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“In an age of spreading pseudoscience and anti-rationalism, it behooves those of
us who believe in the good of science and engineering to be above reproach
whenever possible. Public confidence is further eroded with every error we
make... As Robert Laughlin noted in this magazine, ‘there is a serious danger of
this power [of simulations] being misused, either by accident or through
deliberate deception.’ Our intellectual and moral traditions will be served well
by conscientious attention to verification of codes, verification of calculations,
and validation, including the attention given to building new codes or modifying
existing codes with specific features that enable these activities.”

Patrick Roache [Roa04]



Executive Summary

This document discusses problems with which to augment, in quantity and in quality, the
existing tri-laboratory suite of verification problems used by Los Alamos National
Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Sandia
National Laboratories (SNL). The purpose of verification analysis is demonstrate whether
the numerical results of the discretization algorithms in physics and engineering
simulation codes provide correct solutions of the corresponding continuum equations.
The key points of this document are:

e Verification deals with mathematical correctness of the numerical algorithms in a
code, while validation deals with physical correctness of a simulation in a regime
of interest. This document is about verification.

e The current seven-problem Tri-Laboratory Verification Test Suite, which has
been used for approximately five years at the DOE WP laboratories, is limited.

e Both the methodology for and technology used in verification analysis have
evolved and been improved since the original test suite was proposed.

e The proposed test problems are in three basic areas:

1. Hydrodynamics
2. Transport processes
3. Dynamic strength-of-materials

e For several of the proposed problems we provide a “strong sense verification
benchmark,” consisting of (i) a clear mathematical statement of the problem with
sufficient information to run a computer simulation, (ii) an explanation of how the
code result and benchmark solution are to be evaluated, and (iii) a description of
the acceptance criterion for simulation code results.

e [t is proposed that the set of verification test problems with which any particular
code be evaluated include some of the problems described in this document.

Analysis of the proposed verification test problems constitutes part of a necessary—but
not sufficient—step that builds confidence in physics and engineering simulation codes.
More complicated test cases, including physics models of greater sophistication or other
physics regimes (e.g., energetic material response, magneto-hydrodynamics), would
represent a scientifically desirable complement to the fundamental test cases discussed in
this report.

The authors believe that this document can be used to enhance the verification analyses
undertaken at the DOE WP Laboratories and, thus, to improve the quality, credibility,
and usefulness of the simulation codes that are analyzed with these problems.
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Introduction

The DOE/NNSA Advanced Simulation & Computing (ASC) Program directs the
development, demonstration, and deployment of physics and engineering simulation
codes. These codes, used at Los Alamos National Laboratory (LANL), Lawrence
Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL), are
arguably among the most complex simulation codes utilized in computational science.
The defensible utilization of these codes for high-consequence decisions requires
defensible verification and validation of the simulation software.

What is Verification?

Verification is the process of demonstrating that numerical solutions of the discretized
algorithms in simulation software are the correct solutions of the corresponding
continuum equations. Consequently, verification represents an important aspect of the
development, assessment, and application of simulation software for physics and
engineering. An essential element of the verification process is the quantitative analysis
of simulation code performance on well-defined problems. The outcome of such analyses
provides hard evidence of mathematical consistency between the mathematical
statements of the physics models and their discrete analogues as implemented with
numerical algorithms in the simulation codes.

One of the important lessons of the past ten years of the ASC program is the complexity
and the importance of verification. The challenge of verification is compounded by the
fact that, at any point in time, verification cannot be considered to be complete in a
rigidly logical sense. Rather, just as in validation, the progress of verification is measured
primarily by the accumulation of evidence that numerical solutions of the continuum
equations are indeed rigorously correct and accurate for particular calculations. The
degree to which verification has been achieved directly influences the conduct of
validation, as well as our sense of the quality of specific applications calculations. The
simplest meaning of this point is that verification provides quantification of the numerical
component of the “error bar” around calculations. When this error bar component is
incomplete or completely missing, it is difficult or impossible to specify the overall
accuracy of calculations. For example, in the absence of verification evidence, “good
agreement” of calculations with experimental data may be an irrelevant observation, as
the numerical solution could be completely wrong and the experimental agreement
completely accidental.

Verification and Code Development

Recognition of the importance of verification is the essential factor in devising rational
and effective means of accomplishing it. We seek to determine necessary elements of
verification, to sensibly use available resources to realize these elements, and to
rigorously understand the products of these analyses. Verification is affected by the
manner in which software is developed and the skill with which that software is used.
Simply put, ASC software cannot be proven to be mathematically correct and,



consequently, the accumulation of quantitative evidence remains the exclusive basis for
inferring the mathematical correctness. The practical view is that this evidence must be
accumulated over the long run. This accumulation occurs throughout the on-going
processes of code development as well as during the subsequent code usage. Both
activities are sources of necessary evidence that ASC codes achieve mathematical
conditions necessary for their stockpile stewardship applications.

Verification evidence emerging from code development is generated by software
engineering processes applied (implicitly or explicitly) during that development, and by
the specific testing practices employed by the development personnel. Code usage
evidence is a more subtle, complex, and diverse body of information that emerges from a
heterogeneous group of users. Testing executed under the umbrella of code development
is not restricted to the verification test problems that we discuss in this report;
nevertheless, we have as a goal that our problems become useful as critical testing
elements for code developers. However, unlike other testing procedures applied by code
developers (including, e.g., unit tests and the restricted cases applied in regression
testing), verification test problems also are relevant to code users. In fact, many of these
test problems originated in user communities associated with given subject matter
expertise. In developing this report, we have strived to take best advantage of the
overlapping domains of interest of code developers and of code users: this intersection
distinguishes useful verification test problems. Correct execution of test problems as
described here will increase the level of confidence of code developers and of code users.

Verification Test Problems

There exists an agreed-upon set of problems used by the Laboratories for verification
purposes. This set of seven problems [Bro06] forms a nominal basis with which to assess
code capabilities. In recent years, verification analysis capabilities have matured
significantly, enabling augmentation of the test suite. An intensified desire has developed
within the code community for an enhanced set of problems that extends the scope of the
code physics assessed and further challenges code capabilities.

The purpose of this document is to list problems with which to augment, both in quantity
and in quality, the existing Tri-Laboratory Test Suite (TLTS) of verification problems
used by LANL, LLNL, and SNL. We propose more problems than would probably be
included in a finalized verification suite: we do so to encourage discussion within the
community regarding the advantages and disadvantages of each problem. The burden
lies with the code community—model developers, code developers, analysts, and end-
users—to agree upon an expanded set of problems that will improve verification analyses
and, thereby, enhance the quality of the physics simulations.

We believe that one measure of success of this effort is providing a set of problems that
adds to the code testing associated with the JOWOG-42 code comparison activity
[JAIO7]. Verification test problems provide evidence that a code is mathematically
correct; this approach complements the JOWOG-42 problems, which typically serve to
assess physics simulation capabilities for more complicated and ambiguous situations,



albeit with less definitive expectations as far as drawing conclusions from the analysis of
the problems. These two aspects, viz., (i) the code comparison emphasis of JOWOG-42
and (ii) a rigorous process for applying a verification test suite, each serve distinct
purposes, but we believe there is common ground that is worth recognizing. The future of
both code verification and JOWOG-42 will be well served by evolving toward a unified
and stable suite of mathematically rigorous test problems and analysis techniques.
Among the necessary factors to achieve this goal are (i) enriching the physics associated
with the verification test suite and (ii) applying more rigor to the analysis of the JOWOG-
42 problems. This report makes some progress on both of these issues, but much remains
to be accomplished.

Code Verification

Verification can be summarized as the analysis of whether the numerical solutions of the
discrete algorithms provide accurate solutions of the corresponding continuum equations.
Distinct numerical schemes based on the identical continuum equations can produce
radically different quantitative (and qualitative) results; therefore, while one may obtain
nominally correct solutions of the discretized schemes, those results might be inaccurate
solutions of the underlying continuum equations. Consequently, verification analysis
constitutes a critically important aspect of the development, assessment, and application
of simulation software for physics and engineering. It is important to distinguish between
verification for the purpose of proving code correctness, and for providing algorithmic
assessment; both activities have high value, but differ in details and tenor. An essential
element of any verification process is the quantitative analysis of the simulation code
performance on well-defined problems. The outcome of such analyses provides
defensible evidence of mathematical consistency between the mathematical statements of
the physics models and their discrete analogues as implemented with numerical
algorithms in the simulation codes.

Verification is needed for scientific simulation codes because these codes are designed to
produce approximate solutions to mathematical problems for which (i) the exact solution
is not known and (ii) knowledge of the error is potentially as valuable as (or more
valuable than) knowledge of the solution, per se. Most software returns either exact
solutions to problems with exact solutions (e.g., banking, spreadsheets) or results for non-
mathematical problems having only a subjectively defined goal (image processing, photo
management, word processors, etc.). Due to this critical aspect of scientific simulation,
software quality practices from the broader industry (e.g., regression testing) are helpful
but are not sufficient for high-consequence physics/engineering simulation codes.
Additionally, it is important to recognize that sensitivity analysis (see, e.g., [Sal04,
Tru06]) cannot replace verification. The determination of a relative lack of sensitivity to
mesh density or time step size does not imply that the calculation is necessarily
converged. Instead, a lack of sensitivity may result from a calculation being very far
from the asymptotic range of convergence, a conclusion that can be drawn from the
verification process.



At its core, verification of ASC calculations both quantifies numerical errors and defines
a rigorous basis for believing that quantification. These two goals are inseparable. It is a
useless activity to provide numerical error estimates without presenting evidence to
support them. Providing an error estimate for complex problems falls under the purview
of solution (or calculation) verification, while providing the rigorous basis for such
estimates is achieved with code verification. The overall activity of verification is the
combination of hoth code and solution verification. The verification test problems that
are the subject of this report are intended to comprise necessary conditions for code
verification, mainly because they provide an opportunity to link both code and
calculation verification in a way that is both relevant to code developers and users.

Verification and Software Testing

Software testing is critical and has had an unquestionably positive presence in ASC
software development. Testing that is closest to code development centers on software
engineering techniques, such as unit testing; such testing primarily addresses the correct
functioning of software. The major factor that drives interest in the creation and
application of the verification test problems that we present is that ASC software can
function perfectly and provide mathematically incorrect solutions to the underlying
continuum equations. A simple example of what can cause this is incorrect input: for
example, a numerical mesh that is inadequate for required accuracy levels. Foremost,
however, the problem is driven by the potential for incorrect mathematics to be
instantiated in the implemented software. What distinguishes computational science from
other kinds of software development are the inevitable challenges created by
mathematical complexity: this stands as the single most important factor in driving the
creation of verification test problems.

To amplify this point, we observe a persistent confusion of verification testing with
regression testing. These are completely different testing procedures because they have
completely different goals. Verification testing, as we define it here, aims to develop
evidence of mathematical correctness in the implemented software. Regression testing is
a software engineering technique that assesses the robustness of software to frequent
changes. Regression tests properly need not have any element of mathematical
correctness as their goal. Regression tests reduce to a (typically large) collection of
relatively simple problems that are executed at a regular (typically frequent) time
interval. Regression testing seeks principally to reduce the amount of software rework
that is created by the introduction of mistakes in software additions. This reduction is
accomplished by comparing today’s code with yesterday’s code via execution of the
regression test suite. Thus, regression testing targets software stability, not mathematical
correctness. Regression testing is very successful from this point of view, although there
remain major issues related to the size and complexity of the regression test suite, the
frequency of execution, the need to “re-baseline” as inevitable algorithm modifications
are implemented, etc. (Indeed, the belief that code stability enabled by regression testing
outweighs the relatively large effort for managing a regression test suite is disputed in
some quarters.)



Another mistake made in the interpretation of verification tests versus regression tests is
that if verification tests are truly different, then those test problems must not be able to be
regularly executed by code developers. Verification test suites can be implemented,
managed, and applied by code developers just like regression tests. The major differences
are (1) it will take more resources (people, computers, time) to actually execute a
verification test suite, especially if convergence analysis is included as part of the testing;
(i1) the time interval of execution of a verification test suite must be different than for
regression testing; and (iii) the brute force methods for comparing today’s regression test
suite results versus yesterday’s baseline must be replaced by greater human involvement
in judging the quality of execution of verification tests. Frankly, we view the increased
human element required to assess the execution of verification tests to be desirable, and it
certainly emphasizes the point made above, i.e., that an important value of verification
tests is their use in engaging the user community around a code. It is certainly true that
the resources required to properly execute and assess verification problems is far greater
than for regression tests. Giving priority to verification at this degree of intensity has
been one of the historical reasons that verification has not been embedded entirely
successfully in the ASC program. Our document cannot and will not address the issue of
programmatic priorities for verification, but this issue is clearly present.

Verification and Scientific Software

Thus, verification analysis of complicated physics/engineering simulation codes is an
example of the assessment of a complex system for which the systematic gathering of
appropriate evidence is required. While tests may demonstrate that software is
manifestly incorrect, there is no clear-cut procedure with which to “prove”
unambiguously that software behavior is completely correct. Thus, the process by which
relevant verification evidence is generated and interpreted requires knowledge of the
entire simulation and analysis chain. Such knowledge includes understanding of:

e the system being simulated (e.g., the relevant physics, physics models, and these
models’ representation in mathematical equations);

e the nature of the simulation (including the discrete algorithms used to obtain
approximate solutions to the mathematical equations, these algorithms’
limitations, the associated numerical analysis, and the software implementation of
those algorithms); and

e the process by which the code results are analyzed in the verification process
(including, e.g., theory, implementation, and interpretation of convergence
analysis).

In its entirety, this body of knowledge is both large and complex; consequently, the
determination of an appropriate set of verification problems requires guidance and
consensus among experts in each of these fields.

Appropriate verification tests are the most valuable tests of mathematical accuracy
available. Any test problem that reveals mathematical problems underlying implemented
software should ideally be viewed as helpful by both code developers and code users. We
seek to avoid any notion a test problem effort is perceived as undermining both code
developers and code users. Instead, valuable test problems speak to the complexity of the
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mathematics in ASC codes while simultaneously addressing the complexity of these
codes’ intended use. Such problems must be chosen to lie in the overlapping domain of
code developers and code users. Consequently, one measure of success for such
problems is the relevance that both communities attach to such problems (in distinction to
regression tests, about which, frankly, users could not care less). Hence, for verification
tests it is necessary to couple the science of constructing complex mathematical
benchmarks that definitively test ASC software with the art of selecting benchmarks that
users believe increase the likely success of the code for their own purposes.

Given the complexity of these issues, there arises the notion that favorable comparison of
computed results with experimental data represents prima facie evidence of verification.
For example, upon obtaining acceptable agreement between experimental data and
numerical results from a simulation code having non-existent, unknown, or
undocumented verification provenance, one might speculate, “If there were errors in the
computed solution, then we would never have calculated results so close to the
experimental data; therefore, this code must be adequately verified.” Such reasoning not
only blurs the divide between verification and validation (the latter of which addresses
the correctness of the underlying models to the physical phenomena of interest), but
also—and more gravely—stands as a textbook example of fallacious reasoning exhibiting
a so-called “false-cause fallacy.”' Code analysts must bear in mind that simulation
software represents exquisitely intricate numerics algorithms coupled to a complicated
hardware/system-software platform: simulation software is not a “physics engine” that
generates instantiations of physical reality. Hence, documented, quantitative verification
analysis is a necessary component for developing code confidence and credibility.

Verification and the Tri-Laborabory Test Suite

Familiarity with the many issues underlying verification guided the selection of test
problems proposed in this document. The verification problems in the current Tri-
Laboratory Test Suite represent a small subset of certain physics phenomena. An
important characteristic of any enhanced Test Suite, therefore, is that it expand the scope
of physics phenomena being assessed and increase the depth and value of that
interrogation.

Given our task, the expectations for this document are straightforward: we view it as
defining a verification test suite that addresses the issues discussed above. We
acknowledge that the problems we propose will not meet all expectations. Therefore,
with time we plan to increase the number of tests as well as the rigor and clarity of their
definition, implementation, application, and assessment criteria. We hope that these
verification problems will exhibit intuitive value and relevance for users, so that their use
will become part of systematic periodic testing supporting code development.

We are mindful that the proposed verification test problems constitute part of a
necessary—but not sufficient—activity that builds confidence in physics and engineering
simulation codes. More complicated test cases, including, e.g., physics models of greater

' See http://hawaii.hawaii.edu/wwwreading/Fallacies/fallacydefinitions.htm for a list of errors in reasoning.
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sophistication, would represent a scientifically desirable complement to the fundamental
test cases discussed in this report. If we are successful, our effort will play a constructive
role in building scientifically defensible confidence in simulation capabilities.

The Current Tri-Laboratory Verification Test Suite

There are currently seven problems in the Tri-Lab Verification Test Suite [Bro06]. These
problems were defined by a specific, but very limited, ASC milestone. The physics
modeled in these problems include gas dynamics (Noh and Sedov Problems), coupled gas
dynamics and non-linear heat conduction (Reinicke/Meyer-ter-Vehn Problem), coupled
gas dynamics and radiation-diffusion (Coggeshall-8 Problem), non-equilibrium radiation-
diffusion (Su-Olson Problem), neutron transport (Sood Problem), and high explosives
(either the Escape of HE Products or Mader Problem). A brief description of these
problems is provided below, followed by a table that catalogues the test problems
together with their relevant physics models.

1. Noh Problem [Noh87] Symmetric planar, cylindrical or spherical one-
dimensional, inviscid, non-heat conducting, compressible gas dynamics of a
polytropic gas, which tests a code’s ability to convert kinetic energy into internal
energy. This problem admits a closed-form self-similar solution.

2. Sedov Problem [Sed59] Symmetric planar, cylindrical or spherical one-
dimensional, inviscid, non-heat conducting, compressible gas dynamics of a
polytropic gas, which tests a code’s ability to convert internal energy into kinetic
energy. This problem admits a closed-form, self-similar solution that requires one
numerical quadrature.

3. Reinicke/Meyer-ter-Vehn (RMtV) Problem [Rei91] Extension of the spherically
symmetric Sedov problem to include non-linear heat conduction. This self-
similar problem’s solution requires the numerical solution of a non-linear
eigenvalue problem in the form of coupled, non-linear ordinary differential
equations.

4. Coggeshall-8 (Cog-8) Problem [Cog91] Spherically symmetric, one-dimensional
problem that couples inviscid, compressible gas dynamics of a polytropic gas with
radiation-diffusion. This problem admits a closed-form solution.

5. Su/Olson Problem [Su96] Non-equilibrium radiation-diffusion physics problem
in one-dimensional, Cartesian (slab) geometry. This problem admits a solution
that reduces to numerical quadrature.

6. Sood Problem [S0003] Neutron transport problem in one-dimensional, Cartesian
(slab) geometry. The solution to this problem is given in terms of an analytic
eigenvalue and corresponding eigenfunction solution.

7a. Escape of HE Products [Fic74] A constant-velocity piston interacts with a one-
dimensional, Cartesian (slab) high explosive with a polytropic gas equation of
state initiating an unsupported detonation. Evaluation of the straight-line
characteristics of this problem admits a closed-form solution.

7b. Mader Problem [Fic79] High explosives problem in one-dimensional, Cartesian
(slab) geometry for a material with a polytropic gas equation of state. This
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problem admits a closed-form solution for the material properties in the
rarefaction wave behind a steady detonation.

Table 1. Identification of the existing ASC Tri-Lab Test Suite problems and their
corresponding physics models

Test Gas Non-Linear | Non-Equilib. | Neutron | High

Problem Dynamics | Heat Radiation Transport | Explosives
Conduction | Diffusion

1. Noh .

2. Sedov .

3. RMtV . .

4. Cog-8 . .

5. Su-Olson .

6. Sood .

7. HE . .

Code Simulation Capabilities

Multi-physics computer codes contain simulation modules that span a range of physical
phenomena. One principal difference between “engineering” and “physics” simulation
codes occurs in the parameter regimes and representative timescales of interest for the
respective applications. Such differences affect both the physics modules and numerical
algorithms used in these codes. Nevertheless, both categories include modeling
representations of the following five general categories.

1. Hydrodynamics encompasses the flow of compressible, strength-free materials and,
thus, forms the backbone of many multiphysics simulation codes. In the present context,
“hydrodynamics” refers to multimaterial shock-hydrodynamics, which, mathematically,
means we are concerned with so-called weak solutions of the partial differential
equations (PDEs). For the compressible Euler equations, admissible solutions are
associated with vanishing disspation mechanisms rather than their complete absence.
Consequently, the algorithmic considerations necessary to produce the correct solutions
are subtle, including important aspects such as numerical dissipation and conservation
(particularly of energy). Special care must be taken to assure that the solutions are
converging to the analytical solutions. Obtaining the correct solution of the
hydrodynamics equations is crucial as it provides the foundation for putting “the right
material in the right place at the right time” in a simulation. The term “hydrodynamics”
also includes the modeling of non-reactive multimaterial interactions, which are used to
represent material interfaces that are either distinct (e.g., at material boundaries) or
indistinct (e.g., as a result of mixing/interpenetration processes) relative to the resolution
of the simulation.
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2. Dynamic material response includes the effect of non-zero deviatoric stresses for
materials that support shear stresses (such as solids). Such response encompasses the
behavior of elastic (i.e., with recoverable deformation), plastic (which admits the
dissipation of energy through irrecoverable plastic work), damaged (e.g., fractured or
spalled), and more complex (e.g., porous) materials. Some researchers include dynamic
material response under the rubric of “hydrodynamics,” but we distinguish it here as a
separate field. For dynamic material response, the constitutive models dominate material
behavior. The material models used in practice are often phenomenological or defined by
experimental data, which presents a different set of challenges to effective verification.
Our approach is to emphasize well-defined analytic material models that, though less
realistic, allow conclusive analysis of the simulation codes.

3. Transport processes is a catch-all phrase used somewhat imprecisely here to cover both
true transport phenomena (e.g., as modeled with particle-based Monte Carlo methods) as
well as the diffusion approximation (i.e., with a continuum approach) for neutral (e.g.,
neutron, photon) and charged-particle (e.g., ion) processes. Consequently, this category
encompasses an extremely broad spectrum of physical phenomena and correspondingly
wide range of modeling and numerical approximations (e.g., from Monte Carlo
neutronics to heat transfer).

4. Energetic materials are those that inject kinetic energy to the overall material energy
budget, e.g., through the transformation of chemical energy into kinetic energy in high
explosives. While detailed models of the intricate physico-chemical processes associated
with these important phenomena exist, here we refer only to highly simplified models
that are often employed in multiphysics codes. Analysis of such simplified models does
not provide unambiguous and complete verification evidence for complicated energetic
material models; however, such analysis can provide compelling evidence of an
algorithm’s ability to solve the underlying mathematical equations in the presence of
energy release. Analysis of such problems should be conducted with explicit
acknowledgement that the models for energy release in practical simulations may not
coincide with the energy release models amenable to analytical solution. In this
document, we do not include any new test problems for energetic materials; we intend to
do so in future revisions.

5. Magneto-hydrodynamics is required for a restricted class of problems, including e.g.,
above ground experiments (AGEX) associated with the Sandia Z-machine. Solutions of
the ideal magneto-hydrodynamics (MHD) equations can contain interactions of many
additional waves, which extend the hyperbolic wave families associated with
conventional compressible hydrodynamics behavior related to shock processes, etc.
Importantly, MHD evolves in the presence of a powerful physical constraint, viz., that the
divergence of the magnetic field is identically zero. Maintaining this solenoidal magnetic
field is a computationally challenging and necessary aspect of accurate MHD simulations
and, therefore, is an important target for verification testing. Moreover, Z-machine
related experiments require modeling of non-ideal resistive MHD processes. Algorithms
and verification problems appropriate to a full range of resistive MHD applications are
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required. As with energetic materials, we do not include any new test problems for MHD
in this document but intend to do so in future revisions.

Proposed Enhanced Test Suite Problems

The test problems proposed here augment the original Tri-Lab Verification Test Suite in
several different regimes. A brief description of these problems is provided below,
followed by a table that catalogues the test problems together with their relevant physics
models. Those problems marked with an asterisk (*) are for reference only and do not
have complete specifications provided in the appendix.

1. Hydrodynamics

la. I-D Riemann Problems The class of 1-D Riemann problems is well known in both
the hydrodynamics algorithm development and code verification communities, since the
exact solution can be computed for the one- and two-material cases for polytropic gases
[Got98, Tor99] and the stiffened-gas equation of state (EOS) [P1o88]. The initial
conditions for this problem consist of two different, initially uniform states separated by
an ideal, massless barrier, the instantaneous removal of which leads to the dynamic
evolution of the solution in time. For convex EOSs, several fundamentally different
solution structures exist for this problem, based on the initial conditions. It is
straightforward to devise initial conditions that lead to each of these states. Such
problems are particularly convenient for code verification as (i) they are easy to set-up for
Eulerian, Lagrangian, and ALE codes, (ii) the simulations run quickly, (iii) the exact
solution allows unambiguous code verification analysis. A number of Riemann problems
that have proven to be useful to the shock-capturing community are included in our
proposed test suite.

A particular case of this problem, using a two-material water-air shock tube configuration
[Sau99, Sau01], is widely used by the multiple-material hydrodynamics community to
evaluate algorithm performance. This problem is a special case of the problem discussed
above and allows one to verify multiple-material, planar shock phenomena for a case that
is well-scrutinized in published literature.

Additionally, it is possible to examine phenomena that arise with non-convex EOSs*
[Dah05, Men88, Miil06]. Using the appropriate tabular or analytic non-convex EOS, one
can formulate shock tube initial conditions that lead to non-classical structures such as
rarefaction shocks and compression fans, which are associated, e.g., with polymorphic
phase transitions exhibited by certain metals [Joh99] and geologic materials [Swe90].
Numerical schemes that correctly resolve the wave patterns for convex EOSs may fail
dramatically for non-convex EOSs. Consequently, this case provides a demanding test of
hydrodynamics algorithm robustness for atypical (but not unheard-of) material behavior.

Ib. The Guderley Problem Guderley [Gud42] considered the case of a spherically
symmetric, polytropic, non-heat-conducting, inviscid gas with an infinitely strong shock
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propagating toward the origin. The similarity solution to this problem is obtained by the
evaluation of two nonlinear eigenvalue problems that together yield the entire self-
similary flow-field, i.e., for both the pre-bounce, incoming phase and the post-bounce,
outgoing flow (see also [Laz81, Mey82, Hir01, Pon06, Ram07]). This solution allows
rigorous code-verification analysis of compressible flow in both convergent and
divergent geometries. Moreover, this problem can be tested in 1D (spherical-r), 2-D
(cylindrical r-z), and 3-D (Cartesian x-y-z) geometries (the latter two of which can be
used to quantitatively evaluate solution sphericity). Although straightforward to set up
and run in the Lagrangian frame of reference, this problem is difficult to specify in the
Eulerian frame [RamO08].

lc. The Cook-Cabot Riemann Invariant Problem This 1-D, planar polytropic, non-heat-
conducting, inviscid compressible flow problem, proposed in the literature by Cook &
Cabot [Coo04], provides a precise measure of the accuracy of an algorithm as a smooth
flow develops a discontinuity. This problem has an exact solution up to the time at which
the shock wave forms, which is analogous to the wave-breaking phenomenon in Burgers’
equation [Whi74]; indeed, a transformation of the Riemann invariant is used to define the
analytical solution. The results for this problem are profitably examined both in physical
and spectral spaces.

1d. The Woodward-Colella Interacting Blast Wave Problem Another 1-D, planar
polytropic, non-heat-conducting, inviscid compressible flow configuration, this problem
[Woo084] tests an algorithm’s ability to handle strong and complex wave interactions.
Although there is no exact solution, the Blast Wave problem has become a standard in the
repertoire of tests for compressible flow algorithm development and, as such, the solution
is well characterized. This problem keenly discriminates between methods for strong,
interacting shock waves. Since there is no exact solution, however, the numerical
solutions for this problem must be compared with a well-defined and demonstrably
converged numerical solution.

le. The Shu-Osher Entropy Wave Problem Another 1-D, planar polytropic, non-heat-
conducting, inviscid compressible flow configuration, this problem [Shu89] tests an
algorithm’s ability to handle strong and complex wave interactions. Like the Blast Wave
problem, the Shu-Osher problem does not have an exact solution but does have the
rightfully earned status as a fixture in hydrodynamics algorithm development community.
This problem is used to differentiate between methods with regard to the quality of
solutions for shock waves interacting with turbulent or complex structure. As in the Blast
Wave problem, the numerical solutions for this problem should be compared with a well-
defined and demonstrably converged numerical solution.

If. The Taylor-Green Vortex (TGV) Problem This 2-D* or 3-D problem harks back to
Taylor [Tay38] and has been revisited since by many researchers (see, e.g., [Dri07]) as a
model problem with which to examine the transition to turbulence from a well-
characterized initial state. The TGV initial conditions consist of a regular pattern of
sinusoidal variation in x- and y-velocities, with the pressure (which satisfies a Poisson
equation) having sinusoidal variations about a fixed value Py; the initial density assumes
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a constant value, and the initial specific internal energy (SIE) is assigned to be consistent
with the density and pressure fields through a polytropic EOS. Periodic boundary
conditions are imposed on the initial domain, which has extent 2x in each direction. This
initially regular configuration evolves through a phase where it is (nearly) singular to a
disordered state. For the case of an incompressible fluid, Taylor & Green [Tay38]
describe a process by which to obtain a series approximation to the exact solution, with
the sinusoidal spatial dependence and an infinite polynomial expansion for the temporal
dependence; this approximate solution, however, is only useful at early times. Although
no exact solution for compressible fluids is known, for either early or late times, the TGV
problem provides an important and widely-used test of multidimensional hydrodynamics
of disordered flow. In particular, this problem can be applied to evaluate codes that are
used to simulate large-scale turbulence without resorting to Reynolds averaging (or
analogous closure approaches), i.e., to codes that employ (implicit) large eddy simulation.

lg. Richtmyer-Meshkov (RM) and Rayleigh-Taylor* (RT) Problems These fundamental
hydrodynamic instabilities comprise important, challenging, and well-documented
phenomena generated by density and pressure gradients. The RM problem considers the
stability of an impulsively accelerated interface separating two compressible or
incompressible fluids of different density [Mar57, Ric60, Mes69]. This instability is of
fundamental importance in a variety of applications, spanning a wide range of length
scales. At large scales RM instability generates mixing in supernovae [Arn89, Bur95]; at
smaller scales it plays an important role in deflagration-to-detonation transition [Kho99]
and enhances mixing in ramjet engines [Yan93, Cur96]; at even smaller scales it initiates
shell break-up in inertial confinement fusion capsules [Lin95, Nie03]. The RM
instability is often referred to as the impulsive or shock-induced Rayleigh-Taylor (RT)
instability. Unlike RT, where the instability takes place only when the light fluid
accelerates into the heavy fluid and the initial growth of perturbations is exponential in
time, RM is unstable irrespective of the direction from which the shock approaches the
interface (i.e., from the light or heavy fluid side) and the initial growth of perturbations is
linear in time. The resulting flow field can be attributed to the baroclinically generated
vorticity resulting from the misalignment of the density gradient across the interface and
the pressure gradients that occur during the shock interaction. The initial evolution of
RM instabilities can be described in terms of vortex dynamics; Zabusky and others
[Zab99, Lee06, Cot07] have discussed the crucial role vorticity plays in the early
development of RM and other baroclinic instabilities. There is no general solution to this
problem, but one can compare to linear stability analysis results [Ric60, Mes69], linear
models [Haa91, Yan94] at early time, and to nonlinear models [Sad98] at intermediate
and late times. Numerical solutions on very fine grids are used as fiducials for
comparison.

lh. Mach Reflection Problems* The archetypal problem in this family of 2-D
compressible flow problems was set forth by Woodward & Colella [Wo0084], who
analyze the canonical problem of this family: the Mach 10 shock impinging on a 60°
wedge. There are numerous other problems that accompany the theory of the resulting
wave structure, from regular reflection, single-, transitional-, and double-Mach reflection,
etc. [Gla86]; Ben-Dor [Ben06, Ben(07] provides a discussion of the current understanding
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of these complex phenomena. Roughly speaking, depending on the angle of incidence of
the shock and the Mach number, the particular solution structure (e.g., regular vs. Mach

reflection) can be predicted and used to evaluate code performance, as described, e.g., by
Chen and Trucano [Che02].

2. Dynamic Material Response

2a. Hunter’s Problem Hunter [Hun57] treated a generalization of the problem of Blake
[Bla52, Sha42] by considering the dynamic response of a spherically symmetric, semi-
infinite, elastic-perfectly-plastic medium with a single inclusion centered at the origin.
This problem is driven by a pressure boundary condition on the interior boundary; see
also [Lun49, Hop60, Cha62, Hun68, Mor69] for discussions of spherical elastic-plastic
wave propagation. By requiring that the velocity of the outward-propagating elastic-
plastic boundary be constant, Hunter obtains a closed-form solution for the corresponding
time-dependent interior driving pressure and, subsequently, the stress and velocity field
throughout the entire medium. The closed-form expression for the time-dependent
pressure of the interior cavity could be used to drive hydrocode simulations of this
configuration, which would allow code-verification analyses to be conducted.

2b. Bleich & Nelson’s Plane-Wave Problem Bleich and Nelson [Ble66] considered the
case of 1-D plane waves in an elastic-perfectly-plastic half-space for arbitrary
combinations of (uniform) step-function pressure (diagonal) and shear (off-diagonal)
loads on the free surface. This behavior is perhaps the simplest case of dynamic elastic-
plastic plane wave propagation. As shown in [Ble66], the time-dependent material
response for this 1-D problem with compressive pressure and positive shear on the free
surface can be expressed as combinations of elliptic integrals of the first, second, and
third kinds. Moreover, the solution for this problem can assume characteristically
different behavior depending on the values of the applied stresses and the material
properties; for example, the existence and location of the elastic precursor relative to the
plastic wave front varies as a function of these parameters.

2c. The Verney Problem Verney [Ver68] examined the case of finite-radius, spherical
copper and uranium shells collapsing under a given loading; see also [How02, Weh05].
Motivated by experiments in which such shells were driven by high explosives, Verney
constructed a simplified, approximate mathematical model of the problem, assuming
incompressible, elastic-perfectly-plastic material response. In this model, which leads to
closed-form solutions, the initial kinetic energy of the material dissipates via conversion
to plastic work. The intermediate (time-dependent) results of the mathematical model
can be compared against hydrocode results of the same configuration.

2d. Enhanced Dynamic Sphere (EDS) Problem™* The dynamic sphere problem [Wil05,
Li05a, KamO8] possesses a closed-form solution for the dynamic, small-strain
deformation of a hollow, finite-thickness sphere of linear elastic material, with arbitrary
driving conditions on the interior and exterior boundaries. By virtue of the solution
method described in [Wil05], the material response model can be generalized to include
inelastic effects, such as perfect plasticity; additionally, both rate-dependent plasticity and
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anisotropic material response are being developed and incorporated. Therefore, a
suitable generalization of this problem—say, first to elastic-perfectly-plastic material
with the driving conditions used in the linear elastic cases described in [Wil05]—
provides an ideal test with which to verify hydrocode simulations of more complex
material behavior in the small-strain limit for finite-thickness, spherically symmetric
systems.

3. Transport Processes

3a. Lowrie-Rauenzahn Equilibrium-Diffusion Radiative Shock Problem This problem,
described in [Low07a] provides a semi-analytic solution for planar radiative shock waves
in the equilibrium diffusion (1-7) limit. In this approximation, the radiation in effect
modifies the material EOS through addition of radiative pressure and radiation energy
terms. The equilibrium diffusion case can also be approximated by other radiation models
in the optically-thick limit; see [Dra07] for a discussion of radiative shocks in the
optically-thick regime. The solution consists of initially quiescent flow that is processed
by the shock, together with the post-shock flow, all of which can be solved for
numerically via the solution of a high-order polynomial equation and a nonlinear ODE.
For verification purposes, the initial conditions for the hydrocode are given by imposing a
computed exact solution at the starting time and allowing that solution to evolve in time.

3b. Lowrie Nonequilibrium-Diffusion Radiative Shock Problem This problem, described
in [Low07b,c] provides a semi-analytic solution for planar radiative shock waves in the
grey nonequilibrium diffusion (2-7) limit. In this approximation, the independent internal
energy densities of the material and the radiation allow that their respective temperatures
may be out of equilibrium; the grey approximation admits cross-sections that are state-
dependent but not frequency-dependent. The solution consists of initially quiescent flow
that is processed, together with the post-compression flow. By virtue of the
nonlinearities associated with the nonequilibrium assumption, a range of different
solution behaviors can occur as a function of the Mach number. As in the equilibrium-
diffusion variant, the exact solution is obtained via the solution of a high-order
polynomial equation and a nonlinear ODE and this solution is used as the initial
conditions for a hydrocode simulation.

3c. Radiation-Acoustics Problem This problem, described in [Vin62] is a linear
perturbation analysis of a medium in which radiation is coupled to the hydrodynamics.
The medium is in local thermodynamic equilibrium, and the analysis looks at small
departures from this equilibrium. Two distinct solutions arise, one of which is a
radiatively-modified acoustic wave and the other of which is a radiative diffusion wave.
The radiation modifies the phase speed of the acoustic wave in some regions of parameter
space and introduces a small amount of damping. The radiative diffusion wave is
generally strongly damped, with a damping length on the order of the perturbation
wavelength. The analytic solution is valid for both low and high energy density material.
The primary assumptions for its validity are that departures from thermodynamic and
hydrodynamic equilibrium be small and that scattering effects be negligible.
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3d. Top Hat/Crooked Pipe Problem™* This problem, described in [Gra00, Gen0O1], models
temperature-source driven radiative flow in a cylindrically symmetric domain consisting
of a low density, optically thin material that embeds and is embedded by dense, optically
thick material. There is no electron conduction, ion conduction, or scattering in this
problem, which is used to test different transport methods and algorithms and focuses, in
particular, on the material temperature at five points in the optically thin material.

3e. Shestakov & Bolstad Problem™ This problem, discussed in [She05], presents exact
solutions for a linearization of a system modeling the multifrequency radiation diffusion
and matter energy balance equations. Based on an approach similar to that in [Su97], this
test problem incorporates more realistic assumptions regarding the opacity and the
specific heat. Solutions are given for two special cases: (1) with no sources, an initially
cold radiation field, and a localized matter energy profile; and (2) initially cold matter
and radiation fields with a source of matter energy extending over finite space and time
intervals.

3f. Heat-conduction Problems* The problems posed and solved by Miller and Hutchens
are concerned with pure heat conduction in spherically [Mil07a, Mil07b, Hut07] and
cylindrically [Hut07] symmetric geometry. Using power-law forms for the specific heat
and conduction coefficients, one may calculate closed-form representations for the
temperature field throughout the domain of these problems.

We catalogue the proposed test problems in Table 2 below, according to the key physics
processes of each problem.
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Table 2. Identification of the proposed ASC Tri-Lab Test Suite problems and their
corresponding physics models. Problems marked with an asterisk (*) are for reference
only and do not have complete specifications provided in the appendix.

Test Problem Gas Material Radiation Heat
Dynamics Response Transport Conduct.

1. Riemann .

2. Guderley .

3. Cook/Cabot .

4. Blast Wave .

5. Shu-Osher .

6. TGV .

7. RM .

8. RT* .

9. Mach Reflection* .

10. Hunter .

11. B&N .

12. Verney .

13. EDS* .

14. L&R EDRS . !

15. Lowrie NEDRS . .

16. Rad-Acoustics . .

17. Top-hat* .

18. S&B* .

19. Miller/Hutchens* .

1. Equilibrium-diffusion approximation
2. Nonequlibrium-diffusion approximation

Method of Manufactured Solutions Applied to the TLTS

The Method of Manufactured Solutions (MMS) presents another approach to devising
problems for the TLTS. Although no MMS solutions are proposed in this document, we
feel that this procedure is worth discussing, as it is a proven technique with which to
verify the order-of-accuracy of software for numerical solution of ODEs and PDEs
[Roa02]. When used to verify the order-of-accuracy, successful MMS results are used to
bolster the claim that the code is free of order-impacting coding mistakes. In practice,
MMS has also proven valuable for identifying algorithmic weaknesses and deficiencies.
The great strength of MMS is that it can be successfully applied in cases where no exact
analytic solution is known.
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The MMS procedure consists of the following steps:

1. Determine the governing set of equations solved by the code and the formal or
expected order-of-accuracy of the solution method;

2. Construct a manufactured solution for the equations and determine the source

term associated with this solution;

Modify the software to include the appropriate source terms;

4. Run the modified code using input that is expected to generate the corresponding

correct numerical solution;

Calculate the global discretization error;

6. Refine the grid and repeat steps 3 and 4 until the numerical solution appears to
converge;

7. Calculate the observed order-of-accuracy from the set of numerical solutions, and
compare it to the formal or expected order-of-accuracy.

(98]

W

If the trend in the observed order-of-accuracy agrees with the formal or expected order-
of-accuracy, then the code is said to have passed the MMS verification test.

A major attraction of using MMS in Code Verification is that it can fill coverage gaps in
testing, e.g., the interaction of algorithms for which no exact solutions are known and,
thus, can be used to increase confidence in the code [Knu07]. This particularly attractive
feature can be applied to the knotty problems associated with verification of multi-
physics problems.

There are, however, some complications in applying MMS to the problems encountered
in the Tri-Lab Test Suite. A practical obstacle is that manufactured solutions result in
source terms being added to the interior equations, to the boundary conditions, or to both.
This can sometimes be accomplished via input to the code; typically, however, simulation
software requires “under the hood” code modifications to incorporate the necessary
source terms. Thus, the matter of intrusive source terms is problematic but not
insurmountable. A second issue is that the goal of traditional MMS differs from that of a
typical test in the TLTS: the purpose of the former is usually to uncover coding mistakes
and algorithmic deficiencies, while the intent of the latter is to address questions of code
suitability and solution verification. While MMS can potentially be applied to the latter
goals, it requires resolution of two difficulties to be described below.

One concern is that of the physically realistic nature of most tests in the TLTS.
Manufactured solutions are, by construction, always mathematically correct solutions of
the governing equations, but they are often physically unrealistic. Consequently, they
might not stress the code in exactly the same way as physically realistic problems. A
related difficulty is that MMS traditionally requires only smooth (i.e., sufficiently
differentiable) manufactured solutions, whereas realistic physical problems—such as
those in the TLTS—often involve non-smooth solutions, e.g., hydrodynamic shock waves
or discontinuous stress waves.
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To overcome these difficulties, we propose the following four approaches by which the
MMS technique could be aligned with TLTS goals. (i) Take the analytic solutions in the
TLTS that, strictly speaking, are not exact solutions to the governing equations (i.e., for
which the equations reduce to solvable, but not closed-form, cases, e.g., the Sedov
problem) and use those solutions to create truly exact solutions necessarily involving
source terms; this approach may address the realism problem in some instances. (ii) Use
manufactured solutions that have smooth-but-steep fronts to approximate shocks, to
obviate the issue of discontinuous solutions. (iii) Apply MMS to physical problems in the
TLTS by attempting to create realistic manufactured solutions from scratch. (iv) Take
1D solutions in the TLTS and manufacture 2D or 3D solutions from them. All of these
approaches are properly characterized as research topics, but they are worthwhile
pursuing in order to improve the code coverage within the TLTS and develop genuine
(and elusive) multiphysics test problems.

Evaluating Computed Errors

To conduct quantitative code verification analysis, it is necessary that one evaluate the
error in the computed solution. To gauge this error, one must have a reference solution
that one takes as the “true” solution to the equations. In code verification, one seeks
problems that have computable exact solutions; in practical terms, this means that the
“true” solution is either (i) expressible to closed form or (ii) one for which the equations
are reducible to forms that one can solve accurately, precisely, and confidently. An
example of the former is the Noh problem [Noh87] with its algebraically simple solution,
while examples of the latter include the shock tube problem (which involves a root-solve
[Got88]), the Sedov problem [Sed59] (which involves numerical quadrature [Kam07]),
and the Reinicke/Meyer-ter-Vehn problem [Rei91] (which involves the numerical
solution of nonlinear ODEs [KamO00]). In the following discussion, we will use the term
“reference solution” to indicate the computed exact solution.

How Computed Errors are Used

There are at least two ways computed errors are employed. The first use is to assess
whether or not the numerical algorithm is implemented correctly. Evidence for this is
obtained from the computed errors, which can be quantified in the measured convergence
rate and compared with the formal rate derived from numerical analysis. Here, numerical
analysis guides the choice of an error norm, whether cell-averaged or point values should
be calculated, etc. If the evaluation used differs from that suggested by numerical
analysis, then there should be no expectation that the computed error should behave in a
manner consistent with theory and no rigorous statement about the correctness of the
implementation of the algorithm can be made.

Other reasons for computing the errors include determining satisfactory performance for
a specific physics regime, for particular phenomena, or for an application of interest. In
these cases, the raison d'étre is to identify algorithmic weaknesses, as opposed to
problems (i.e., bugs) in the software implementation. For these purposes, the error

23



computation should account for how the simulation results are interpreted. Below (or in
each problem description) we suggest error measures that highlight the objective of each
test problem and allow results from different codes to be compared.

Error Norms

An accepted quantitative measure of error is the difference between computed and “true”
solutions. This quantity is evaluated as the norm of the difference between these
(discrete) functions over the computational mesh. The specific form of the norm is the L,
norm of functional analysis, e.g., given in 1-D for the function g as

” g ”p = (J‘a”|g(x)|P dx)l/p' "

In particular, it is recommended that L;, L, and L_ norms a/l be evaluated in the error
analysis, where, following from the equation above,

= . 2
el = max oo o

>

In the following, we use the double-bar notation “||” without a subscript to denote any
member of this family of norms. In particular, the use of the L; norm for shocks can
clearly be linked to the works of Lax [Lax54, Lax72]; see also the discussion by Majda
and Osher [Maj77].

‘6||7’

Asymptotic Convergence Analysis

The axiomatic premise of asymptotic convergence analysis is that the computed
difference between the reference and computed solutions can be expanded in a series
based on some measure of the discretization of the underlying equations. Taking the
spatial mesh as the obvious example, the ansatz for the error in a 1-D simulation is taken
to be

| &%= g™ = A+ AAD)" +o((Ax)) . (3)

In this relation, g " is the reference solution, g ®™ is the computed solution, Ax is some
measure of the mesh-cell size, Ay is the zero-th order error, A; is the first order error, and
the notation “o((Ax)“)” denotes terms that approach zero faster than (Ax)* as Ax—0".
For consistent numerical solutions, 4y should be identically zero; we take this to be the
case in the following discussion. For a consistent solution, the exponent « of Ax is the
convergence rate: « =1 implies first-order convergence, o =2 implies second order
convergence, etc.
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Assume that the calculation has been run on a “coarse” mesh (subscript c), characterized
by Ax., which we hereafter also denote as Ax. The error ansatz implies:

| &= g™ = A+ (4)

We further assume that we have computational results on a “fine”” mesh Axy (subscript f),
where 0 < Axy< Ax. with Ax./Ax; = o > 1. In this case, the error anszatz implies:

| g = g™ = oAD"+, (5)

Manipulation of these two equations leads to the following explicit expressions for the
quantities o and 4;:

o = [log‘ g - g‘;°mpH — log||g"™ - g;"mpH] /logG , (6)
A = | g = g™ [ ax ©)

These two equalities are the workhorse relations that provide a direct approach to
convergence analysis as a means to evaluating the order of accuracy for code verification.

In the case of calculation verification, one does not have an exact solution and, instead,
turns to a finely zoned calculation to serve in place of the exact solution. In this case, the
results for the convergence rate can be expressed as

comp _

8s

comp

8.

o = [log H — log|g™™ — g;"mpu] /logO' , (8)

where the subscript m here denotes values on a “medium” mesh, i.e., one for which 0 <
Axr< Ax, <Ax. with Ax./Ax, =0 > 1.

Issues in Error Computation

There are several subtle but important—and, in some cases, open—issues associated with
the appropriate numerical estimation of the quantities mentioned above. While the
general reader may find the following topics arcane, it is imperative that code analysts at
least be aware of these issues.

» Nondimensionalization The above expressions for the error ansatz and the associated
convergence parameters contain no assumptions regarding the dimensions of the
associated variables. Consequently, parameters in the resulting scaling relations (e.g.,
Eq. 4) may have inconsistent units. One way to avoid this issue is to nondimensionalize
all quantities prior to conducting such an analysis. For example, one can choose
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representative quantities G and X with which to nondimensionalize the computed
quantity g and the representative mesh scale Ax:

g = g/G and AX = Ax/X . )

The nondimensional error ansatz is posited to be

| &= g™ = A+ (10)

where all terms in this equation are now dimensionless. In this case, care must be taken
to nondimensionalize consistently throughout the analysis, and to properly
dimensionalize results, e.g., if one were to use this relation to estimate errors at another
mesh size.

* Dimension For problems in multiple space dimensions (e.g., 2-D Cartesian (x,y)), the
spatial convergence analysis described above can be assumed to carry over trivially, such
that, e.g., the ansatz of Eq. 3 follows identically. That is, one typically does not assume
separate convergence rates in separate coordinates. This seems to be a reasonable
assumption in almost all cases; the exception is time-convergence, since the time-
integration scheme for a PDE may be of different order than the spatial integrator. For a
more thorough discussion and examples of combined space-time convergence, see
[HemO5, TimO6a].

» Frame Spatial convergence analysis is idealized to refer to a fixed mesh, i.e., the
Eulerian frame. Approaches have been taken to extend convergence analysis
simplistically to the Lagrangian frame (e.g., [KamO03]). More sophisticated approaches,
however, are needed; for example, since the fundamental Lagrangian equations are
discretized with respect to mass and not space, an error ansatz analogous to Eq. 3 with Ax
replaced by Am would be appropriate.

* Non-uniform Meshes The intention behind the expression “Ax” in Eq. 3 is thatitis a
meaningful measure of the characteristic length-scale of mesh cells of the discretized
eqations. If either adaptive mesh refinement (AMR) or an arbitrary Lagrangian-Eulerian
(ALE) approach is used, however, such a quantity—if one exists—is likely to change
during the course of a calculation. Again, straightforward approaches for non-uniform
and AMR meshes have been examined (e.g., [Li05b]), but these are topics of open
research.

* Norm Evaluation The expression for the norm in Eq. 1 is appropriate, e.g., for
Cartesian geometries. This term must be appropriately modified for non-Cartesian
geometries. For example, for 1-D spherically symmetric calculations, the integral of the
norm is properly expressed as

Yp

I gll, = U:Ig(r)l” dV(r))l/p = (thg(r)lp 47rr2dr) . (11)
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In general, when evaluating the norm one must be mindful of the domain of the integral
as well as any symmetries associated with the problem.

* Norm Evaluation & Exact Solutions The definition for the norm in Eq. 1 suggests a
simple evaluation of this expression. In 1-D one might evaluate the norm as:

N
| g~ &= | = [ls"- g™ @] dx = Dfs™(x)~ &™) Ax, (12)

i=1

Such an expression, while notionally correct, can obscure important aspects of the
computational algorithm. Finite volume discretizations, which are used in many Eulerian
and Lagrangian hydrodynamics algorithms, provide computed values g “°™(x;) that are
not point values but are, in fact, averages over the computational cell. Despite the
associated inaccuracy, one often uses point-values of the reference solution and cell-
averaged computed values in numerical evaluation of expressions such as Eq. 12.
Verification lore for the Riemann problem of 1-D hydrodynamics [Rid07] and numerical
results with high-resolution numerical schemes for many calculations suggest that the
discrepancy incurred by this assumption is small (say, that it does not affect the leading
digit of the calculated convergence rate). Rigorous numerical evidence with such a
numerical scheme for the Cog-8 problem is given by Timmes et al. [Tim06b], who show
that the leading digit of the convergence rate is the same for both point values and cell-
averaged values, consistent with anecdotal notions. It is reasonable to anticipate that such
results (i.e., that this discrepancy is small) may depend on the particular numerical
scheme used.

* Norm Evaluation & Interpolation The expression for the convergence rate « in the
calculation verification (Eq. 8) implies a direct comparison of computed solutions on two
different meshes. The analogous expression (Eq. 6) for code verification requires an
indirect comparison of computed solutions on different meshes. To evaluate the
differences of two calculations, a common mesh is required; this begs the immediate
question, should one extrapolate (restrict) fine-mesh values to the coarse mesh, or
interpolate (prolong) coarse-mesh values onto the fine mesh? Margolin & Shashkov
[Mar08] provide a rationale for the former: ““...by moving each of the simulation results
to the coarsest mesh, we average out the smaller scales and eliminate them as a source of
error in studying convergence, thus isolating the discretization error.” The detailed
manner by which one should move solutions between different meshes remains an open
research area. Particular attention should be paid to accurately interpolating solutions
near discontinuities.
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Summary

Verification analysis seeks to generate quantitative evidence of consistency between the
mathematical statements of the physics models (typically, partial differential equations)
and the computed solutions of the discrete analogues of these equations, as implemented
with numerical algorithms in the simulation codes. Therefore, verification represents a
fundamental and necessary part of the development, assessment, and application of
simulation software for physics and engineering. An agreed-upon set of seven problems
[Bro06] used by the LANL, LLNL, and SNL forms a nominal basis for current, mutually
undertaken verification purposes.

In this document, we suggest a wide range of problems with which to augment, both in
quantity and quality, the existing Tri-Lab Verification Suite of verification test problems.
The suggested problems are meant to contribute to the “next generation” Tri-Lab
Verification Test Suite, the determination of which must include deliberation and
consensus among experts from each institution. The problems we propose and for which
we provide detailed initialization and evaluation information are the following:

e Riemann Problems [Got88] Several one-dimensional, inviscid, non-heat
conducting, compressible gas Riemann problems for a polytropic gas, chosen for
their ability to highlight particular numerical method pathologies or problematic
physics regimes. This problem admits a closed-form self-similar solution for
polytropic and stiffened gas EOSs. Nonconvex EOS problems could also be
included.

e  Guderley Problem [Gud42] One-dimensional, inviscid, non-heat conducting,
compressible gas dynamics of a polytropic gas flowing inward in a spherically
converging geometry. By the choice of a particular boundary condition, the entire
flow-field can be expressed in closed-form.

e Cook & Cabot’s Problem [Coo04] ] One-dimensional, inviscid, non-heat
conducting, compressible gas dynamics of a polytropic gas that gradually
steepens into a shock wave. By virtue of the initial condition, this problem has an
exact solution up to the time of shock formation.

e Woodward-Colella Interacting Blast Wave Problem [Wo0084] Very strong one-
dimensional shocks interacting in an inviscid, non-heat conducting, compressible
polytropic gas.

e  Shu-Osher Problem [Shu89] One-dimensional, inviscid, non-heat conducting,
compressible gas dynamics of a polytropic gas interacting with a perturbed
environment. This problem discriminates an algorithm’s abilities to accurately
resolve detailed flow structures in the presence of shock waves.

e Taylor-Green Vortex (TGV) Problem [Tay38] An initially uniform density with
regular pattern of sinusoidal variation in x and y velocity and pressure, which
evolves into a turbulent state. Although no late-time solution exists, the well-
codified initial conditions and evaluation by many codes in the open literature
(e.g., [Dri07]) make the TGV problem an ideal test-bed for the evaluation of
multidimensional hydrodynamic simulation of disordered flows.
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A Richtmyer-Meshkov (RM) Problem [Mar57, Ric60, Mes69] The Richtmyer-
Meshkov (RM) problem considers the stability of an impulsively accelerated
interface separating two compressible or incompressible fluids of different
density. We provide a specific set of initial conditions with which to generate this
fundamental hydrodynamic instability in hydrocode simulations.

Bleich & Nelson’s Plane-Wave Problem [Ble66] Provides time-dependent
material response in 1-D, slab geometry for elastic-perfectly-plastic material with
step-function compressive pressure and positive shear on a free surface, in terms
elliptic integrals of the first, second, and third kinds.

Hunter’s Problem [Hun57] A generalization of the problem of Blake [Bla52,
Sha42], giving a closed-form solution for the dynamic response of a spherically
symmetric, semi-infinite, elastic-perfectly-plastic medium with an inclusion.

The Verney Problem [Ver68] This problem describes the collapse of finite-radius,
spherical copper and uranium shells under external, radial loading, for which
experimental data can be compared with both hydrocode results and the outcome
of an idealized mathematical model.

Lowrie/Rauenzahn Equilibrium-Diffusion Radiation-Hydrodynamics Problem
[Low07a] Provides a semi-analytic solution for planar radiative shock waves in
the equilibrium diffusion (1-7) limit, for which the radiation in effect modifies the
material EOS through addition of radiative pressure and radiation energy terms.
Lowrie Nonequilibrium-Diffusion Radiation-Hydrodynamics Problem [Low(07b,c]
Gives a semi-analytic solution for planar radiative shock waves in the grey
nonequilibrium approximation, for which the independent internal energies
densities of the material and the radiation allow their respective temperatures to
be out of equilibrium with the grey approximation admitting cross-sections that
are state-dependent but not frequency-dependent.

Radiation-Acoustics Problem [Vin62] Provides an analytic solution, valid for both
low and high energy density material, to a linear perturbation problem for small
departures from thermodynamic equilibrium of a medium in which radiation is
coupled to the hydrodynamics

The problems we suggest be considered for a future revision of this document and for
which we do not provide detailed initialization/evaluation information are:

A Rayleigh-Taylor (RT) Problem [Sha84] A Rayleigh-Taylor (RT) problem
captures the instability that develops at the interface between two fluids of
different densities, when the lighter fluid pushes against the heavier fluid.

Mach Reflection Problems [Ben07] These problems occur when a shock wave in
given medium obliquely encounters another medium with a different acoustic
impedence. Depending on the angle of intersection of the shock with the interface,
a host of different reflection configurations can occur.

Enhanced Dynamic Sphere (EDS) Problem An extension of the dynamic sphere
problem [Wil05, Li05a, Kam08] for the dynamic, small-strain deformation of a
hollow, finite-thickness sphere of linear elastic material, with arbitrary driving
conditions on the interior and exterior boundaries, to include inelastic effects,
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such as perfect plasticity, rate-dependent plasticity, or anisotropic material
response.

Top-hat/Crooked-pipe Problem [Gra00, GenO1] A radiation problem in which a
temperature source drives radiative flow down a cylinder of optically thin
material and around a cylindrical section of dense, optically thick material.
Shestakov/Bolstad Problem [She05] This problem presents exact solutions for a
linearization of a system modeling the multifrequency radiation diffusion and
matter energy balance equations.

Miller’s Heat Conduction Problem [Mil07] and Hutchen’s Heat Conduction
Problem [Hut07] Based on power-law forms for the specific heat and conduction
coefficients, these spherical and cylindrical test problems possess closed-form
solutions for the temperature field.
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Appendix: Problem Descriptions

In this appendix, we provide descriptions for several of the proposed test problems
mentioned in this text. These problem descriptions contain much of the information
suggested by Oberkampf & Trucano [Obe07] in their explanation of “strong-sense”
verification benchmarks. Given the complexity of hydrocodes and problem specification,
however, the descriptions we provide are not definitive, i.e., there remain unspecified
choices in problem set-up that the code analyst must make. These descriptions provide
the starting points for setting up these problem as well as a touchstone against which
descriptions of the “identical” problem, run by different analysts or with different
simulation codes, can be compared. In any written analysis of these problems, it is
imperative that researchers describe as thoroughly as possible the complete specification
and set-up of the problem (up to including the code input deck in the written report). The
provided descriptions of the following problems are intended to be largely self-contained.

1-D Riemann Problems

The Guderley Problem

The Cook-Cabot Riemann Invariant Problem

The Woodward-Colella Blast Wave Problem

The Shu-Osher Entropy WaveProblem

The Taylor-Green Vortex (TGV) Problem

A Richtmyer-Meshkov (RM) Problem

Bleich & Nelson’s Plane-Wave Problem

. Hunter’s Problem

10. The Verney Problem

11. Vincenti & Baldwin Radiation-Acoustics Problem

12. Lowrie/Rauenzahn Equilibrium-Diffusion Radiative Shock Problem
13. Lowrie Nonequilibrium-Diffusion Radiative Shock Problem

R R

The following problems are proposed for future versions of this document. We believe

that these problems would substantially augment the physics coverage provided by those
in this appendix. As further problems are considered, we encourage others to use similar
procedures in the problem descriptions, i.e., to follow the guidance contained in [Obe07].

A Rayleigh-Taylor (RT) Problem

Mach Reflection Problems

Enhanced Dynamic Sphere (EDS) Problems
Shestakov & Bolstad Problem

Top Hat/Crooked Pipe Problem

Miller’s or Hutchens’ Heat Conduction Problems

S e e e

References
[Obe07] Oberkampf, W.L., and Trucano, T.G., “Verification and Validation

Benchmarks,” Nuclear Design and Engineering 23, pp. 716—743 (2007); also
available as Sandia National Laboratories report SAND2007-0853 (2007).
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1. Name: The 1-D Riemann Problem
II. Conceptual Description

General: Riemann Problems consist of a 1-D, slab geometry consisting of two
materials separated by an idealized (massless/perfect) interface. The interface is
removed at the initial time so that the materials on either side are allowed to
dynamically interact. Exact solutions for this class of problems can be computed for
a variety of material models. The most popular solutions obey strength-free, inviscid,
non-heat conducting polytropic and “stiffened-gas” equations of state. Solutions
exist for other material models as well, including some that contain non-zero stress
deviators (i.e., exhibit strength). At the initial time of the problem (#=0), the two
materials are assigned constant, uniform states. Under the conservation of mass,
momentum, and energy, the materials evolve compression (shock) and rarefaction
waves. The proposed problems have revealed a number of algorithmic pathologies as
standard methods for testing a variety of shock-capturing methods. They cover a
significant portion of the planar 1-D “phenomenology space” for ideal, polytropic
gases, and some interesting cases modeled by stiffened gases.

For convex EOSs, five fundamentally different solutions structures exist for this
problem, based on the initial conditions. Based on the wave structure (from left to
right in 1-D), these solutions are:

1. Rarefaction-Contact-Shock or Shock-Contact-Rarefaction

2. Shock-Contact-Shock

3. Rarefaction-Contact-Rarefaction

4. Rarefaction-Contact-Vacuum or Vacuum-Contact-Rarefaction

5. Rarefaction-Contact-Vacuum-Contact-Rarefaction
It is straightforward to devise initial conditions that lead to each of these states.
Such problems are particularly convenient for code verification as (i) they are easy to
set-up for Eulerian, Lagrangian, and ALE codes, (ii) the simulations run quickly, (iii)
the exact solution allows unambiguous code verification analysis.

Processes modeled: The problems described here test the integration of the
conservation laws for the flow of strength-free, inviscid, non-heat conducting,
compressible gas in 1-D planar geometry.

Initial conditions: Uniform and constant material density, pressure, and velocity on
each side of the initial interface.

Boundary conditions: The initial conditions are maintained on the boundaries of the
mesh. (The boundaries should not interact with the interior wave evolution.)

Benchmark type: The idealized case reduces to a non-closed-form solution that
requires the solution of one nonlinear equation (type 3 of [Obe07]), converged to
either machine accuracy or a clearly stated tolerance.
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Principal code features tested:
1. Basic compressible hydrodynamics, including single-, and multiple-material
EOS calls.
2. Specific problems are designed to test specific code features or physics
regimes, as listed below.

[II. Mathematical Description

A theoretical overview of the mathematics underlying the Riemann problem is given
in [Smi79] (and can be found as well in a variety of modern texts on hyperbolic
equations), while a deep review of the physics is given in [Men89]. A practical
description of solution approaches for the polytropic gas case is contained in [Got88]
and more broadly, [Tor99]; the stiffened gas case is described in [P1lo88]. We restrict
the test problems to these two EOSs, references for others are listed in the Additional
User Information section. In the following, all quantities are in consistent cgs units.

The governing equations are the 1-D Euler equations in Cartesian coordinates:

p dpu)
ot M &zx =0
d(pu) d(pu”+ p)

x o =0
APE)  I(pE + pul

ax o =0

where p is the mass density, u is the velocity, p is the pressure, E =e+u’/2 is the
total energy per unit mass, and e is the internal energy per unit mass.

The equation of state (EOS) relates the pressure, density, and internal energy. For the
polytropic (ideal gas) EOS, p=(y—1)pe, where ¥ is the (constant) ratio of specific
heats. For the stiffened gas EOS, p=(y—1)pe—yr, where 7 is a constant.

The system response quantities of interest include:

i. Snapshots of density, velocity, pressure, SIE as a function of position

ii. Time-histories of density, velocity, pressure, and SIE at specified positions
iii. Total energy, kinetic energy, internal energy as a function of time

Descriptions of the specific tests follow. The descriptions include the initial left and
right states, the domain, the initial interface location, x,, and the final solution time,
7,. Unless otherwise noted, the left and right materials are polytropic gases and

¥, =7, =7y=717/5. The features of the solution and the particular reasons it is useful to
code developers are also described. Although the Riemann problem is scale

invariant in space-time, we will present our problem statements in dimensional terms
using the cgs system.
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The Sod Problem The Sod problem [Sod79] is the canonical Riemann problem; see
also [Gre04]. The wave structure consists of a shock moving to the right, a contact
moving to the right, and a rarefaction moving to the left. It is not a severe test, but
quickly identifies problems resolving the wave structure.

Sod Problem Parameters

p [glem’] | u [em/s] | p [dyn/cm?]

Left 1.0 0.0 1.0
Right | 0.125 0.0 0.1
Osx<lcm; x;=0.5cm; 1, =0.25 s

The Modified Sod Problem The modified Sod problem [Tor99] differs from the
original Sod problem in that the rarefaction wave is transonic: an eigenvalue of the
flux Jacobian changes sign inside the rarefaction fan. Several early shock-capturing
methods produced noticeable jumps or “glitches” at the sonic point, and this
pathology is revealed by this test. The initial interface location should be x, =0.3cm.

Modified Sod Problem Parameters

p [g/em’] | u [envs] | p [dyn/cm?]

Left 1.0 0.75 1.0
Right 0.125 0.0 0.1
Osx<lcm; x;,=03cm; 1, =02s

The Einfeldt Problem The solution of the Einfeldt problem [Ein91] consists of two
strong rarefaction waves. Between the rarefactions the density and pressure drop
very low, nearly to vacuum conditions. The original purpose of this problem was to
test Riemann solvers (as part of Euler solvers) at near-vacuum conditions. The test is
also useful for the probing the regime where the internal energy is dominated by the
kinetic energy. Numerical methods that conserve total energy often show large errors
in the internal energy field for this test, sometimes called the 1-2-3 problem.

Einfeldt Problem Parameters

p [g/em’] | u [envs] | p [dyn/cm?]

Left 1.0 -2.0 0.4
Right 1.0 2.0 0.4
Osx<lcm; x;=0.5cm; ¢, =0.15 s
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RCVCR Problem This modified version of the Einfeldt Problem tests the ability of a
code to handle the formation of a vacuum state.

RCVCR Problem Parameters

p [glem’] | u [em/s] | p [dyn/cm?]

Left 1.0 -4.0 0.4
Right 1.0 4.0 0.4
Osx<lcm; x;=0.5cm; ¢, =0.15 s

The Vacuum Expansion Problem The Vacuum Expansion Problem has vacuum
conditions as the left state, and the material on the right undergoes a free expansion.
The wave structure consists of a strong, transonic right rarefaction. The problem
tests the handling of vacuum conditions and the prediction of the speed of the tail
(left edge) of the rarefaction wave. On a Lagrangian mesh, the problem can be set up
with the interface on the domain boundary (with void outside the domain) to test the
boundary conditions in a code. The problem is the same as a piston problem
described in [Lan59], which has an analytic solution, depending on the speed of the

piston.

Vacuum Expansion Problem Parameters

p [g/em’] | u [envs] | p [dyn/cm?]

Left 0.0 0.0 0.0
Right 1.0 0.0 1.0
-5<x<lem; x,=0.0 cm; 7, =0.75 s

The Stream Collision Problem The Stream Collision Problem consists of a left
shock, a trivial contact, and a right shock [Tor99]. The key feature of the solution is
that when the two shocks form at the initial time, errors in all field variables are
produced and are not dissipated as the solution evolves. In particular, the density is
underpredicted and the energy (and temperature) are overpredicted near the initial
discontinuity, a problem referred to as “overheating” in the literature. In
applications, overheating is often observed when shocks reflect from a wall
boundary. This problem is a similar to the planar version of the Noh problem, but the
shocks are weaker.
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Stream Collision Problem Parameters

p [glem’] | u [em/s] | p [dyn/cm?]

Left 1.0 +2.0 0.1
Right 1.0 -2.0 0.1
O<sx<lcm; x;=0.5cm; 1, =08 s

The LeBlanc Problem The LeBlanc Problem is a test of the robustness of the
numerical method. It consists of a strong shock moving to the right, a contact
moving to the right, and a strong, transonic rarefaction. For this problem,y=5/3.

LeBlanc Problem Parameters

p [g/em’] | u [envs] | p [dyn/cm?]

Left 1.0 0.0 (2/3)x10™
Right 107 0.0 (2/3)x10"°
Osx<lcm; x;,=03cm; 1, =05s

The Peak Problem The peak problem is also a robustness test [Lis03, Gre04]. The
domain is [0.1, 0.6] and the initial interface location is x; =0.5cm. It consists of a
strong shock moving to the right, followed closely by a contact surface, and a left-
moving rarefaction. The density peak between the shock and the contact is difficult
to capture.

Peak Problem Parameters

p [glem’] | u[em/s] | p [dyn/cm?]

Left |0.1261192 | 8.9047029 | 782.92899
Right | 6.591493 [2.2654207 |  3.1544874
0.1<x<0.6 cm; x,=0.5cm; 7, =3.9x107 s

Slow Shock Problem The Slow Shock problem is described in [Jin96]; various
similar versions are presented in [Col84, Rob90, Qui94]. The solution consists of a
Mach 3 shock wave moving to the right at approximately 0.109648 cm/s; the other
waves are infinitely weak. Many shock-capturing methods produce long wavelength
oscillations behind the shock. The origin of the oscillations is complicated, but
understood, as described in [Kar97] and the references therein.
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Slow Shock Problem Parameters

p [g/em’] | u [emss] | p [dyn/cm’]
Left 3.857143 | -0.810631 10.33333
Right | 1.0 -3.44 1.0

Osx<lem; x;=0.5 cm; £, =30.0 s

The Stationary Contact Problem The stationary contact problem consists of a strong
shock wave moving to the right, a stationary contact, and a strong rarefaction
moving to the left [Tor99]. The conditions are actually the left part of the
Woodward-Colella blast waves problem [Wo084], with the velocity shifted to make
the contact stationary. For many shock-capturing methods, contact discontinuities
are the most difficult waves to compute; they are continually damped by the method
over the course of the simulation, and unlike shocks, have no natural steepening
mechanism to counteract this damping. The smearing of the contact surface is often
an indicator of the amount of damping of the numerical method. Some methods do
not damp stationary contacts, but this can give a false sense of the numerical
dissipation; the same methods do damp slowly moving contacts.

Stationary Contact Problem Parameters

p [g/em’] | u [cm/s] | p [dyn/cm?’]
Left 1.0 -19.59745 10°
Right 1.0 -19.59745 10

0<x<lcm; x,=0.8 cm; t =0.012s

The Water-Air Shock Tube Problem This is a two-material, water-air shock tube
problem [Sau99, Sau01], widely used by the multiple-material hydrodynamics
community to evaluate algorithm performance. The water is modeled by the
stiffened gas EOS while the air is a polytropic gas.

Water-Air Shock Tube Problem Parameters

p [glem’] | u [cm/s] | p [dyn/em?] | v | # [dyn/cm?’]
Left (water) 1.0 0.0 10" 4.4 6x10°
Right (air) 0.5 0.0 10° 1.4 0.0

0< x<100 cm; x, =70 cm; £, =229x10° s
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IV. Accuracy Assessment

1. Calculations will be run on a nominal mesh, which is to include 100 zones in
the specified domain (400 zones for the peak problem). Calculations will be run
also at mesh resolutions of two, four, and eight times the nominal resolution.

ii. Exact solutions for the density, velocity, pressure, and SIE will be generated at
the positions corresponding to the center of each mesh cell, for each zone in the
specified domain 1.

iii. Values of the L;, L,, and L., norm of the difference between the computed and
exact density, velocity, pressure, and SIE are to be evaluated for each mesh
resolution at its native resolution. Plots of error versus mesh resolution are to be
generated. Inferred convergence properties are to be evaluated both
(1) interpolated over all mesh resolutions and (ii) interpolated between each two
adjacent mesh resolutions.

iv. Values of the L;, L, and L., norm of the difference between the computed and
exact density, velocity, pressure are to be evaluated for each mesh resolution
coarsened onto the coarsest (nominal) mesh. Plots of error versus mesh
resolution are to be generated. Inferred convergence properties are to be
evaluated both (i) interpolated over all mesh resolutions and (ii) interpolated
between each two adjacent mesh resolutions.

v. The total energy, kinetic energy, and internal energy as functions of time are to
be plotted.

V. Additional User Information

The focus of the above proposed tests is on single-material, polytropic gas and two-
material, stiffened gas configurations. With increasing interest in multimaterial problems
and more complex material descriptions, however, we anticipate the scope will expand.
For the ambitious reader we provide the following references.

Solution techniques for nonpolytropic but ideal gases is given by [Col85], and for more
general convex EOSs by [Qua03]. Additionally, it is possible to examine phenomena that
arise with non-convex EOSs [Men89, Miil06]. Using the appropriate tabular or analytic
non-convex EOS, one can formulate shock tube initial conditions that lead to non-
classical structures such as rarefaction shocks and compression fans, which are
associated, e.g., with polymorphic phase transitions exhibited by certain metals [Joh99]
and geologic materials [Swe90]. Numerical schemes that correctly resolve the wave
patterns for convex EOSs may fail dramatically for non-convex EOSs. Consequently, this
case provides a demanding test of hydrodynamics algorithm robustness for atypical (but
not unheard-of) material behavior.
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I. Name: The Guderley Problem
II. Conceptual Description

General: The Guderley Problem consists of a 1-D, spherical geometry consisting of a
single, inviscid, non-heat conducting polytropic gas with a shockwave converging
through quiescent, zero-pressure material toward the origin. Using Lie group
methods, one can reduce the partial differential equations for the dynamically
evolving flow field describing a converging, infinite-strength shock in terms of a set
of coupled, nonlinear ordinary differential equations (ODEs), involving a nonlinear
eigenvalue, for the nondimensional similarity variables. Under the conservation of
mass, momentum, and energy, the shock wave converges onto the origin. The post-
“bounce” state, with finite-strength outgoing shock, is obtained as the solution to
related set of ODEs and constraints that constitute a separate nonlinear eigenvalue
problem. Together, these solutions provide a complete description of the spherically
convergent, self-similar flow: from inflow (pre-“bounce”), through convergence
(“bounce”), to outflow (post-“bounce”).

Processes modeled: This problem tests the integration of the conservation laws for
converging-then-diverging flow of strength-free, inviscid, non-heat conducting,
compressible gas in spherical geometry.

Initial conditions: Pre-shock (near-origin): uniform and constant material density,
pressure, and velocity; post-shock (far-field): must be assigned using a numerical
solution of the related ODE:s (to a specified accuracy) for the nondimensional
similarity variables.

Boundary conditions: (i) Lagrangian: applied velocity at an initially-specified radial
location, or (ii) Eulerian: either (iia) specified velocity and pressure at a fixed radial
location or (iib) constant velocity and pressure at a fixed, far-field radial boundary
location (so that boundary-condition induced waves do not affect the solution in the
domain of interest).

Benchmark type: This problem has a non-closed-form solution that requires a
numerical procedure involving the solution of ODEs to a specified accuracy (type 3
of [Obe07]).

Principal code features tested:
1. Basic compressible shock-hydrodynamics of converging-then-diverging flow
in spherical geometry.
2. Application of boundary forcing function (if the solution is so driven).

[II. Mathematical Description

This problem was originally described in the seminal paper by Guderley [Gud42].
Subsequent general treatments of this problem are presented in [But54, Sta60,
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Whi74, Laz77, Rod78, Laz81, Mey82], with specific aspects discussed more
recently by [HirO1, Pon06, Ram07, Hor08]. While the initial state of the problem is
conceptually simple, the ODEs describing the dynamic solution and the techniques

used to solve those ODEs are complicated; the interested reader is referred to
[Laz77, Laz81, Pon06, Ram07] for details.

The form of the 1-D compressible flow equations amenable to analysis for this
problem is given as:

uo, w1
o or por
-
or or

where p is the mass density, u is the velocity, p = (%~1)p e is the pressure, S is the
thermodynamic entropy, and m is an integer identifying the geometry, with m=3 for
spherically symmetric flow.

A Lie group analysis of these equations (see [Ram07]) reveals the existence of a set

of dimensionless similarity variables that reduce the above PDEs to a set of coupled,
nonlinear ODEs. For the incoming shock problem, the independent variable for this

set of ODEs is the similarity variable

E=r/(kt*)

where the similarity exponent o must be solved for. Approximate formulae with
which to estimate o are given, e.g., in [Sta60]; a robust numerical technique with
which to evaluate «is given in [Hir01]. Using these methods, a complete solution of
the ODEs for the incoming shock problem can be obtained. It can be shown

[RamO7] that the identical similarity exponent satisfies the required constraints for
the outgoing shock problem. Due to the finite-strength shock of the outgoing phase,
however, the forms of the equations and of the constraints to be satisfied differ from
those of the incoming solution; as described in detail in [Laz81, Ram07], the

solution method for those equations differs, as well.

The transformation between the similarity solution (which is obtained from
numerical integration of the appropriate ODEs and numerical solution of the
corresponding nonlinear eigenvalue problems) and the physical variables remains, in
a sense, ambiguous. This is due to the dependence of this transformation on the
parameter £ in the definition of the independent similarity variable, given above.
This parameter is related to the initial energy and density of the process that
generates the incoming shock, to quote Ramsey [Ram07], “from an infinitely weak
state, at infinity, infinitely long ago.”
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Therefore, the problem we propose is related to the similarity solution given by
Lazarus [Laz81] and depicted by Ramsey [Ram07]. These solutions are shown in
Figs. 1 and 2.
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Figure 1. Incoming-flow solution for density, velocity, and pressure for the
Guderley problem for the case m =3, k=1, y= 1.4, t = —1, corresponding to
Fig. 5.9 of [Ram07] and Figs. 8.8, 8.10, and 8.12 of [Laz81].
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Figure 2. Outgoing-flow solution for density, velocity, and pressure for the
Guderley problem for the case m =3, k=1, y= 1.4, t = +1, corresponding to
Fig. 5.12 of [Ram07] and Figs. 8.26, 8.28, and 8.30 of [Laz81].

In the following, all quantities are in consistent cgs units.

The system response quantities of interest include:
i. Snapshots of density, velocity, pressure, SIE as a function of position
ii. Time-histories of density, velocity, pressure, and SIE at specified positions
iii. Total energy, kinetic energy, internal energy as a function of time

Configuration #1: 1-D (r) Spherical Incoming Shock [Laz81, Ram08]
Left computational boundary =r,=0.0cm
Right computational boundary =rg=3.0cm
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Left analysis boundary =r,=0.0cm

Right analysis boundary =rg=2.0cm

Adiabatic index =y=3

Scaling parameter =k=1

Initial time =tinit=—1.0s

Final times =tin=-0.1s, +0.1s, +0.5 s

IV. Accuracy Assessment

1. Calculations will be run on a nominal mesh, which is to include 150 zones in the
entire computational domain. Calculations will be run also at mesh resolutions of
two, four, and eight times the nominal resolution.

ii. Exact solutions for the density, velocity, pressure, and SIE will be generated at the
positions corresponding to the center of each mesh cell or for the appropriate cell-
averaged quantity (for finite volume codes), for each zone in the specified domain.

iii. The values at £, = —1.0 s will be mapped onto the computational mesh to be used
as the initial condition for the subsequent calculation. For this configuration,
erroneous values propagating in to the computational mesh from the right boundary
should not influence the computed solution on the analysis domain (which is a strict
subset of the computational domain)

iv. Values of the L;, L, and L., norm of the difference between the computed and exact
density, velocity, pressure, and SIE are to be evaluated for each mesh resolution at
its native resolution on the analysis domain. Plots of error versus mesh resolution
are to be generated. Inferred convergence properties are to be evaluated both
(1) interpolated over all mesh resolutions and (ii) interpolated between each two
adjacent mesh resolutions.

v. Values of the L, L,, and L., norm of the difference between the computed and exact
density, velocity, pressure are to be evaluated for each mesh resolution coarsened
onto the coarsest (nominal) mesh. Plots of error versus mesh resolution are to be
generated. Inferred convergence properties are to be evaluated both (i) interpolated
over all mesh resolutions and (ii) interpolated between each two adjacent mesh
resolutions.

vi. The total energy, kinetic energy, and internal energy as functions of time are to be
plotted.

V. Additional User Information

The idealized zero-pressure state near the origin for the incoming shock phase
corresponds to the case of an infinitely strong shock; this assumption simplifies the
jump conditions that must be satisfied at the incoming shock (see [Pon06] for an
asymptotic analysis in the case of a finite-strength incoming shock). In the
corresponding hydrocode simulations, however, the near-origin pressure must be set
to a non-zero value that is small, i.e., several orders of magnitude smaller than the
post-shock pressure. The suggested value to be used is 10 dyn cm™. The effect on
verification analyses of this small initial pressure has not been quantified, but is
anticipated to be minimal.
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I. Name: The Cook & Cabot Problem
II. Conceptual Description

General: The Cook & Cabot Problem [Co004; see also Lan87] consists of a
compressible, breaking wave for the 1-D Euler equations of gas dynamics. For the
specified initial conditions and up to a specified time, two of the three characteristic
fields are constant and only the third characteristic field evolves dynamically. In
particular, this temporally evolving characteristic satisfies an equation similar to
Burgers’ equation (see, e.g., [Whi74]): with the given initial conditions, the solution
remains smooth up until the time at which the third field “breaks,” i.e., a shock
forms and the solution becomes discontinuous. Therefore, this problem provides a
rigorous and quantitative test of the resolution of planar, 1-D compressible
hydrodynamics algorithms on a smooth, nonlinear problem. In particular, this
problem can be used to quantify how well the spectral content of the computed
solution compares with the exact solution for smooth flows that transition into
discontinuous flows.

Processes modeled: This problem tests the integration of the conservation laws for
the flow of strength-free, inviscid, non-heat conducting, compressible gas in 1-D
planar geometry, up to the point of wave-breaking.

Initial conditions: Sinusoidally-varying material density, pressure, and velocity on
the unit interval; the formulae for these variables are given below.

Boundary conditions: Periodic boundary conditions.

Benchmark type: The idealized case reduces to a closed-form solution that requires
the solution of one nonlinear equation (type 1 of [Obe07]), converged to either
machine accuracy or a clearly stated tolerance.

Principal code features tested:
1. Basic compressible hydrodynamics, including strongly nonlinear interactions
for a single material.

[II. Mathematical Description

A brief mathematical description of the problem is given in [Coo04]. In that paper,
sufficient information is provided to derive the entire solution up to the point of
shock formation. The salient points are discussed below.

The system response quantities of interest include:
i.  Snapshots of density, velocity, pressure, and specific internal energy (SIE) as
a function of position.
ii.  Time-histories of density, velocity, pressure, and SIE at specified positions.
iii.  Total energy, kinetic energy, and internal energy as a function of time.

52



Configuration #1: [Co004]

Left boundary =x,=0.0cm

Right boundary =xz=10cm

Adiabatic index =y =5/3

Initial density =p=po[1+esin(2m/1)]

Reference density =pp=10"gem™

Initial pressure =p =po(p/po)”

Reference pressure = po = 10° dyn cm™

Initial sound speed =c =co (p/ po) "™

Ref. sound speed =co=(ypo/po )" = 4.0824829x10* cm s™'

Initial velocity =u =2(co—c)(y-1)

Initial perturbation =¢ =0.1

Initial wavelength = A= N Ax, where N = number of gridpoints on [0,1]
Final time = tfin = toreak, Which is given for a point initially at x by:

A [1+esin(2mx /)]
(y + Drec, cos(2mx /M)

tbreak -

The exact solution at time ¢ > 0 is the initial profile modified in such a way that
each point is advected with velocity u — ¢, i.e., so that points on the profile at time ¢
have moved from their initial (+=0) position x to the location &= x + (u —¢) ¢. This
exact solution is valid, for a given x, up to the point in time given by fyreax above. The
earliest time at which any point on the unit interval arrives at its breaking time is
given by:

[1+ 0]

tbreak, min

(7 + Dree,

which is the last time for which the exact solution (described above) is valid over the
entire interval. A later time for calculation verification studies is given by the time
at which the peaks of the initial sinusoidal profile (at + A /4 from the central zero of
the density profile) reach the breaking point. This time is given by

v O S B S
P (}/+1)(cb—cp) 2(y + Dec,

(7[/2) tbreak, min

Comparison of the (code) convergence results at ¢ < fyreax, min With (calculation)
convergence results at ¢ > fyreak, min reveals differences in the hydrodynamics
algorithm for smooth and discontinuous flows.

53



IV. Accuracy Assessment

1.

ii.

iii.

1v.

Vi.

Calculations will be run on a nominal mesh, which is to include 100 zones in the
specified domain. Calculations will be run also at mesh resolutions of two, four,
and eight times the nominal resolution, with appropriate modifications of the initial
conditions (e.g., in the initial wavelength of the perturbation).

Exact solutions for the density, velocity, pressure, and SIE will be generated at the
positions corresponding to the center of each mesh cell, for each zone in the
specified domain 1.

Values of the L, L,, and L., norm of the difference between the computed and exact
density, velocity, pressure, and SIE are to be evaluated for each mesh resolution at
its native resolution. Plots of error versus mesh resolution are to be generated.
Inferred convergence properties are to be evaluated both (i) interpolated over all
mesh resolutions and (ii) interpolated between each two adjacent mesh resolutions.
Values of the L, L,, and L., norm of the difference between the computed and exact
density, velocity, pressure are to be evaluated for each mesh resolution coarsened
onto the coarsest (nominal) mesh. Plots of error versus mesh resolution are to be
generated. Inferred convergence properties are to be evaluated both (i) interpolated
over all mesh resolutions and (ii) interpolated between each two adjacent mesh
resolutions.

The total energy, kinetic energy, and internal energy as functions of time are to be
plotted.

The power spectrum (computed by Fourier transform) of the solution is to be
graphically compared with that of the analytical solution.

V. Additional User Information

VI. References

[Co004] Cook, A.W., and Cabot, W.H., “A high-wavenumber viscosity for high-

resolution numerical methods,” J. Comput. Phys. 195, pp. 594-601 (2004).

[Lan87] Landau, L.D., and Lifschitz, E.M., Fluid Mechanics, Pergammon Press,

London, UK (1987).

[Obe07] Oberkampf, W.L., and Trucano, T.G., Verification and Validation Benchmarks,

Sandia National Laboratories report SAND2007-0853 (2007).

[Whi74] Whitham, G.B., Linear and Nonlinear Waves, Ch. 4, Wiley, New York, NY

(1974).
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I. Name: The Woodward-Colella Interacting Blast Waves Problem
II. Conceptual Description

General: The Woodward-Colella Blast Waves Problem is a one-dimensional (planar)
test for robust shock capturing, strong shock interactions, and tracking contact
surfaces [Woo84]. The governing equations are the Euler equations, so the problem
is inviscid and there are no explicit diffusive effects; the ideal (polytropic) gas
equation of state is used. The domain of the problem is a shock tube with two
(virtual) diaphragms, dividing the tube into two short sections near the ends and a
longer section between them. The short sections are at (different) high pressures, and
the center section is at low pressure; initially the density is constant and the velocity
is zero in all three regions. At the starting time the diaphragms are broken, sending
two strong shocks into the center section and rarefactions towards the ends of the
tube. The problem is not symmetric: since the left and right sections have different
initial pressures, the strengths of the left and right rarefactions and shocks are
different. Complex wave interactions develop as the rarefactions reflect off the
reflective boundaries, as the rarefactions catch up to the shocks, and as the shocks
interact with each other and with contact surfaces. There is no known analytic
solution.

Processes modeled: This problem tests the ability of the numerical method to
provide robust, nonoscillatory solutions in the presence of strong shocks and
complex wave interactions for an inviscid, compressible gas in planar geometry.

Initial conditions: Everywhere: constant density and zero velocity. Left (10%):
constant high pressure. Center (80%): constant low pressure. Right (10%): constant
high pressure. Other properties can be determined from the ideal gas equation of
state.

Boundary conditions: Left and right: wall (or reflective) boundary conditions.

Benchmark type: There is no known analytic solution past an early time when the
expansion wave on the left reflects from the left wall. Numerical simulations on very
fine grids, however, are accepted as fiducials for comparison purposes (type 4 of
[Obe07]).

Principal code features tested:
1. Nonoscillatory shock capturing.
2. Conservation of mass, momentum, and energy through the correct wave
speeds.
Numerical dissipation for compressible fluid dynamics.
4. Accuracy in the presence of strong interacting shocks.

(98]
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[II. Mathematical Description

This problem was originally described in a paper by Woodward and Colella,
[Wo084]; see also [Gre04]. The governing equations are the Euler equations in 1D,
Cartesian coordinates:

p . dpw

ot &zx =0
d(pu) d(pu”+ p)

a o =0
JPE)  Al(pE + pyul

ax o =0

where p is the mass density, u is the velocity, p is the pressure, E =e+u’/2 is the
total energy per unit mass, and e is the internal energy per unit mass. The ideal gas
law relates the pressure, density, and internal energy: p =(y—1)pe where y="7/5 is
the ratio of specific heats.

The problem domain is 0 < x < 1 cm. Initially, the density is p=1.0 g/cm’ and the
velocity is #=0.0 cm/s. The left diaphragm is at x =0.1 cm and the right diaphragm
is at x =0.9 cm. The pressures in the left, center, and right sections are

p=10° dyn/cm?®, p=107 dyn/cm’, and p =10? dyn/cm?, respectively. The final
time of the simulation is 7, =0.038 s.

The system response quantities of interest include snapshots of density, velocity, and
pressure as a function of position, as well as time-histories of the total, internal, and
kinetic energies.

IV. Accuracy Assessment

Calculations will be run on a series of uniform meshes, having 200, 400, and 800
zones covering the specified domain. Plots of density, velocity, and pressure, as
functions of position should be produced at the final time. The density from a 5™
order AMP scheme on a 6400 cell mesh is shown below.

This test is usually compared at t=0.038, a time after the strong shocks have
interacted and passed through each other. The right-going shock is at x~0.865 cm,
followed by the larger of the two peak values at x=0.78 with a converged value of
approximately 6.45 g/cm’. Moving to the left, the local minimum between these two
peaks at x~0.745 cm with a density of approximately 3.20 g/cm’. The second lower
peak is at x~0.65 cm with a density of approximately 5.30 g/cm’. The final important
feature is the contact discontinuity at x~0.59 cm; this contact is embedded in an
expansion, which can cause the contact to spread excessively.
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Figure 1. Density as a function of position at the final time for the
Woodward-Colella Interacting Blast Waves problem described in the text.

The principal value of this problem is to determine how well the simulation code
resolves flow features. Features of the solution that, if not captured, are considered
failures include the following:

i. Inability to run to the final time.

ii. Inability to correctly calculate the shock locations.
iii. The presence of oscillations at the Nyquist frequency near shocks and contacts.

V. Additional User Information

VI. References

[Gre04] Greenough, J.A., and Rider, W.J., “A quantitative comparison of numerical

methods for the compressible Euler equations: fifth-order WENO and
piecewise-linear Godunov,” J. Comput. Phys. 196, pp. 259-281 (2004).

[Obe07] Oberkampf, W.L., and Trucano, T.G., Verification and Validation Benchmarks,

Sandia National Laboratories report SAND2007-0853 (2007).

[Woo084] Woodward, P., and Colella, P., “The Numerical Simulation of Two-

Dimensional Fluid Flow with Strong Shocks,” J. Comput. Phys. 54, pp. 115—
173 (1984).
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I. Name: The Shu-Osher Problem
II. Conceptual Description

General: The Shu-Osher Problem [Shu89] is a one-dimensional (planar) test for
accurately computing complex flow structures in the presence of a shock wave. The
governing equations are the Euler equations, so the problem is inviscid and there are
no explicit diffusive effects; the ideal (polytropic) gas equation of state is used. In
the problem, a shock wave propagates into a quiescent, constant pressure field with a
sinusoidal density profile. After passing through the shock, the density profile has
two components. One is at approximately the same frequency and amplitude as the
initial profile, and compression waves associated with it eventually steepen into
shock waves in a classical “N-wave” pattern. The second component is at a higher
frequency and larger amplitude that follows the shock more closely. The test is the
ability of the method to resolve these higher frequency features without spurious
oscillations and excessive dissipation. There is no known analytic solution.

Processes modeled: This problem tests the ability of the numerical method to
provide nonoscillatory solutions in the presence of shocks and to accurately resolve
fine scale flow structures for an inviscid, compressible gas in planar geometry.

Initial conditions: Pre-shock (right): zero velocity, constant pressure, sinusoidal
density. Post-shock (left): uniform density, pressure, and velocity determined from
the nominal pre-shock state by the Rankine-Hugoniot jump conditions.

Boundary conditions: Left: in the Eulerian reference frame, subsonic inflow, which
maintains the nominal post-shock state. In the Lagrangian reference frame, constant
pressure and velocity at nominal post-shock values. Right: fixed at initial state. Note:
As no waves reach the boundaries during the simulation and the boundary conditions
are not the focus of the test, other boundary specifications are allowable as long as
they do not disrupt the interior of the domain.

Benchmark type: There is no known analytic solution; however, numerical
simulations on very fine grids are accepted as fiducials for comparison (type 4 of
[Obe07]).

Principal code features tested:
1. Nonoscillatory shock capturing.
2. Numerical dissipation for compressible fluid dynamics.
3. Accuracy and resolving power in the presence of shocks.

[II. Mathematical Description

This problem was originally described in a paper by Shu & Osher [Shu89]. The
governing equations are the Euler equations in 1D, Cartesian coordinates:
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ot ox

where p is the density, u is the velocity, p is the pressure, E =e+u’/2 is the total
energy per unit mass, and e is the internal energy per unit mass. The ideal gas law
relates the pressure, density, and internal energy: p =(y—1)pe where y=7/5 is the
ratio of specific heats.

The domain is [-4.5cm, 4.5cm], and the initial location of the shock wave is at

x =—4.0cm. To the right of the shock, #=0 and p =1.0dyn/cm’, and the density is
sinusoidal, p =1+ esin(Ax)g/cm’, where £=0.2 and A=>5. The jump conditions for
a Mach 3 shock specify the state to the left of the shock; approximate values are
p=3.857143 g/lem’, u=2.629369cm/s, and p =10.33333 dyn/cm”. The final time

of the simulation is 7,, =1.8s.

The system response quantities of interest include snapshots of density, velocity, and
pressure as a function of position.

Although the description above is an Eulerian one, the problem can also be solved
by Lagrangian or Arbitrary Lagrangian Eulerian (ALE) methods. The only
adjustments needed are to ensure that initially, the left boundary extends past

x ==7.75cm, and that the initial, post-shock pressure and velocity are maintained at
the left boundary.

IV. Accuracy Assessment

Calculations will be run on a series of uniform meshes, the coarsest having 200
zones covering the specified domain. For each additional mesh, double the number
of zones each time. Plots of density, velocity, and pressure, as functions of position
should be produced at the final time. The density from a 7™-order Weighted ENO
scheme on a 1600 cell mesh is shown below.

The solution features of principal interest are the fine scale density perturbations
behind the shock. On a 200 cell uniform Eulerian mesh, they are represented by
about 7.5 points per wavelength; on 400 cells, about 15 points per wavelength. Most
high-order (higher than second) shock-capturing methods capture the first peak
behind the shock with minimal dissipation on the 400 cell mesh; following peaks are
often slightly damped. On the 200 cell mesh, the first peak is well resolved but
damped, some of the following peaks are clearly discernable but others may be
damped beyond recognition. Generally, second-order TVD methods fail to resolve
the fine scale perturbations on 200 or 400 cell meshes; even on 800 cells, they are
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damped significantly. See the work of Greenough and Rider [Gre04] for a further

discussion.
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Figure 1. Density as a function of position at the final time for the Shu-Osher

problem described in the text.

The principal value of the test is to determine how accurately the simulation code
resolves flow features. Features of the solution that, if not captured, are considered
failures include the following:

1.
ii.

iil.

1v.

Inability to preserve the initial conditions upstream of the shock constitutes
failure.

Inability to correctly predict the shock location is a failure.

The presence of oscillations at the Nyquist frequency near the main shock, or
the near the compression waves that develop into shocks behind it, constitute
failure.

Inability to find a mesh resolution at which the fine scale features are captured
constitutes failure.

V. Additional User Information

The problem was initially motivated by weak wave interactions with shocks
[McK68], in particular a weak entropy wave with a shock and the resultant entropy,
vorticity, and acoustic waves produced in the interaction. In that paper linearized
estimates for the amplitude of these post-shock waves were derived. A similar test
problem defined in Jiang & Shu [Jia96] specifies much smaller initial density
fluctuations in the spirit of [McK68].
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Another popular variant is to set A =257 in the initial density. This variant is more
challenging because the initial frequency is higher, and the effective simulation time
is longer.

VI. References

[Gre04] Greenough, J.A., and Rider, W.J., “A quantitative comparison of numerical
methods for the compressible Euler equations: fifth-order WENO and
piecewise-linear Godunov,” J. Comput. Phys. 196, pp. 259-281 (2004).

[Jia96] Jiang, G.S., and Shu, C.-W., “Efficient implementation of weighted ENO
schemes,” J. Comput. Phys. 126, pp. 202-228 (1996).

[McK68]McKenzie, J.F., and Westphal, K.O., “Interaction of Linear Waves with Oblique
Shock Waves,” Phys. Fluids 11, pp. 2350-2362 (1968).

[Obe07] Oberkampf, W.L., and Trucano, T.G., Verification and Validation Benchmarks,
Sandia National Laboratories report SAND2007-0853 (2007).

[Shu89] Shu, C.-W., and Osher, S., “Efficient Implementation of Essentially Non-
oscillatory Shock-Capturing Schemes, 11,” J. Comput. Phys. 83, pp. 32—78
(1989).
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I. Name: The Taylor-Green Vortex Problem
II. Conceptual Description

General: The Taylor-Green Vortex (TGV) Problem harks back to Taylor [Tay38]
and has been revisited since by many researchers (see, e.g., [Dri07]) as a model
problem with which to examine the transition to turbulence from a well-
characterized initial state. Although closed-form (infinite series) asymptotic
solutions to this configuration exist for an incompressible fluid at early time
[Tay38], no closed-form solution is known for the compressible case. At initial time
of the problem (#=0), there is a regular pattern of sinusoidal variation in velocity,
with the pressure having sinusoidal variations about a fixed value Py and the initial
density assuming a constant value. This regular initial configuration evolves through
a phase where it is (nearly) singular into a complex, disordered state.

Processes modeled: This problem tests the integration of the conservation laws for
the flow of strength-free, inviscid, non-heat conducting, compressible gas in 3-D
Cartesian geometry. In particular, this problem can be applied to evaluate codes that
are used to simulate large-scale turbulence without resorting to Reynolds averaging
(or analogous closure approaches), i.e., to codes that employ (implicit) large eddy
simulation.

Initial conditions: Specific initial conditions for this 3-D configuration are given
below in Section III.

Boundary conditions: Periodic boundaries on the exterior of the mesh.

Benchmark type: While the idealized incompressible case has an asymptotic series
solution for early time, the compressible case considered here has no known analytic
solution. Numerical simulations on very fine grids, however, are widely accepted as
fiducials (albeit of unknown accuracy) for comparison (type 4 of [Obe07]).

Primary code features tested:
1. Basic compressible, multi-dimensional hydrodynamics of disordered flow of a
polytropic gas.

[II. Mathematical Description

The seminal paper in which this problem was proposed is [Tay38]; modern
considerations of this problem include [Bra83, Hic06]. A discussion of the particular
problem we consider is given in [Dri07]. In the following, all quantities are in
consistent cgs units.

The system response quantities of interest include:

i. Fourier spectra of velocity as a function of wavenumber for the following
non-dimensional times: t*=0, 2.2,6.7,89, 14.7, 36.3, 49.4, and 62.8, where
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the non-dimensional time is defined as 7 = k Uy, where the reference

velocity U is defined below and the wavenumber £ is unity for the mesh

specified below; see Fig. 1 for a depiction of the flowfield at these times.
ii. Snapshots of density, velocity, pressure, and vorticity at the above times.
iii. Total energy, kinetic energy, internal energy as a function of time.

Configuration #1: 3-D Taylor Green Vortex [Dri07]
Left boundary =x;,=0.0 cm
Right boundary =xg=2mcm
Bottom boundary =x3=0.0 cm
Top boundary =xr=2mwcm
Aft boundary =x4=0.0cm
Fore boundary =xp=2mwcm
Adiabatic index =y=14
Density =p=1.178x10" g cm™
x-velocity =u= U sin(x) cos(y) cos(z)
y-velocity = v =—-U) cos(x) sin(y) cos(z)
z-velocity =w=0
Reference velocity = U =10*cm 5!
Pressure =p=Py+ (1/8) p Uy’ [1 + cos(2z)] [ cos(2x) + cos(2y) ]
Reference pressure = Py = 1.07x10° Pa
Final time = tfin = given by the nondimensional times above

Figure 1. Volume renderings of the largest eigenvalue of the velocity gradient
tensor Ou;/Ox; for the TGV flow at the indicated nondimensional times [Dri07].
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IV. Accuracy Assessment

1. Calculations will be run on a nominal mesh, which is to include 64 zones in
each direction of the specified domain. Calculations will be run also at
mesh resolutions of two and four eight times the nominal resolution.

ii. Plot of the Fourier spectrum of the velocity versus wavenumber are to be
plotted at the nondimensional times given above.

iii. Values of the L;, L,, and L., norm of the difference between the computed
and finest-mesh values of the density, velocity, pressure, and vorticity are
to be evaluated for each mesh resolution at its native resolution. Plots of
error versus mesh resolution are to be generated. Inferred convergence
properties are to be evaluated both (i) interpolated over all mesh resolutions
and (ii) interpolated between each two adjacent mesh resolutions.

iv. Values of the L;, L, and L., norm of the difference between the computed
and finest-mesh density, velocity, pressure are to be evaluated for each
mesh resolution coarsened onto the coarsest (nominal) mesh. Plots of error
versus mesh resolution are to be generated. Inferred convergence properties
are to be evaluated both (i) interpolated over all mesh resolutions and (ii)
interpolated between each two adjacent mesh resolutions.

v. The total energy, kinetic energy, and internal energy as functions of time
are to be plotted.

V. Additional User Information
VI. References

[Bra83] Brachet, M.E., Meiron, D.I., Orszag, S.A., Nickel, B.G., Morg, R.H., and
Frisch, U., “Small-scale structure of the Taylor-Green vortex,” J. Fluid Mech.
130, pp. 411-452 (1983).

[Dri07] Drikakis, D., Fureby, C., Grinstein, F., and Youngs, D., “Simulation of Transition
and Turbulence Decay in the Taylor-Green Vortex,” J. Turbulence 8, pp. 1-12
(2007).

[Hic06] Hickel, S., Adams, N.A., and Domaradzki, J.A., “An adaptive local
deconvolution method for implicit LES,” J. Comput. Phys. 213, pp. 413—436
(20006).

[Obe07] Oberkampf, W.L., and Trucano, T.G., Verification and Validation Benchmarks,
Sandia National Laboratories report SAND2007-0853 (2007).

[Tay37] Taylor, G.I., and Green, A.E., “Mechanism of the Production of Small Eddies
from Large Ones,” Proc. Roy. Soc. Lond. A 158, pp. 499-521 (1937).
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I. Name: A Richtmyer-Meshkov Problem
II. Conceptual Description

General: The Richtmyer-Meshkov (RM) problem considers the stability of an
impulsively accelerated interface separating two compressible or incompressible
fluids of different density [Mar57, Ric60, Mes69]. This instability is of fundamental
importance in a variety of applications, spanning a wide range of length scales. At
large scales RM instability generates mixing in supernovae [Arn89, Bur95]; at
smaller scales it plays an important role in deflagration-to-detonation transition
[Kho99] and enhances mixing in ramjet engines [Yan93, Cur96]; at even smaller
scales it initiates shell break-up in inertial confinement fusion capsules [Lin95,
Nie03]. The RM instability is often referred to as the impulsive or shock-induced
Rayleigh-Taylor (RT) instability. Unlike RT, where the instability takes place only
when the light fluid accelerates into the heavy fluid and the initial growth of
perturbations is exponential in time, RM is unstable no matter which direction the
shock approaches the interface from (i.e., from either the light or heavy fluid side)
and the initial growth of perturbations is linear in time. The resulting flow field can
be attributed to the baroclinically generated vorticity resulting from the
misalignment of the density gradient across the interface and the pressure gradients
that occur during the shock interaction. Indeed, compressible linear theory [Fra86,
Mik94] implies that baroclinic vorticity can be deposited by a shock at an interface
initially without a density gradient because shock refraction at the interface
subsequently modifies the initial density gradient. The initial evolution of RM
instabilities can be described in terms of vortex dynamics, where Zabusky and others
[Zab99, Lee06, Cot07] have discussed the crucial role vorticity plays in the early
development of RM and other baroclinic instabilities.

Processes modeled: This problem tests the ability of codes to model multiple fluid
interactions in the presence of shocks and to capture the large and fine scale
dynamics of the mixing layer (e.g., mixing layer amplitude, displacement, roll-up,
and secondary instabilities).

Initial conditions: The initial conditions for this problem are quiescent fluids at a
given temperature and pressure (e.g., air and SF¢) with either a single mode
sinusoidal perturbation at the interface between the gases or a multimode disturbance
with a well characterized spectrum [Coo04]. Computationally, the interface
disturbance can either be sharp or smeared depending on what numerical method is
being used. Similarly, the way the shock is generated depends on the numerical
method being employed. For example, for an Eulerian code one might use as the
initial condition one-dimensional analytic results to set up a shock of specified
strength upstream of the interface. On the other hand, for a Lagrangian code one
would most likely allow the upstream wall to translate normal to the interface with
constant velocity (i.e., acting as a piston driving a shock of constant strength). How
one deals with the details of shock generation or the initial interface are assumed to
only have a small effect in most cases (e.g., different codes give similar amplitude
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and displacement results even though those codes are based on very different
numerical methods), although amplitude results can be sensitive to how the mixing
layer width is calculated (e.g., the common “spike” and “bubble” threshold
definitions or the more recent entrainment length ideas [Coo04]).

Boundary conditions: For Lagrangian methods, the shock is most likely formed by
an impulsively accelerated boundary to a constant velocity (i.e., a piston) on either
side of the interface. For Eulerian methods, the computational domain is usually
taken to be of fixed shape and size with the shock being generated by using the one-
dimensional analytic results to set it up. For the most part, previous results show
that amplitude and growth rates are only slightly affected by the details of the
boundary conditions employed (e.g., periodic or symmetry). For example, boundary
conditions may be no-slip and non-reflecting at the ends (i.e., at zyin and zmax), and
zero normal velocity at the bottom (i.€., y=Ymin), top (i.€., Y=Ymax), and both sides
(i.e., X=Xmin and Xmax).

Benchmark type: There is no general solution to this problem, but one can compare
to linear stability analysis results [Ric60, Mes69], linear models [Haa91, Yan94] at
early time, and to nonlinear models [Sad98] at intermediate times.

Principal code features tested:

1. Ability to maintain planar shocks.

2. Model the interaction of multiple fluids in the presence of shocks.

3. Ability to converge large scale details of the mixing layer (e.g., mixing layer
amplitude and displacement).

4. Ability to converge fine scale details of the mixing layer (e.g., roll-up and
secondary instabilities).

5. Numerical dissipation for compressible fluid dynamics.

6. Test interface reconstruction algorithms.

7. Test particle tracking methods.

[II. Mathematical Description

The dynamics of the RM instability are governed by conservation of mass,
conservation of momentum, and conservation of energy (for each fluid)

?I)+V (pv)=0
a(g)t)+V (pvw)+Vp+V. 7=0
a(gtE)+V [((PE + p)v]+ V- q+1' Vv=0 ,

where boundary conditions (e.g., velocity, stress, temperature, mass conservation,
and thermodynamic equilibrium) at the interface couple the two systems together.

Here, p denotes the density, v is the velocity vector, p is the pressure, 7 is the stress
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tensor, E is the total energy, and ¢ is the heat flux vector. The above system of
equations is closed by using an equation of state to relate temperature and pressure
such as the ideal gas law

p=pRT ,
where R is the gas constant and 7 is the temperature.

The linear stability of this problem was first considered in detail by Richtmyer
[Ric60] who followed Taylor's [Tay50] formulation and modeled gravity as a Dirac
delta function. The growth rate of the impulsively accelerated instability was found
to be

de _ kAVe,
dt

where ¥ is the interface velocity, k =27m/A is the wavenumber of the initial interface
modulation, ¢ is the amplitude, and & is its initial value. The Atwood number, 4, is
defined as

A_ph_pl

pitp
where p, and p, are the densities of the light and heavy fluids, respectively. The
linear growth stage [Ale88, Gro93] described by Richtmyer's [Ric60] result lasts as
long as the perturbation amplitude is sufficiently small (i.e., is much less than the
wavelength). The impulsive formulations give good results for small amplitudes and
weak shocks, when compressibility effects following the initial shock interaction are
not important. When the amplitude becomes comparable to the wavelength, the
growth rate decreases owing to the influence of the nonlinearity of the governing
equations.

The effects of weak nonlinearity can be incorporated by developing a solution in the
form of an asymptotic expansion using the perturbation amplitude [Haa91],
however, these solutions have the weakness that when truncated they produce results
that quickly diverge from the exact solution when the amplitude reaches moderate
size. Others [Zha97] have found a solution to this problem by posing their series
solution as a Pade approximant, which significantly extends its validity; however,
the solution of Zhang & Sohn [Zha97] does not possess the generally accepted
asymptotic behavior as time approaches infinity. This weakness has been addressed
by Sadot et al. [Sad98], who present a model that captures the initial weakly
nonlinear behavior yet also provides the correct late-time asymptotic form.

Although the description above is an Eulerian one, the problem can also be solved
by Lagrangian or Arbitrary Lagrangian Eulerian (ALE) methods.
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Figure 1 shows mixing layer amplitude results from linear and non-linear semi-
analytic models [Haa91, Yan94, Zha97, Sad98] together with computational results
from two very different codes, as well as experimental shock tube results [Col02].
The parameters used to generate theses results are those given in the experimental
shock tube work of Jacobs [Col02], where the fluids are air and SFg, the initial
temperature is 292.5 K, the pressure is 9.269x10° g cm™, the single mode sinusoidal
interface disturbance wavelength is 5.93 cm, the amplitude is 0.3 cm,” the Atwood
number is about 0.6, and the fluids are taken to be polytropic gases with gamma
being 1.276 for air and 1.093 for SFs. Initial densities are calculated using the ideal
gas equation of state. For the case of the ALE code, the shock is generated by
translating the air side boundary at constant velocity (i.e., the “piston” velocity is set
to 1.405x10* cm s™), while in the Eulerian code the initial condition is set up using
one-dimensional analytic results to produce a shock of specified strength upstream
of the interface. In either case, the initial shock strength is set to be comparable with
the experimental interface translation speed of 9.7x10° cm s™'. The boundary
conditions are assumed to be periodic in the crossstream direction and no slip at the
ends (if this is being set up in 3D the resulting third dimension boundaries are taken
to be free). Also, the computational results shown here have about 300 points per
wavelength in the crossstream direction and whatever resolution is needed to get
converged results in the streamwise direction.

IV. Accuracy Assessment

1. Calculations will be run on a series of meshes with increasing resolution in
order to judge grid convergence (domain convergence is not an issue for this
problem). Values of the L;, L,, and L., norm of the difference between the
computed and finest-mesh values of the mixing layer amplitude,
displacement, and growth rate are to be evaluated for each mesh resolution
considered. Plots of error versus mesh resolution are to be generated.
Inferred convergence properties are to be evaluated both (i) interpolated over
all mesh resolutions and (ii) interpolated between each two adjacent mesh

resolutions.

il. Once convergence has been established, computations can be compared to
linear stability analysis results [Mes69, Ric60].

iii. Also, at early and intermediate times one may compare to linear [ Yan94] and

weakly-nonlinear [Haa91, Zha97, Sad98] semi-analytical results. If desired,
one may curve fit the analytic solutions and then calculate the L, L,, and L,
norm of the difference between the computed and semi-analytic results.

* In the computations, an initial amplitude slightly larger than reported in the experiments is used so that the
layer amplitude at its minimum value after the initial compression (this time is then taken to be t=0 for
comparison to experiment and other computations and calculations) is similar in magnitude to the first
experimental point. For a pure verification study, such agreement between simulation and experiment is
not required, however, as it is irrelevant to verification purposes.
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Figure 1. Mixing layer amplitude versus time, where the black dots
correspond to Jacobs single shock tube data [Col02], the blue curves
correspond to linear and non-linear semi-analytic results [Haa91, Yan94,
Zha97, Sad98], the red curve corresponds to converged results from an
Eulerian code, and the green curve corresponds to converged results from
an ALE code. We note that computations are within about 4% of each
other.

Figure 2. Density results from the ALE code [Col02] for a time of about
1.7 ms after the shock hits the interface disturbance. We note that the
amplitude and mushroom width from the ALE code are approximately 1.8
cm and 2.2 cm, respectively.
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V. Additional User Information

One can set up the computational RM problems to approximate shock tube
experiments (e.g., [Col02, TomO08]). Current experimental shock tube techniques
allow one to set up a moderately well characterized single mode disturbance of small
amplitude confined to a limited range of wavelengths, some multimode generation
scheme, the exact spectrum of which may not be known, or more general
geometries. Results for the mixing layer amplitude, displacement, and growth rate as
well as qualitative and quantitative measure of the layer structure can be compared
to experimental shock tube results (e.g., [Col02]). The ability of simulations to
capture important experiment features rightly falls within the purview of validation,
which presents different issues from verification; see, e.g., [AIA98, ASM06, Bab04,
Obe04, Sor07] for general discussions of validation and [Obe02] for a discussion of
validation experiments.
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1. Name: Bleich & Nelson’s Plane EPP Problem
II. Conceptual Description

General: Bleich and Nelson [Ble66] consider the case of 1-D plane waves in an
elastic-perfectly-plastic half-space for arbitrary combinations of (uniform) step-
function normal (diagonal) and shear (off-diagonal) stress loads on the free surface.
This behavior is perhaps the simplest case of dynamic elastic-plastic plane wave
propagation. The time-dependent solution for this 1-D, slab-geometry problem with
uniform, constant step-function-in-time compressive pressure and positive shear on
the free surface can be expressed in terms of elliptic integrals of the first, second,
and third kinds and, thus, can be evaluated numerically with high precision.
Moreover, the material response for this problem can assume characteristically
different behavior depending on the combination of the applied stresses and the
material properties; for example, the existence and location of the elastic precursor
relative to the plastic wave front varies as a function of these parameters.

Processes modeled: This problem tests 1-D plane elastic-plastic wave propagation
generated from free-surface loading. This includes the interaction between elastic
and plastic states at the elastic-plastic boundary, as well as the dissipation of energy
through plastic work.

Initial conditions: Uniform, constant, zero-velocity EPP material state.

Boundary conditions: Normal and shear stresses applied at the free surface at x=0.
This driving stress vanishes for # <0 and is constant for > 0. The far-field
boundary is ignored, as the final time is chosen to be before any outgoing wave
interacts with the finite computational outer boundary.

Benchmark type: This is a closed-form, analytical solution (type 2 of [Obe07]).

Principal code features tested:
1. Basic hydrodynamics, including single-material EOS calls
2. Unidirectional, planar elastic-perfectly-plastic stress wave propagation
3. Time-dependent stress boundary condition implementation

[II. Mathematical Description

The governing equations are those for standard infinitesimal strain in an EPP
medium. These equations reduce to the conservation of momentum together with
the constitutive relations relating stress and strain and a plastic yield condition. The
interested reader is referred to the complete mathematical description of this problem
given in [Ble66]; see also [Cri67] for further background.

73



The system response quantities of interest include:
i.  Snapshots of density, velocity, pressure, normal stress 0., tangential stress oy,

and shear stress oy, as a function of position.

ii.  Snapshots of nondimensional normal stress and nondimensional shear stress,
consistent with this in Figs. 5, 6, and 7 of [Ble66].

iii.  Time-histories of density, velocity, pressure, normal stress 0., , tangential
stress 0y, and shear stress 0Oy, at specified locations.

iv. Total energy as a function of time.

We propose to develop dimensional initial and boundary conditions to generate the
three fundamentally different EPP solutions presented in [Ble66]. All three lead to
plastic yielding, with the first and third exhibiting elastic precursor behavior in the
shear stress while the second does not. Figure 1, corresponding to the first of these
configurations, shows Fig. 5 of [Ble66] with the computed solution for the
nondimensional normal and shear stresses as a function of the nondimensional
similarity variable. Figure 2, corresponding to the second configuration, shows Fig.
6 of [Ble66] and depicts the same variables for another solution.
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Figure 1. Plot of the nondimensional normal and shear stresses (along the
abscissa) as functions of the nondimensional similarity variable (along the
ordinate) for one of the Bleich & Nelson solutions; taken from Fig. 5 of
[Ble66].
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Figure 2. Plot of the nondimensional normal and shear stresses (along the

abscissa) as functions of the nondimensional similarity variable (along the
ordinate) for another Bleich & Nelson solutions; taken from Fig. 6 of [Ble66].

The proposed configurations are as follows, where v is Poisson’s ratio, Y is the yield
stress in simple shear, and 77) is the Heaviside function:

Configuration #1: To be consistent with Fig. 5 of [Ble66], with v=0.25 and driving
normal stress 0y, =—2.4Y 7/t) and driving shear stress o0,,= 0.9Y 7).

Configuration #2: To be consistent with Fig. 6 of [Ble66], v=0.25 and driving
normal stress 0y, =—3.1Y 7() and driving shear stress o,,= 0.9Y 7).

Configuration #3: To be consistent with Fig. 8 of [Ble66], v= 0 and driving normal
stress Oy =—2.55Y 7/f) and driving shear stress oy, = 0.9Y 7(¥).

IV. Accuracy Assessment

1. Calculations will be run on a nominal mesh, which is to include >100 zones in
the range between the left boundary and the right boundary. Calculations will
also be run at mesh resolutions of two, four, and eight times the nominal
resolution.

ii. Exact solutions for the density, velocity, pressure, normal stress deviator Oy,
tangential stress deviator oy,, and shear stress deviator oy, will be generated at
the positions corresponding to the center of each mesh cell, for each zone in the
computational domain.

iii. Values of the L, L,, and L., norm of the difference between the computed and
exact density, velocity, pressure, normal stress deviator oy, , tangential stress
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1v.

deviator 0;,, and shear stress deviator oy, are to be evaluated for each mesh
resolution at its native resolution. Plots of error versus mesh resolution are to be
generated. Inferred convergence properties are to be evaluated both (i)
interpolated over all mesh resolutions and (ii) interpolated between each two
adjacent mesh resolutions.

Values of the L, L,, and L., norm of the difference between the computed and
exact density, velocity, pressure, normal stress deviator oy, , tangential stress

deviator 0;,, and shear stress deviator oy, are to be evaluated for each mesh
resolution coarsened onto the coarsest (nominal) mesh. Plots of error versus
mesh resolution are to be generated. Inferred convergence properties are to be
evaluated both (i) interpolated over all mesh resolutions and (ii) interpolated
between each two adjacent mesh resolutions.

V. Additional User Information
VI. References

[Ble66] Bleich, H.H., and Nelson, I., “Plane Waves in an Elastic-Plastic Half-Space Due

to Combined Surface Pressure and Shear,” J. Appl. Mech. 33, pp. 149—158
(1966).

[Cri67] Cristescu, N., Dynamic Plasticity, North-Holland Publishing Co., Amsterdam

(1967).

[Obe07] Oberkampf, W.L., and Trucano, T.G., Verification and Validation Benchmarks,

Sandia National Laboratories report SAND2007-0853 (2007).

76



I. Name: Hunter’s Problem
II. Conceptual Description

General: Hunter’s Problem consists of an infinite, uniform, elastic-perfectly-plastic
(EPP) medium, containing a spherical inclusion of radius a about the origin. At
initial time (#=0) the boundary of the inclusion (r=a) is subject to a specified, time-
dependent driving pressure #; this driving pressure has a complicated but closed
form, given in [Hun57], which can be evaluated numerically and used to drive a
hydrocode simulation. The specified driving pressure generates elastic-plastic waves
such that the boundary between elastic and plastic deformation moves outward from
the cavity wall with constant radial velocity. This problem is, in some sense, a
generalized EPP analogue of the Blake problem [Bla52]. The phenomena associated
with spherical wave propagation in EPP materials are discussed, e.g., by [Lun49,
Hop60, Cha62, Hun68, Mor69].

Processes modeled: This problem tests outgoing, spherically divergent elastic-plastic
wave propagation in the absence of boundary reflections. This includes the
interaction between elastic and plastic states at the elastic-plastic boundary, as well
as the dissipation of energy through plastic work.

Initial conditions: Uniform, constant, zero-velocity EPP material with a vacuum
cavity.

Boundary conditions: Pressure # applied at the inner surface boundary 7=a. This
driving pressure has a complicated albeit closed form, given in [Hun57]. The far-
field boundary is ignored, as the final time is chosen to be before any outgoing wave
interacts with the finite computational outer boundary.

Benchmark type: This is a closed-form, analytical solution (type 2 of [Obe07]).

Principal code features tested:
1. Basic hydrodynamics, including single-material EOS calls.
2. Coupling of hydrodynamics with small-strain elastic-plastic dynamic material
response.
3. Unidirectional, spherical elastic-perfectly-plastic stress wave propagation.
4. Time-dependent pressure boundary condition implementation.

[II. Mathematical Description
A complete mathematical description of this problem is given in the references cited

below, in particular [Hun57]. In the following, all quantities are in consistent cgs
units, if not explicitly stated otherwise.
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The system response quantities of interest include:
i. Snapshots of pressure, radial stress deviator o;,, and hoop stress deviator G, ,
as functions of radius.
ii. Time-histories of pressure, radial stress deviator o, and hoop stress deviator
O, at specified radii.
iii. Total energy as a function of time.

Configuration #1: [KamO8]
Cavity boundary =a =100 cm =1m
Density =p=1.0gcm> =10’ kg m”
Bulk modulus =K=10"" dyn cm™ =1 GPa
Poisson ratio =1/3
— Lame constant = 1=7.5x10" dyn cm™ =0.75 GPa
— Shear modulus = u =3.75x10° dyn cm™ =0.375 GPa
— Long. wave speed = ¢, =1.2247x10° cm s™ =1.2247x10° m s™
— Shear wave speed =c5=6.1237x10° cm s =6.1237x10° m s™
— Plastic wave speed =cp=10cms’ =10°ms’"
— EP interface spd =cpp=2.4495x10" cm s’ =2.4495x10°m s
Yield strength =Y =10’ dyn cm™ =0.1 GPa
Driving pressure = P(t) = Evaluated by exact solution code
Final time =t =10"s
Max. mesh radius = 7max = 300 cm =3m

Figure 1 shows the associated driving pressure #on the cavity wall as a function of
time for this configuration. Figure 2 contains snapshots, at =107 s, of the pressure
( p), the (full) radial (o,,) stress, and (full) hoop (0oy) stress.
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Figure 1. Driving pressure on cavity wall for the Hunter problem discussed in
the text.
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Figure 2. Snapshots, at = 107 s, of the pressure ( p), the (full) radial (o,,)
stress, and the full hoop (o) stress, relative to the original (undisplaced)
position, for the Hunter problem discussed in the text. The region of plastic
deformation extends from the original cavity boundary at /=100 cm out to an
original position of r=125 cm.

The driving pressure for this particular problem is sufficiently high, relative to the EPP
material properties, that the displacement of the stresswave-processed material is
appreciable at the final time. This aspect complicates the comparison of the exact solution
with the computed results, since the values given by the exact solution formulae are
relative to the initial (reference) positions. Therefore, those results must be transformed
to the displaced positions and then interpolated to locations corresponding to the
hydrocode mesh. This interpolation process will contribute to the overall error budget of
the comparison between the exact solution and computed results. In the quantitative
accuracy assessment, the values denoted as “exact” results are those quantities obtained
by interpolating the (Lagrangian) Hunter results to the (Eulerian) hydrocode mesh
positions.

IV. Accuracy Assessment

1. Calculations will be run on a nominal mesh, which is to include 100 zones in
the mesh between cavity boundary (@) and the maximum radius of the
calculation (7max). Calculations will also be run at mesh resolutions of two, four,

and eight times the nominal resolution.

ii. Exact solutions for the pressure, radial stress deviator o;,, and hoop stress
deviator oy, will be generated at the radial positions corresponding to the center
of each mesh cell, for each zone in the initial (undisplaced) domain a< r < rpy.
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iii. Values of the L;, L,, and L., norm of the difference between the computed and
exact pressure, radial stress deviator o;,, and hoop stress deviator o, are to be
evaluated for each mesh resolution at its native resolution. Plots of error versus
mesh resolution are to be generated. Inferred convergence properties are to be
evaluated both (i) interpolated over all mesh resolutions and (ii) interpolated
between each two adjacent mesh resolutions.

iv. Values of the L;, L, and L., norm of the difference between the computed and
exact pressure, radial stress deviator o;,, and hoop stress deviator o, are to be
evaluated for each mesh resolution coarsened onto the coarsest (nominal) mesh.
Plots of error versus mesh resolution are to be generated. Inferred convergence
properties are to be evaluated both (i) interpolated over all mesh resolutions and
(i1) interpolated between each two adjacent mesh resolutions.

V. Additional User Information
VI. References
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I. Name: The Verney Problem
II. Conceptual Description

General: Verney [Ver68] discusses finite-radius, spherical copper and uranium shells
collapsing under a given loading. Motivated by the experimental results for such
shells driven by high explosives, Verney constructed a simplified, approximate
mathematical model of the problem, assuming incompressible, elastic-perfectly
material response. In this model, the initial kinetic energy of the material dissipates
via conversion to plastic work, which leads to closed-form solutions for the final
shell radius and the total plastic work. The final (time-independent) results of the
mathematical model for shell dimensions and plastic work can be compared against
hydrocode results of the same configuration. Moreover, for the copper and uranium
cases, the experimental data can be compared with the (static) final state for the
closed-form solution and hydrocode results. As described by Howell & Ball
[How02] and Weseloh et al. [Weh05], this problem has been extended to the case of
an idealized beryllium shell.

Processes modeled: This problem tests the integration of the conservation laws for
converging flow of incompressible, elastic-perfectly-plastic material response. In
particular, the dissipation of kinetic energy by plastic work is a key process in this
problem.

Initial conditions: The initial material density and pressure are uniform and
constant. The initial radial velocity, however, is not uniform: it is described by the
inverse-square relation

u(r,t=0) = U (Ro/ r )*,
where Ry is the initial inner radius of the spherical annulus and the constant Uj is

the initial radial velocity at the inner surface. The value of Uj is given in terms of
the material properties and initial configuration as:

4Y R
Uoz\/ _IF(l)a

3p A

where, using the common notation of [Ver68, Weh05],

Y = yield strength

Jo; = density

R, = initial outer radius of the spherical annulus
A = R] — Ro

A =ro/ Ry with rg= final inner radius

F(A) = (1+0)’ log(1+0) + A* log(A) — (1/3) B log(p),
with @=A/Ry and B=1’+ o + 307 + 3
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Boundary conditions: The far-field boundary conditions are a constant, quiescent
state. Any further boundary conditions depend on the symmetry of the problem: for
example, if half of the problem is run in 2-D (7,z) geometry, then the appropriate
symmetry boundary condition must be applied along z=0; similarly, if one octant of
the problem is run in 3-D (x,y,z) geometry, then symmetry boundary conditions must
be applied along the coordinate planes.

Benchmark type: This problem has a non-closed-form solution that requires
numerical solution of ODEs to a specified accuracy (type 3 of [Obe07]).

Principal code features tested:
1. Incompressible elastic-plastic material response in converging geometry.
2. Energy conservation, including the dissipation of kinetic energy through
plastic work.

[II. Mathematical Description

This problem was originally described in the paper by Verney [Ver68]. A more
thorough treatment is given by Weseloh et al. [Weh05], who obtain analytic
expressions for the entire solution. The interested reader is referred these works for
details.

In the following, all quantities are in consistent cgs units.

The system response quantities of interest include:

i. Snapshots of density, velocity, pressure, SIE as a function of position.

ii. Time-histories of density, velocity, pressure, and SIE at specified positions.
iii. Total energy, kinetic energy, internal energy as a function of time.

Configuration #1: 2-D (r,z) Spherical Cu, case “F” [Ver68]
Left boundary =z,=0.0cm
Right boundary =zz=12.0 cm
Bottom boundary =r,=0.0cm
Top boundary =rg=12.0 cm
Initial inner radius =Ry=5.0cm
Initial outer radius =R;=10.0cm
Initial shell width =A=5.0cm
Initial non-dim. radius =a=A/Ry=1.0
Non-dim. inner radius =A=ro/Ry=0.55
Initial density =p=9.30333 gcm™
Initial mass =M=32150g
Bulk modulus = K =1.38x10" dyn cm™
Shear modulus =G =4.8x10" dyn cm™
Yield strength =Y =1.2x10’ dyn cm™
Inner/outer pressure = pro = VOID (107" dyn cm?) (0<r<Ro, >R))
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Inner/outer density = pyo=VOID (10° gecm?)  (0<r<Ry, r>R))

Inner/Outer Velocity =uy0=0.0cms’
Non-dim. parameter =B=2+a +30/+300=7.166375
Energy dissipation function = F(4)=10.1502
Initial inner radius velocity = Uy =9.61x10* cms™
Final time =t = 1.0x10™ s
Final inner radius =ry=2.75 cm
Configuration #2: 2-D (r,z) Spherical Be [Weh05]
Left boundary =z;=0.0cm
Right boundary =zz=12.0 cm
Bottom boundary =r.=0.0cm
Top boundary =rg=12.0 cm
Initial inner radius =Rp=8.0 cm
Initial outer radius =R;=10.0cm
Initial shell width =A=2.0cm
Initial non-dim. radius =a=A/Ry=0.25
Initial density =p=1845gcm>
Initial mass =M=377142¢g
Bulk modulus =K =1.10x10" dyn cm™
Shear modulus =G =1.51x10" dyn cm™
Yield strength =Y =3.3x10° dyn cm™
Inner/outer pressure = pro = VOID (107" dyn cm?) (0<r<Ro, >R))
Inner/outer density = pyo=VOID (10° gecm?)  (0<r<Ry, r>R))
Inner/Outer Velocity =uyo=0.0cms’
Final time =t = 1.0x10™ s
Final inner radius =ry=3.0cm
Non-dim. inner radius =A=ry/Ro=0.375
Non-dim. parameter =B=2+0c + 30 +3a=1.005859375

Energy dissipation function = F(A)=0.382145
Initial inner radius velocity = Uy = 6.75036x10° cm s™'

IV. Accuracy Assessment

i. Calculations will be run on a nominal mesh, which is to include 120 zones along
the coordinate axes. Calculations will be run also at mesh resolutions of two,
four, and eight times the nominal resolution.

ii. Exact solutions of the model equations for the density, velocity, pressure, and
SIE will be generated at the positions corresponding to the center of each mesh
cell, for each zone in the specified domain 1.

iii. Values of the L;, L,, and L., norm of the difference between the computed and
exact density, velocity, pressure, and SIE are to be evaluated for each mesh
resolution at its native resolution. Plots of error versus mesh resolution are to be
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1v.

Vi.

Vii.

generated. Inferred convergence properties are to be evaluated both

(1) interpolated over all mesh resolutions and (ii) interpolated between each two
adjacent mesh resolutions.

Values of the L, L,, and L., norm of the difference between the computed and
finest-mesh calculated values of density, velocity, pressure, and SIE are to be
evaluated for the lower mesh resolutions at their native resolution. Plots of this
difference versus mesh resolution are to be generated. Inferred calculation
convergence properties are to be evaluated both (i) interpolated over all mesh
resolutions and (ii) interpolated between each two adjacent mesh resolutions.
Values of the L, L,, and L., norm of the difference between the computed and
exact density, velocity, pressure are to be evaluated for each mesh resolution
coarsened onto the coarsest (nominal) mesh. Plots of error versus mesh
resolution are to be generated. Inferred convergence properties are to be
evaluated both (i) interpolated over all mesh resolutions and (ii) interpolated
between each two adjacent mesh resolutions.

Values of the L, L,, and L., norm of the difference between the computed and
finest-mesh calculated values of density, velocity, pressure are to be evaluated
for each mesh resolution coarsened onto the coarsest (nominal) mesh. Plots of
this difference versus mesh resolution are to be generated. Inferred convergence
properties are to be evaluated both (i) interpolated over all mesh resolutions and
(i1) interpolated between each two adjacent mesh resolutions.

The total energy, kinetic energy, and internal energy as functions of time are to
be plotted.

V. Additional User Information

The late-time, (static) final state for the closed-form solution and hydrocode results
can be compared with the experimental data.

VI. References

[Ver68] Verney, D., “Evaluation de la Limite Elastique du Cuivre et de I’Uranium par

des Experiences d’Implosion «Lente»,” in Behavior of Dense Media under High
Dynamic Pressures, Symposium, H.D.P., IUTAM, Paris 1967, Gordon &
Breach, New York, pp. 293-303 (1968).

[How02] Howell, B.P., and Ball, G.J., “A Free-Lagrange Augmented Godunov Method

for the Simulation of Elastic—Plastic Solids,” J. Comput. Phys. 175, pp. 128-167
(2002).

[Wes05] Weseloh, W., et al., PAGOSA Sample Problems, Los Alamos National

Laboratory report LA-UR-05-6514 (2005).
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I. Name: Lowrie-Rauenzahn Equilibrium-Diffusion Radiation-Hydrodynamics Problem
II. Conceptual Description

General: The Lowrie-Rauenzahn Equilibrium-Diffusion Radiation-Hydrodynamics
Problem [Low07] provides a semi-analytic solution for planar radiative shock waves
in the equilibrium diffusion (1-7) limit. [Mih99, Zel02] provide general background
on radiative shocks, which are in the high-energy density regime, i.e., for which the
ratio of radiation energy (pressure) to material energy (pressure) is sufficiently high
for the radiation-related terms to have a significant impact on the dynamics. The
equilibrium diffusion case can also be approximated by other radiation models in the
optically-thick limit; see [Dra07] for a discussion of radiative shocks in the optically-
thick regime. The solution consists of initially quiescent flow that is processed by
the shock, together with the post-shock flow. In the regime of interest, the
compressed post-density-jump material radiates, thereby heating the flow in front of
the shock (generating an upstream radiation precursor) and cooling immediately
behind the shock (a downstream cooling region).

Processes modeled: This problem tests planar radiation-hydrodynamics in the
equilibrium-diffusion (1-7) limit. The assumed nonlinear coupling between the
hydrodynamics and the radiative transfer is exercised for the case of a planar
radiative shock wave. This coupling occurs through additional radiative source terms
in the energy equation as well as the radiative contributions to the overall pressure
and energy. In the equilibrium-diffusion model, it is assumed that the material
temperature and radiation temperature remain in equilibrium, so that the radiation
modifies the material EOS through addition of radiative pressure and radiation
energy terms.

Initial conditions: The initial conditions to this problem are given by imposing a
computed exact solution at the starting time and allowing that solution to evolve.
The necessary equations and their relation to the physical variables required to
initialize the problem are given in [Low07].

Boundary conditions: Uniform boundary conditions are applied at the ends of the
computational mesh, which are taken to be sufficiently far from the computed shock
structure so that they do not influence the solution.

Benchmark type: This is a non-closed-form solution that requires the numerical
solution of both polynomial equations and a nonlinear ordinary differential equation
(type 3 of [Obe07]).

Principal code features tested:
1. Basic hydrodynamics, including single-material, polytropic-gas EOS calls.
2. The equilibrium-diffusion (1-7) limit of radiative transfer.
3. The propagation of planar radiative shock waves.
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[II. Mathematical Description

A complete mathematical description of this problem is given in [Low07]; see also
[Bou00]. The overall, nondimensional governing equations are given by:

9P Ipu)

or Ox - 0
(pu) dpu’+p)

o + Py = 0
IPE) . IpE +pIw) _ 9 ( oI

ot ox ox ox

where the radiation modifies the pressure, specific internal energy density, and total
energy density, respectively, as

2

p = p+iRT ., e = e+(PTY/p, and E* = & +1u’.

In these equations, p is the mass density, u is the velocity, p is the material pressure,
T is the temperature, E = e + /2 is the total energy per unit mass, and Py is the non-
dimensional ratio of the radiation pressure to the material pressure (equivalently, of
the radiation energy to the material energy) given by

P = (&) (p).

where the tilde-quantities are the dimensional values of: a,, the radiation constant;
T,, the upstream temperature; p,, the upstream mass density; and a,, the upstream
sound speed.

The necessary reduced equations, which must be solved numerically, are described
in [Low07] and [Bou00]. In the following, all quantities are in consistent cgs units.

The system response quantities of interest include:
i. Snapshots of density, velocity, pressure, and temperature as a function of
position on the entire domain
ii. Total energy as a function of time

Configuration #1: Dimensional units consistent with [Low07]:
Left boundary = xpin = 0.0 cm
Right boundary = xmax = 1.0 cm
Pre-shock density = py=1.0 g cm™
Pre-shock temperature = Ty = 100 eV
Adiabatic index = y=5/3
Pre-shock sound speed = ao = 1.1713314x10" cm s
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Speed of light = ¢ = 2.99792458x10" cm s™
Radiation constant = ag = 137.20172 erg cm™ eV™*
Total radiation cross-section = 0; = 853.13875 cm’
Gradient length scale =L = 1.0 cm

Shock Mach number = M = 10

Pressure ratio = 2o = arTo* / (o a¢”) = 0.0001

Nondimensional thermal diffusion = k¥ = azTy' ¢/ (3 6L Po ao’) = 0.0001,

Initial shock position = x5 = 0.9 cm
Final time = t5, = 5.12237621763x10” s

IV. Accuracy Assessment

1.

ii.

iil.

1v.

Calculations will be run on a nominal mesh, which is to include >100 zones on
the Cartesian domain [Xmin, Xmax]. Calculations will also be run at mesh
resolutions of two, four, and eight times the nominal resolution.

Exact solutions for the density and temperature will be generated for the case
with the initial shock position at x=0.9 cm; this solution will be used to initialize
the solution on the computational mesh. Note: for the Cartesian geometry
considered, the point-wise value of the solution equals the volume-averaged
solution.

Values of the L, L,, and L., norm of the difference between the computed and
exact density and temperature are to be evaluated for each mesh resolution at its
native resolution. Plots of error versus mesh resolution are to be generated.
Inferred convergence properties are to be evaluated both (i) interpolated over all
mesh resolutions and (ii) interpolated between each two adjacent mesh
resolutions.

Values of the L, L,, and L., norm of the difference between the computed and
exact density and temperature are to be evaluated for each mesh resolution
coarsened onto the coarsest (nominal) mesh. Plots of error versus mesh
resolution are to be generated. Inferred convergence properties are to be
evaluated both (i) interpolated over all mesh resolutions and (ii) interpolated
between each two adjacent mesh resolutions.

V. Additional User Information

VI. References

[Bou00] Bouquet, S., Teyssier, R., and Chieze, J.P., “Analytical study and structure of a

stationary radiative shock,” Astrophys. J. Suppl. Ser. 127, pp. 245-252 (2000).

[Dra07] Drake, R.P., “Theory of radiative shocks in optically thick media,” Phys.

Plasmas 14, pp. 043301-1-10 (2007).

[Low07] Lowrie, R., and Rauenzahn, R., “Radiative shock solutions in the equilibrium

diffusion limit,” Shock Waves 16, pp. 445-453 (2007).

[Mih99] Mihalas, D., and Weibel-Mihalas, B.W., Foundations of Radiation

Hydrodynamics, Dover, Mineola, NY (1999).
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[Zel02] Zel'dovich, Y.B., and Raizer, Y.P., Physics of Shock Waves and High-
Temperature Hydrodynamic Phenomena, Dover, Mineola, NY (2002).
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I. Name: Lowrie Nonequilibrium-Diffusion Radiation-Hydrodynamics Problem
II. Conceptual Description

General: The Lowrie Nonequilibrium-Diffusion Radiation-Hydrodynamics Problem
[Low07a,b] provides a semi-analytic solution for planar radiative shock waves using
a grey nonequilibrium diffusion radiation model (2-7). [Mih99, Zel02] provide
general background on radiative shocks, which are in the high-energy density
regime, i.e., for which the ratio of radiation energy (pressure) to material energy
(pressure) is sufficiently high for the radiation-related terms to have a significant
impact on the material dynamics. In the nonequilibrium-diffusion approximation, the
independent internal energies densities of the material and the radiation admit that
their respective temperatures may be out of equilibrium; the grey approximation
admits cross-sections that are state-dependent but not frequency-dependent. The
solution consists of initially quiescent flow that is processed, together with the post-
compression flow. In the regime of interest, the compressed post-density-jump
material radiates, affecting the flow on either side of the compression: generating an
upstream radiation precursor in front and modifying the downstream region behind.
For a given polytropic gas material EOS and pre-shock conditions, the solution
structure can be characterized by the shock Mach number: for very low Mach
number, the solution is smooth; as the Mach number increases, an embedded
hydrodynamic shock appears; as the Mach number increases further, the well-
known Zel dovich spike appears; at still higher Mach number, the temperature
maximum of the Zel dovich spike occurs downstream of the shock, while at very
high Mach number, the solution is again smooth [Low07b].

Processes modeled: This problem tests planar radiation-hydrodynamics in the grey
nonequilibrium-diffusion limit. In particular, the nonlinear coupling between the
hydrodynamics and the radiative transfer is exercised for the case of a planar
radiative shock wave. This coupling occurs through an additional equation for the
radiation energy density as well as radiative coupling terms in the energy equations.

Initial conditions: The initial conditions to this problem are given by imposing a
computed exact solution at the starting time and allowing that solution to evolve.
The necessary equations and their relation to the physical variables required to
initialize the problem are given in [Low(7a].

Boundary conditions: Uniform boundary conditions are applied at the ends of the
computational mesh, which are taken to be sufficiently far from the computed shock
structure so that they do not influence the solution.

Benchmark type: This is a non-closed-form solution that requires the numerical
solution of both polynomial equations and a nonlinear ordinary differential equation
(type 3 of [Obe07]).
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Principal code features tested:
1. Basic hydrodynamics, including single-material, polytropic-gas EOS calls.
2. The grey nonequilibrium-diffusion limit of radiative transfer.
3. The propagation of planar radiative shock waves.

[II. Mathematical Description

A complete mathematical description of this problem is given in [Low07a], with
further details summarized in [Low07b]; see also [Bou00]. The overall,
nondimensional governing equations are given by:

p d(pu)
/N 2 = 0
ot ox
Ipw) , Ipw+p + (YHRY) _ 0
ot ox
a(gE) N a«pE;p)u) Po,(o-1') -1 u‘;—"’
x X
9% 9(4 5 9 o (p-T)+ 102
ot i Bx(?au(p K&xj O'a(¢ T)+3u3x

In these equations, p is the mass density, u is the velocity, p is the material pressure,
T is the material temperature, e is the material internal energy per unit mass, £ = e +

u?/2 is the total material energy per unit mass, ¢ is the radiation energy density, and
O, 1s the absorption cross section. Py is the non-dimensional ratio of the radiation

pressure to the material pressure (equivalently, of the radiation energy to the material

energy) given by

B, = (a7;)/(pis) »

where the quantities with tildes are the dimensional values of: a,, the radiation
constant; 7, the upstream temperature; p,, the upstream mass density; and a,, the
upstream sound speed. The value of k'is given by

x = ¢/(30,a,L) ,

where ¢ is the dimensional speed of light and &, is the dimensional total cross
section.

The necessary reduced equations, which must be solved numerically, are described
in the references. In the following, all quantities are in consistent cgs units.
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The system response quantities of interest include:

i. Snapshots of non-dimensional density and product of the non-dimensional
density and one minus the nondimenstional material temperature on the
same plot.

ii. Snapshots of the non-dimensional material temperature, non-dimensional
radiation temperature, and the product of the non-dimensional material
temperature and one minus this same quantity on the same plot, as
functions of position over the entire domain and in the immediate vicinity
of the compression; for the close-up plots, use the same abscissa limits—
which vary with the Mach number—as in [Low07b].

iii. Total energy, material energy, and radiation energy as functions of time.

Configuration #1: M, = 1.2, subcritical, no branch-point shock
Dimensional units consistent with [Low07b]:
Left boundary = xpin = 0.0 cm
Right boundary = xmax = 1.0 cm
Pre-shock density = py=1.0 g cm™
Pre-shock material temperature = 7o = 100 eV
Pre-shock radiation temperature = 6, = 100 eV
Adiabatic index = y=5/3
Pre-shock sound speed = ao = 1.1713314x10" cm s
Speed of light = ¢ = 2.99792458x10' cm 5™
Radiation constant = ag = 137.20172 erg cm™ eV™*
Absorption radiation cross-section = ¢, = 1x10° cm™
Gradient length scale =L = 1.0 cm
Shock Mach number = M, = 1.2
Pressure ratio = 2o = arTo* / (o a¢”) = 0.0001
Nondimensional diffusion coefficient = x =c¢/ (3 6L ap) = 1.0,
Initial shock position = x;9 = 0.9 cm
Final time = t, = 5.12237621763x10” s

Configuration #2: M, = 2, subcritical, branch-point at shock
Dimensional units consistent with [Low07b];
Same conditions as Configuration #1 with flow velocity assigned such that:
Shock Mach number = M, =2
Final time = t5, = 5.12237621763x10” s

Configuration #3: M, = 3, subcritical, branch-point downstream of shock
Dimensional units consistent with [Low07b];
Same conditions as Configuration #1 with flow velocity assigned such that:
Shock Mach number = M, =3
Final time = f5, = 5.12237621763x10” s
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Configuration #4: M, = 5, supercritical, branch-point downstream of shock

Dimensional units consistent with [Low07b];
Same conditions as Configuration #1 with flow velocity assigned such that:
Shock Mach number = M, =5

Final time = #5, = 5.12237621763x107 s

Configuration #5: M, = 27, supercritical, branch-point downstream of shock

Dimensional units consistent with [Low07b];
Same conditions as Configuration #1 with flow velocity assigned such that:
Shock Mach number = M, = 27

Final time = #5, = 5.12237621763x107 s

Configuration #6: M, = 30, supercritical, branch-point but no shock
Dimensional units consistent with [Low07b];
Same conditions as Configuration #1 with flow velocity assigned such that:
Shock Mach number = M, = 30

Final time = #5, = 5.12237621763x107 s

Configuration #7: M, = 50, supercritical, no branch-point, no shock

Dimensional units consistent with [Low07b];
Same conditions as Configuration #1 with flow velocity assigned such that:
Shock Mach number = M, = 50

Final time = #5, = 5.12237621763x107 s

IV. Accuracy Assessment

1.

ii.

iil.

1v.

Calculations will be run on a nominal mesh, which is to include >100 zones
on the Cartesian domain [Xmin, Xmax]. Calculations will also be run at mesh
resolutions of two, four, and eight times the nominal resolution. Very high
mesh resolutions will likely be required to resolve the Zel dovich spike
structure in the higher Mach number cases.

The closed-form solutions for the density and temperature will be evaluated
numerically; this solution will be used to initialize the solution on the
computational mesh. Note: for the Cartesian geometry considered, the
point-wise value of the solution equals the volume-averaged solution.
Values of the L;, L,, and L., norm of the difference between the computed
and exact density and temperature are to be evaluated for each mesh
resolution at its native resolution. Plots of error versus mesh resolution are
to be generated. Inferred convergence properties are to be evaluated both
(1) interpolated over all mesh resolutions and (ii) interpolated between each
two adjacent mesh resolutions.

Values of the L;, L,, and L., norm of the difference between the computed
and exact density and temperature are to be evaluated for each mesh
resolution coarsened onto the coarsest (nominal) mesh. Plots of error versus
mesh resolution are to be generated. Inferred convergence properties are to
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be evaluated both (i) interpolated over all mesh resolutions and (ii)
interpolated between each two adjacent mesh resolutions.

V. Additional User Information
VI. References

[Bou0O] Bouquet, S., Teyssier, R., and Chieze, J.P., “Analytical study and structure of a
stationary radiative shock,” Astrophys. J. Suppl. Ser. 127, pp. 245-252 (2000).

[Low07a] Lowrie, R., and Edwards, J.D., “Shock wave solutions for radiation
hydrodynamics,” in Proceedings of the Joint International Topical Meeting on
Mathematics & Computation and Supercomputing in Nuclear Applications
(M&C + SNA 2007), Monterey, CA, 15-19 April 2007, Los Alamos National
Laboratory report LA-UR-07-1077 (2007).

[Low07b]Lowrie, R., “Radiative Shock Solutions,” presentation at Numerical Methods
for Multi-Material Fluid Flows, Prague, CZ, 10-14 September 2007, Los
Alamos National Laboratory report LA-UR-07-5986 (2007), available at
http://www-troja.fjfi.cvut.cz/~multimat07/presentations/tuesday/Lowrie.pdf

[Mih99] Mihalas, D., and Weibel-Mihalas, B.W., Foundations of Radiation
Hydrodynamics, Dover, Mineola, NY (1999).

[Obe07] Oberkampf, W.L., and Trucano, T.G., Verification and Validation
Benchmarks, Sandia National Laboratories report SAND2007-0853 (2007).

[Zel02] Zel'dovich, Y.B., and Raizer, Y.P., Physics of Shock Waves and High-
Temperature Hydrodynamic Phenomena, Dover, Mineola, NY (2002).
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I. Name: Radiation-Acoustics Problem
II. Conceptual Description

General: The Radiation-Acoustics Problem possesses a closed-form analytic solution
for planar waves in a radiating fluid. The assumptions are that the waves are small
perturbations on a gray medium with constant mean temperature and density, and
that the radiation is in the diffusion limit. The material is at a single temperature and
the radiation is in local thermodynamic equilibrium (LTE) with the material. The
material and radiation temperature perturbations differ, however, so that the
assumption of LTE only applies to the background state. Deviations from a constant
opacity are neglected since they arise at higher order in the perturbation amplitude,
and scattering is neglected. The waves are driven at one boundary of a Cartesian
mesh and their phase speeds and damping lengths are parameterized by the ratio of
the speed of sound to the speed of light, the ratio of the radiation energy density to
the material energy density, and the driving frequency at the boundary. The solution
applies to both the low- and high-energy density regimes.

Processes modeled: This problem tests planar radiation-hydrodynamics in the grey
nonequilibrium-diffusion limit. In particular, the linear coupling between the
hydrodynamics and the radiative transfer is exercised for the case of a planar
radiative wave.

Initial conditions: The initial conditions to this problem are a constant background
density and temperature. Due to the assumption of LTE, the background radiation
and material temperatures are equal.

Boundary conditions: Sinusoidal time-dependent velocity and radiation temperature
perturbations are applied at one boundary of the mesh. The velocity and radiation
temperatures are related through the eigenvectors of the analytical solution. A Milne
boundary condition is applied to the radiation at the other end of the mesh. The
hydrodynamic boundary condition at the other end is irrelevant as long as the
simulation stops before the wave reaches the boundary. Longer simulation times can
result in wave reflections that corrupt the results. Transverse boundary conditions in
a multi-dimensional calculation are unimportant as the problem is one-dimensional.

Benchmark type: This is a closed-form solution that requires the algebraic solution
of a dispersion relation (type 1 of [Obe07]).

Principal code features tested:
1. Basic hydrodynamics, including single-material, polytropic-gas EOS calls.
2. The grey nonequilibrium-diffusion limit of radiative transfer.
3. The propagation of planar radiative waves.
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[II. Mathematical Description

A complete mathematical description of this problem is given in [Vin62,Mih83,
Mih99, Bog96]. The governing equations are those of radiation hydrodynamics in
the diffusion limit. The material and radiation quantities are taken to be small-
amplitude plane wave perturbations about an equilibrium state. The equilibrium
solution is a constant material temperature 7; and density p, and a radiative source
function equal to the Planck function. The equilibrium radiation temperature is 7,
but the material and radiation temperature perturbations are allowed to differ. The
equilibrium velocity and radiative flux are both assumed to be zero. The perturbation
quantities satisfy the following set of equations:

or ox
u LN p+T, 11y + 41T /3)
ou 2 - 0
or ox
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In these equations, pis the mass density perturbation in units of p,, u is the velocity,
and 7 and T are the material and radiation temperature perturbations in units of 7,.
The quantity 7 is the dimensionless ratio of the radiation pressure to the material
pressure (equivalently, of the radiation energy to the material energy), given by

where a, is the radiation constant and q, is the equilibrium sound speed. The

absorption opacity y (in units of inverse length) is taken to be a constant, and c is the
speed of light.

Choosing an equilibrium temperature defines the speed of sound, which has the
same units as the speed of light. The equilibrium density is then determined by
choosing the pressure ratio 7 (the density and temperature must be in a consistent set
of units to make » dimensionless). The unit of length or time can be chosen
arbitrarily, and the other is then determined through the units of the speed of light.
The simplest approach is to set the length scale to be a fixed number of perturbation
wavelengths, since otherwise a different mesh (or a rescaling of the mesh) is
required for each point in parameter space.
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Decomposing the perturbation equations into modes of the form e yields a

dispersion relation that is quadratic in the square of the wave number £:
c, T +c, 77 +c,= 0,

where 7' = k/y is the wave number in units of the opacity. The coefficients in the
dispersion relation are given by

c,=1-id(y—-Drrz,
c, =3(1+it" )+ T (—1+idfy—1rt.) + 4r(S[y—11+ 4 y—1r/3+it.' /3)
c, =37+ 4hy—1lr+it.")

where 7.' = w/(a,y) and 7' = w/(cy).

Defining the length unit to be one perturbation wavelength is equivalent to setting
k., = 2m,where k, is the real part of k. The opacity is then determined by

x =k /T, where 7' is the real part of the solution of interest. The time scale is set
by o' =1,7." /(a,k,), and the simulation is stopped after a fixed multiple of 2@
(preferably before the wave propagates to the end of the mesh).

Sample plots of the analytical solution along with numerical results are shown in
Figs. 1 and 2. There are two branches to the dispersion relation: a radiatively-
modified acoustic wave and a radiative diffusion wave. The former is generally
weakly damped, and the latter strongly damped. The fluid is driven at the left
boundary, and the snapshots are taken after ten wave periods.

The system response quantities of interest include:
i. Snapshots of perturbation quantities over the entire computational domain.

96



3.0e-03

2.0e-03

1.0e-03

éﬁ 0.0e+00

<
<

-1.0e-03

<

20e-03 |

1
-3.0e-03 i

>|8

Figure 1. Plot of the density perturbation for a radiative acoustic wave. The
solid line is the analytical solution, and the points are computed results. The

parameters are: a=10" ¢, r=107, and 7, = 10. This corresponds to a mean
temperature of 4x10* K and mean density of 3x10° g cm™.
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Figure 2. Plot of the radiation temperature perturbation for a radiative
diffusion wave. The solid line is the analytical solution, and the points are
computed results. The parameters are: a=10" ¢, r=107, and 7, = 10, corre-
sponding to a mean temperature of 4x10* K and mean density of 3x10° g cm™.
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IV. Accuracy Assessment

1.

ii.

iil.

Calculations will be run on a nominal mesh, which is to include 200 zones
in the specified domain (a 10-wavelength mesh for a total of 20 zones per
wavelength). Calculations will be run also at mesh resolutions of two, four,
and eight times the nominal resolution.

Exact solutions for the density, velocity, material temperature and radiation
temperature (perturbed quantities normalized by the equilibrium quantities)
will be generated at the positions corresponding to the center of each mesh
cell, for each zone in the specified domain.

Values of the L;, L,, and L., norm of the difference between the computed
and exact density, velocity, material temperature and radiation temperature
perturbations at the end of each run are to be evaluated for each mesh
resolution at its native resolution. Plots of error versus mesh resolution are
to be generated. Inferred convergence properties are to be evaluated both
(1) interpolated over all mesh resolutions and (ii) interpolated between each
two adjacent mesh resolutions.

V. Additional User Information
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