
UCRL-JRNL-211966

"Test" is a Four Letter Word

G. M. Pope

May 3, 2005

Better Software Magazine

This document was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor the University of California nor
any of their employees, makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or the University
of California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or the University of California, and shall not be
used for advertising or product endorsement purposes.

Updated October 14, 2003

“Test” is a Four Letter Word
By Gregory M. Pope

12/28/03 v 1.0

For a number of years I had the pleasure of teaching Testing Seminars all over the world
and meeting and learning from others in our field. Over a twelve year period, I always
asked the following questions to Software Developers, Test Engineers, and Managers
who took my two or three day seminar on Software Testing:

“When was the first time you heard the word test?”
“Where were you when you first heard the word test”?
“Who said the word test”?
“How did the word test make you feel”?

Most of the thousands of responses were similar to “It was my third grade teacher at
school, and I felt nervous and afraid.”

Now there were a few exceptions like “It was my third grade teacher, and I was happy
and excited to show how smart I was.”

But by and large, my informal survey found that “testing” is a word to which most people
attach negative meanings, based on its historical context. So why is this important to
those of us in the software development business? Because I have found that a
preponderance of software developers do not get real excited about hearing that the
software they just wrote is going to be “tested” by the Test Group. Typical reactions I
have heard over the years run from:

“I’m sure there is nothing wrong with the software, so go ahead and test it, better you
find defects than our customers.”

to these extremes:

“There is no need to test my software because there is nothing wrong with it.”

“You are not qualified to test my software because you don’t know as much as I do about
it.”

“If any Test Engineers come into our office again to test our software we will throw them
through the third floor window.”

So why is there such a strong negative reaction to testing? It is primitive. It goes back to
grade school for many of us. It is a negative word that congers up negative emotions. In
other words, “test” is a four letter word. How many of us associate “Joy” with “Test?”
Not many. It is hard for most of us to reprogram associations learned at an early age.

So what can we do about it (short of hypnotic therapy for software developers)?

Well one concept I have used (and still use) is to not call testing “testing.” Call it
something else. Ever wonder why most of the Independent Software Testing groups are
called Software Quality Assurance groups? Now you know. Software Quality
Assurance is not such a negatively charged phrase, even though Software Quality
Assurance is much more than simply testing.

It was a real blessing when the concept of Validation and Verification came about for
software. Now I define Validation to mean assuring that the product produced does the
right thing (usually what the customer wants it to do), and verification means that the
product was built the right way (in accordance with some good design principles and
practices). So I have deliberately called the System Test Group the Verification and
Validation Group, or V&V Group, as a way of avoiding the negative image problem. I
remember once having a conversation with a developer colleague who said, in the heat of
battle, that it was fine to V&V his code, just don’t test it! Once again V&V includes
many things besides testing, but it just doesn’t sound like an onerous thing to do to
software.

In my current job, working at a highly regarded national laboratory with world renowned
physicists, I have again encountered the negativity about testing software. Except here
they don’t take kindly to Software Quality Assurance or Software Verification and
Validation either. After all, software is just a trivial tool to automate algorithms that
implement physics models. Testing, SQA, and V&V take time and get in the way of
completing ground breaking science experiments. So I have again had to change the
name of software testing to something less negative in the physics world. I found (the
hard way) that if I requested more time to do software experimentation, the physicist’s
resistance melted. And so the conversation continues, “We have time to run more
software experiments. Just don’t waste any time testing the software!”

In case the concept of not calling testing “testing” appeals to you, and there may be an
opportunity for you to take the sting out of the name at your place of employment, I have
compiled a table of things that testing could be called besides “testing.” Of course we
can embellish this by adding some good sounding prefixes and suffixes also. To come up
with alternate names for testing, pick a word from columns A, B, and C in the table
below. For instance Unified Acceptance Trials (A2,B7,C3) or Tailored Observational
Demonstration (A6,B5,C5) or Agile Criteria Scoring (A3,B8,C8) or Rapid Requirement
Proof (A1,B9,C7) or Satisfaction Assurance (B10,C1). You can probably think of some
additional combinations appropriate for your industry. Just don’t call it testing!

Don’t Call It Testing Table

A B C
1. Rapid 1. Quality 1. Assurance
2. Unified 2. Verification (and) 2. Validation
3. Agile 3. Experimental 3. Trails
4. Meta 4. Examination 4. Study
5. Flexible 5. Observational 5. Demonstration
6. Tailored 6. Conceptual 6. Prediction
7. Scalable 7. Acceptance 7. Proof
8. Integrated 8. Criterion 8. Scoring
9. Independent 9. Requirement
10. Observed 10. Satisfaction
11. Customer Based
12. <none>

So now that there are possible alternatives to using the negative word “test,” we still have
to deal with what to call the situation that exists when the expected result of running the
test (experiment, study, examination, etc.) does not agree with the actual result. Common
words currently used to describe this situation are “bug,” “defect,” “failure,” “fault,” or
the somewhat less judgmental “incident.” However, it may be wise to look at some
additional alternatives. These names can also be useful for annotating “defect” reports
and findings using automated tracking tools. For instance we could report a Potential
Anomaly (A1, B1) or Unstable Believability (A6, B3) or Irregular Correctitude (A7, B2)
or Suspect Convergence (A2, B5) or Fuzzy Correlation (A10, B6) or a Biased
Presentation (A11, B11). For medical equipment a Correctus Minimus may be
appropriate, and for software used in biological applications the Hemiptera Heteroptera
(Latin for “bug”) might have a nice ring.

Don’t Call It a Bug Table

A B
1. Potential 1. Anomaly
2. Suspect 2. Correctness
3. Tentative 3. Believability
4. Pseudo 4. Certainty
5. Unresolved 5. Convergence
6. Unstable 6. Correlation
7. Irregular 7. Correctitude
8. Arbitrary 8. Correspondence
9. Random 9. Censure
10. Fuzzy 10. Result
11. Biased 11. Presentation

Perhaps you can add to the “Don’t Call It A Bug” table, as well.

With a little creativity, those of us who specialize in this craft with the negative
connotation can have some fun coming up with more palatable terminology. In the not
too distant future we may hear conversations as follows:

“The software was so good that the developers felt it to be without bugs and not
necessary to test. We did, however, perform some Rapid Requirement Proofs and found
a number of cases of Irregular Convergence and Biased Believability. These findings
were handled by the developers as trivial enhancements, which have now been fully
implemented, and we are ready to ship after performing the mandatory Independent
Observational Scoring.”

Good Luck.

