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Abstract:

The investigation of a complex system is often performed using computer generated response data supplemented by
system and component test results where possible. Analysts rely on an efficient use of limited experimental resources
to test the physical system, evaluate the models and to assure (to the extent possible) that the models accurately
simulate the system under investigation. The general problem considered here is one where only a restricted number
of system simulations (or physical tests) can be performed to provide additional data necessary to accomplish the
project objectives. The levels of variables used for defining input scenarios, for setting system parameters and for
initializing other experimental options must be selected in an efficient way. The use of computer algorithms to support
experimental design in complex problems has been a topic of recent research in the areas of statistics and engineering.
This paper describes a resampling based approach to formulating this design. An example is provided illustrating in
two dimensions how the algorithm works and indicating its potential on larger problems. The results show that the
proposed approach has characteristics desirable of an algorithmic approach on the simple examples. Further
experimentation is needed to evaluate its performance on larger problems.

Introduction accomplishing this selection is discussed and
illustrated in this paper.

Many applications in science and engineering have

turned to computational simulation -- the use of large
physics-based computer codes -- to supplement
physical test data for systems analysis. The use of
simulation codes introduces a host of new error
sources into an analysis. These sources range from
conceptual and mathematical modeling uncertainties
to convergence and roundoff errors resulting from
discretization of the (generally) continuous
conservation equations, and initial and boundary
conditions (see Oberkampf, et al 1999). Included in
this list is the modeling uncertainty introduced when
a response surface is constructed to model the system
response at points in the input space (that aren’t
evaluated through the computational simulation
model). Itis the efficient reduction of this “response
modeling uncertainty” through selection of
simulation runs that provides the focus of the
computer experimental design. A method for

In An Ideal Computer World

Consider Figure 1. This figure illustrates two general
problems often approached using computational
simulation and Figure 2 shows how response model
uncertainty might impact each type of analysis.
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Figure 1 indicates how, in an ideal computing world,
problems involving optimization (used in engineering
design) or involving uncertainty analyses (used for
prediction) could be solved by setting up a grid
across the input space, making the necessary
calculations and either choosing the optimal value
(design) or integrating numerically across the
response with respect to the input distributions to
calculate the distribiition of the desired performance
criteria (prediction).

In 4 Less Ideal Computer World

Computational simulation using large physics-based
codes is, however, an expensive process. A “high
fidelity” code can require days of run time, even
when executed on the fastest computer system. As
the computer systems become more sophisticated, so
do the simulation codes — incorporating more detail
of the physical processes and their interactions.
Because the codes are so expensive to run, the
number of simulations that can be performed is
limited. Very often, the system responses are
modeled using data from these computational
simulation runs and it is the response model that is
then used through the remainder of the analysis.
Figure 2 illustrates how additional uncertainty might
be introduced in this situation. For the design
problem, the exact optimum would not be known.
For the prediction problem, an additional component
of uncertainty would be introduced.
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Figure 2

Taking this view, the computational simulation
model is executed using inputs that provide
appropriate computer data for constructing the
response surface. The response surface is a spatial
model, defined throughout the input space, that is
based on previous simulations and physical test
results. The response surface is used together with
inputs that may or may not be probabilistically
described to perform the remainder of the analysis

and evaluate the performance criterion. It is
precision in the performance criterion that should
dictate the additional simulation runs to perform (i.e.
the computer experimental design). Note three clear
features of a good choice of design:

1. The computed responses should have an impact
on the performance criterion -- for example, in a
reliability problem, regions of the input space where
the response is clearly “safe” or clearly “failed” are
of little interest, even if these regions have high
response model uncertainty.

2. Runs in regions of high modeling uncertainty
provide more information -- computer runs, “close”
to previous experimentation where the response is
known, provide mostly redundant information.

3. Runs in regions of higher relative probability in
uncertainty analyses are more likely to impact the
performance measures -- hence, resolving response
modeling uncertainty in these areas will generally
increase performance measure precision.

These criteria can (and will in the Example Section)
be used on a problem of low dimension to evaluate
the selected experimental design.

The Resampling
Methodology

Experimental Design

The approach to computer experimental design
pursued here consists of two basic steps. First, the
response is characterized by a probability measure
based on data from previous computer runs and
physical testing. Second, an algorithm is executed
for candidate experimental designs that evaluates
their potential for yielding relevant information and
increasing precision in the estimate of the
performance measure. The design that indicates the
most potential is selected for the computational
simulation runs.

Estimating a Probability Measure over Responses

Data from computer analyses and physical test data
give response values at specific locations in the input
space. In general, however, the performance criteria
are evaluated using information throughout this
space. The step of constructing a probabilistic
representation of response values throughout the
input space in a manner consistent with the sample
data is a focus of our current research. The approach
that is taken for results provided in this paper is to
use a model of the form:
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where 7 and j range over the inputs. Here, ¢ is a
stochastic process over the inputs X defined through
a spatial covariance function:

y(X,.,XJ) = yﬂlx, —Xj") for any i and ;.

This model has been used successfully for
applications in geology and hydrology for several
years. It was introdiced as a model for engineering
analyses in Sacks, et al (1989), and is discussed in
detail in O’Connell and Wolfinger (1997). The
model (1) describes a response surface defined over
the input space. Our objective is to use response
surfaces like this to construct a discrete
approximation to a probability measure. This is
accomplished here by constructing an ensemble of
‘realizations’ of the form (1) where the fraction of
realizations in any interval of the response space is
roughly consistent with the probability of a response
in this interval according to relative likelihoods of the
model parameters based on the original simulation
and test data,
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Figure 3

Figure 3 shows three possible members of such an
ensemble. Note that individual evaluation of each
realization provides an estimate of the performance
criterion vielding an optimal value (for the
optimization problem in Figure 1) or a performance
measure distribution (for the uncertainty problem).
In the latter case, considering this distribution for
each realization separately, one can partition the
uncertainty between response modeling and input-
based uncertainty propagated through the analysis.

The method used here to generate the realizations is
also borrowed (in part) from the geosciences. First, a
polynomial is generated randomly using the fitted
polynomial coefficients and the coefficient
correlation structure assuming normality. Next, a
stochastic surface is added to this estimate to

complete the realization. The stochastic surfaces are
constructed using the Sequential Gaussian Approach,
see Deutch and Journel (1998), with a covariance
model fitted to the residuals of the polynomial. The
realizations are conditioned to fit exactly the residual
values of the generated quadratic surface, and
consequently, all realizations provide an exact fit to
the original data. This approach to estimating a
probabilistic representation of the response is one of
several being considered -- it is the approach used in
the example problem presented in the final section of
this paper.

A Resampling-Based Experimental Design Algorithm

The algorithmic portion of the proposed methodology
is illustrated through the flowchart in Figure 4.
Inputs to the algorithm are the probabilistic
representation of the response discussed in the
previous section and a method for selecting candidate
designs. Output from the algorithm is the
experimental design -- sets of inputs to be run using
the computational simulation model. The selection
of candidate designs is not discussed in detail here.
At worst, the designs could be generated randomly
using the input probability distributions where
applicable. Efficiency, however, is greatly improved
when random search methods or branch and bound
methods are employed to select candidate designs.
For the example problems, an evolutionary algorithm
was used to generate the candidates.

Realization

Resample Loop

Candidate Design Loop

Figure 4

The outer loop in Figure 4 is the candidate-design
loop. Candidate designs are selected, evaluated
through the inner loop and compared to determine
their “information potential”. A discussion of the
inner loop is required for a meaningful description of
the metrics used for comparison. The inner loop is
the resample loop. The processes involved here are
similar to the construction of an approximate
probability measure discussed in the previous section.
Each time around this loop, one realization from the
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initial ensemble is selected. Hypothetical data at the
candidate design points are taken from the selected
response surface and combined with the actual data.
The augmented data set is evaluated in the same way
the initial data were, and the resulting distribution(s)
of the performance measure are computed. This
provides an estimate of the (remaining) response
model uncertainty, valid if that design were chosen,
and the response was as indicated by the selected
initial realization.

This process is repeated using the other realizations
in the ensemble to obtain the hypothetical data at the
design points, each time yielding an estimate of (post
computer runs) response model uncertainty. Each
time around the loop provides an estimate of the
performance measure distribution conditioned on the
design data resampled on that loop. Differences
between these distributions on different loops provide
an indication of the discriminatory potential of the
design.

For the example given in the next section it is an
expectation that is of interest when evaluating the
performance criterion. Hence, as described above,
we can talk about the within resample variance of the
expectations:
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where there are k' realizations in the inner loop
evaluation. We can also estimate the between
resample variance of the expectations:

2 1k ===
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where there are k realizations in the original
ensemble or where that ensemble is resampled k
times.’ Note that an umnformatlve design would yleld

roughly c = o-z/k' and &7} =o~2/k k where 62

is the variance of the performance measure attributed
to input uncertainty. The ratio 62/62 = i/ k for the
uninformative design provides an indication of

the information provided by the design. A good
design, however, would yield a substantially higher
value for &i and a (slightly) lower value for 6-3. It
is this ratio that is used to select the best design in the
outer loop for the example problem. Different (but
usually fairly simple) metrics are required for other
types of problems and performance measures.

Example

A simple analytical example in two dimensions is
provided here to demonstrate how this approach
works. Figure 5 shows the true (but generally
unknown) response r(xl,xz) and a plot of the
average realization based on a sample taken (from the
true surface) at ten input locations.
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Figure 5

For any value of x,, the performance measure was
computed as:

o) =1(e"Gax) > 10)* (e ) - 10)

The distribution function of the performance measure
was then computed assuming a uniform distribution
for x, as:

Fpn@ = [1(p(x;) > )i,

Figure 6 shows mean and standard deviation contours
computed from the fifteen initial generated
realizations.
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Figure 6

Six of these realizations are plotted in Figure 7.
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Figure 7

Figure 8 shows the fifteen probability distribution
functions associated with these realizations together
with the density function calculated for their equally
weighted mixture. This latter (darker) cumulative
distribution function includes uncertainty propagated
through to the performance measure from the
distributed input x, and response modeling
uncertainty. From these density functions, we

a2 a2 . .
compute &, =1??, where &, is the estimated

mixture variance -- a quantity similar to 6-?;, but
based only on the initial data.
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Figure 8

The algorithm described in the previous section was
run to select a 3-point design. Figure 9 illustrates this
design on the contour maps of mean and standard
deviations together with data from the initial runs.
Note that this selection tends to support the first two
criterion listed earlier for a good experimental design.
The design points are at input locations that are of
relatively high value in modeling uncertainty and
appear to have a significant impact on the
performance measure. The third criterion is not
tested in this example because of the uniform
distribution selected for x,.
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Figure 9
Summary

A resampling-based approach to the algorithmic
selection of 1input locations for computer
experimentation was described and illustrated.
Results on a simple analytical example demonstrate
how the methodology might be used. These
encouraging results suggest that this approach might
be of significant value for higher dimensional
problems where the complexities make a solution
based entirely on analyst’s intuition impossible.
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