candidate to be

used in actual adaptive wavelet transfrom, once No Update Method is implemented and fully

optimized. It is an improvement from the previous method since the zero mean properties

are kept for the wavelets in almost the entire domain. However, near the boundaries, the

update stage is not performed and the wavelets have no vanishing moments. As No Update

Method the No Boundary Update Method requires no inter-level communication, and there

is a slight drop in computational cost due to the increased buffer zone near the boundary

that need to be synchronized only at the beginning of the transform. Figure 12 shows the

No Boundary Update Method.

The third method improves the excess computational costs from the previous methods

by completely segregating each local subdomain. Therefore, each processor’s subdomain is

treated as in the serial case with a small global domain. There is no connection to other

regions of the actual global field. If a point does not exist in the local subdomain, it has no

impact on the wavelet transform for that processor. One sided predict and update stages are

performed near the subdomain boundaries, just as would occur near the boundaries of the

global domain in the serial case. Therefore, this implementation will be referred to as the One

Sided Transform Method. The huge advantage for this method is the low computational cost

due to the lack of a buffer zone. There is also no inter-level communication, and the update

stage is performed over the entire domain (although one sided near the boundaries) ensuring

the zero mean properties for the wavelets. The main drawback of this method is that it

results in discontinuous derivative at the subdomain boundaries. As a result the method

is not a candidate for use in actual adaptive wavelet collocation solver and the inclusion of
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Method 4 − Buffer Zone
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Figure 14: An illustration of the Buffer Zone Method. This method uses a buffer zone that contains points from neighboring

subdomains. The buffer zone points are transformed using a one sided predict and update.

it into this study is of pure academic interest. Figure 13 gives a representation of the One

Sided Transform Method in one dimension.

The fourth method extends the idea of the One Side Transform Method to include a

buffer zone. For this method, referred to as the Buffer Zone Method, the information from

neighboring subdomains is available to the points in a local subdomain. This should help

with accuracy and the negative effects of the one sided transform near the boundaries of

the local subdomain and could be used in connection of Schwartz domain decomposition

iterative method. Extra computation is required since the update stage is performed every-

where, including the buffer zone where a one sided transform is carried out. Therefore, the

work required to perform the update stage within the buffer zone is also being done in the

neighboring subdomain. This method improves the loss of derivative continuity properties,

however as in the previous method does not guarantee the continuous derivatives across the

subdomain boundaries. In the Buffer Zone Method, the update stage is performed over the

entire domain, keeping the zero mean wavelet properties, and no inter-level communication

is required. The Buffer Zone Method is displayed in Figure 14.

The final implementation may be considered as another base case. For this method, the

appropriate buffer zone points are passed to neighboring processors after each update stage

in every dimension. The results obtained from this Complete Communication Method should

exactly match those obtained from the serial case, even with an update stage. However, it is

anticipated that the communication cost from the inter-level inter-dimension synchronization

of the local subdomains will be severe. The Complete Communication Method is demon-

strated in Figure 15. Due to its high computational cost this method is not a candidate for

implementation in parallel adaptive wavelet collocation code.
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Method 5 − Complete Communication
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Figure 15: An illustration of the Complete Communication Method. Communication of the buffer zone is completed after

each update stage in every dimension. This method will obtain the exact same solution as the serial case.

6.2.4 General Problem Description

When studying the performance of different implementations of parallel wavelet transforms,

a few restrictions were placed on the global system. First, for simplicity, the number of

processors must evenly divide the d-dimensional global field in a checkerboard type decom-

position. Therefore,

p
1
d = integer. (86)

Second, as another simplifying assumption, the number of processors in one dimension should

evenly divide the number of points on the coarsest level in one dimension.

Mi − 1

p
1
d

= integer. (87)

This ensures that each processor has an even number of coarsest-level intervals. Lastly, the

problem is also made simpler by restricting the minimum number of coarsest-level intervals

so that the nearest neighboring processors contain the points needed for both the predict

and update stages.
Mi − 1

p
1
d

≥ max [npredict − 1, nupdate] , (88)

where the n values are the number of points on each side used for the interpolation during

the predict and update stages. The order of the wavelets is then 2n. Therefore, a processor

does not need to communicate with more than one other processor for each boundary of its

local subdomain. With all of these restrictions in place, for a two dimensional field, as used

for all cases reported here, it was found that the processor count, p, could only take only
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Figure 16: The On-Boundary Function. A surface plot in the upper left shows the sharp localized peaks overlaid on the

smooth large structured sinusoids. The other three images show a contour plot for processor counts of 1, 16, and 1024. The

processor boundaries cut through every one of the sharp peaks.

even powers of 2. This is a result of restricting the total number of points in each direction

(N) and the number of coarsest level points in each direction (M) to powers of 2. So,

Mi − 1 = M − 1 = 2m (89)

Ni − 1 = N − 1 = 2n (90)

From this restriction, setting the finest level of resolution is trivial:

jmax = n+ 1 −m, (91)

where the coarsest level of resolution is j = 1. It is easy to see that when n = m, there is

only one level of resolution and no transform will be performed.

The fields for which the wavelet transform acts on is an important consideration. The field

should have some regions with sharp transitions and other areas where the structures are not

localized. The placement of the sharp transitions may affect the ability of certain methods

to accurately perform its modified wavelet transform. Therefore, two functions are tested.

Both fields have sinusoids in the x- and y-directions with sharp Gaussian peaks dispersed

throughout the domain. The sinusoids act as large structures, while the sharp Gaussian

peaks represent localized structures that are well compressed by the wavelet transform.
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Figure 17: The Off-Boundary Function. A surface plot in the upper left shows the sharp localized peaks overlaid on the

smooth large structured sinusoids. The other three images show a contour plot for processor counts of 1, 16, and 1024. The

peaks are offset from all the processor boundaries so that none of the peaks are split between local subdomains.

For both functions, the total number of Gaussian peaks overlaying the sinusoids is twelve.

The difference between the two functions is the placement of the Gaussian peaks. In the

first function, the peaks are located directly on the processor subdomain boundaries. This

function is referred to as the On-Boundary Function (func=2 in the plots in Section 6.2.5)

and is illustrated in Figure 16. The second function sees a shift in the peaks so that no

processor boundary goes through any of the peaks. This function is then referred to as the

Off-Boundary Function (func=4 in the plots in Section 6.2.5) and is displayed in Figure 17.

In the Off-Boundary Function, no peak is shared amongst multiple subdomains, even for

large processor counts.

The general process for this study is to take our field and perform the appropriate modified

forward wavelet transform for each of our five implementations. Then, the wavelet coefficients

are analyzed and those that are deemed insignificant via the ǫ thresholding (djk < ǫ) are set

to zero (djk = 0). Next, the appropriate inverse wavelet transform in applied to get the

functional values once again. The accuracy can then be tested by calculating the error

between the initial field and the resulting field after the inverse wavelet transform. Both L∞
and L2 errors are reported. Another related and important characteristic for the transform

is the compression. Since the wavelet transform is used for data compression and adapting

grids, a high level of compression is always attractive. The compression will be calculated
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6 Processor 2 Function 3 Fixed Global 3 Fixed Local

5 Methods Counts Types Field Sizes Field Sizes

1.) No Update 1 On-Boundary 257 × 257 9 × 9

2.) No Boundary Update 4 Off-Boundary 513 × 513 33 × 33

3.) One Sided Transform 16 1025 × 1025 129 × 129

4.) Buffer Zone 64

5.) Complete Communication 256

1024

Table 2: This table lists all the runs performed for the parallel wavelet transform. A total of 340 runs were completed in

parallel mode.

as follows:

1 − Compression =
N≥
Ntotal

, (92)

which is the ratio of significant wavelet coefficients to the total number of points. The timing

performance of the implementations is also investigated. Therefore, the process of forward

wavelet transform, ǫ thresholding, and inverse wavelet transform is performed for a number

of iterations to ensure accurate timing statistics. The average time per iteration is calculated

and reported. Also, since communications are involved, the first iteration is not timed so

that all communication links have an iteration to get warmed up.

All reported runs used a two dimensional field with ǫ = 10−6. The wavelets used were 4th

order by setting npredict = 2 and nupdate = 2 (nupdate = 0 when no update is performed). Also,

the m value was chosen so that the finest level of resolution was always 3. Therefore, two

transform steps are taken in each dimension for each wavelet transform. For the reported

results the main parameter is the method type and the processor count. The function type

and the field sizes were also varied. Table 2 gives a complete summary of all the parallel

cases that were run. Table 3 then lists the types of serial cases that were completed. All

runs were completed on the BG/L machine.

6.2.5 Scalability, Compression, and Accuracy

Many runs for each of the five implementations were completed and compiled with the

main goal of comparing the different methods and their characteristics. Of importance are

the timing performance, accuracy, and compression as processor count is increased, type of

function is varied, and field size is increased. One important note is that in actual adaptive

wavelet transform the timing performance would greatly depend on the compression. Since

this study focuses on the non-adaptive wavelet transform only, the compression value is only

a statistical property that does not affect the computational cost. A point that is deemed

insignificant via the ǫ thresholding still has its functional value found by the inverse wavelet
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1 Processor 2 Function 3 Fixed Global 3 Fixed Local

2 Methods Count Types Field Sizes Field Sizes

A.) Without Update 1 On-Boundary 257 × 257 9 × 9

B.) With Update Off-Boundary 513 × 513 33 × 33

1025 × 1025 129 × 129

Table 3: This table lists all the runs performed for the serial wavelet transform. A total of 24 runs were completed in serial

mode.

transform.

In looking at all the plots, it is important to remember that all implementations should

be compared against the appropriate serial case. Therefore, the No Update Method should

be compared against the serial case with no update, whereas the rest of the methods should

be compared against the serial case with the update stage. Also, when comparing the results

for the different types of functions, the change in the difference from the serial case is more

important that the absolute difference between the two function cases.

In terms of timing performance, the results match expectations fairly closely. Figure 18

shows the average per iteration timing for a small fixed local field size for the Off-Boundary

Function. Overall, it shows an obvious disparity between most of the methods. The green

line corresponds to the One Sided Transform Method. This method remains very close to

the average time per iteration for a single processor. Since the local field size is fixed for this

plot, and the One Sided Transform Method has no buffer zone to add extra computation,

the time does not increase. The red line is the No Update Method. This method is a little

slower than the One Sided Transform Method, since it has a buffer zone that adds extra

computation. However, it does not do an update stage, so some of the computational cost is

given back. The blue and purple lines overlap in this figure. These two lines correspond to

the No Boundary Update Method and the Buffer Zone Method. Both these methods have a

buffer zone, which adds computational cost. The Buffer Zone Method performs an update

stage in the buffer zone, whereas the No Boundary Update Method does not. Therefore,

upon zooming in on the plot, the Buffer Zone Method is slightly slower. Finally, the cyan

line, representing the Complete Communication Method, shows a much worse performance

for this implementation. This method performs an update stage everywhere and, therefore,

has the same computational cost as previous methods. The extra time can be attributed to

the high level of communication necessary to synchronize the buffer zone after each update

stage in each dimension.

The speed up and efficiency are also studied. Figure 19 illustrates those characteristics

for each method for all three fixed global field sizes. As expected, the performance shown

in these plots matches the order in the average per iteration timing analysis. At large

processor counts, the speed up appears to be growing linearly for all methods, just with
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Figure 18: Plot of average per Iteration Timing for a small local fixed field size. All the timing plots look very similar to this,

with an obvious separation between the methods.

different slopes. As the fixed global field size is increased, the spread between the methods

grows. Therefore, for larger domains, the One Sided Transform Method does better than

the rest at a growing rate. The Complete Communication Method is the only method that

has a decreasing efficiency as the global field size increases. This is due to the fact that this

method must communicate a great deal of data many times for each wavelet transform. For

larger global field sizes, the amount of data that must be sent is increased, which in turn

increases the time required to complete an iteration. Thus, efficiency is lowered.

The type of function had essentially no effect of the timing performance for all methods.

This can be attributed to the fact that the transform is being performed non-adaptively. The

same number of computations and communications will take place regardless of the function

used and the value of wavelet coefficients after the forward wavelet transform.

Unlike the timing performance, the accuracy and compression could change with a depen-

dence of the type of function. Figure 20 uses the L2 norm error to represent the accuracy for

a large fixed global field size. As stated previously, the L2 norm is a measure of the average

error over the entire domain. The figure displays the accuracy for both the On-Boundary

Function (func=2, left) and the Off-Boundary Function (func=4, right). The No Update

Method (red) has the worst error since there is no update in the entire domain. The lack of

a vanishing moment is causing a loss in accuracy. This method does follow closely to the no

update serial case, as expected.

The next best method is the No Boundary Update Method (blue). As the processor count

increases, the error gets worse. The lack of an update stage near the boundaries is causing

a loss in accuracy. The Buffer Zone Method (purple) follows very closely to the Complete

Communication Method (cyan), which gives exactly the same results as the serial case (with

update stage). The added buffer zone is doing a good job maintaining the accuracy. This

also acts as a check that the Complete Communication Method is working properly. The

One Sided Transform Method (green) actually does the best at very high processors. It has

the lowest error with 1024 processors and competitive errors for lower processor counts. In

comparing the two function types, almost all the methods keep their same difference from
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Figure 19: Speed Up and Efficiency plots for increasing fixed global size. The scales remain the same for all three field sizes.

There is an overall spreading between the best and worst method performance as field size increases.
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Figure 20: The accuracy using the L2 norm error is compared for the implementations and for the two functions. In comparing

dependence of accuracy of the type of function, one must view how far a method is from the serial case. Method 1 should be

compared with the serial case with no update. All other methods should be compared with the serial case with the update

stage.

the appropriate serial case. This signifies no dependence on type of function, since that

particular method has a similar accuracy as compared to the serial case for both functions.

As compared with the serial case (with update stage), the green line shows a worse accuracy

for the Off-Boundary Function.

Figure 21 is another accuracy plot, except this one uses the L∞ norm error, which is a

maximum error for the domain. All methods perform similar to the L2 norm error accuracy

plot except for the One-Sided Transform Method. Whereas in Figure 20 the One Sided

Transform Method appears to have one of the lowest errors, here the green line towers above

the rest. This signifies high local errors, despite having a low average error. The high local

errors most likely occur near the local subdomain boundaries where a one sided transform is

being used. It appears that doing one sided transforms well within the global boundaries and

having no interconnection between subdomains is causing high local errors. Again, it does

worse for the Off-Boundary Function. It may have more trouble accurately interpolating
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Figure 21: The accuracy using the L∞ norm error is compared for the implementations and for the two functions. In comparing

the dependence of the accuracy on the type of function, one must view how far a method is from the serial case. Method 1

should be compared with the serial case with no update. All other methods should be compared with the serial case with the

update stage.
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Figure 22: The compression is compared for the implementations and for the two functions. In comparing the dependence of

the compression on the type of function, one must view how far a method is from the serial case. Method 1 should be compared

with the serial case with no update. All other methods should be compared with the serial case with the update stage.

the tails of the sharp Gaussian peaks (Off-Boundary Function) with the one sided transform

at the local subdomain boundary than the center of the peaks, which occurs for the On-

Boundary Function. The Buffer Zone Method in the Off-Boundary Function plot actually

performs better than the Complete Communication Method and therefore the serial case.

The final wavelet transform characteristic to be investigated is compression. The com-

pression statistics for a large fixed global field size and for both types of function are shown

in Figure 22. All of the methods show similar compression values except for the One Sided

Transform Method, which has a relatively large ratio of significant points to total points.

This is an unattractive characteristic, as the lower this ratio is, the greater memory saved

once the adaptive wavelet transform is implemented. The lower compression could account

for the average error being less than the other methods. The One Sided Transform Method

has more points using their actual wavelet coefficient values, lowering the average error.

However the high local errors from the L∞ norm accuracy plot cannot be justified. A low

compression can only account for lower accuracies. This figure also shows that all methods

have a common shift in comparing the two types of functions (even the One Sided Trans-

form Method). The shifts match the shifts in the serial cases. It appears that the difference

between these two types of functions does not affect the compression.

6.3 Parallelization of DAWC Method

When parallelizing the code the following important issues need to be considered: asyn-

chronous events on different processors, concurrency and possible deadlocks. In order to

facilitate faster parallel code development the following strategy has been used. The code

was designed to consist of three main parts: the main wavelet code, the data structure, and

the parallel communicators with the required interfaces and external libraries (Fig. 23).

Keeping these three parts separate simplifies code structure and facilitates debugging,

though inhibit code performance. In addition, all the information transfers between pro-
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Figure 23. Code structure. Arrows represent the direction of function calls.

cessors were implemented via collective all-to-all MPI (message passing interface) commu-

nications, which eliminated all the deadlock related problems. The major trade-off of such

an approach was, again, the code performance. Normally, a processor would require infor-

mation from several neighboring domains only, not from all the other processors, therefore

replacing all-to-all with point-to-point communications is an important optimization which

will be implemented in the future.

6.3.1 Input/Output Ideology

Our parallel adaptive wavelet based code as well as visualization tool can be run on several

processors using MPI library. Input/output ideology is the following: if we are using N

processors we expect to read single input file and, if necessary, N result files. The code

running on N processors will produce N output files (.res, .log, .vtk, or others). An extension

is added to output files to indicate the processor number that file has been written by (e.g.

p000, p001, p002, etc).

Figure 24: Geometric decomposition of 8 × 8 domain of trees for different number of processors N . First subdivision occurs

perpendicular to the vertical axis on
√
N sub-domains.
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6.3.2 Domain Decomposition

We have implemented a geometric domain decomposition based on the maximum possible

number of wavelets inside each of the sub-domains. In short, a rectangular d-dimensional

computational domain has to be distributed among a given number, N , of processors for a

given set of active wavelets. First of all, the domain is subdivided perpendicular to the first

axis on rounded to the nearest integer d
√
N sub-domains. The available N processors are

distributed among these sub-domain according to the number of active wavelets inside each

of the sub-domains. Then, the first step is repeated, i.e. each of the previously obtained

sub-domains is subdivided perpendicular to the second axis on rounded to the nearest integer
d−1
√
N ′ number of sub-sub-domains, where N ′ is the number of processors previously assigned

to that particular sub-domain. This recursion steps are repeated d times and results in a

quite balanced decomposition of the initial domain. An example of decomposition of 2-D

square domain is presented at Fig. 24 schematically. The actual mesh and corresponding

solution are shown in Figs. 25-27.

User can control domain decomposition via the input parameter file. Domain splitting

may happen only along the predefined directions. For example, providing three dimensional

parameter domain_split = 0,1,0, where non-zero component allows domain subdivision

in that direction, would force domain decomposition into slabs perpendicular to y-axis.

6.3.3 Load Balancing

Load balancing is closely connected to the domain decomposition. Currently, we do not

perform any load balancing. Initial domain decomposition is performed based on the regular

grid of active wavelets and is not updated while the code runs.

This will not be the case in the nearest future. Load balancing is an important issue to

address. The computational load of a processor nearly linearly depends on the number of

active wavelets inside that processor domain. Poorly loaded processor inevitably creates a

significant source of bottlenecking and drastically impedes code performance.

We plan to start by implementing a simple approach that would perform domain de-

composition after a given number of time-steps. Then trees, which are the finest elements

the decomposition deals with (we will consider the trees in details in Section 6.3.4), are to

be transported to their newly assigned processors. Another approach would be to perform

new domain decomposition and trees reassignment in alternating direction one at a time,

i.e. in x-direction, then after several time-steps in y-direction, etc. This could minimize

communications between the processors inside load balancing subroutines.

More complicated procedures have to be implemented for the distributed systems with

non-uniform communication delay or memory access. Neighboring processors are to be

assigned taking into account communication delays as well as the number of active wavelets

inside each processor’s domain has to be related to the performance of the current processor.
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Figure 25: Geometric decomposition of 8 × 8 domain of trees for different number of processors N . First subdivision occurs

perpendicular to the vertical axis on
√
N sub-domains. Grid is shown.

Figure 26: Geometric decomposition of 8 × 8 domain of trees for different number of processors N . First subdivision occurs

perpendicular to the vertical axis on
√
N sub-domains. Wavelets are shown.
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Figure 27. Solution: grid and wavelets.

Efficient load balancing is currently under investigation.

6.3.4 Parallel Code Structure

The code consists of three main parts: the data structure, the parallel communicators, and

the main wavelet code (Fig. 23).

In the current implementation each processor’s data structure contains a regular array of

quad-tree roots of the whole domain initiated at level jroot. When a new node of some level j

to be added to the domain, a link is inserted into the correspondent quad-tree node of level

j − 1. Maximum access time of any node through such a structure is obviously linear to the

maximum level of wavelets, i.e. O(jmax − jroot). Each tree node has at most 2d active links

to the nodes of the higher level, where d is the dimension of the computational domain.

While traversing a tree structure during a node access, we are normally getting a cache

miss each time we are following a link to a higher level node. In order to decrease the number

of cache misses, and improve code performance, a cache-friendly storage for the tree nodes

has been implemented. Starting from the finest level of resolution, nodes of each two levels

are stored together; hence no cache miss occurs during the link following between these two

levels.

This data structure has been developed for the serial implementation of the wavelet

based code. The parallel version uses the same data structure without any changes, with

each processor having its own tree-structure containing all tree roots. The question whether

to keep some neighboring tree roots instead of all of the tree roots of the whole domain is

currently under investigation. It might happen that the tree structure has to be adjusted for

the parallel code requirements. However, taking into account that the storage overhead of

having empty roots is insignificant, the algorithm simplicity and an ease of inter-processor

communication are the good reasons to keep the current implementation.

Parallel communicators have been implemented via collective all-to-all MPI calls, which

eliminated all the deadlock related problems and facilitated code debugging. From the other
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processor #1
(boundary zone of proc #0)

processor #0

Figure 28: An example of 1-D boundary zone of processor 0 generated by a single active wavelet node (black dot) consists of

nodes required for wavelet transform in that active node (gray dots) and nodes required to find the derivatives in that node

(white circles) for nprdct = ndiff = 2 and nupdt = 0. Thus, processor 0 has to transfer 5 points before wavelet transform, and

at least 5 (up to 9, depending on the distribution of active wavelets on processor 1) points before derivative calculations.

hand, the major trade-off of such an approach is the performance of the code. Since a

processor would require information from several neighboring domains only, not from all the

other processors, replacing all-to-all with point-to-point communications has good chances

to improve code performance (especially for a large number of processors).

Currently, all communicators are written to be independent from the quad-tree data

structure and kept in one file for simplicity. Data structure independence could facilitate

future development of the parallel code with different underlying data structures. Also for

simplicity of development, throughout the code parallel related things are surrounded by

preprocessor statements #ifdef MULTIPROC.

Numerous changes have been introduced into the main wavelet code as well as into the

main code - data structure interface. In short, following the domain decomposition ideology,

each processor controls wavelets located inside the processor sub-domain. In addition, each

processor has a boundary zone around the sub-domain to store and exchange information

between the processors. The origin of the boundary zone lays in wavelet transform and

derivative calculations (Fig 28). In order to find derivatives in a point we need a prescribed

number of points on each side of that point. Similarly, to perform a wavelet transform inside

a sub-domain we need a predefined number of points on each side of each point where wavelet

coefficient is calculated during the predict stage.

Having an update stage imposes tight coupling between the neighboring sub-domains

and requires multiple information exchanges between the sub-domains (namely, at each level

of the wavelet transform). This drastically decreases code performance and therefore to be

avoided. For more detailed discussion of explored possible parallel extension of the algorithm

see Section 6.2. In the current implementation we are not using update during wavelet

transform, which results in a slight increase of the approximation errors. Though, wavelet

threshold value has a stronger effect on the approximation errors, and a smaller threshold

would easily compensate the absence of update during wavelet transform. Nevertheless, the
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System N Time, s Efficiency, %

1 node, 1 1215 100

128×Itanium2, 8 236 64

NUMA, shared 16 237 32

27 267 17

1 node, 1 607 100

4×Xeon, 2 330 92

shared 3 278 73

4 228 66

267 nodes, 1 762 100

4×Opteron, 4 261 73

Myrinet 8 180 53

16 172 28

Table 4. Scalability results for Parallel Adaptive Wavelet Collocation Solver.

necessity of the parallel wavelet transform with both predict and update stages for some

applications is currently under investigation.

All points required for wavelet transform are points inside the sub-domain (so called

“significant” points of the current sub-domain) are added to the data structure and marked

as “adjacent”. All points from the derivatives stencils, as well as the points required to

make wavelet transform in these points, are added to the data structure as “ghosts”. By the

end of the grid adaptation subroutine each processor has the access to these lists and, after

synchronization, to the lists of the other processors. Thus, in all the following information

exchanges on the current grid, e.g. during numerous wavelet transforms and derivative

calculations, each processor will know which nodes it has to send and which nodes it is

going to receive from other processors. Therefore, value synchronization during wavelet

transform require a single all-to-all MPI communication to transfer “adjacent” nodes. The

synchronization during derivative calculations require transfer of “adjacent” and “ghosts”

nodes.

It should be noted that “ghosts” values, otherwise zeroes, are initialized during that

inverse transform only. Value at some “ghost” point could be changed, and therefore need

to be synchronized before the inverse transform, if and only if that “ghost” has participated

in the previous direct forward transform, i.e. that “ghost” is “significant” or “adjacent” at

some other processor. All the other “ghosts” are safely removed from the synchronization

lists to decrease the communication cost.

In addition to grid adaptation and derivatives, solvers are the important parts of the

main code to run in parallel. In the current implementation we extensively use MPI global
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Figure 29: Energy decay for CaseReλ=72 with partial ad-

jacent zone for CVS with no SGS model ( ), SCALES

with no SGS model ( ) and for comparison DNS

( ). Large eddy turn over time for the initial DNS

field is approximately 0.1. Two stations are shown at which

energy spectra will be presented.

0 0.1 0.2 0.3 0.4 0.5 0.6
98

98.5

99

99.5

100

%
 c

o
m

p
re

s
s
io

n

time 
Figure 30: Field compression for CaseReλ=72 with par-

tial adjacent zone for CVS with no SGS model ( ) and

SCALES with no SGS model ( ).

reduction operations (mainly, summation) inside the solvers.

6.3.5 Current Performance and Future Work

Current parallel implementation has been tested on several systems: single node NUMA

(non-uniform memory access) shared memory system with 128 Itanium2 processors, single

shared memory node with 4 Xeon processors, and a cluster of 267 4×Opteron nodes in-

terconnected by Myrinet 2g network. Timing results are presented in Table 4 for different

number of processors N . Efficiency is measured relative to a perfect application which would

run N times faster on N processors. In short, current parallel implementation of wavelet

based code runs efficiently on up to 8 processors. Future work is required to improve the

performance of the parallel code.

Future work includes the following (in order of importance): (1) Extensive profiling and

bottleneck detection. (2) Tree structure tunning. (3) Replacing all-to-all with point-to-

point communications. (4) Load balancing. (5) Additional optimization of parallel solvers

is required. (6) Parallel wavelet transform with non-zero nupdate.

7 Applications

7.1 Decaying Isotropic Turbulence

To validate the CVS and SCALES methods, numerical simulations of decaying incompress-

ible isotropic turbulence are considered. For this project the incompressible Navier–Stokes
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Figure 31: Total resolved viscous dissipation (−νSijSij) for CaseReλ=72 with partial adjacent zone for CVS with no SGS

model ( ), SCALES with no SGS model ( ) and for comparison DNS ( ).

equations (11–13) are solved with the DAWC solver. Continuity (13) is enforced using

a multi-step pressure correction time integration method (Guermond & Shen 2003). An

adaptive wavelet collocation multilevel elliptic solver (Vasilyev & Kevlahan 2005) is used in

solving the Poisson equation for pressure at each time step.

Results of decaying incompressible isotropic turbulence with initial Reλ = 72 are pre-

sented. The simulations were initialized with a 1283 forced isotropic turbulence DNS field

from a de-aliased pseudo-spectral code. The DNS simulation was run using a resolution of

1283 and had an initial eddy-turnover time of approximately 0.1. The spectral content of

the initial DNS field is fully resolved by doubling the non-adaptive field resolution to 2563

in the simulations. This is required because the DAWC solver uses finite differences, which

cannot resolve the full spectral content of the spectral DNS field at the original resolution.

The results are compared to a full DNS performed with the de-aliased pseudo-spectral code

used to generate the initial DNS field. Currently we are experimenting with larger runs with

effective resolution 10243 for both CVS and SCALES simulations. What is remarkable that

SCALES simulations with such high resolution use less than 2GB memory, which is very

encouraging, since it points out to the great compression achieved by the algorithm due to

high intermittency of turbulent flows.

In running these simulations it has been determined that a more “complete” adjacent

zone, than the partial adjacent zone described in Section 2.5, is needed to limit the numerical

and aliasing error at the high field compression used in SCALES. In the original adjacent

zone, neighboring points on the level above, the current level, and the level below are added

around each active wavelet. From this point on, we will refer to this as a partial adjacent

zone. This partial adjacent zone is used in the CVS simulations presented in Section 2.5.

For the high compression SCALES simulations presented in Section 7.3, 7.4, 7.4, 7.5, and
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Figure 32: Energy spectra for CaseReλ=72 with partial adjacent zone for CVS with no SGS model ( ), SCALES with no

SGS model ( ) and for comparison DNS ( ), at time t = 0.08 (left), and t = 0.16 (right). A k−5/3 straight dashed

black line is shown to indicate the inertial range.

7.6 we have defined a complete adjacent zone that, in addition to the immediate neighbors,

adds the diagonal neighbors.

For all SCALES and CVS results in this report the L2 WTF-norm was used in the coupled

wavelet filtering for grid adaptation based on the velocity field and for grid and test filtering

in the model. Tests were also run using L∞ WTF-norm but it was determined that this was

considerably nosier due to temporal intermittency.

7.2 CVS

CVS simulations of decaying incompressible isotropic turbulence have been performed with

no SGS stress model to validate the method’s ability to dynamically resolve and track the

coherent energetic eddies in a turbulent flow. A partial adjacent zone has been used for these

simulations. In figures 29 through 32 the results of CVS and SCALES with no SGS stress

model, for brevity called SCALESno−mdl, are compared to DNS . It can be seen in Fig. 29

that the energy decay for CVS is nearly identical to the DNS. The SCALESno−mdl case is seen

to be under dissipative. Figure 30 shows the field compression for CVS and SCALESno−mdl.

The compression stated is always with respect to the maximum field resolution, which in

this case is 2563. It can be seen that CVS is able to reproduce the DNS energy decay with a

compression ranging from a minimum of 98.2% to 99.8% as the flow becomes laminar. This

means that a maximum of 1.8% of the total modes are resolved in the CVS simulation. This

variation of field compression over the course of the simulation reflects the decreasing amount

of small scale structures as the turbulence intensity decreases. In these simulations ǫ is set to

0.15 for CVS and 0.5 for SCALESno−mdl. The value of ǫ for CVS was chosen iteratively to find
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Figure 33: Energy decay for CaseReλ=72 with complete ad-

jacent zone for SCALES with dynamic SGS model (

), SCALES with SGS model coefficient Cǫℓ2ǫ2 = 0.0001

( ), LES with dynamic SGS model ( ) and for

comparison DNS ( ). Large eddy turn over time for

the initial DNS field is approximately 0.1 . Two stations are

shown at which energy spectra will be presented.

0 0.1 0.2 0.3 0.4 0.5 0.6
98

98.5

99

99.5

100

%
 c

o
m

p
re

s
s
io

n

time 
Figure 34: Field compression for CaseReλ=72 with com-

plete adjacent zone for SCALES with dynamic SGS model

( ), SCALES with SGS model coefficient Cǫℓ2ǫ2 =

0.0001 ( ) and LES with dynamic SGS model ( ).

The complete interpretation of the LES compression based

on the 3/2 rule is shown as small circles.

the maximum value for which the energy decay over the simulation period closely matched

that obtained with the DNS. For comparison CVS simulations (not shown) with Reλ = 48

have been run. For these Reλ = 48 simulations 6% of the modes were required to match the

DNS energy decay. This trend of compression scaling between Reλ = 48 and Reλ = 72 is

believed to be indicative of the expected scaling of CVS compression with Reynolds number.

More data points are needed at higher Reynolds number to validate this possible level of

scaling. In this CVS simulation the skewness of the first velocity derivative is maintained to

within 10% of the DNS value, which reflects the fact that the CVS is resolving most of the

DNS energy dissipation. In Fig. 31 we see directly that, after an initial period where the

small scales are being recovered from the initial field projection, the total viscous dissipation

of CVS closely matches the DNS. This confirms the hypothesis that with CVS the total SGS

dissipation is minimal. This also indicates that the CVS is capturing the coherent structures,

allowing the CVS simulation to at least partially resolve the energy cascade over all active

wavenumbers. In Fig. 32 the energy spectra for CVS, SCALESno−mdl and DNS are shown

for two stations. The first station is at t = 0.08 and the second station is at t = 0.16. These

stations are also shown on Fig. 29. The CVS spectra closely matches that of the unfiltered

DNS at both stations. Notice how with CVS the full energy spectra is closely resolved over

the full spectral range. The spectra for the SCALESno−mdl case is seen to build up energy

due to lack of SGS dissipation.
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Figure 35: Dynamic SGS model coefficient for CaseReλ=72 with complete adjacent zone for SCALES with dynamic SGS

model, Cǫℓ2ǫ2 ( ), SCALES with SGS model coefficient Cǫℓ2ǫ2 = 0.0001 ( ) and LES with a classical dynamic SGS

model, Cs∆2( ).
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Figure 36: Resolved and SGS dissipation for SCALES with the dynamic model (left) and SCALES with SGS model coefficient

Cǫℓ2ǫ2 = 0.0001 (right) for CaseReλ=72 with complete adjacent zone. On both plots the DNS viscous dissipation is shown

( )with the viscous dissipation ( ), SGS dissipation ( ) and viscous + SGS dissipation ( ).

7.3 SCALES Constant Coefficient and Global Dynamic SGS Model

SCALES simulations have been performed with the constant coefficient Smagorinsky eddy

viscosity model, equation (16), and the new dynamic Smagorinsky eddy viscosity SGS stress

model described in Section 4. The model coefficient (Cǫℓ
2ǫ2 = 0.0001) for the SCALESCs case

was chosen to best match the DNS results. For the SCALESdyn case the volume averaged

version of the dynamic model coefficient is used (27). These SCALES simulations, hereafter

for brevity called SCALESCs and SCALESdyn respectively, are compared to DNS and LES

simulations. For both SCALESCs and SCALESdyn cases ǫ is set to 0.5. The LES simula-
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Figure 37: Resolved and SGS dissipation for LES with the dynamic model for CaseReλ=72. The DNS viscous dissipation is

shown ( ) with the viscous dissipation ( ), SGS dissipation ( ) and viscous + SGS dissipation ( ).
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Figure 38: Energy spectra for CaseReλ=72 with complete adjacent zone for LES with dynamic SGS model ( ) at time

t = 0.08 (left), and t = 0.16 (right). For comparison the DNS ( ) and filtered DNS ( ◦ ) are shown. A k−5/3 straight

dashed black line is shown to indicate the inertial range.

tion is performed in the DAWC solver with a regular 643 grid using the classical dynamic

Smagorinsky model. The simulation is de-aliased by performing a wavelet transform on the

velocity field and zeroing the highest level wavelet coefficients, thus resulting in a 323 solution

at the end of the time step. This is more expensive than the 3/2 rule used in pseudo-spectral

simulations. Figure 33 shows that the resolved kinetic energy decay for the SCALESdyn and

SCALESCs cases closely matches that of the DNS. The LES deviates slightly more from the

DNS. Note that due to the similarity of the SCALESdyn and SCALESCs results the lines are

difficult to distinguish on Fig. 33. The SCALESdyn and SCALESCs results lines are those just

below the DNS line and above the LES line. In Fig. 34 the compression for the SCALESdyn,
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Figure 39: Energy spectra for CaseReλ=72 with complete adjacent zone for SCALES with SGS model coefficient Cǫℓ2ǫ2 =

0.0001 ( ) at time t = 0.08 (left), and t = 0.16 (right). For comparison the DNS ( ) and filtered DNS ( ◦ ) are

shown. A k−5/3 straight dashed black line is shown to indicate the inertial range.
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Figure 40: Energy spectra for CaseReλ=72 with complete adjacent zone for SCALES with dynamic SGS model ( ) at time

t = 0.08 (left), and t = 0.16 (right). For comparison the DNS ( ) and filtered DNS ( ◦ ) are shown. A k−5/3 straight

dashed black line is shown to indicate the inertial range.

SCALESCs and LES cases are shown. If we consider the overhead of the modes used for de-

aliasing, the LES may be considered to have a compression of 98.44%. The modes used for

de-aliasing in LES can be considered as analogous to the adjacent zone in SCALES, so for a

realistic comparison we can consider that if the LES was performed in a spectral code, using

the 3/2 rule for de-aliasing, the effective compression would be 99.34% (shown in Fig. 34 as

small circles). This is 0.35% higher than the initial compression of the SCALESdyn simu-

lation. However, as the SCALES simulations progress the adaptive compression increases,

surpassing that of the LES. Therefore, it can be said that the SCALESdyn and SCALESCs
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simulations were able to capture the energy decay with a compression similar to a de-aliased

LES simulation. In Fig. 35 we see that the dynamic model coefficient for SCALESdyn is

more variable in comparison to the LES case. We conjecture that this variability could

reflect the sensitivity of the SCALESdyn model to actual localized events, such as energetic

coherent vortex interactions that cause local high resolved stresses. These events must be

included to properly characterize the instantaneous SGS dissipation. Further research is

needed to understand this phenomenon. In Figs. 36 and 37 the viscous and SGS dissipations

are presented for SCALESdyn, SCALESCs and LES. The variability of the SCALESdyn model

coefficient is reflected in the SCALESdyn SGS dissipation. In Figs. 38-40 the energy spectra

for the two stations shown in Fig. 33 are compared to the appropriately filtered DNS for

the SCALESdyn, SCALESCs and LES cases. For comparison to LES the DNS is filtered

using a spherical Fourier cutoff filter equivalent to the maximum wave number resolved in

the LES calculation. In the case of the SCALES simulations the appropriate DNS filtering

for comparison is a wavelet thresholding filter with equivalent threshold parameter to that

used in the SCALES simulations. It can be seen that, while there is reasonable agreement

for the LES case (Fig. 38), the agreement with the filtered DNS is significantly improved for

the SCALESCs (Fig. 39) and SCALESdyn cases (Fig. 40). At both stations, in the dissipative

range, the SCALESCs and SCALESdyn simulations reproduce more of the high wave number

energy. At the second station it can be seen in the inertial range that the LES has dissipated

slightly more then the SCALESCs and SCALESdyn cases. It is of particular interest to note

that the wavelet filtered DNS in figures 39 and 40 are closer to the full DNS spectra over the

full spectral range. Thus, the ability of SCALES to closely recover the filtered DNS results

in a solution that has a spectral content close to the original unfiltered DNS solution over

the whole DNS spectral range.

7.4 Lagrangian Dynamic Local SGS Model

In this section we apply the local Lagrangian SCALES model to incompressible isotropic

decaying turbulence. Though the localized models are specifically designed to simulate com-

plex inhomogeneous turbulent flows, it is nevertheless enlightening to test them for a case

for which well known theoretical and experimental results exist. In addition, the homoge-

neous turbulence case allows a detailed comparison with the existing reference solutions for

DNS, LES, and SCALES (with global dynamic model). Moreover, decaying turbulence is

a challenging example of statistically unsteady flow that stands as a good test-case for a-

posteriori verifying the accuracy of the proposed SGS stress model. The initial velocity field

is a realization of a statistically stationary turbulent flow at Reλ = 72 (λ being the Taylor

microscale) that is provided by a fully de-aliased pseudo-spectral DNS with 1283 Fourier

modes (De Stefano et al. 2005). Due to the finite difference nature of the AWCM solver, the

initial SCALES resolution in each direction must be doubled in order to retain the spectral
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Figure 41: Energy decay for SCALES with the Lagrangian path-line diffusive ( ) and path-tube averaging ( )

models, SCALES with global dynamic model ( ), SCALES with no model ( ), reference LES with global dynamic

model ( ), and wavelet filtered DNS (◦).

energy content. In other words, SCALES is run using a maximum resolution corresponding

to 2563 grid points. Note that due to the nature of the decaying turbulence, 2563 resolution

is only required during initial times with gradual decrease of the maximum level of resolution

as turbulence kinetic energy decays and Taylor microscale Reynolds number decreases.

The choice of the thresholding parameter, ǫ, in (5) is somewhat arbitrary: the smaller it

is, the weaker the SGS dissipation is, with SCALES approaching Coherent Vortex Simulation

(Farge et al. 1999, Goldstein et al. 2005) and wavelet-based DNS for even smaller values of

ǫ ≤ 10−3. On the other hand, when ǫ is too large, too many modes are discarded and the

energy cascade is no longer captured. All the SCALES results reported in this report have

been obtained using the wavelet thresholding parameter ǫ = 0.43 as a compromise between

these limits.

The Lagrangian local modelling variables are initialized as IMM = MhkMhk and

ILM = C̄sǫ
2IMM , where C̄s is the volume averaged Smagorinsky model coefficient (34). For

the relaxation time scale, the value θ = 0.75 suggested by (Meneveau et al. 1996) is chosen.

For Lagrangian path-line diffusive averaging, a diffusion coefficient CI ≥ 5 has been found to

produce acceptable results while approaching the global dynamic model for very large values

of the coefficient. In the case of Lagrangian path-tube averaging, the same stabilizing effect

is obtained by means of local volume averaging along the path-line, provided that the linear

cross-sectional dimensions of the path-tube are not smaller than the local characteristic filter

width, ∆.

In figures 41–43 the resolved kinetic energy decay, grid compression (percentage of the
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Figure 42: Field compression: SCALES with the Lagrangian path-line diffusive ( ) and path-tube averaging

( ) models, SCALES with global dynamic model ( ), and SCALES with no model ( ).

discarded grid points), and modelled SGS dissipation (percentage of the total dissipation)

for proposed SCALES are compared to: a-posteriori wavelet filtered DNS, classical LES,

SCALES with global dynamic model, and SCALES with no model. The LES is performed

using the non-adaptive wavelet collocation solver on a regular 643 grid. The solution is

de-aliased by performing a wavelet transform on the velocity field and zeroing the highest

level wavelet coefficients for each time step. As to figure 41, the resolved kinetic energy is

normalized with respect to the initial unfiltered DNS energy content. The grid compression

is evaluated with respect to the maximum field resolution. The time scale used to report the

results corresponds to approximately ten initial eddy-turnover times.

As can be seen from the energy decay plot in figure 41, the case of SCALES with no model

is only slightly under-dissipative. From figure 44 we see that this case accurately captures

the energy and enstrophy spectra. By examining the grid compression reported in figure 42

we can see that due to the adaptive nature of the numerical algorithm, the absence of SGS

dissipation results in energy transfer to the small scales, where the energy is dissipated by

viscous stresses. This process results in an increase in the number of the degrees of freedom

and causes the solution to approach CVS (Goldstein et al. 2005). This effect would be

more pronounced for higher Reynolds number flows, since SCALES with no model would

have to resolve all the scales up to Kolmogorov scale and would rely on molecular viscosity

as the only dissipative mechanism. The adaptive nature of the AWCM makes comparison

of simulations tricky because the algorithm itself attempts to add resolution if the physical

problem is under resolved. In this case good results are obtained at the cost of increased

resolution. Another interesting observation is that despite the similar initial compression,
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Figure 43: Percentage of SGS (modelled) dissipation: SCALES with the Lagrangian path-line diffusive ( ) and path-

tube averaging ( ) models, SCALES with global dynamic model ( ), and reference LES with global dynamic

model ( ).

the local Lagrangian models show a higher level of SGS dissipation because they capture

the local structure of the flow, rather than simply providing the necessary mean energy

dissipation (as in the case of both the global dynamic model and LES). This, in turn, results

in higher compression for larger times. It worth noting that the level of SGS dissipation of

SCALES closely matches that of the global model and reference LES.

Another crucial feature of the SCALES approach is seen in the energy and, more impor-

tantly, enstrophy spectra, which are shown respectively in figures 44 and 45 for two different

times. In contrast to classical LES, the SCALES results match not only in terms of temporal

evolution of the total resolved turbulent kinetic energy, but also in terms of the DNS energy

and enstrophy density spectra up to the dissipative wavenumber range. It is important to

emphasize that this close match is achieved using less than 0.4% of the total non-adaptive

nodes required for a DNS with the same wavelet solver. To highlight the significance of

such a close match, it is interesting to compare these results with those of an LES with the

global dynamic Smagorinsky model. Despite the fact that LES uses almost four times the

number of modes (1.56%), it fails to capture the small-scale features of the spectrum. In

addition, the total resolved LES kinetic energy is noticeably below the filtered DNS curve

for moderate and high wavenumbers. These differences are even more pronounced for the

enstrophy spectra.

It is worth stressing the unique feature of the SCALES approach, nameley the coupling

of modelled SGS dissipation to grid compression: more grid points are used for models

with lower levels of SGS dissipation. In other words, the SCALES approach compensates
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Figure 44: Energy density spectra at t = 0.08 (left) and t = 0.16 (right): SCALES with the Lagrangian path-line diffusive

( ) and path-tube averaging ( ) models, SCALES with global dynamic model ( ), SCALES with no

model ( ), spectral DNS ( ), wavelet filtered DNS (◦), and reference LES with global dynamic model ( ).

for inadequate SGS dissipation by increasing the local resolution and, hence, the level of

resolved viscous dissipation. This can be seen clearly by comparing to the SCALES results

with no SGS model.

As stated earlier, the absence of SGS dissipation results in the transfer of energy from

low to high wavenumbers, filling the entire wavenumber range, bringing the energy and

enstrophy spectra close to the wavelet filtered DNS spectrum. This processes continues until

the lack of SGS dissipation is balanced by the viscous dissipation. Recall that enstrophy

and viscous dissipation spectra are identical if properly normalized. Thus, an accurate

enstrophy spectrum ensures proper viscous dissipation. On the other hand, the increase

of energy in high wavenumber range results in an increase of degrees of freedom (active

wavelet coefficients or grid points), as seen in figure 42. The energy and enstrophy spectra

for SCALES with local Lagrangian models closely match each other and agree reasonably

well with the spectra for filtered DNS. The non-local character of the dissipation of the global

dynamic model results in over-dissipation at small scales and, subsequently, smaller wavelet

coefficients on the finest level of resolution, which ultimately results in the earlier removal

of the finest level of resolution from the adaptive computational grid.

Finally, SCALES with the local dynamic Smagorinsky model with both types of La-

grangian averaging are virtually identical, which highlights the similarities of both averaging

approaches.

7.5 Kinetic Energy Based SGS Models

In this section, the results of the numerical experiments are presented and discussed. The

proposed one-equation models, summarized for the sake of clarity in Table 1, are evaluated

by performing SCALES of incompressible isotropic freely decaying turbulence in a cubic box
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Figure 45: Enstrophy density spectra at t = 0.08 (left) and t = 0.16 (right): SCALES with the Lagrangian path-line diffusive

( ) and path-tube averaging ( ) models, SCALES with global dynamic model ( ), SCALES with no

model ( ), spectral DNS ( ), wavelet filtered DNS (◦), and reference LES with global dynamic model ( ).

with periodic boundary conditions. Though these localized models are specifically designed

to simulate complex non-homogeneous turbulent flows, it is nevertheless enlightening to test

them for a case for which well known theoretical and experimental results exist. Moreover,

decaying turbulence is a challenging example of statistically unsteady flow and is a good

test-case for a-posteriori verifying the accuracy of both the SGS stress and the SGS energy

dissipation models.

The simulation settings are chosen as follows. The initial velocity field is a realization of

a statistically steady turbulent flow at Reλ ∼= 72 (λ being the Taylor microscale) as provided

by a fully de-aliased pseudo-spectral DNS solution with 1283 Fourier modes (De Stefano

et al. 2005). The simulation of decaying turbulence is conducted for a temporal range of

approximately ten initial eddy-turnover times that corresponds to a final value of Reλ ∼= 22.

The relative threshold for wavelet-filtering (5) is set to ǫ = 0.43 as in Lagrangian dynamic

model. Due to the finite-difference nature of the AWCM solver, the initial resolution has

been doubled in each direction in order to keep the DNS spectral energy content intact. In

other words, SCALES is run using a maximum resolution corresponding to 2563 grid points

that corresponds to have jmax = 8 in Eq.(5).

As regards the energy equation, the following initial condition has been used for the

SGS kinetic energy: ksgs(x, 0) = βk
〈k0

res〉
〈k0

rts〉
k0

rts, where k0
res and k0

rts are evaluated, according to

definitions (15) and (65), upon the initial wavelet filtered DNS field (Vasilyev et al. 2006).

The coefficient βk determines the initial ratio between residual and resolved energy that

corresponds to the desired turbulence resolution. Based upon previous a-priori studies, it is

set for the present experiments to βk = 0.1.

In Fig. 46, the kinetic energy decay for the different models is illustrated, along with the

reference GDM and wavelet-filtered DNS solutions. All the new proposed models capture
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Figure 46: Energy decay. Left side: DSM (dashed red line) and LKM ( ). Right side: LDKM-B ( ) and LDKM-G

(dashed red). The reference GDM (green line) and wavelet-filtered DNS (�) solutions are shown for comparison on both sides.
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Figure 47: Energy spectra at t = 0.08. Left side: DSM ( ) and LKM (red dashdotted line). Right side: LDKM-B (red

dashdotted) and LDKM-G ( ). The reference GDM (green line) and wavelet-filtered DNS (�) solutions are shown for

comparison on both sides, along with the unfiltered DNS ( ).

68



Final Report - 2008

wavenumber

e
n
e

rg
y

32 64
10-3

10-2

10-1

100

101

102

DNS
filtered DNS
GDM
LKM
DSM

wavenumber

e
n
e

rg
y

32 64
10-3

10-2

10-1

100

101

102

DNS
filtered DNS
GDM
LDKM-B
LDKM-G

Figure 48: Energy spectra at t = 0.16. Left side: DSM ( ) and LKM (red dashdotted line). Right side: LDKM-B (red

dashdotted) and LDKM-G ( ). The reference GDM (green line) and wavelet-filtered DNS (�) solutions are shown for

comparison on both sides, along with the unfiltered DNS ( ).
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Figure 49: Grid compression. Left side: DSM (red line) and LKM (green). Right side: LDKM-B (red) and LDKM-G (green).

The no-model (�) and GDM ( ) solutions are shown for comparison on both sides.
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Figure 50: Energy dissipation. Left side: DSM (green line) and LKM ( ). Right side: LDKM-B ( ) and LDKM-G

(green). The reference GDM (red dashed) and wavelet-filtered DNS (�) solutions are shown for comparison on both sides.
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the energy decay slightly better than the global model. As to energy spectral distribution,

Figs. 47 and 48 show the spectra at two different time instants or, equivalently, two different

Reλ, namely, Reλ ∼= 46 (t = 0.08) and Reλ ∼= 35 (t = 0.16). The localized dynamic SCALES

solutions generally show acceptable energy spectra when compared to wavelet-filtered DNS

at different times. Note that for the cases where there are no significant wavelet coefficients

above level j = 6, the energy spectra lines stop at wavenumber 32.

Before going on with the discussion of the results, it is worth stressing the fact that

modeled solutions showing the right energy decay as well as the correct energy spectra is not

sufficient by itself to assess the effectiveness of the modeling procedure. In fact, the AWCM

solver used in SCALES allows automatic refinement of the numerical mesh in flow regions

where the model does not provide the adequate dissipation. For this reason, a deeper insight

must be gained by examining the actual grid compression. As mentioned in Section 2.4, the

compression can be defined as the ratio between the number of discarded and total allowable

wavelets coefficients (or, equivalently, the same ratio in terms of grid-points). In order for

the SCALES approach to be successful, the number of grid-points actually used during the

simulation must be less than that required for a CVS solution of the same problem with no

model. Otherwise, the adoption of a SGS model would appear useless, if not inappropriate.

The effectiveness of the SGS modeling is first demonstrated by making a comparison with

the no-model solution. The latter has been found to be initially under-dissipative (see the

following Fig. 52), thus confirming the need for the extra dissipation provided by the SGS

model. However, the absence of modeled SGS dissipation results in energy transfer to the

small scales, where the energy is dissipated by viscous stresses. Owing to the self-adaptive

nature of the numerical method, this process results in increasing the number of resolved

modes that causes the solution in practice to evolve towards the DNS approach.

As shown in Fig. 49, the gain in terms of compression with respect to the no-model

solution is clear. The present grid compression is above 99.5% for all the different proposed

models at all time instants, which corresponds to retaining about 1% of the 1923 modes

used for de-aliasing by the pseudo-spectral DNS (De Stefano et al. 2005). The achieved

compression is comparable to the reference global dynamic model (Goldstein et al. 2005).

The fact that different models show different compression, though using the same relative

wavelet thresholding level, is not surprising because the adaptive-gridding is closely coupled

to the flow physics and, therefore, it is strongly affected by the presence and type of the SGS

stress model forcing.

The direct coupling of grid compression with resolved and SGS dissipation can be clearly

seen by examining the corresponding Figs. 49, 50 and 51. The decrease of SGS dissipation (in

the DSM case) results in the decrease of grid compression and the increase of resolved energy

dissipation. That reenforces the above discussion about the effectiveness of the model. Also

note that, despite the initial similar compression and similar initial level of SGS dissipation,

the compression for the global dynamic model is higher. In fact, the non-local character
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Figure 52: Energy decay (left) and energy spectra at t = 0.08 (right) for non-adaptive LES supplied with energy-based

models: DSM ( ), LDKM-B ( ) and LDKM-G (red dashed line), along with the corresponding GDM (green) and

wavelet-filtered DNS (�) solutions. The unfiltered DNS ( ) spectrum is shown for comparison.

of the GDM results in over-dissipation at small scales and fewer wavelet coefficients on the

finest levels, which ultimately results in the earlier complete removal of the highest level

of resolution from the adaptive computational grid, as clearly seen in Figs. 47 and 48. In

contrast to the global model, the new models are capable of capturing the local structure of

the flow, rather than providing only the mean energy dissipation.

We want to emphasize that, differently from classical LES, the SCALES solution matches

the filtered DNS not only in terms of temporal evolution of the total resolved energy (or other

global quantities), but also in terms of recovering the DNS energy and enstrophy spectra up

to the dissipative wavenumber range. This close match is achieved using less than 0.5% of

the total non-adaptive nodes required for a DNS calculation with the same wavelet solver.

To highlight the significance of such an agreement, one can compare the present results as

shown in Figs. 46 and 47 with those of 643 finite-difference non-adaptive LES supplied with

either the global dynamic Smagorinsky model (as reported in (Vasilyev et al. 2006)) or the

present energy-based ones. Despite the fact that LES solutions use about three times the

number of modes, they fail to capture the small-scale features of the flow and the resolved

kinetic energy spectrum is noticeably lower than the filtered DNS one for moderate and high

wavenumbers. This leads to the under-estimation of the energy content of the flow-field so

that the LES solutions appear over-dissipative for the first half of the simulation period as

illustrated in Fig. 52, where the energy evolution and energy spectra for non-adaptive LES
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Figure 53: Enstrophy spectra at t = 0.08. Left side: DSM ( ) and LKM (green line). Right side: LDKM-B (green) and

LDKM-G ( ). The reference GDM (red) and wavelet-filtered DNS (�) solutions are shown for comparison on both sides,

along with the unfiltered DNS ( ). Furthermore, non-adaptive LES supplied with GDM and LDKM-G are reported

(blue) on the left and the right side, respectively.

supplied with energy-based models are reported. These differences are more pronounced for

the enstrophy spectra, which are illustrated in Fig. 53 (for t = 0.08). That is even more

important since the enstrophy spectra, if properly normalized, coincide with the viscous

dissipation spectra, so that the close agreement provided by wavelet-based adaptive LES

ensures proper spectral distribution of resolved viscous dissipation.

Finally, it is instructive to discuss the “unexpected”, by classical LES standards, good

performance of the dynamic structure model. In fact, in LES formulations, pure similarity

models fail in providing the right SGS dissipation, leading to under-dissipative solutions,

and therefore they require an eddy-viscosity model to be used in conjunction with them.

In this work, the capability of the SCALES method to resolve small dissipative scales, at

the small additional cost of slightly lower compression, makes it possible to avoid the use

of an additional dissipative mechanism as in mixed formulations. Even though the present

results are certainly affected by the low Reynolds-number nature of the flow, one can expect

a similar good behavior to hold also for higher Reynolds-number simulations. That is one

of the objectives of future work on the subject.
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Figure 54: LDKM-B solution of forced turbulence. Left side: resolved ( ) and SGS ( ) energy. Right side:

averaged energy spectra. The reference DNS solution is reported on both sides (red line).

7.6 Forced turbulence

In order to test the energy-based modeling procedure for a statistically steady flow, let us

consider the case in which a forcing term fi is added at the right-hand-side of the momentum

equation (12). Namely, following the linear forcing scheme proposed by Lundgren (Lundgren

2003), let the force be proportional to the velocity, fi = Qui
>ǫ, Q being a constant parameter

that can be determined from the energy balance corresponding to the steady state. This way,

the solution is continuously supplied with the amount of energy necessary to keep the total

resolved energy (statistically) constant in time. In fact, the parameter Q can be showed to

be directly linked to the eddy turnover time of the turbulent velocity field (e.g., (Rosales &

Meneveau 2005)). For the present numerical experiments Q = 6 is used, which corresponds

to have τeddy = 0.056. The initial velocity field is obtained by wavelet-filtering of the fully de-

aliased pseudo-spectral 1283 DNS statistically steady solution with Reλ ∼= 60. The simulation

is conducted for a temporal range of approximately one hundred eddy-turnover times.

The kinetic energy evolution for the LDKM-B solution of linearly forced homogeneous

turbulence is illustrated, along with the reference unfiltered pseudo-spectral DNS, on the left

side of Fig. 54. The corresponding time-averaged energy spectra are shown on the right side

of the same figure. Once again, it is worth stressing how the wavelet-based solution is able

to reproduce to some extent the energy of the small-scale motions. The SCALES solution

shows a grid compression that is in average as high as 97%, while the SGS dissipation is
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Figure 55: Energy evolutions for LDKM-B solution of forced turbulence with initial SGS energy altered by a factor of either

102 (red line) or 10−2 (green). The resolved and SGS energies are reported along with the unaltered solution ( ) on the

left and the right side, respectively.

of the same order of magnitude as the resolved viscous dissipation. Moreover, by properly

redefining the Taylor microscale in terms of the total energy dissipation, resolved viscous

dissipation plus SGS dissipation, the wavelet-based solution provides the same Reynolds-

number as the reference DNS. These results demonstrate the effectiveness and efficiency of

the energy-based SGS model in the forced case.

Finally, to definitely verify the stabilizing action of the built-in feedback mechanism as-

sociated with the dynamic energy-based modeling procedure, the following experiment is

conducted: the initial SGS kinetic energy content of the flow is artificially altered by multi-

plying the variable ksgs(x, 0) by a factor of either 102 or 10−2. This way, the initial SGS energy

is either much more or less than the equilibrium value provided by the wavelet-filtered DNS

solution. Nevertheless, the LDKM procedure is able to provide a flow evolution that con-

verges after some time toward the unaltered stable solution so that the equilibrium levels are

restored. This is clearly illustrated by inspection of Fig. 55, where the evolutions of resolved

and SGS energy are reported, on the left and the right side, respectively. This demonstrates

that the energy-based method works in practice: solving a subgrid energy transport equation

properly represents the energy transfer between resolved and SGS motions, both forward and

backscatter.
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8 Achievements and Future Extensions

This project has advanced the Adaptive Large Eddy Simulation methodology by developing

multiple local subgrid scale models, implementing them in Stochastic Coherent Adaptive

Large Eddy Simulation solver, and validating them in the context of homogeneous turbu-

lence. The progress made in this project, both in the area of model and parallel algorithm

development, has positioned us to take a next step and start applying the approach to more

challenging problems of engineering interest, mainly high Reynolds number turbulent flows

in complex geometries. To achieve this goal, the method needs to be extended to include

Brinkman penalization and the models need to be tested, validated for bounded flows. Par-

allel Dynamically Adaptive Wavelet Collocation solver developed as a part of this project

can be applied to other areas of physics and engineering, where localized structures play an

important role. Obvious applications are in the area of chemical engineering, atmospheric

sciences, material sciences, and bio-engineering.

The research program funded by the project provided opportunities for four graduate and

one postdoctoral students to participate in multidisciplinary research and work together with

a team of international researchers: Prof. Nicholas K.-R. Kevlahan (McMaster University,

Canada), Prof. Giuliano De Stefano (Seconda Universitá di Napoli, Italy), and Dr. Daniel E.

Goldstein (Northwest Research Associates). These students received research experience and

training in fluid mechanics, wavelet theory, and numerical simulations. Two Ph.D. students

involved in this project have graduated. The results of this research have been presented

at professional meetings (APS, DLES6) and at universities and research centers around the

world. The methodology and findings are documented in archival journals such as Physics of

Fluids (De Stefano et al. 2008) and Journal of Turbulence (Goldstein et al. 2005, Vasilyev

et al. 2008) as well as in conference proceedings (De Stefano et al. 2005, Vasilyev et al.

2006).
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