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ABSTRACT 
 

This final scientific/technical report covers the first 2 years (Phases I and II of an 
originally planned 3 Year/3 Phase program).  The project was focused on evaluating the 
relationship between fracture-related dolomite and dolomite constrained by primary rock 
fabric in the 3 most prolific reservoir intervals in the Michigan Basin.  The 
characterization of select dolomite reservoirs was the major focus of our efforts in Phases 
I and II of the project.  Structural mapping and log analysis in the Dundee (Devonian) 
and Trenton/Black River (Ordovician) suggest a close spatial relationship among gross 
dolomite distribution and regional-scale, wrench fault-related NW-SE and NE-SW 
structural trends. A high temperature origin for much of the dolomite in these 2 studied 
intervals (based upon fluid inclusion homogenization temperatures and stable isotopic 
analyses,) coupled with persistent association of this dolomite in reservoirs coincident 
with wrench fault-related features, is strong evidence for these reservoirs being 
influenced by hydrothermal dolomitization. 

In the Niagaran (Silurian), there is a general trend of increasing dolomitization 
shelfward, with limestone predominant in more basinward positions.  A major finding is 
that facies types, when analyzed at a detailed level, are directly related to reservoir 
porosity and permeability in these dolomites which increases the predictability of 
reservoir quality in these units.  This pattern is consistent with our original hypothesis of 
primary facies control on dolomitization and resulting reservoir quality at some level.  
The identification of distinct and predictable vertical stacking patterns within a 
hierarchical sequence and cycle framework provides a high degree of confidence at this 
point that the results should be exportable throughout the basin. 

Much of the data synthesis and modeling for the project was scheduled to be part 
of Year 3/Phase III, but the discontinuation of funding after Year 2 precluded those 
efforts.  Therefore, the results presented in this document are not final, and in many cases 
represent a report of “progress to date” as numerous tasks were scheduled to extend into 
Year 3. 
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EXECUTIVE SUMMARY 
 

This final scientific/technical report covers the first 2 years (Phases I and II of an 
originally planned 3 Year/3 Phase program).  The project was focused on evaluating the 
relationship between fracture-related dolomite and dolomite constrained by primary rock 
fabric in the 3 most prolific reservoir intervals in the Michigan Basin (Ordovician 
Trenton-Black River Formations; Silurian Niagara Group; and the Devonian Dundee 
Formation).  Much of the data synthesis and modeling for the project was scheduled to be 
part of Year 3/Phase III, but the discontinuation of funding after Year 2 precluded those 
efforts.  

Dolomitization is widespread and generally a critical factor in the origin of these 
most prolific, hydrocarbon reservoirs in the Michigan Basin: i.e. the Middle Ordovician 
Trenton/Black River Formations, the Silurian Niagara Group and the Middle Devonian 
Dundee Limestone. These units are the most economically important reservoirs in the 
basin.  However, they consist of a wide range of dolomite types resulting in complex 
spatial variability of both geometry and quality of dolomite reservoirs. 

The characterization of select dolomite reservoirs was the major focus of our 
efforts in Phases I and II of the project. Fields were prioritized based upon the availability 
of rock data for interpretation of depositional environments, fracture density and 
distribution as well as thin section, geochemical, and petrophysical analyses. Structural 
mapping and log analysis in the Dundee (Devonian) and Trenton/Black River 
(Ordovician) suggest a close spatial relationship among gross dolomite distribution and 
regional-scale, wrench fault-related NW-SE and NE-SW structural trends. A high 
temperature origin for much of the dolomite in these 2 studied intervals (based upon 
initial fluid inclusion homogenization temperatures and stable isotopic analyses,) coupled 
with persistent association of this dolomite in reservoirs coincident with wrench fault-
related features, is strong evidence for these reservoirs being influenced by hydrothermal 
dolomitization. 

For the Niagaran (Silurian), there is a general trend of increasing dolomitization 
shelfward, with limestone predominant in more basinward positions.  Reservoir quality 
porosity and permeability is characterized by a combination of dissolution-related molds, 
vugs, and locally cavernous porosity that is enhanced in the dolomite sections by 
intercrystalline porosity.  A comprehensive high resolution sequence stratigraphic 
framework was developed for a pinnacle reef in the northern reef trend where we had 
100% core coverage throughout the reef section.  This sequence framework was then 
compared with major Niagaran fields in the southern reef trend, although comprehensive 
correlation and 3-D modeling did not occur because these tasks were part of Phase III.  
Major findings to date are that facies types, when analyzed at a detailed level, have direct 
links to reservoir porosity and permeability in these dolomites.  This pattern is consistent 
with our original hypothesis of primary facies control on dolomitization and resulting 
reservoir quality at some level.  The identification of distinct and predictable vertical 
stacking patterns within a hierarchical sequence and cycle framework provides a high 
degree of confidence at this point that the results should be exportable throughout the 
basin. 
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Ten reservoir significant lithofacies were described in the northern reef trend, 
providing significantly more resolution than the standard 4-6 that are used most often in 
the basin (e.g. Gill, 1977).  Initial petrophysical characterization (sonic velocity analysis 
under confining pressures) showed a clear pattern that is dependent upon facies and 
resulting pore architecture.  Primary facies is a key factor in the ultimate diagenetic 
modification of the rock and the resulting pore architecture.  Facies with good porosity 
and permeability clearly showed relatively slow velocity values as would be expected, 
and low porosity and permeability samples exhibit fast sonic velocity values, again as 
expected.  What is significant is that some facies that have high porosity values, either 
measured directly or from wireline logs, also have very fast sonic velocity values.  This is 
due to these facies having a pore architecture characterized by more localized pores 
(vugs, molds or fractures) that are not in communication. 

The discontinuation of the project following Year 2/Phase II was unfortunate in 
that most of the synthesis and modeling of the dolomite and reservoir distribution in the 3 
intervals was scheduled to be done during Phase III.  Even partial funding of Phase III 
would have allowed for a more thorough synthesis of the data collected and summarized 
during Phases I and II.  Because much of the data synthesis and modeling for the project 
was scheduled to be part of Year 3/Phase III, the results presented in this document are 
not final, and in many cases represent a report of “progress to date” as numerous tasks 
were scheduled to extend into Year 3. 
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INTRODUCTION 
 

RATIONALE AND GOALS OF PROJECT 
 

The Michigan Basin is a mature hydrocarbon basin that has been recognized by 

the United States Geological Survey as one of the 25 “priority basins” in the United 

States which contain some 90-95% of known and undiscovered domestic hydrocarbon 

resources (USGS National Assessment of Oil and Gas Resources Program, 2004). 

Current activity in the basin is mostly concentrated on step-out development and 

enhanced production efforts, although moderate exploration efforts continue to be 

pursued.  Over the past 75+ years, the basin has produced in excess of 1.3 billion barrels 

of oil and 5.9 trillion cubic feet of natural gas.  The most prolific oil producing 

formations in the basin, with total cumulative production of approximately 900 million 

barrels of oil and 4.5 trillion cubic feet of gas, are the Ordovician Trenton and Black 

River Formations, the Silurian Niagara Group, and the Devonian Dundee Limestone 

(Figure I-1). Each of these units is comprised of volumetrically significant dolomitized 

reservoir facies for which several models of formation have been proposed.  To maximize 

the discovery of new reservoirs and for the recovery of bypassed or stranded 

hydrocarbons in these intervals, it is critically important that the operator have access to 

scientifically-constrained reservoir models that are able to predict the geometrical 

distribution of the reservoir facies in the subsurface.  Utilization of such models will 

allow the operator to better pursue new exploration efforts, high-grade placement of step-

out development wells, and to more accurately orient directional or horizontal wells.  It 

was the stated goal of this project to fully characterize reservoir dolomites in the three 

units indicated above, specifically to determine the relationship of dolomite to fracture 
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trends/fracture density, and/or to primary depositional facies, and to develop improved 

models for exploration and development of these reservoirs based upon a better 

understanding of their 3-D distribution in the subsurface. 

 

Figure I-1.  Paleozoic stratigraphy of the Michigan Basin 

 

Despite the fact that these intervals have been exploited for more than 75 years, 

surprisingly little published information exists from regional well log mapping and 

detailed petrologic and analytical/geochemical study of the dolomites making up these 
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reservoirs.  The majority of “recent” and authoritative work dates back to the mid 1980’s.  

Effective exploitation of these reservoirs is dependent upon being able to predict the 

distribution and reservoir quality of the units in the subsurface, and this information is 

critically dependent upon the mode of formation and distribution of the dolomitized 

reservoir facies.  While many operators assume that, for example, the Trenton/Black 

River is strictly a hydrothermal dolomite play associated with deep-basin fractures, and 

therefore expect a linear distribution in the subsurface, recent work has suggested that 

distribution of reservoir quality rock is also dependent upon the original rock fabrics 

which are related to primary depositional facies.  In this case, some reservoirs may be 

strictly limited to linear distribution while others, where hydrothermal dolomitizing fluids 

expand laterally away from the fractures in rocks that are already porous and permeable, 

may form more complex geometrical patterns related to the original 3-D depositionally-

controlled rock fabric/facies. 

At the beginning of the project, there was no document that summarized and 

synthesized the available data and knowledge base for these reservoirs.  Because most of 

the current models are based upon areally limited and often “first-look” studies coupled 

with “common knowledge”, limited scientific basis existed to support useful models for 

the origin and subsurface distribution of dolomite reservoirs in these units.  In addition, 

very little had been done to critically evaluate, and scientifically document, the relative 

contribution of fracture-related, epigenetic dolomite involving structural controls versus 

spatial distribution patterns that may also be affected by primary depositional fabrics. 

The specific goals of this project therefore were threefold.  First, to summarize 

and critically synthesize all of the publicly-available data on the geometrical distribution 
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and reservoir quality of dolomitized reservoirs in the Trenton-Black River, Niagaran, and 

Dundee formations and how they may be related to fractures.  Second, to perform a 

scientifically rigorous characterization of the various structural and stratigraphic controls 

and modes of dolomite formation in the three intervals.  This was to include evaluation of 

the impact dolomitization has on reservoir quality and documentation of the regional and 

field scale distribution of these reservoirs utilizing state of the art methods such as 

isotopic and trace element analysis, fluid inclusion analysis, determination of pore system 

architecture, and sonic velocity characterization from 6-9 representative fields.  Third, to 

develop geological models for the 3-D distribution of reservoir facies for the different 

types of dolomite reservoirs that would provide operators with a means to high-grade 

exploration, development, and enhanced recovery efforts in a cost-effective manner.   

Major goals 2 and 3 above were targeted to be the focus of Year 3/Phase III of the project 

and thus were only initiated in Phase II (i.e. without a full synthesis as planned in the 

original proposal). 

Results of this project have led to an increased understanding of regional and field 

scale dolomitized reservoirs in the Michigan Basin and may be exportable to other 

domestic oil and gas producing basins.  We anticipate that these results would likely lead 

to new, reduced risk exploration and step-out development play concepts in the Michigan 

Basin, as well as a better and more complete understanding of the local subsurface 

distribution of reservoirs to guide enhanced production efforts.  Increasing production in 

the Michigan Basin, and potentially in other domestic basins, has national security 

implications through the reduction of the amount of foreign oil and gas imports needed to 

sustain our current national infrastructure.  A 10% increase in hydrocarbons produced 
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from the three main producing intervals in the Michigan Basin alone would result in 

approximately 150 MMBOE of additional hydrocarbon production for the nation. 

 

BACKGROUND - MECHANISMS FOR DOLOMITIZATION 

Numerous models have been invoked to explain the occurrence of dolomite in 

shallow carbonate platform settings (Figure I-2a). Some of the more commonly discussed 

models include mixing zone (Hanshaw, et al., 1971; Badiozamani, 1973; Humphrey and 

Quinn, 1989), seepage reflux (Adams and Rhodes, 1960; Sears and Lucia, 1980; Kaldi 

and Gidman, 1982; Simms, 1984; Whitaker and Smart, 1990; Whitaker et al., 1994) tidal 

pumping (Carballo et al., 1987), evaporative pumping (McKenzie, 1981; Ruppel and 

Cander, 1988) and Kohout convection (Simms, 1984; Swart and Melim, 2000).   

 The distribution of depositional-facies-controlled, early diagenetic reflux dolomite 

is related to the spatial distribution of peritidal carbonate and evaporite-rich successions. 

Hypersaline brines, the so-called “special fluids” necessary for low temperature 

dolomitization (<60o-70o C), originate as interstitial fluids in evaporitic facies found at 

the margins of sedimentary basins in supratidal or sabhka environments. Dolomitized 

strata are found in proximity (both stratigraphically and areally) to these evaporite-rich 

facies. Analysis of these dolomites confirms evaporative formation with isotopically 

heavy δ18O values but 87Sr/86Sr isotopic ratios of normal, age-equivalent sea waters.  

 Mixing zone dolomite (Badiozamani, 1973) is thought to originate through the 

interaction of normal marine waters and fresh waters in basin margin or shoal 

water/island settings. It is an especially attractive model for early diagenetic 

dolomitization in areas where evaporitic facies and evidence for hypersaline formation  
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Figure I-2a.  Generalized models for the various published mechanisms for dolomitization. 

Modified from Land (1985).
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fluids are not observed. The main criteria for recognition of mixing zone dolomites are: 

1) elevated (relative to sea water of appropriate geological age), radiogenic Sr isotope 

composition (due to the influence of terrestrial clastic sources of Sr in the dolomitizing 

fluids); and 2) low homogenization temperature, single phase, primary fluid inclusions 

with indications of low salinity (on the basis of freezing temperatures). 

 Burial dolomite (Figure I-2b) results from the migration of dolomitizing fluids 

and associated mass transport originating from “burial” or other processes resulting in 

elevated temperatures (>60oC- 100oC). Hydrothermal (or simply “warm”, see Machal and 

Lonnee, 2002) fluids are favored as a key component of the dolomitization mechanism 

because there is no need for “special” (either hypersaline or “mixing zone”) fluids in 

many settings.  

 

Figure I-2b.  Generalized relationship between δ18O and temperature of formation.  
Modified from Allan and Wiggins (1993). 

 

The observation that much “burial” dolomite has isotopic and fluid inclusion composition 

consistent with origins from hypersaline brines is currently an unexplained, empirical one 

(Allen and Wiggins, 1993).  



 16

 The origins and migration pathways of fluids responsible for “burial” 

dolomitization can be highly variable from one basin to another, and even within an 

individual basin. Since most normal, “warm” formation fluids (>~70oC) can theoretically 

produce “burial” dolomite, fluid migration pathways are the main controlling factor on 

the spatial distribution of burial dolomite. Vertical, convective flow through fractures of 

tectonic origin is most commonly cited (Davies, 2000) as the controlling factor of spatial 

distribution of “burial” or hydrothermal dolomite, but lateral flow of dolomitizing fluids 

and areal enhancement of reservoirs may also be dependent upon primary facies porosity 

and permeability distribution (Zempolich and Hardie, 1997). 

 An important constraint on the “burial” dolomitization mechanism is the requisite 

association of elevated temperature fluids with a pre-cursor rock matrix sufficiently 

porous to provide fluid flow conduits for the fluid volumes necessary to complete the 

dolomitization process.  The generation of “burial” dolomitizing fluids is normally 

assumed to require “deep” burial. Extensive fracturing (tectonic, karst-related collapse, 

etc.) is commonly assumed to be a prerequisite for creation of dolomite-host rock 

permeability and resulting transport of “burial” fluids. Lateral flow of “burial” 

dolomitizing fluids should also be important on a local to regional scale if strataform, 

fluid flow conduits, including porous, primary depositional facies exist at the time of 

“burial” dolomitization.  

 The most reliable and least equivocal characteristic for establishing the genetic 

relationship of diagenetic minerals in reservoir rocks (including dolomite) is temperature 

of formation.  Recent, critical reviews of models for dolomitization (Hardie, 1987; 

Davies, 2000) emphasize the importance of elevated temperatures of formation to 
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resolving the mechanistic problems of important dolomite occurrences. The important 

conclusion of this work is that “almost any warm (epigenetic, > about 100oC) 

groundwater becomes a potential dolomitizing fluid” (Hardie, 1987).  

The principal mechanistic constraints on widespread dolomitization, therefore, are 

available “warm” fluids and suitable, interconnected fluid-flow conduits within a basin 

and not on “special” dolomitizing fluids. Studies of fluid inclusion homogenization 

temperatures, coupled with stable isotopic analyses, are critical to the assessment of 

dolomite genesis and basin hydrodynamics.  Understanding processes of dolomitization, 

will in turn, lead to enhanced prediction of the spatial distribution of dolomitized 

hydrocarbon reservoirs in the subsurface. 

 

Stratigraphy and Dolomite Occurrences in Michigan Basin Paleozoic Carbonate 
Reservoirs  
 

Dolomitization is widespread and generally a critical factor in the origin of the 

most prolific, hydrocarbon reservoirs in the Michigan Basin: the Middle Ordovician 

Trenton/Black River Formations, the Silurian Niagara Group and the Middle Devonian 

Dundee Limestone (Figure I-1). These units are the most economically important 

reservoirs in the basin.  However, they consist of a wide range of dolomite types resulting 

in complex spatial variability of both geometry and quality of dolomite reservoirs.  The 

most utilized models for dolomite formation and distribution in the Michigan Basin 

indicate that dolomite results from a variety of processes, most commonly related to:  1) 

refluxing brines from overlying sabkha type environments; 2) hydrothermal, fracture-

related brines; 3) burial (but not hydrothermal) brines localized along fractures; and 4) 
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mixing zone dolomitization. These models, however, are mostly “generic” and mono-

phase in nature, are based upon limited scientific justification (most of which is 2-4 

decades old), and have minimal detail about the expected geometrical distribution of 

reservoir quality dolomites in the subsurface. 

 
Trenton/Black River Formations 
 The Middle Ordovician, Trenton and Black River Formations are major carbonate 

units that can be readily correlated over much of the eastern U.S. to the transcontinental 

arch in the west (Wilson and Sengupta, 1985). Trenton-Black River reservoirs in 

Michigan have produced over 145 million barrels of oil and 250 BCF of gas, most 

notably in the Albion Scipio and Stony Point fields. The Trenton and Black River 

Formations are predominantly micritic limestone in the Michigan Basin (Catacosinos and 

Daniels, 1991) although dolomite is both stratigraphically and areally significant (see 

below). The Trenton is lithologically similar to the Black River Formation and generally 

indistinguishable in well logs. Prominent, regionally correlative Middle Ordovician K-

bentonites are used to separate the Trenton from the Black River in Michigan and 

elsewhere in the eastern United States.  These bentonites represent ash falls throughout 

the Appalachian basin resulting from Taconic orogenic events and volcanism (Kolata, et 

al., 1986).  

 The Trenton is overlain by the Utica/Maquoketa shale in the Michigan Basin and 

adjacent cratonic arch areas (Fisher et al., 1988). The Trenton/Back River succession 

increases in combined stratigraphic thickness from 400 ft to 1000 ft from southwest to 

east in the Michigan Basin. In the basin, the Trenton consists of open marine limestone 

facies deposited in a relatively high energy, subtidal or deeper water ramp environment 
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(Keith, 1985), and lacking basin margin or tidal flat facies (Wilson and Sengupta, 1985).  

Local intervals of grain-rich fabrics are interpreted as either carbonate shoals or storm 

(tempestite) deposits (Fara and Keith, 1988).  

 
Occurrence of Dolomite in the Trenton/Black River 
  Dolomite, of various origins, is an important lithologic component of the Trenton 

and Black River Formations in the Michigan Basin, and contains distinct spatial and 

stratigraphic distribution as well as variable petrologic character. Well-documented, but 

somewhat contradictory petrographic and analytical characterization of dolomite types in 

the Trenton/Black River have resulted in at least three distinct dolomite types recognized 

in the Michigan Basin.  These are: 

1) a dense, finely crystalline, ferroan “cap dolomite” that occurs in the top 10-40 

ft of the Trenton below the Utica Shale throughout much of the basin (Taylor and Sibley, 

1987). This dolomite contains moderately well-preserved primary fabrics. Oxygen 

isotopic composition, trace element chemistry, and stratigraphic/cross cutting 

relationships in this dolomite are interpreted to indicate a relatively early, burial origin 

related to diagenesis and fluid expulsion from shales in the overlying Utica/Maquokata 

(Taylor and Sibley, 1987; Coniglio et al., 1994). 

2) a coarsely crystalline, “saddle” dolomite that typically fills fractures and vugs, 

that is common in highly faulted and fractured zones such as the Albion-Pulaski-Scipio 

trend. Petrologic and analytical data (Allan and Wiggins, 1993; Coniglio, et al., 1994; this 

study), including those from oxygen isotopes and primary fluid inclusions, clearly 

indicate that this “fracture related” dolomite was produced during “burial” from fluids 



 20

with elevated temperatures (> at least 100oC), that were most likely transported through 

fracture systems and involved formation fluids of complex origins. 

3) a medium- to coarsely-crystalline, variably ferroan, “regional”, fabric 

destructive dolomite that may be volumetrically more significant compared to “cap” and 

fracture-related dolomites discussed above.  Genesis of this dolomite type is somewhat 

enigmatic. Taylor and Sibley (1987) initially identified this “regional” dolomite to be of 

early diagenetic origin, and thought it to be distributed mainly in the margins to the south 

and west of the Michigan Basin. Later studies (Fara and Keith, 1988; Coniglio, et al., 

1994; Budai and Wilson, 1991) related Taylor and Sibley’s “regional dolomite” to 

“fracture related” burial dolomite with distribution controlled by proximity to fractures. 

This dolomite type is typically matrix replacive, may or may not preserve primary 

limestone textures, and probably constitutes substantial volumes of porous and permeable 

reservoir facies in fracture-trend Trenton/Black River fields. 

 
Silurian Niagara Group 
 Hydrocarbon reservoirs in the Middle Silurian (Niagaran) “pinnacle” reefs have 

been established in two well-defined trends in the northern and southern parts of the 

Michigan Basin.  Over 700 individual fields have been found in the northern part of the 

basin with an additional 300+ fields known along the southern trend.  Recent work 

suggests that a continuation of the trend on the western side of the basin may provide new 

opportunities for exploration (PTTC Workshop on Horizontal Drilling, 2003).  Current 

production from Niagaran reefs has totaled nearly 400 million barrels of oil and nearly 4 

TCF of gas.  Individual reefs range from approximately 50-400 acres in area and 

typically have 50-200m in topographic relief.  Early in the development of the reef trend, 
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it became apparent that both limestone and dolomite reefs were present in the basin and 

that the dolomitized reefs were by far the most productive (Sears and Lucia, 1980, p.215).   

Dolomite in the Niagara Group 
There is a general trend of increasing dolomitization shelfward, with limestone 

predominant in more basinward positions.  Reservoir quality porosity and permeability is 

characterized by a combination of dissolution-related molds, vugs, and locally cavernous 

porosity that is enhanced in the dolomite sections by intercrystalline porosity (Gill, 1977; 

Sears and Lucia, 1980; Lucia, 1999).  Detailed petrographic work by Sears and Lucia 

(1980) on reefs from the northern trend is the framework for much of the currently 

available information and interpretive models for reservoir formation in the Niagaran 

reefs. 

According to Sears and Lucia (1980), dolomitization in the pinnacle reefs was a 

combination of precipitation from a mixture of freshwater and seawater that occurred 

during subaerial exposure of the reefs, and later more extensive replacement dolomites 

related to refluxing brines from overlying sabkha type environments.  This second stage 

of dolomitization is volumetrically the most important, and forms massive dolomitized 

sections with good to excellent intercrystalline porosity (Sears and Lucia, 1980; Cercone 

and Lohmann, 1985).  In a more recent discussion by Lucia (1999), the pervasive second 

stage dolomitization and related “burial dissolution and fractures” shows little 

conformance to primary depositional facies other than the association with overlying tidal 

flat facies. 

Although the Sears and Lucia (1980) models for dolomitization of the Niagaran 

reefs is often referred to in local discussions of the reservoir trend, additional work done 
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by Cercone and Lohmann (1985) indicates that, in at least some reefs, there is also a late 

stage of dolomite related to deep burial brines.  These late burial dolomites are associated 

with fractures and late solution voids and have distinctly different carbon and oxygen 

stable isotopic values as well as fluid inclusions with homogenization temperatures 

greater than 800C. 

 
Dundee Limestone 
 The Middle Devonian Dundee Limestone is the longest lived and one of the most 

prolific oil producing formations within the Michigan Basin.  The initial discovery was in 

1927 with subsequent discoveries of over 125 fields basin-wide leading to production in 

excess of 350 MMBO and substantial natural gas.  Gardner (1974) defined the Dundee 

Limestone in the western part of the basin as consisting of the Rogers City Member 

above, and the Reed City Member below, separated by a prominent anhydrite unit called 

the Reed City Anhydrite.  This subdivision is less obvious in the central and eastern basin 

where the Reed City Anhydrite is not present. A “Reed City Equivalent” member is 

commonly identified by petroleum geologists in this area and consists of variably 

dolomitized, shallow marine carbonate strata. The Dundee is known to range from a 

wedge edge, 0' isopach in southwest Michigan to a maximum thickness of 400 ft in the 

basin center. Complex onlap/offlap and unconformable relationships exist on the basin 

margins (Gardner, 1974) comparable to many other formations in the Michigan Basin. 

 Facies in the Reed City Member indicate an east facing marine embayment that 

shoaled upwards from fossiliferous and grainy carbonates, deposited on a shallow marine 

carbonate shelf or ramp, to laminated and anhydritic dolomite deposited in a sabkha 

setting. Dolomitized, Reed City member carbonate strata are more common in the 
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western and central basin while limestone is more common in this unit in the eastern 

basin. In the central and eastern basin the Reed City member is also predominantly 

fossiliferous and grainy with important patch reef facies in places (Montgomery, 1986). 

Facies relationships are locally complex, however, with indication of syndepositional, 

structural control on facies in some fields but not others (Montgomery, 1986; Curran and 

Hurley, 1992).  

 The Rogers City Member throughout the Michigan Basin consists mostly of 

nodular wackestone with subordinate skeletal wackestones and packstones. This unit is 

interpreted as a transgressive package deposited from east to west (Gardner, 1974). In the 

eastern part of the basin, the Rogers City Member overlies pyritized hardgrounds and 

bioeroded Glossifungites traces in the underlying Reed City Member that are indicative 

of a regional, marine flooding event (Curran and Hurley, 1992). Isopach mapping and 

lithologic interpretation of wire line log data in the Rogers City Member indicate the 

presence of a shoal or bank in the central basin during deposition of the Reed City 

Member (Gardner, 1974). 

 

Dolomite in the Dundee Limestone 
 Dolomite types, basin-wide spatial distribution, and models for genesis are 

generally poorly defined for the Dundee Limestone. Cohee and Underwood (1945) 

mapped decreasing dolomite in the Reed City member towards the east. A regional 

exploration model, including initial interpretations of depositional and diagenetic facies, 

reservoir types, and production characteristics was developed by Knapp (1947) and is 
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still referenced today. Likewise, an oft-cited generalized depositional model for the 

Dundee Limestone was published by Gardener (1974). 

 Pervasively dolomitized carbonate strata in the Reed City member of the Dundee 

is productive in the western basin in fields such as the Reed City field (Upp, 1968; 

Gardner, 1974). Dolomite is commonly fabric replacive in these reservoirs, but where 

preserved, primary textures indicate a generally open marine faunal assemblage shoaling 

upwards to intertidal/supratidal and sabhka facies below the Reed City Anhydrite. The 

majority of dolomite in the Dundee in the central and western Michigan Basin is widely 

believed, based on the work of Gardner (1974), to be both early diagenetic in origin and 

facies dependent. Primary porosity in grainy and biohermal facies of the Reed City 

member is thought to have influenced the flow of dolomitizing fluids derived from the 

overlying Reed City Anhydrite.  

 Both Knapp (1947) and Gardener (1974), however, were less clear concerning the 

description, distribution, and genesis of dolomite, especially in the Rogers City member 

in the western and central portions of the basin. Jodry (1955) demonstrated a correlation 

between dolomite and occurrence of oil, and Tinklepaugh (1957) showed that the 

presence of dolomite was related to structural positioning.  Both the Reed City equivalent 

and the Rogers City members are oil productive in a small number of clearly fracture-

related, hydrothermal “chimneys” in the central and eastern basin (e.g. the Deep River 

Field in Arenac Co., Lundy, 1968; and the Winterfield Field of Clare Co., Chittick, 

1995).   

Prouty (1988) described a model for reactivated basement wrench faults and the 

influence on fracture-related, hydrothermal dolomite occurrences in both the 
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Trenton/Black River as well as several Dundee fields in Michigan. Later, detailed work 

by Curran and Hurley (1992) on one of Prouty’s “case study” fracture-related dolomite 

fields in the Dundee showed the field to be mostly limestone, leading to questions about 

the importance of fracture-related dolomite in the Dundee. 

 Dolomite occurrences in most Dundee fields were not initially well described, in 

part because of limited rock material available from the pre-1950's drilling methods used 

on most wells. Preliminary descriptions of dolomite in core from more recently drilled 

wells in Crystal Field, in the central portion of the basin, indicate that dolomitization was 

complex and multi-generational (Montgomery, et al., 1998).  These studies indicate that 

massive, “matrix” dolomite (replacive) is transitional to white sparry saddle dolomite that 

fills fractures, vugs, and solution-enhanced, primary intraparticle pores. 

 Preliminary petrologic analysis of dolomite in core and cuttings from nearby 

wells (unpublished work by Harrison, 2000) indicates “light” oxygen isotopic 

composition consistent with origin at elevated temperatures for the sparry dolomite. 

Initial study of primary fluid inclusions in saddle dolomite from two samples in central 

Michigan by Luczaj (2001), indicate a temperature of formation for the saddle dolomite 

of approximately 120o to 150o C. 

 

Structural Elements, Thermal Evolution, and Hydrothermal Mineralization in the 
Michigan Basin 
 Decades of study of the structural geology and structural evolution of the 

Michigan Basin (summarized by Fisher et al., 1988) suggest a predominant, northwest-

southeast structural grain defined by faults and folds throughout the basin (Figure I-3).   

A subordinate, antithetic southwest-northeast component, is thought to have developed 
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due to periodic reactivation of basement faults and left lateral wrenching (Sanford, et al., 

1985; Prouty, 1988). The timing of basement fault reactivation and folding is not clear,  

 

 

 

 Figure I-3.  Schematic diagram illustrating the general northwest/southeastern 

trends of structural elements (faults and folds) in the Michigan Basin.  AS = Albion-Scipio 

trend.
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although stratigraphic studies indicate that isolated, positive bathymetric features existed 

periodically throughout the early Paleozoic in the basin and were probably the result of 

syndepositional growth faults (Fisher, et al., 1988). Regional stratigraphic studies 

(Lillianthal, 1978) and structural analysis (Prouty, 1988) suggest that the most 

widespread and intense period of basement fault reactivation occurred at the end of the 

Mississippian (~350 mybp) coincident with Alleghenian orogenic activity outboard in the 

Appalachian orogen. The timing of the fault reactivation coincides closely with an 

important basin-wide diagenetic event (age dated at about 346 +/- 11 mybp), that includes 

the formation of “burial” dolomite in the Ordovician St. Peter Sandstone and siliciclastic-

dominated Glenwood Formation (Barnes and Girard, 1992; Girard and Barnes, 1995). 

Models for hydrothermal mineralization associated with basement fault reactivation have 

long been used to explain linear fault and fracture-related oil fields (e.g. Hurley and 

Budros, 1990), as well as pervasive epigenetic dolomitization and related Mississippi 

Valley Type (MVT) mineralization (Budai and Wilson, 1991). 

 The significant global association of giant oil fields, hydrothermal dolomite, MVT 

type mineralization, and wrench tectonics related to basement fault reactivation has been 

recently summarized and documented by Davies (2000). The “hydrothermal dolomite 

reservoir facies” model and major hydrocarbon accumulations world wide are thought to 

be, at least in part, controlled by the localization of hydrothermal fluid movement and 

mineralization, including hydrothermal dolomitization associated with faults (Figure I-4), 

especially extensional or transtensional faults (Davies, 2000). A number of important 

examples of giant hydrocarbon reservoirs apparently controlled by reactivated basement 

faults and formation fluids transported through related fractures in cover rocks exist,  
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Figure I-4.  Diagram showing various associations of hydrothermal dolomite related to 

extensional tectonics.  Modified from Davies (2000).
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including the Albion-Scipio pool and other Ordovician Trenton/Black River fields 

(Figure I-5) distributed throughout the Michigan Basin, Ontario, northwest Ohio, 

northeastern Indiana, and other locations in the eastern U.S. (Tedesco, 1994). 

 

 

Figure I-5.  Map showing distribution of major known hydrothermal dolomite trends in and 
around the Michigan Basin.  Total production from the Albion-Scipio trend (approximately 
135 MMBO), Stoney Point field (approximately 12 MMBO) and the Indiana-Lima trend (>500 
MMBO) are illustrated.  Modified from Hurley and Budros (1990).
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 Numerous studies of the thermal evolution of the Michigan Basin (summary in 

Catacosinos and Daniels, 1991) suggest at least three different models to explain the 

anomalous thermal maturity of organic matter, and temperatures and timing of formation 

of authigenic minerals in the Michigan Basin, relative to current depths of burial (no 

more than approximately 10,500' at the deepest for the Ordovician Trenton/Black River 

Formations). Nunn, et al., (1984) suggested that anomalously elevated geothermal 

gradients existed during the early Paleozoic throughout the Michigan Basin. Cercone 

(1984) called upon impressive erosional stripping of thousands of feet of late Paleozoic 

strata in the basin to account for thermal maturities of organic material. Hogarth and 

Sibley (1985) and Hurley and Budros (1990) emphasize the probable importance of 

spatially isolated hydrothermal fluid conduits that created areally restricted hydrothermal 

anomalies to explain the spatial distribution of thermal maturity in organic matter and the 

temperatures of formation of authigenic minerals, including hydrothermal dolomite 

(Figure I-6). Girard and Barnes (1995) suggested that a Late Devonian-Mississippian 

(345 +/- 11mybp) episode of authigenic mineralization in the Ordovician St. Peter 

Sandstone, including hydrothermal dolomitization, suggested anomalously high thermal 

regimes related to spatial location in proximity to faulted and fractured Precambrian 

basement in the vicinity of the Mid-Continent Rift in the central Michigan Basin.  
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Figure I-6.  Albion-Scipio model for hydrothermal dolomitization.  Dolomitizing fluids are 
concentrated along fault-controlled conduits and typically dolomitize rocks close to the 
fault plane.  Note however, how the lateral extent of reservoir dolomite is illustrated 
schematically to vary in a vertical sense.  One of the main hypotheses of this project was 
that this lateral variability is likely controlled by primary depositional facies, and thus is 
predictable within a sequence stratigraphic framework. 

 
 
 

Preliminary investigation of fluid inclusions in calcite cements in the 

Mississippian Bayport Limestone exposed in surface quarries in Eaton county, Michigan, 

indicate that a fluid inclusion assemblage is present with mean homogenization 

temperature of 146 +/- 12oC (Blaske, 2000; Panter, 2001). Calcite cements are found in 

conjunction with pyrite, fluorite, and other fracture-filling minerals suggestive of 

hydrothermal mineralization. Other examples of upper Paleozoic, highly fractured 

bedrock formations in the surface and shallow subsurface are known to contain exotic 
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suites of authigenic minerals not in chemical equilibrium with modern, fresh ground 

water (Westjohn and Weaver, 1996). 

 
 

Variations in Dolomitization and Reservoir Geometries in the Michigan Basin 
 

Fundamentally different mechanisms of dolomitization will result in distinctly 

different reservoir geometry and rock properties. Primary depositional facies controls 

result in regional scale geometric distribution and rock properties in early diagenetic 

dolomite that are distinctly different from burial, epigenetic dolomite typically related to 

structural controls and fracturing (Zempolich and Hardie, 1997; Melim and Scholle, 

2002).  From a reservoir perspective, outcrop studies such as that by Zempolich and 

Hardie (1997) offer key insight into the preferential control on distribution of dolomite by 

primary sedimentary facies and resulting variability in the spatial distribution of 

dolomitized reservoirs.  For example, Zempolich and Hardie (1997) showed that the size 

and distribution of fracture-related dolomite bodies may range from kilometers in areal 

distribution and hundreds of meters thick when fractures cut across certain primary 

sedimentary facies/fabrics, to only tens to hundreds of meters in area and only a few 

meters thick.  

All mechanisms for dolomitization require fluid flow and mass transport that is 

imposed or imprinted on pre-cursor facies patterns and primary facies-controlled fluid 

flow pathways. A well-documented geological model for the volumetric significance, 

spatial distribution, and the various mechanisms of dolomitization in a petroleum system 

is essential to decreasing risk and supporting new exploration, step-out and enhanced 

recovery activities.  
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For the Michigan Basin, existing geological models for the origin of dolomite in 

Paleozoic hydrocarbon reservoirs are diverse. In different regions and stratigraphic 

intervals of the Michigan Basin (and surrounding areas), the origin of dolomite is 

interpreted to result from a variety of mechanisms and processes:  

1) Non-fabric selective, non-facies controlled, fracture related burial/epigenetic 

processes in the Trenton/Black River (Ells, 1962; Hurley and Budros, 1990) and the 

Dundee (Knapp, 1947; Lundy, 1968; Prouty, 1988). The influence of epigenetic, fracture 

related dolomite in the Niagaran is also reported by Coniglio, et al. (2003) in Ontario. 

2) Facies-related, early diagenetic/reflux processes in the Niagaran (Sears and 

Lucia, 1980; Bay, 1983) and Dundee (Knapp, 1947; Champion, 1968; Gardner, 1974). 

3) Complex interrelationship between intense solution/karst related to 

syndepositional subaerial exposure surfaces, regional “early” dolomitization, and 

localized stratigraphic trapping in the Trenton/Black River (DeHaas and Jones, 1988) and 

Dundee zones (Montgomery, et al., 1998);  

4) “Regional” dolomite interpreted to have resulted from either early diagenetic 

process (Taylor and Sibley, 1987) or epigenetic, “heated subsurface brines” (Fara, and 

Keith, 1988) in the Trenton/Black River. Coniglio et al. (1994) distinguish a pervasive, 

“cap” dolomite from “fracture related” dolomite in the Trenton/Black River in the 

subsurface in Ontario and recognize textural relationships indicating recrystallization of  

“cap” dolomite by later fracture related, epigenetic dolomite resembling the “regional” 

dolomite of Taylor and Sibley (1987). 

 As a result of the apparent complexity and diversity of dolomite origins in these 

units, and a general lack of understanding of the spatial distribution of dolomite facies 
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basin-wide, the implications of dolomite genesis on hydrocarbon reservoir distribution 

and quality is poorly, or at least incompletely, understood in the Michigan Basin. In the 

absence of well-documented geological models for the origins and spatial distribution of 

disparate dolomite types in these units, predictive models for the spatial distribution, field 

scale geometry, and properties of hydrocarbon reservoir rocks are not well-established. 

Although patterns of spatial distribution and types of dolomite have been studied in these 

reservoir units individually and in selected fields, only Coniglio et al. (1994) have 

suggested that cross-formational mechanisms common to each of the Trenton/Black 

River, Niagaran, and Dundee zones are probably important to the creation of many/most 

dolomite reservoirs in these units. 

 
Petrographic and Analytical Study of Dolomitized Carbonate Reservoirs 
 
 The spatial distribution of limestone versus dolomite in the subsurface can be 

mapped using conventional wire-line log data. Cross plot of FDC/CNL log response, in 

conjunction with gamma-ray logs, can effectively distinguish dolomite from limestone 

and provide a basis for preliminary geological models relating sedimentary facies and 

structural deformation to dolomite occurrences and hydrocarbon reservoirs on a regional 

scale. 

 Geological models for the spatial distribution of dolomite based on conventional, 

subsurface, wire-line log mapping and rudimentary well sample analysis, however, 

typically provide only incomplete and equivocal evidence to distinguish the geological 

origin of dolomite. Confident prediction of dolomite reservoir geometry and distribution, 

on all relevant scales in any hydrocarbon system, requires rigorous, scientific testing and 
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development of geological models for dolomite genesis.  Petrographic and analytical 

methods are required to differentiate dolomite types and infer mechanisms of dolomite 

formation. Reliable geological  models for the spatial distribution of dolomite reservoirs 

and dolomitized hydrocarbon reservoir rock properties is fundamentally dependent on 

data relating geological conditions and controls during dolomite genesis to the spatial 

distribution of dolomitized reservoirs. 

 Routine petrographic analysis is typically insufficient to discriminate multi-phase 

dolomite that results from differing mechanisms of formation. Complex, multistage, 

diagenetic alteration including partial to complete replacement or recrystallization of pre-

cursor limestone and dolomite textures, can superimpose petrographic characteristics that 

are genetically ambiguous. Analytical methods to distinguish the conditions and 

mechanisms responsible for dolomitization, including the temperature and composition of 

dolomitizing fluids, are required to relate dolomite occurrences to mechanisms of 

dolomite formation and hence the prediction of spatial distribution and properties of 

dolomitized hydrocarbon reservoirs within the framework of primary depositional 

fabrics. 

 

Overview of Analytical Methods to determine Genesis of Dolomite 
 Allan and Wiggins (1993) provide a comprehensive treatment of analytical 

approaches to the petrologic study of dolomitized hydrocarbon reservoirs in petroleum 

systems. These state-of -the-art analytical techniques should be conducted with careful 

consideration of the spatial occurrence of reservoir quality dolomite relative to primary 

depositional facies patterns, and to structural features including faulting and folding.  
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Sample suites should then be tied to variations in dolomite phases observed with 

cathodoluminescence, and placed within the context of primary depositional facies as 

well as vertical stacking patterns of facies units. The following analytical techniques are 

most relevant to the interpretation of genesis and spatial distribution of dolomite in 

carbonate reservoirs: 

1. Trace element, Fe and Mn composition. Dolomite enriched in iron (Fe, ferroan 

dolomite) relative to iron-poor/free dolomite typically indicates a burial origin 

because burial fluids are, on average, 1000x enriched in Fe compared to sea water 

(Allan and Wiggins, 1993). Significant amounts of ferroan dolomite in 

hydrocarbon reservoirs in basin scale petroleum systems, are therefore, a good 

indication of burial processes during dolomite genesis. 

The trace element composition of petrographically distinct dolomite types 

can be initially established using microbeam analytical instruments (SEM-EDX). 

More routine petrographic characterization of Fe composition in dolomite can 

then be established using stains and cathodoluminescence petrographic techniques 

since Fe/Mn ratios determine luminescence properties and can be correlated to 

trace element composition. 

2. Oxygen and carbon isotopic composition.  The genesis and migration pathways of 

subsurface fluids can be inferred from the isotopic composition of diagenetic 

minerals (Allan and Wiggins, 1993). The oxygen isotopic composition of 

dolomite is a function of formation fluid isotopic composition as well as isotopic 

fractionation related to the temperature of formation. Micro-sampling of 

petrographically distinct dolomite can yield important constraints on dolomite 
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genesis. Decreased 18O/16O relative to normal marine carbonate is indicative of 

elevated temperatures and/or influence of meteoric waters during formation. 

Increased 18O/16O in dolomite indicates lower temperatures during formation 

and/or derivation from evaporative (hypersaline) fluids. 

3. Primary fluid inclusion homogenization and freezing temperatures. Almost all 

minerals that grow in the presence of a fluid contain microscopic (1-10 microns or 

greater) inclusions of that fluid (Bodnar, 2003). Primary, two phase (liquid and 

vapor) fluid inclusions are common along crystal growth faces in much epigenetic 

(formed at temperature in excess of ~50o-70o C) dolomite and can contain 

unaltered fluids trapped during the initial growth of the mineral crystal (Figure I-

7). Single phase fluid inclusions typically form at lower temperatures (due to the 

pressure/temperature phase relationships of water). 

Analysis of homogenization and freezing temperatures of primary fluid 

inclusions using petrographic, gas flow heating/cooling stage techniques may be 

used to estimate temperature and salinity (respectively) of the fluid present during 

formation of diagenetic dolomite crystals. Careful petrographic analysis of 

inclusions is necessary to establish the timing and history of formation of fluid 

inclusion assemblages (FIA) to produce meaningful data. The ideal situation for 

analysis of primary fluid inclusions in dolomite, to determine reliable 

temperatures of formation, is initial formation of the fluid inclusion at elevated 

temperature with subsequent thermal/burial history of lower temperature and 

pressure (Goldstein, 2003). Thermal/burial history analysis in the Michigan Basin 

(see discussion below), suggests that current burial temperatures and pressures are 
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probably less to substantially less than what existed early in the burial history of 

most subsurface formations at least locally in the Michigan Basin. Relatively  

 

 

 

Figure I-7.  Photomicrograph of two-phase fluid inclusions in HTD crystals.  From 

Luczaj and Harrison, 2006.
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shallow burial (<5000’ to 10,000’ maximum) for all formations of interest in this 

study and burial/thermal history relationships suggest that stretching of fluid 

inclusions and modification of original inclusion volume, resulting in re-

equilibration of primary fluid inclusions, is not likely to be the case.  Therefore, 

fluid inclusion data should provide reliable indications of dolomite temperatures 

of formation. 

4. Strontium isotopic analysis. Strontium isotope composition (87Sr/86Sr) in dolomite 

can be used as a tracer of formation fluid movement in the subsurface. Formation 

fluids that have interacted with silicate minerals in clastic or crystalline basement 

rocks typically have elevated 87Sr/86Sr relative to normal marine water (see 

normal marine 87Sr/86Sr secular variation curve, Elderfield, 1986). Burial fluids 

that have interacted with these rock types, therefore, typically form dolomite with 

elevated 87Sr/86Sr. Dolomite formed from normal or evaporatively concentrated 

marine waters can often be discriminated from formation fluids of burial origin on 

the basis of lower 87Sr/86Sr. 

 

Reservoir Characterization - Petrophysical Properties of Carbonate Sediments and 
Rocks 
 

A major task in reservoir characterization and modeling is to translate geological 

information into petrophysical properties that can be extracted from geophysical data sets 

and/or used to populate sedimentary bodies in reservoir modeling. This task is 

particularly challenging in carbonates, where cementation and dissolution processes 

continuously modify the mineralogy and pore structure. In extreme cases, this 
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modification can completely reverse the original pore distribution so that grains are 

dissolved to produce pores, while the original pore space is filled with cement to form the 

rock. All these modifications alter the physical properties of the rock, thereby resulting in 

a dynamic relationship between depositional facies and diagenesis which is recorded by 

physical parameters such as porosity, permeability and sonic velocity (Grammer et al. 

2004). 

 
Sonic velocity tied to pore architecture 

Establishing a predictable connection between pore type and pore architecture to 

measured sonic velocity values will help operators more fully recognize, and ultimately 

predict reservoir type and quality in the subsurface with increased confidence.  Because 

pore geometry is a crucial factor in controlling acoustic properties in carbonates, detailed 

characterization of pore types and pore architecture through petrographic and SEM 

analysis should provide the operator a tool to predict pore architecture, and therefore 

permeability of reservoir rocks, through refined analysis and interpretation of sonic log 

borehole and seismic data.  

Seismic data has proven to be increasingly important in reservoir characterization.  

High-resolution 3-D seismic surveys produce data sets from which amplitude variations 

can be used to interpolate between wells. Reservoir saturation is evaluated with AVO 

(amplitude variation with offset), and time lapse surveys delineate production histories 

and assist in secondary recovery.  Inversions of seismic volumes into a porosity volume 

can be used to predict high porosity intervals.  Because of the degree of uncertainty in 

these geophysical data, accurate interpretation is dependent upon the understanding of the 

rock physics in the imaged sediments (Mavko et al., 1998).  Although sonic velocity is 
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largely controlled by porosity, many factors such as clay content and mineralogy, may 

complicate the relationship. This is especially true in carbonates where, as discussed 

above, velocity is controlled by the combined effect of depositional lithology and several 

post-depositional processes that cause a unique velocity distribution (Wang, 1997, 

Rafavich et al. 1984; Anselmetti and Eberli, 1993).  

Laboratory measurements from cores in Neogene strata from the Bahamas display 

the porosity-velocity relationship in carbonates and, together with diagenetic studies, help 

explain the wide scattering of velocity data (Anselmetti and Eberli, 1993, 1997, 2001). 

Velocity is strongly dependent on the rock-porosity (Wang, 1997, Rafavich et al. 1984).  

A plot of porosity versus velocity displays a clear inverse trend; an increase in porosity 

produces a decrease in velocity (Figure I-8). The measured values, however, display a 

large scatter around this inverse correlation in the velocity-porosity diagram.  Velocity 

differences at equal porosities can be over 2500 m/s, particularly at higher porosities.  For 

example, rocks with porosities of 39% can have velocities between 2400 m/s and 5000 

m/s. Even at porosities of less than 10% the velocity can still vary about 2000 m/s, which 

is an extraordinary range for rocks with the same chemical composition and the same 

amount of porosity.  Likewise, porosity can vary widely at any given velocity.  For 

example, rocks with a Vp of 4100 m/s can have porosities anywhere between 12% and 

43% (Figure I-8). 
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Figure I-8.  Graph of velocity vs. porosity of various pore types of carbonates with an 
exponential best fit curve through the data for reference.  Different pore types cluster in 
the porosity-velocity field, indicating that scattering at equal porosity is caused by the 
specific pore type and its resulting elastic property.  From Grammer et al., 2004. 
 

The poor relationship between porosity and velocity in carbonates results from the 

ability of carbonates to form cements and special fabrics with pore types that can enhance 

the elastic properties of the rock without filling all the pore space.  The importance of the 

pore type on the elastic property, and thus the velocity, is illustrated in Figure I-8, which 

shows that different pore types form clusters in the velocity-porosity diagram. The 

resulting characteristic pattern observed for every group with the same dominant pore 

type can explain why rocks with equal porosity can have very different velocities. The 

most prominent velocity contrasts at equal porosities are measured between coarse 

moldic rocks and rocks with interparticle porosity.  Moldic rocks at 40-50% porosity can 

have Vp up to 5000 m/s, whereas rocks with similar amounts of interparticle porosity or 

microporosity have velocities that can be lower by over 2500 m/s.  
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The complicated relationship between porosity and velocity that is observed, 

which would also result in a similar porosity-impedance pattern, implies that impedance 

contrasts between two layers can occur even without a porosity change, i.e. solely as a 

result of different pore types and pore system architecture.  To further complicate 

interpretation, two layers with different porosity values can have very similar velocities 

and may have, therefore, no impedance contrast between them (Grammer et al. 2004). As 

a result, the scattering in a porosity-velocity diagram has negative implications for 

seismic inversion and AVO analyses in carbonates.  The scattering produces an 

uncertainty in seismic inversion that most current inversion techniques are not able to 

reduce. For example, if a single line from a theoretical equation or a best-fit line through 

the data set is used for inversion, all the velocity values above the line will underestimate 

porosity and reserves while all the data points below will overestimate porosity and 

reserves. Similarly, variations in pore type can cause variations in the amplitude with 

offset that might be more pronounced than variations in saturation or bed thickness.  To 

reduce the uncertainties in seismic inversion and AVO analysis, additional study and 

development of new theoretical approaches are needed that show the physical 

relationship between pore types, the rock-frame flexibility, and the elastic behavior in 

carbonates.   

The application of this approach in the identified intervals in the Michigan Basin 

should provide much needed data to help operators more fully recognize, and ultimately 

predict reservoir type and quality.  Because pore geometry is a crucial factor in 

controlling acoustic properties in carbonates, detailed characterization of pore types and 

pore architecture through petrographic and SEM analysis should provide the operator a 
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means to predict the pore architecture, and therefore the permeability of reservoir rocks 

through refined analysis and interpretation of sonic log borehole data.  Recent study has 

shown that there is a predictable pattern between pore type/architecture/permeability and 

sonic velocity through calculation of a “velocity deviation log” as illustrated in Figure I-9 

(Anselmetti and Eberli, 1997).  As indicated above, these data may also help to further 

refine targets on seismic data. 

 
 

Figure I-9.  Correlation of velocity deviation log and permeability data in a borehole from 
Great Bahama Bank.  This Neogene interval consists of fine-grained slope sediments that 
are intercalated by three marine hardgrounds (HG).  Overall velocity increases upsection 
and decreases abruptly across the hardground surfaces.  Permeability shows an inverse 
trend with decreasing values upsection and abrupt increases across the hardground 
surfaces indicating possible vertical flow barriers at the hardgrounds.  The good inverse 
correlation between velocity deviation and permeability indicates a significant link 
between velocity deviation and trends in permeability.  Figure and caption modified from 
Anselmetti and Eberli (1997). 
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PROJECT APPROACH AND DISCUSSION OF RESULTS BY TASK (PHASE I AND II)  

 
 

Task 2.0 – Development of a Reservoir Catalog for selected dolomite reservoirs in the 
Michigan Basin  

 
(data bases available to on line at WMU/MGRRE at:   
http://wst023.west.wmich.edu/ind/Data_on-line.htm) 
 
 

Wireline Log Scanning – during Phases I and II we scanned over 14,000 wireline logs 

and were well underway digitizing selected logs for further data manipulation. The scans 

are digital raster images captured by using a Neuralog Scanner.  Each image is a TIFF 

type image, scanned at 200 dpi resolution.  These images can be used directly in Petra 

software for creating cross-sections and for stratigraphic correlation.  They can also be 

pasted into text files as illustrations or used in PowerPoint presentations or on posters.  

These images can also be digitized into LAS files using the Neuralog software. Numerous 

logs for the Devonian section, the Ray Reef Field (Silurian) and the Albion-Scipio fields 

were digitized and used for analysis within the Petra software.   

 

Digital Conventional Porosity and Permeability Core Analyses –core analysis data from 

paper copies was keypunched into Excel spreadsheets to supplement our current digital 

data bases.   This data includes the depth of the analyzed core sample, conventional air 

permeability and helium porisimetry, oil and water saturations, descriptive lithology and 

(when available) gas chromatographic analyses of C-1 through C-5 on selected footages. 

 

Brine Chemistry Data – Students key punched a paper data set from Dow Chemical 

containing brine analyses from the Michigan Basin.  This data contains 218 analyses from 

numerous formations throughout the state and supplements our current digital data base. 

These were entered into an Excel spreadsheet and added to a previous data set of 165 

wells. To give a reasonably comprehensive data set of 383 wells.  Data includes well 

location information, depth of sample, total dissolved solids (salinity), major elements, 

some trace elements and some temperature data. 
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Dolomitized intervals in wells of Albion/Scipio Field – An Excel spreadsheet was created 

for all wells in the Albion/Scipio and Stoney Point fields, and wells were ranked based on 

available data for further study.  Albion/Scipio is the largest field in Michigan and the 

largest Trenton-Black River Field in our study.  The field contains 746 wells.  The data 

set includes well location information and footage intervals in the Trenton and Black 

River formations that are dolomitized.  This data was used in concert with other databases 

to define the distribution of the Albion Scipio reservoir and during Phase III our plans 

were to construct a three-dimensional model of the reservoir. The dolomitized intervals 

were identified from drilling records for each well.  

 

Organizing and compiling other large digital datasets – Numerous digital datasets for 

Michigan oil and gas wells were combined into a single complete dataset (>25 million 

cells of data) for use in this project. An example of the parameters included are as 

follows: 

 

o Cored wells – this is a listing of all known cored wells from Michigan.  

This list is compiled from private and public sources.  It includes well 

location information, cored interval, cored formations, storage location of 

the core (if known), any analyses performed on the core (e.g. P&P). 

 

o Thin sections – well name, footage interval, formation and repository 

location of thin sections. 

 

o Core Analyses – conventional or special core analyses with footage 

analyzed and core properties (usually P&P) as reported in item #2 above. 

 

o Drill cutting samples – well name and location along with depths and 

sample increment. There is also a database with numerous 
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chromatographic analyses of bulk cuttings. Data includes abundance of C-

5 though C-26 derived from solvent extraction on cuttings samples. 

 

o Engineering parameters – lists of selected parameters and data including: 

bottomhole pressure, gas chemistry, and oil/gas ratio. 

 

o Mudlogs – contains lithologic descriptions, gas log and drilling comments. 

 

o Wireline logs – catalog of all logs run in Michigan wells, list of those in 

WMU collection, list of scanned images, and list of LAS digital logs. 

 

Compiling bibliography and reference reprint collection – Using Endnotes software and 

extensive database of geologic and engineering references was compiled and entered into 

the Endnotes software system.  

• Subtask 2.1 More than 1200 references were compiled and entered into an 

Endnote data base on reservoirs aspects of dolomite.  Of these, some 400 are 

specifically on the Michigan Basin reservoirs in the zones of interest, with the 

remaining references covering various aspects of dolomitization and dolomite 

reservoirs that were thought to have application to our project goals.  In Phase III, the 

references were to be added to a digital collection for distribution through WMU to 

Michigan Basin operators and others with interest. 

  

• Subtask 2.2 Individual producing unit data bases were constructed in Microsoft 

Access and Excel that include fields, numbers of wells, oil and gas production, brine 

production, active and abandoned wells.  Over 25 million data points were input in 

Phases I and II in various categories including well location coordinates and ID, TD, 

IP, Salinity and Water Chemistry, Production History, Core and Perforation locations, 

Formation tops, and results of various core analyses.   

  Production summaries and curves were created for 44 fields in the Trenton/Black 

River, 1151 fields in the Niagaran, and 141 fields in the Devonian.  These data were 
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partially analyzed in Phase II in relationship to the distribution of mapped fracture areas 

in the basin, with our initial focus on the Devonian as mentioned previously.  These 

results were correlated to fields with core data and petrophysical analyses to facilitate 

selection of samples for further petrographic and geochemical analysis for dolomite 

genesis and reservoir quality.  

  

• Subtask 2.3 

1. Devonian Dundee well penetration Petra projects (i.e. data bases) for 39 

central Michigan Basin counties were created with detailed structure contour 

maps for a 24 county region (using error checked tops data).  Data base 

includes digital logs for ~450 wells with numerous cross sections showing 

log-based (litho-density) variations in lithofacies.  Dundee Formation, 

member scale mapping and member tops/log character analysis was 

continuing into Phase III, with the intention to test the feasibility of 

identifying primary facies (and therefore porosity/permeability distribution) 

from combined gamma ray and litho-density log analysis. 

    

2. Silurian Niagaran well penetration Petra projects (data bases) for Macomb 

County (northern trend) and Ray Reef Field (southern trend) were developed 

along with preliminary structure maps.  Included in Phase I and II are spatial 

data for ~700 wells and digitized logs for ~30 wells from Ray Reef. 

 

3. Ordovician Trenton/Black River Group well penetration Petra project (data 

base) currently includes spatial data for 2080 wells and digital logs for 169 

wells.  An extensive library of maps and cross sections have been made from 

the Albion-Scipio and Stoney Point fields with an emphasis on lithofacies 

identification based upon litho-density log signatures. 
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Task 3.0 – Characterization of Dolomite Reservoirs in Representative Fields 

 The characterization of select dolomite reservoirs (Task 3) was the major focus of 

our efforts in Phase II/Year 2. Fields were prioritized (after being identified in Task 2, 

Phase I) based upon the availability of rock data for interpretation of depositional 

environments, fracture density and distribution as well as thin section, geochemical, 

and petrophysical analyses.  The majority of our Task 3 efforts through Phase I and II 

were in the Devonian and Silurian sections, and were presented at regional and 

national AAPG meetings (see Appendix 3). Our major push on the Ordovician part of 

the section ramped up in Quarter 3 of Phase II/Year 2 and significant progress was 

made prior to the end of Phase II.  As an example, at the ES AAPG in October 2006, 

we presented one oral paper as well as a poster with core workshop on the Ordovician 

Trenton/Black River.   

 

Approach and Methodology 

In order to investigate the geological origins and controls on the occurrence of 

dolostone reservoirs in the three formations of interest we compiled available digital 

subsurface geological data (mostly from the Michigan Department of Environmental 

Quality, Geological Survey Division {MDEQ-GSD}) including formation tops, wire-

line logs, and driller’s reports. Where appropriate we compiled these data into tabular 

spatial databases as discussed above. These spatial databases were used to construct 

Geographic Information Systems files (utilizing both ArcGIS and Petra software), 

maps and cross sections of important geological properties including the spatial 

distribution of dolomite versus limestone relative to structural features and oil field 

occurrences in the Michigan Basin. For the Devonian, quality controlled Dundee 

Formation tops from a well database with more than 25,000 wells (originating from J. 

R. Wood, MTU Subsurface Visualization Lab) were used in the structural mapping. 
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Summary of Phase I and II – Devonian and Ordovician (Figures 1-6, and 26-28 

respectively) 

Structural mapping and log analysis in the Dundee (Devonian) and Trenton/Black 

River (Ordovician) suggest a close spatial relationship among gross dolomite 

distribution and regional-scale, wrench fault-related NW-SE and NE-SW structural 

trends. A high temperature origin for much of the dolomite in the 3 studied intervals 

(based upon initial fluid inclusion homogenization temperatures and stable isotopic 

analyses, see Table 1) coupled with persistent association of this dolomite in 

reservoirs coincident with wrench fault-related features, is strong evidence for these 

reservoirs being influenced by hydrothermal dolomitization. Ongoing efforts in Phase 

III were to be focused on determining whether the hydrothermal dolomite represents 

the only phase of dolomite in these fault-related fields, or whether there is evidence of 

low temperature dolomitization as well.  In either case, our main concentration was 

whether the reservoir quality of the dolomite can be tied to primary facies type and/or 

an established sequence stratigraphic framework, either of which will enhance the 

predictability of such reservoirs beyond that of just regional structural control. 

 

Devonian Dundee Formation 

 The Middle Devonian Dundee Formation consists of two subsurface units, the 

Reed City and the Rogers City (Gardner, 1974). The Reed City Member initially 

transgressed the Michigan basin following restricted marine conditions that existed 

throughout lower Middle Devonian Detroit River Group time. The Reed City member 

is interpreted as a generally shoal water assemblage including grainy carbonates, 

stromatoporoid reefs, and supratidal/evaporitic facies in an overall regressive pattern 

stratigraphically. More open marine facies (Reed City “equivalent”) predominate in 

the eastern basin, while more restricted evaporite-bearing facies (Reed City Member) 

occur to the west (Gardner, 1974). The Reed City comprises a complex primary facies 

package in the basin that is not well known. The Rogers City Member overlies 

various facies of the Reed City at a generally sharp, probable marine flooding surface 

marking rapid marine transgression. Primary depositional facies in the Rogers City 
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are incompletely known but, in general, were apparently lithologically homogeneous 

basin wide and consisted mostly of open marine lime wackestone to mudstone. 

Our analyses through Phase II have important implications for both new 

exploration plays and improved enhanced recovery methods, especially in the Dundee 

Formation "play" in Michigan – i.e. on the basis of interpreted (first order) fracture-

related dolomitization control on the distribution of hydrocarbon reservoirs. In an 

exploration context high-resolution structure mapping using quality controlled well 

data should provide leads to convergence zones of fault/fracture trends not necessarily 

related to structural elevation. Acquisition of high-resolution seismic data in areas 

with prospective structural grain may provide decreased risk for fractured Dundee 

exploration drilling.  

 Field scale structural mapping of top Dundee with high quality well data indicates 

a spatial correlation between subtle structure and reservoir facies variations in the 

Rogers City Member.  In fields with suitable well log control, mapped structure 

suggests faults with limited throw (generally less than tens of feet). These faults and 

related fractures may have provided geometrically-complex fracture conduits for 

dolomitizing fluids permeating through otherwise tight lime wackestone of the Rogers 

City. 

 Preliminary fluid inclusion homogenization temperatures and stable isotopic 

(C/O) analyses from Devonian Dundee/Rogers City dolostone samples suggest 

pervasive hydrothermal dolomitization in core samples from 2 wells studied through 

Phase II. Both the saddle dolomite which occurs as vein and vug fill, as well as much 

of the matrix dolomite is apparently of hydrothermal origin in these samples. 

 Application of fracture models to reservoir characterization in secondary and 

tertiary recovery projects in existing fractured Dundee fields, especially when tied to 

detailed facies mapping, may result in substantial additional recovery from fields that 

typically had low (<30%) primary recovery factors. Careful consideration of fracture 

orientations and water coning problems should decrease risk in enhanced recovery 

activities. 
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Undoubtedly more complex, hybrid reservoir types exist in dolomitized lower 

Dundee/Reed City Member lithofacies in the central basin as a result of complex, 

early fluid flow through primary limestone porosity conduits in a reflux system(?) in 

addition to fracture generated pathways in fault/fracture convergence zones. 

Continuing work in Phase 3/Year 3 was planned to understand Reed City Member 

dolomitization processes in Michigan with respect to the relationship between 

primary facies and/or sequence stratigraphic framework. 

 

Trenton/Black River Formations 

 Fields in the Ordovician Trenton/Black River Formations in Michigan, most 

notably the Albion-Scipio Field, are classic examples of geometrically complex 

dolomite reservoirs modeled by the hydrothermal dolomite reservoir facies (HTDRF) 

concept. Application of models for reservoirs of this generic type are controversial but 

of great current interest for both exploration and enhanced recovery in the petroleum 

industry. Structural analysis of Michigan Trenton/Black River (e.g. Hurley and 

Budros, 1990) suggests a relationship between probable reactivated basement wrench 

faults, anticlines with steep margins, and fractured, hydrothermal dolomite reservoirs. 

Riedel shear deformation mechanisms, including complex flower structure fracture 

patterns, are suggested as important components in the development of these 

dolomitized fields. The transport of dolomitizing hydrothermal fluids delivered to 

various reservoir units is thought to result from flow through fractures, associated 

with periodically reactivated wrench faults, as well as primary permeability conduits. 

The presence of a regional hydrothermal fluid “aquifer” unit may be a critical 

component of these complex hydrothermal fluid flow systems. 

 Trenton-Black River Pools are characterized by stratigraphic traps in dolomitized 

limestone within the Upper and Middle Ordovician Trenton and Black River groups. 

The Albion-Pulaski-Scipio-Stoney Point trend, which was discovered in 1957 (Figure 

5), makes up the largest field in the Michigan Basin (~120 MMBO). The 

Trenton/Black River rocks are present in the subsurface throughout the Lower 

Peninsula and in parts of the Upper Peninsula and Wisconsin, but, to date, almost all 
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discoveries have been from the southern part of the Lower Peninsula of Michigan and 

the adjoining parts of Indiana and Ohio. Oil and gas pools occur mainly as 

stratigraphic traps resulting from porosity and permeability variations between porous 

dolostone and tight regional limestone. In a definitive study by Hurley and Budros 

(1990) Trenton/Black River production in the Albion-Scipio field was shown to be 

from classic fracture-controlled dolostone reservoirs related to northwest-southeast 

fault and fold trends related to a regional structural grain. In the Albion-Pulaski-

Scipio-Stoney Point trend, generally low porosity limestone is altered to a relatively 

“narrow fairway of vuggy, fractured, and cavernous dolomite” (Hurley and Budros, 

1990). 

An increased percentage of activity in Quarters 3 and 4 of Phase II was focused 

upon the Trenton/Black River formations. Based upon production data analysis 

completed during quarters 1 & 2, and a review of available core materials, it was 

decided to concentrate upon developing a new, updated analysis and interpretation of 

the Trenton – Black River cores from the Albion Scipio Field. This field is the only 

giant field (>120 MMBO) found to-date in Michigan. Discovered in 1957, this field 

has never been subjected to more recently developed geological analytical techniques 

and interpretation. In particular, there has never been a sequence stratigraphic 

framework developed for the producing Ordovician Trenton – Black River reservoirs 

in the field area. Work during Phase II has shown that it is possible to develop just 

such a stratigraphic framework, and that this framework will in turn allow for the 

development of new exploration models and concepts (originally planned for Phase 

III). Specific accomplishments include:    

 

(1.) The exploration, discovery and early drilling history of the Albion-Pulaski- 

Scipio Trend were complied and analyzed for field-wide similarities and 

differences. These data were assembled into poster format and presented along 

with portions of three Trenton – Black River, Albion-Scipio Field cores at the 

“Core Blast” presentation at the “American Association of Petroleum Geologist 
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(AAPG) Eastern Section Meeting” in Buffalo, New York during October 10-16, 

2006. 

 

(2.) The Hergert #2, Skinner #1 and Mann #6 cores from the Albion-Scipio field were 

examined in detail, fully described, and calibrated to other available data types 

such as electric logs, driller reports, porosity and permeability analyses, etc. 

These data were all assembled into poster format and presented at the “Core 

Blast” for the “American Association of Petroleum Geologist (AAPG) Eastern 

Section Meeting” in Buffalo, New York during October 10-16, 2006. 

 

(3.) Preliminary results from the examination of the Hergert, Skinner and Mann wells 

were compiled and organized into a presentation entitled “Albion-Scipio Field - 

What Does a Detailed Look at Cores Tells Us about the Reservoir?” (Gillespie, 

Robb; Barnes, David; Grammer, G. Michael; and Harrison, William, III). This 

was presented at the “American Association of Petroleum Geologist (AAPG) 

Eastern Section Meeting” in Buffalo, New York during October 10-16, 2006. 

 

(4.) Samples were selectively collected from the Hergert, Skinner and Mann cores for 

isotopic (C/O) analysis. Preliminary examination of the data indicates no 

difference between fracture fill dolomites and dolomite recrystallized within the 

host rock (matrix). It appears that: (1) all the dolomites resulted from the same 

emplacement episode, or (2) the matrix dolomites have been “reset” by high 

hydrothermal temperatures of subsequent episodes. 

 

 

Summary of Phase I and II – Silurian (Niagaran)                (Figures 7-25) 

For the Niagaran (Silurian), a first order, comprehensive high resolution sequence 

stratigraphic framework was developed for a pinnacle reef in the northern reef trend 

(Fig. 7) where we had 100% core coverage throughout the reef section.  Our next step 

in Phase III was to test this sequence framework within a larger reef complex in the 
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southern reef trend (Ray Reef and Belle River Mills Fields) and to develop a detailed 

geological characterization and 3-D rock-based model of the field utilizing the 40+ 

cores available from the two fields.   

Major findings through Phase II are that facies types, when analyzed at a detailed 

level, have direct links to reservoir porosity and permeability in these dolomites 

(Figures 8-25).  This pattern is consistent with our original hypothesis of primary 

facies control on dolomitization and resulting reservoir quality at some level.  The 

identification of distinct and predictable vertical stacking patterns within a 

hierarchical sequence and cycle framework provides a high degree of confidence at 

this point that results will be exportable throughout the basin. 

Petrophysically significant facies (see below) were described in the northern and 

southern reef trends, providing significantly more resolution than the standard 4-6 that 

are used most often in the basin (e.g. Gill, 1977).  Figures 24 & 25 illustrate how the 

higher resolution facies analysis can be crucial for establishing porosity and 

permeability relationships in these reservoirs.  Porosity and permeability values tend 

to increase towards the top in both the large and smaller (higher frequency) cycles 

(see Figure 15).  

 

Facies 

From basic core analysis, six facies were chosen based on rock fabric, 

composition and interpreted depositional environment. These six facies are: muddy 

bioherm, reef core, detrital wackestones to packstones, detrital packstones to 

grainstones, mudstones, and cyanobacterial mats. A seventh facies could be included 

for anhydrite, but the anhydrite is often associated within the other facies and can 

often be of diagenetic origin.  

 

Muddy Bioherm 

This is a mud dominated facies often associated at the initiation of reef growth in 

the “mud-mound” stage. This facies can be further divided into two lithofacies; a 

styolitic mudstone with lithoclasts and <10% grains and another that is a mudstone to 
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wackestone containing stromatactis. Porosity and permeability within the muddy 

bioherm is relatively low compared to the other facies. The little porosity that exists 

may be due to molds and intercrystalline pore types.  Occasionally some solution 

enhancement along styolites and microfractures produce slightly higher porosity 

values. 

The styolitic mudstone with lithoclasts and a few grains is thought to actually be 

part of the Lockport formation, below the actual Pinnacle reef. The styolites are 

wispy, indicating a primarily carbonate mudstone matrix. The lithoclasts give this 

facies a nodular look. Gill (1977) suggests that the elliptical shape of nodules and the 

presence of dark argillaceous material around the nodules are a result of compactional 

forces on heterogeneous sediment. He recognizes this fabric in the Belle River Mills 

field in St. Clair County. Most Niagaran reef cores do not reach down to the Lockport 

Formation and thus is only observable in a few wells. 

The mudstone to wackestone lithofacies containing stromatactis marks the 

gradual transition from off reef to the biohermal rock. This facies contains more 

grains than the aforementioned mudstone. The stromatactis are characterized by 

classic features such as a flat bottom with an irregular upper surface, often filled with 

sediment and/or cement. The origin of stromatactis is a puzzle. Bathurst (1980) 

suggested that these features in carbonate mud mounds are a result of cement and 

sediment fill of cavities which have developed between submarine-cemented crusts. 

Recently, it has been suggested that it is a type of fenestral porosity caused by rapid, 

uninterrupted sedimentation (Hladil, 2005) and later filled with cements. Nonetheless, 

several studies have indicated stromatactis is a well known feature of carbonate mud 

mounds from around the world (Krause et. al, 2004). 

 

Reef Core 

This facies is characterized by large framework organisms, little mud, and 

cavities filled with skeletal debris. This facies is quite often interbedded with skeletal 

wackestones, packstones, and grainstones. These facies within the reef must be 

differentiated from the wackestone to packstones and packstones to grainstones that 
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are not within the reef in order to interpret the depositional history. The pore 

architecture types that dominate the reef core facies are vugs, molds, and intrapartical 

porosity. Anhydrite and salt can also be seen occluding some of the pore space.  

A lithofacies of reef framework is used when the rock is primarily composed of 

reef building organisms, such as stromatoporoids, tabulate corals, and algae (Gill, 

1975 and 1977) or microbialites. Framebuilders in growth position are said to only 

make up about 30% of the reef of the actual reef core, the rest of the reef is composed 

of detritus (Gill, 1975; Wood, 1999). These organisms produced the wave-resistant 

framework of the reefs. The characteristics of this facies are vugular porosity, reef 

cavities, cavity fills of cement and/or sediment, and intraparticle porosity if corals are 

present. In addition, there should be little to no mud in this facies except inside 

cavities.  

The reef framework with detritus facies consists of reef framework with abundant 

detritus. Between 40 and 90% of the rock volume of a reef typically consists of 

rubble, sediment, and voids (Wood, 1999) so it is petrophysically important to include 

a facies which includes a mix of reef frame builders with detritus. If there is more 

than 25% detritus intermixed with reef framework organisms, then this facies is used 

to describe the rock. Usually the detritus is skeletal debris from the reef or reef 

dwelling organisms and in millimeter or smaller length fragments. Porosity types 

associated with this facies are moldic, interparticle, vuggy, and intraparticle. 

Mud-dominated wackestone to packstones within the reef contain 10-30% detrital 

skeletal fragments. These grains range from mm to cm scale in long dimension. The 

common pore type in this facies is moldic. The molds can often be solution-enhanced 

and might be classified as a vug if no origin is known for the void space. The 

wackestones to packstones can occur anywhere within the reef, but are commonly 

found near the base interbedded with the reef framework, following the muddy 

bioherm facies. 

The packstone to grainstone detrital facies within the reef is a grain supported 

facies. Grains in this facies can be either skeletal, grapestone, or of peloidal origin. 

This fabric has grains that are a millimeter or less in length, but can be as large as one 
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to two centimeters. These larger grains in the packstone to grainstone facies tend to 

occur near the base of the reef in the mud mound-reef transition zone. Moldic and 

interparticle porosity dominate this facies. 

 

Detrital Wackestone to Packstone 

The wackestone to packstone facies, with 10% or more of the rock fabric 

composed of skeletal grains, is not associated with reef growth. This facies occurs 

before, after, or between episodes of reef growth. It is a mud-dominated facies that 

occurs often at the end of the mud-mound stage and during the transition into reef 

growth. It is also sometimes seen occurring between the end of reef growth and the 

beginning of the supratidal island stage. The common pore type in this facies is 

moldic porosity. The molds can often be solution enhanced and might be classified as 

a vug if no origin is interpretable for the void space 

 

Detrital Packstone to Grainstone 

This facies, like the aforementioned facies, is not associated with the reef growth. 

This is a grain dominated fabric composed of skeletal, peloidal, or grapestone 

allochems. Upon termination of reef growth, there is a grainstone cap that usually 

occurs. Often, these grainstone caps are comprised of skeletal grains, although a few 

cores have shown the occurrence of peloids and grapestones. Moldic and interparticle 

porosity dominate this facies. 

Grapestones may indicate a transition from the shelf, behind the reef, into the 

tidal flat environment.  

 

Mudstone 

The mudstone is not a frequently occurring facies within the cores and is not 

associated with the mud-mound stage. It is either laminated or rarely mottled by 

burrowing. The lacks of peloids, burrows, or skeletal fragments suggest that this was 

a hypersaline environment, incapable of allowing organisms to fluorish. These 

features lead to the interpretation that this facies formed in a resticted shelf 
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environment, likely behind the reef. Porosity and permeability in this facies is 

generally poor, generally limited to localized intercrystalline porosity associated with 

dolomitization.  

 

Cyanobacterial Mats 

Most often, this facies occurs at the top of the reef sequences known as the 

“supratidal island stage.” It is easily recognized on gamma-ray logs as a high intensity 

reading compared to the facies below. This is due to the abrupt transition from pure 

carbonate to interbedded anhydrite with carbonate. Mudcracks and laminations are 

key sedimentary structures that help in addition to identifying this facies. 

Subdivisions of this facies include ripped-up cyanobacterial mat intraclasts with a 

wackestone to packstone matrix, laminated cyanobacterial mat, cyanobacterial mat 

altered with evaporites, and evaporites interbedded with a mudstone. Even though 

there are several subdivisions, there appears to be no petrophysical significance 

between the various subfacies. The minor porosity that exists in this unit is fenestral 

porosity produced by the degassing of the cyanobacteria through the sediment.  

 

Sonic Velocity Characterization 

Initial petrophysical characterization (sonic velocity analysis under confining 

pressures) show a clear pattern that is dependent upon facies and resulting pore 

architecture (see Figures 16-21).  Primary facies is a key factor in the ultimate 

diagenetic modification of the rock and the resulting pore architecture.  Facies with 

good porosity and permeability clearly show relatively slow velocity values as would 

be expected, and low porosity and permeability samples exhibit fast sonic velocity 

values, again as expected.  What is significant is that some facies that have high 

porosity values, either measured directly or from wireline logs, also have very fast 

sonic velocity values.  This is due to these facies having a pore architecture 

characterized by more localized pores (vugs, molds or fractures) that are not in 

communication, resulting in facies with good porosity but poor permeability (Figures 

19-21). 



 60

Stable isotopic analyses (C/O) show that most of the reefs evaluated through 

Phase II have matrix values near Silurian seawater values, suggesting that the 

dolomite is early (and therefore formed as a result of either multiple episodes of 

isotopically similar waters, or one episode that dolomitized the entire reef – 

considered unlikely).  Minor excursions of carbon (+) and oxygen (-) occur at a 

number of cycle boundaries (Figure 15).  In general there is about a 1 per mil 

enrichment in C for dolomite relative to calcite.  Under normal circumstances, 

diagenetic products resulting from the influence of meteoric fluids results in highly 

negative del-C values.  Voice’s (2005) summary of earlier Silurian isotopes show 

carbon values ranging from -1 to +2.5 per mil, so these are about the same.  The slight 

enrichment of del-C, at the same time that del-O is depleted, was reported by Karen 

Cercone (1985) as possibly being due to anaerobic fermentation of organics related to 

organic rich layers deposited during the ensuing transgression. 

 

 

Task 4.0 – Development of 3-D Geological Models and Assessment of Application 

Potential 

 This work was scheduled to be accomplished during Phase III of the Project.  

Most of the effort on this task necessarily had to follow results of Phase I (Task 2) 

and Phase II results of Task 3.  We acquired the Petrel 3-D modeling suite from 

Schlumberger (~$1.2 MM donation) that was to be used in this Task, but further work 

was halted due to the stop work order at the end of Phase II. 

 

 

Task 5.0 – Technology Transfer 

Technology transfer efforts (Task 5) was marked by formal presentations on the state 

and national levels as well as advertisement of the project’s scope, anticipated results 

and funding agency on the WMU Department of Geosciences web site.  During Year 

2/Phase II, we presented two papers at the National AAPG Meeting in Houston, TX 

(see Appendix 3), 2 papers at the Midwest Regional PTTC workshop on carbonate 



 61

reservoirs, and 7 papers (3 professional and 4 student presentations) at the Eastern 

Section of AAPG in Buffalo.  We also received an award, the Vincent E. Nelson 

Memorial Award for Best Poster presented at the 2005 ES AAPG Meeting 

(Sandomierski, Grammer and Harrison). 

 A summary of project presentations is provided in Appendix 4. 
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Figure  1.  Structure contour map of the Devonian Dundee Formation (top) and details 
of one of the fields of interest. 
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Figure 2-3.  Structure contour map of the Devonian in Winterfield Oil Field with 
cross section showing pervasive regional scale dolomitization of the Reed City 

member of the Devonian Dundee. 
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Figure 5.  Riedel shear model for major fracture control at the Albion-Scipio fields in 
south-central Michigan (Trenton/Black River reservoirs).
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Figure 6.  Hydrothermal dolomite filling fractures and primary porosity in Devonian 
Dundee and Trenton/Black River Formations. 
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Carbon and Oxygen Isotopic Composition  
of Saddle Dolomite: Selected Devonian Examples 

 
Source δ18 O %o PDB δ13 C %o PDB Reference 

M. Dev., Manatoe, 
NWT 

-17.33 to -6.25 -5.5 to -1.45 Morrow et al,  
1990 

M. Dev., Elk Point,  
N. Alb. 

-12 to -14 -1.0 to +2.0 Dravis & Muir,  
1992 

M. Dev., Pine Point, 
NWT 

-16.0 to -7.0 -3.8 to +1.7 Qing & Mountjoy, 
1994 

Dev., Sidang-Burdan, 
China 

-9.58 to -6.78 -3.08 to -0.78 Schneider et al,  
1991 

U. Dev., Wabaman, 
Alb. 

-8.99 to -5.71 -0.69 to +0.12 Mountjoy & 
Dihardja, 1991 

U. Dev., Wabaman, 
Alb. 

-6.7 +/- 0.7 0.55 +/- 0.5 Packard et al,  
1989 

Devonian, Michigan 
Basin 

-8.2 to -10 -0.6 to +1.34 This Study 

 
Table 1.  Stable isotopic values for Devonian hydrothermal dolomites in Canada and 
China.  Note values from Devonian fit well within published range.  Fluid inclusion 
data from the same Devonian samples show homogenization temperatures of 105-

1400C, with an average of 1220C  (N=38).
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Figure 7.  Maps showing structure contour of Brown Niagaran with well penetrations. 
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Figure 8.  Schematic model for Niagaran reefs currently in use within the Michigan 
Basin (top) and detailed, high resolution facies analysis and sequence stratigraphic 
hierarchy established for the northern reef trend in work done to date. 
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Figure 9.  Schematic facies model of Belle River Mills reef showing evidence of 
lateral and vertical variability in facies (Gill, 1977).  Detailed rock-based 
characterization of Niagaran reefs in this study illustrate that reservoir heterogeneity 
is much more complex, but that predictable patterns are revealed after constructing a 
sequence stratigraphic framework.
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Figure  10.  Schematic diagram for the 480 ft. Miller Fox 1-11 Niagaran reef showing 
the complex, but predictable facies succession and the sequence stratigraphic 
hierarchy established in this reef.
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Figures 11 and 12.  Examples of shallowing upward high frequency cycles that make 
up Niagaran reefs in this study.
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Figures 13 and 14.  Examples of shallowing upward high frequency cycles that make 
up Niagaran reefs in this study. 
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Figure 15a.  Details of portion of Miller Fox 1-11 reef illustrating the complex 
variability in facies vertically, and the correlation between porosity and permeability 
spikes near the top (regressive portion) of many of the high frequency cycles. 
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Figure 15b.  Example of complex facies variability and stacking patterns in southern reef trend 
(Ray Reef Field). 
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Figure 15c.  Example of complex facies variability and stacking patterns in southern reef trend 
(Ray Reef Field). 
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Figure 15d.  Example of complex facies variability and stacking patterns in southern reef trend 
(Ray Reef Field). 
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Figure 16.  Examples of varying types of pore architectures common in carbonate 
rocks.  Depending on the connectivity (i.e. permeability) of the pore network, 
carbonate rocks exhibit significant variability in sonic velocities. 
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Figure 17.  Plot illustrating variability in porosity, permeability and sonic velocity in 
carbonate rocks as a function of pore architecture (Eberli, 2004).  Examples show 
how rocks with 42% porosity can have sonic velocities ranging from 2200 to 4500 
m/s, or how rocks with an equivalent sonic velocity (in this case around 4500 m/s) 
may have porosities that range from 12-42%.  This variability is a function of pore 
architecture which can be correlated back to primary depositional facies and 
positioning within a sequence stratigraphic framework. 
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Figure 18.  Porosity vs. P-wave velocity values for Niagaran reef facies.  Cluster in 
upper left exhibits normal behavior (i.e. low porosity and high velocities) as does 
samples 5 and 15 (higher porosities with slower velocities).  Velocity values were 
measured under confining pressures of 20-30 MPa, where 20 MPa equals about 1km 
of burial depth.  Therefore, 30 MPa would equal approximately 1500m or 4920 feet 
which is consistent with the average burial depths for most Niagaran reefs in the 
Michigan Basin.
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Figure 19.  Thin section photomicrographs illustrating variability in porosity, 
permeability and sonic velocity dependent upon pore type and pore architecture.
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Figure 20.  Thin section photomicrographs illustrating variability in porosity, 
permeability and sonic velocity dependent upon pore type and pore architecture.
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Figure 21.  Thin section photomicrographs illustrating variability in porosity, 
permeability and sonic velocity dependent upon pore type and pore architecture. 
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Figure 22.  Location of Ray Reef field in the southern reef trend.  Three graduate 
students are currently working on various aspects of reservoir characterization within 
this field, utilizing 18 cores for rock-based reservoir characterization and modeling. 

Ray Field Macomb Co. 
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Figure 23.  Schematic diagram showing general vertical variability in Ray Reef 
identified by Balogh (1981). 

 
 
 

 

Modified from Balogh (1981) 
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Figure 24.  Core porosity and permeability from the Belle River Mills (southern reef 
trend) from Wylie and Wood, 2005, AAPG Bulletin, v. 89.  The authors conclude that 
“no apparent trend exists between the core permeability and core porosity by rock 
type”, p. 420.  
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Figure  25a.  Top figure show similar distribution of core porosity and permeability 
for the Miller Fox 1-11 as observed in the Belle River Mills field data published by 
Wylie and Wood (2005).  Lower figure illustrates how when the facies are broken up 
into more detailed geological-based units, there is a distinct correlation between facies 
type and reservoir quality (porosity and permeability). 
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Figure  25b.  Core porosity and permeability for the Busch Tubbs 2-36 in Ray Reef 
field (southern trend) illustrating a similar pattern to that observed in the northern 
trend (i.e. how when the facies are broken up into more detailed geological-based 
units, there is a distinct correlation between facies type and reservoir quality  and 
therefore porosity and permeability). 
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Figure 26.  Core photo and thin section photomicrographs illustrating the variability in 
facies and pore systems in the Trenton/Black River formations. 
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Figure 27.  Core photo and thin section photomicrographs illustrating the variability in 
facies and pore systems in the Trenton/Black River formations. 
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Figure  28.  Slab photograph and thin section photomicrographs illustrating hydrothermal 
dolomite in the Trenton/Black River of Albion-Scipio Field.  Note well-developed, 
classic baroque (saddle) dolomite crystals identified by their curved crystal lattice. 
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DISCUSSION:  PHASE  I AND II - RESULTS FROM TASKS 2 AND 3 
 

Controls on Dolomitization in the Middle Devonian Dundee Formation - Oil Field 
Scale Structure and the Distribution of Log-Based Dolomite Lithofacies 
 
Introduction 

 The Middle Devonian Dundee Formation (Figure 29) is a prolific oil and gas 

producer, initially discovered in 1927, with cumulative oil production to date in excess of 

350 MMBOE from over 130 fields in the Michigan Basin (Figure 30). Exploration and 

production drilling in the Dundee in the 1920’s through the 1940’s was conducted prior 

to the advent of modern drilling technology or acquisition of quantitative reservoir 

characterization data. Furthermore, many Dundee wells were “top set”; that is, drilled to 

within a few feet of the top of the producing horizon and completed for production with 

little or no sampling or logging of reservoir rock types. Oil and gas production is known 

from both primary limestone and secondary dolomite reservoirs in the Dundee.  

 Limited modern logs and rare core from more recent drilling activity in the 

Dundee provide an incomplete picture of important reservoir lithofacies, their 

distribution, and geological origin in Michigan. Geological models for the origin of 

prolific oil producing dolomite reservoir facies, most common in the central Michigan 

basin, are of particular interest. A better understanding of the origin, regional distribution, 

and reservoir scale characteristics of this dolomite reservoir facies should have significant 

impact on continued exploration for novel and untested exploration targets, and increase 

the effectiveness of secondary and tertiary recovery operations in the Basin in the Dundee 

Formation. 

 On the basis of unpublished work by numerous petroleum geologists in Michigan 

during the Dundee boom years of the 1930' and 1940's and more recent work, petroleum 

production is thought to occur from at least three different reservoir lithofacies types 

(Knapp, pers. comm., Fig. 31a and b):  

1) Sedimentary Facies-controlled ("early diagenetic") dolomite reservoirs, 

dominantly in the western third of the central basin such as in the Reed City 

Member (e.g. Reed City Field). 
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Figure 29. Devonian stratigraphy in the Michigan basin, from Gardener, 1971 (Drafted by Eric 
Taylor) 
 

 
 
Figure 30. Dundee Formation fields in Michigan. Probable producing lithology indicated by 
dolomite and limestone symbols 
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Figure 31a. 
Generalized 
lithofacies and 
spatial distribution of 
reservoir types in the 
Dundee Formation, 
from Tom Knapp, 
personal 
communication 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 31b. Generalized 
lithofacies and spatial 
distribution of reservoir 
types from Tom Knapp, 
personal communication. 
“Dundee” unit refers to 
Reed City Member of this 
report. 
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2) Sedimentary Facies-controlled limestone reservoirs, mainly in the eastern third of 

the central basin in the Reed City "equivalent" Member (e.g. South Buckeye, Mt. 

Pleasant, and West Branch fields). 

3) Dolomite reservoirs of controversial origin in the upper Dundee/Rogers City 

Member predominantly in the central basin (e.g. Vernon Field), but also 

noteworthy both to the far west (e.g. Pentwater field) and east (e.g. Deep River 

Field). Some fields of this type have been referred to as "dolomite chimneys" due 

to linear, fracture-related field geometry. 

 

Geological Background - Dundee Formation 

 The Dundee Formation in the Michigan Basin consists of two subsurface 

members, the Reed City and overlying Rogers City members (Gardner, 1974, see Figure 

29). A diverse lithologic assemblage of predominantly fossiliferous and grainy carbonate 

rocks of the Reed City member overlies dolomicrite, anhydrite and salt of the Lucas 

formation, deposited in sabkha, peritidal, and restricted lagoon environments (Gardner, 

1974, Figure 29). The Reed City Member is most distinct in the western parts of the basin 

where it consists of restricted marine, peritidal facies, including a prominent anhydrite 

unit informally called the Reed City anhydrite near the top of the member. The primary 

depositional facies in the Reed City member basin-wide consists of a shallow marine 

shelf carbonate assemblage including, grainy carbonate, stromatoporoid reef, and 

peritidal to supratidal/evaporitic facies that generally shoal upwards to the Rogers City 

contact (Gardner, 1974; Montgomery, 1986; Curren and Hurley, 1992, Montgomery, and 

others, 1998).  More open marine limestone facies (Reed City “equivalent”) are 

predominant in the eastern basin, while more restricted, dolomitized and evaporite-

bearing facies (Reed City Member) occur to the west (Gardner, 1974, Figure 32) 

suggesting that the Reed City was deposited on a carbonate ramp that transgressed the 

basin from east to west. Pervasive alteration of grainy and fossiliferous primary limestone 

facies to dolomite occurs in the Reed City member throughout most of the western parts 

of the Michigan Basin. The Reed City member comprises a complex primary facies 
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mosaic that is not well known due to the lack of outcrop and subsurface core material in 

the basin. 

 
Figure 32.  Dundee Formation 
(Reed City Member) lithofacies 
and isopach map from Gardner, 
1974. 
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 The Rogers City Member overlies various rock types of the Reed City Member at 

a generally sharp, probable marine flooding surface (as determined in core, Curran and 

Hurley, 1992) that marks an apparent rapid marine transgression. This contact is not 

easily recognized in logs, especially in the east, and its origin may vary throughout the 

basin. Primary depositional facies in the Rogers City, although incompletely known due 

to limited core, are generally lithologically homogeneous and consist of mostly open 

marine nodular lime wackestone to mudstone. Biostromal buildups and spatially-related 

fossiliferous grainstone-packstone deposits in the upper Reed City-Rogers City interval 

found in several oil fields in the eastern basin, suggest possible syn-depositional 

structural relief on the sea floor and resulting shoal water facies in some parts of the 

Michigan Basin during the transition from the upper Reed City equivalent to the Rogers 

City member (Montgomery, 1986). 

 

Dolomite Reservoirs in the Dundee Formation 

Some of the most productive (initial production {IP} of 2000-9000 BOPD) 

reservoirs in the Dundee are found in dolomite facies in the central and western parts of 

the basin.  Some of the largest fields include the Reed City Field (42.9 MMBO); Deep 

River Field (27.2 MMBO); Coldwater Field (22.3 MMBO); Freeman-Redding Field (17 

MMBO); and North Adams Field (9.5 MMBO). Dolomite reservoirs in the Reed City 

Member are thought by some basin geologists to originate as "early diagenetic" or "facies 

related" dolomite that is spatially related to the stratigraphic distribution of the Reed City 

Anhydrite (see Figure 31b and 32) and formed through seepage reflux mechanisms 

(Jones and Xiao, 2005, Figure 33). This is likely the case in several fields in the western 

basin (Reed City, most notably). Application of a seepage reflux model to the distribution 

of dolomite reservoirs in the central basin, however, is strongly dependant on an inferred 

pinch-out of the Rogers City Member over a proposed “shell bank” or shoal water 

bathymetric feature that existed in the central basin during the transition between Reed 

City and Rogers City time (Figure 34). A pinch out of the Rogers City member is 

interpreted to exist over this “shell bank”, and magnesium-rich saline fluids are thought 
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to have migrated basin-ward and up-section, dolomitizing porous primary limestone 

facies in the Reed City Member that extended to the top of Dundee Formation at the base 

of the Bell Shale.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 33. Model for lithofacies distribution in a reflux system, from Jones and Xiao, 
2005. 
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Figure 34. Paleogeographic map and cross section during regressive, Reed City member 
time, from Gardner, 1974. Note the inferred paleo-bathymetric high in the central basin 
that is interpreted by many basin geologists to be responsible for pinch-out of the 
overlying Reed City Member in this area.  It is important to note, however, that this 
“interpretation” has not been substantiated in the literature but is more of a general 
impression in the basin. 
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 An alternative model for dolomitization of the upper Dundee, Rogers City 

member in the central basin has been suggested as resulting from fracture-related 

mechanisms and hydrothermal alteration (see model by Strecker and others, 2005 after 

Boreen and Davis, 2001, Figure 35). This is a much more feasible hydrodynamic model 

for dolomitization in the central basin if the upper Dundee originally comprised Rogers 

City member limestone because primary porosity in this predominantly lime mudstone to 

wackestone unit would preclude flow of significant dolomitizing fluids through primary 

permeability conduits. It is a widespread industry perception that such fracture 

mechanisms are the probable origin of linear “dolomite chimney” fields in the eastern 

Michigan Basin (e.g. Deep River, Pinconning, and North Adams fields in Arenac and 

Bay counties, Wood and Harrison, 1999), although this inference is based primarily on 

anecdotal drillers reports, mud logs and the distinctive linear geometry of the developed 

fields.  

 The importance of distinguishing mechanisms for dolomitization in Dundee 

Formation reservoirs is fundamental to maximizing production of hydrocarbons from this 

interval. Regional flow systems that delivered dolomitizing fluids to the Dundee, 

eastward of the probable source of these fluids in the western basin, would result in 

dolomitized reservoirs that may have significant lateral continuity dependant mainly on 

the lateral continuity of facies controlled, primary fluid flow conduits. In sharp contrast is 

the abrupt lateral discontinuity that should exist between primary limestone and dolomite 

as a result of fracture-controlled delivery of hydrothermal dolomitizing fluids. These 

distinct mechanisms for dolomitization would result in fundamentally different timing of 

reservoir and trap development, oil migration pathways, and reservoir geometry relative 

to structural features. 

 

Study Methodology and Objectives 

 In order to investigate the geological origins and controls on the occurrence of 

dolomite reservoirs in the Dundee Formation in Michigan, we compiled available digital 

subsurface geological data (mostly from the Michigan Department of Environmental 

Quality, Geological Survey Division, MDEQ-GSD) including formation tops, wire-line 
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logs, and driller’s reports. Where appropriate we compiled these data into tabular spatial 

databases. These spatial databases were used to construct Geographic Information 

Systems files (both ArcGIS and Petra software),  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35. Generalized geometry and lithofacies model for fracture related hydrothermal 
dolomite reservoirs, from Strecker and others, 2005 
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as well as maps and cross sections of important geological properties in the Dundee - 

including the spatial distribution of dolomite versus limestone in the Dundee Formation 

relative to structural features and oil field occurrences in the Michigan Basin. Modern 

wireline logs in digital format were analyzed from over 400 wells. Quality controlled 

Dundee Formation tops from a data base with more than 25,000 wells (data base 

originated from J. R. Wood, MTU Subsurface Visualization Lab) were used in the 

structural mapping. The current availability of large institutional digital subsurface 

databases, modern digital well logs, readily accessible computational power, and 

appropriate software provides the opportunity to evaluate correlations amongst general 

structural and lithologic trends in the Dundee from a wide range of data sources. A 

limited number of modern litho-density well logs from across the basin provide an 

important source of information available for investigation of lithology in the Dundee 

Formation relative to spatial location and structural features in the Michigan Basin 

subsurface. 

 

Dundee Field Water Production Characteristics 

Field production characteristics in Dundee Formation fields (Figure 36a and b) 

define at least two distinct drive mechanisms basin-wide on the basis of water production 

and pressure decline: 1) bottom water and 2) gas expansion. Figure 36a shows per well 

water production from representative fields with two distinct trends of 1) relatively high 

water production per well from inferred bottom water drive dolomite fields (Fork, 

Vernon, Crystal; central basin dolomite fields, and Deep River; an eastern basin dolomite 

chimney field) versus 2) relatively low water production from probable gas expansion 

drive limestone fields (West Branch and South Buckeye; eastern basin limestone fields). 

Pressure decline is substantially greater in the gas expansion fields and initial bottom hole 

pressures are generally preserved in the inferred bottom water drive, dolomite fields. A 

similar breakout of field drive mechanisms is suggested by percent water cut plot (Figure 

36b). The increase in water cut later in the production history of the eastern limestone 

fields is, in part, influenced by secondary recovery water flood projects. Facies related 

fields (both limestone and dolomite) in the Reed City member typically possess gas 
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expansion type drive while upper Dundee/Rogers City dolomite fields possess bottom 

water  

 

  A. 

 

 

 

 

 

 

 

  B. 

 
 
 

Figure 36a and b. Water production characteristics of Dundee field types. 
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drives that apparently tap a regional aquifer of substantially greater volume than any 

individual field. 

 

Fracture Related Hydrothermal Reservoirs in Michigan 

The significance of fracture-related mechanisms in the origin of important 

hydrocarbon reservoirs in Michigan is virtually undisputed. Fields in the Ordovician 

Trenton/Black River formation in Michigan, most notably the Albion-Scipio Field, are 

classic examples of geometrically complex dolomite reservoirs effectively modeled by 

the hydrothermal dolomite reservoir (HTDR) concept (Figure 37). Application of models 

for reservoirs of this generic type in other Michigan formations is controversial but of 

great current interest for both exploration and enhanced recovery in the petroleum 

industry. 

 Structural analysis of Michigan Trenton Black River (Hurley and Budros, 1990) 

and (more recently) Dundee Formation Fields (Prouty, 1988; Wood, 2003; and Budros, 

2004; and others) suggests a relationship between probable reactivated basement wrench 

faults, anticlines with steep margins, and oil field occurrences. Riedel shear deformation 

mechanisms including complex flower structure fracture patterns are suggested as 

important components in the development of these dolomitized fields. The transport of 

dolomitizing hydrothermal fluids delivered to generally low permeability, primary 

limestone facies in the Rogers City Member in particular, is thought to result from flow 

through fractures associated with periodically reactivated wrench faults. Recent 

petrologic study of central basin, fractured upper Dundee/Rogers City lithofacies (Luczaj, 

2001), suggests temperatures of saddle dolomite formation in excess of 120oC in several 

central basin wells, which is well above ambient burial temperatures. 

 

Distribution of Wire-line Log Based Lithofacies in the Dundee Formation 

 Lithofacies in the Dundee Formation were investigated using an industry standard 

"quick-look" overlay methodology and digital litho-density wire-line logs. When Neutron 

porosity and Bulk Density logs are overlain on a common, limestone equivalent porosity 

scale, changes in lithology can be inferred with depth (Figure 38). Shale, tight and porous  
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Figure 37.  Model for 
Riedel shear control 
on the Albion-Scipio 
fractured dolomite 
field, Michigan basin, 
from Hurley and 
Budros, 1990. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 38. Hypothetical neutron-density overlay patterns for simple log-based lithofacies. 
The overlay uses a common calibration to an equivalent limestone porosity scale. (From 
Doveton, 1986). 
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limestone, dolomite, and anhydrite are relatively confidently identified using this "quick 

look" overlay method and log-based lithofacies in the Dundee Formation can be 

interpreted. Since log-based lithofacies are dependant on bulk density properties it is not 

possible to distinguish dolomite facies with different textural properties or geological 

origins including overprinted dolomitization. 

 A wide range of dolomite versus limestone successions are observed throughout 

the basin (figures 39a-f; in both producing and dry holes) including six distinctive 

assemblages: 

1. No dolomite in the Dundee in the eastern basin (Gladwin Co., Figure 39a; 

lithofacies assemblage 1) 

2. Complete dolomitization of Reed City Member (and associated Reed City 

“Anhydrite”) with no dolomite in the Rogers City member; western-most central 

basin, (Mason Co., Figure 39b; lithofacies assemblage 2) 

3. Complete dolomitization of both Dundee members in the central basin (Isabella 

Co., Figure 39c; lithofacies assemblage 3) 

4. Partial/minor dolomitization of the Reed City (and associated Reed City 

Anhydrite) and no dolomite in the Rogers City west-central basin (Mecosta Co. 

Figure 39d; lithofacies assemblage 4) 

5. Partial dolomitization (bottom up) of the Reed City and no dolomite in the Rogers 

City in the central basin (Isabella Co., Figure 39e; lithofacies assemblage 5) 

6. Partial dolomitization in the Reed City/Rogers City undivided (top down) and 

minor associated Reed City Anhydrite in the northwestern central basin 

(Missaukee Co., Figure 39f; lithofacies assemblage 6). 

 

Regional Dundee Structure Mapping and Log-based Lithofacies Distribution 

 Top Dundee structure was mapped using an extensive tops data base compiled 

from data made available by James Wood, Michigan Tech, Subsurface Visualization Lab. 

Ten central Michigan Basin counties were each individually analyzed using geostatistical 

methodology and industry standard ArcGIS software. Structure contour and grid maps 

were created for each county through a quality control procedure involving iterative error 
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analysis. Apparently spurious data points were eliminated from the tops data set by 

county until root mean square error (RMSE) of measured versus predicted tops in that 

county was less than 20 ft (the displayed contour interval). Some analyses produced 

RMSE well below 20' (Figure 40). A ten county composite Dundee top structure 

prediction map was then produced (Figure 41) that shows a strong preferred northwest-

southeast grain and a less pronounced, essentially conjugate, northeast-southwest grain. 

 The distribution of productive, Dundee dolomite fields in the central basin is 

typically associated with structural trends with a predominant 310o - 130o and a conjugate 

40o - 220o orientation. Areas marked by a convergence of these structural grains typically 

coincide with dolomitized Dundee fields. Small-scale spatial variation and complex 

geometric patterns of dolomitization in several counties supports local rather than 

regional dolomitization in the upper Dundee due to fracture-related fluid migration 

pathways (e.g. Figure 42).  Dolomitization patterns in the lower Dundee, Reed City 

Member have wider spatial distribution but may represent a complex interplay between 

primary facies controlled dolomitizing fluid conduits and fracture related conduits. If the 

geometrically complex dolomitization in the upper parts of the Dundee occurs in what 

was regional tight primary limestone of the Rogers City, this relationship is almost 

certainly the result of fracture related hydrothermal dolomitization associated with 

geometrically complex matrix fracturing. 
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39a     39b      39c 
 
Figure 39a,b, and c. Litho/density log-based Dundee Formation lithofacies assemblages 
1, 2, and 3 respectively. See text for discussion. 
 

 
39d     39e      39f 
 
 
Figure 39d,e, and f. Litho/density log-based Dundee Formation lithofacies assemblages 4, 
5, and 6 respectively. See text for discussion. 
 
 
 
Field Scale Structure Mapping and Log-based Lithofacies 

 Field scale structural mapping of top Dundee with high quality, wire-line log 

controlled well data indicates a geometrically complex spatial correlation between subtle 

structure and reservoir facies variations in the Upper Dundee/Rogers City Member. High 

resolution structure contour mapping (5'-10' contour interval) based on high quality top 

and lithofacies picks, suggests top Dundee surface irregularities that are best interpreted 

as faults with small throw of generally less than tens of feet in two Dundee fields, 

Winterfield (Clare Co., Figure 43a) and Vernon-Rosebush (Isabella Co, Figure 43a). In 
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the Winterfield field a transition from dolomitized upper Dundee/Rogers City to 

undolomitized upper Dundee occurs within less than 0.3 mi. The alignment of wells with 

dolomitized upper Dundee/Rogers City is in accordance with a 40o- 220o orientation 

superimposed on an overall 310o - 130o trend for the field. A nearby extension of the 

Winterfield field (not shown) with a linear, 310o - 130o field orientation and probable 

fracture-related Dundee production (Chittick, 1996).  

 

 

 

 

 

Figure 40. Example of 
central Michigan basin 
county structure map on 
top Dundee Formation 
with superimposed 
Dundee fields and 
inferred reservoir 
lithofacies. 
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Figure 41. Michigan central basin 10 counties structure map on top Dundee Formation 
with superimposed Dundee fields. 
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Figure 42. Osceola County structure map on top Dundee and litho-density “quick look” 
lithofacies assemblage cross-section. Small-scale spatial variation and complex geometric 
patterns of dolomitization supports local rather than regional dolomitization in the upper 
Dundee/Rogers City due to fracture related fluid migration pathways.  
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Figure 43a. High resolution (5’ contour interval) structure contour map of the Winterfield 
field, Clare Co. Note small spatial scale variation in upper Dundee dolomite distribution 
associated with interpreted small throw displacement faults (dashed lines) with ~310 o-
130o and 40 o -220o orientation. 
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Figure 43b. High resolution (10’ contour interval) structure contour map of the Vernon-
Rosebush field, Isabella Co. High initial production in wells in the Vernon (northwest, 
down structure) portion of the field coincide with interpreted small throw displacement 
faults (dashed lines) with ~310 o-130o and 40 o -220o orientation. One litho/density well 
log in the Vernon area (Faber well) suggests complete dolomitization of the entire 
Dundee section while wells to the southeast (Rosebush area) are mostly limestone 
coincident with relatively simple, open structural style. 
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 A similar, relationship between small scale structure and the inferred distribution 

of Dundee dolomite reservoirs is interpreted in the Vernon-Rosebush field of Isabella Co. 

Small scale structural deformation of the top Dundee surface is mapped in the north-

northwest extension of the Vernon-Rosebush structure (Figure 43b). In the down dip 

north and west portion of the Vernon-Rosebush field, sparse log control can be 

interpreted to indicate complete dolomitization of the Dundee associated with high initial 

oil production rates. The IP’s (to several thousand BOPD) are comparable to many 

central basin Dundee fields that are probably fracture-related. Less than 2 miles to the 

south and east, which is up structure, the Dundee contains limestone from bottom to top.  

 Interpreted faults and related fractures apparently propagated to the Dundee-Bell 

Shale contact in places throughout the central basin (and apparently elsewhere in the 

basin) and may have provided geometrically complex secondary conduits locally for 

dolomitizing fluids that permeated upwards through the otherwise regional tight 

limestone of the upper Dundee/Rogers City. 

 
 
Implications for Petroleum Geology in Michigan and other U.S. Hydrocarbon Basins 

Our mapping efforts have important implications for both new exploration plays 

and improved enhanced recovery methods in the Dundee and Ordovician Trenton/Black 

River "plays" in Michigan – i.e. the interpreted fracture-related dolomitization control on 

the distribution of hydrocarbon reservoirs. In an exploration context, high-resolution 

structure mapping using quality-controlled well data should provide leads to convergence 

zones of fault/fracture trends that are not necessarily related to structural elevation. 

Acquisition of high-resolution seismic data in areas with prospective structural grain may 

provide decreased risk for fractured Dundee or Trenton/Black River exploration drilling.  

 Application of fracture models to reservoir characterization in secondary and 

tertiary recovery projects in existing fractured Dundee or Trenton/Black River fields, may 

result in substantial additional recovery from fields that typically had low (<30%) 

primary recovery factors. Careful consideration of fracture orientations and water coning 

problems should decrease risk in enhanced recovery activities. 
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 Undoubtedly more complex, hybrid reservoir types exist in dolomitized lower 

Dundee/Reed City Member lithofacies in the central basin.  This is anticipated as a result 

of complex, early fluid flow through primary limestone pore conduits within a reflux 

system, in addition to fracture generated pathways in fault/fracture convergence zones.  

 

Silurian (Niagaran) - Petrophysical Facies and Image Analysis of Pore Networks 

Classification of petrophysically-significant facies and characterization of pore networks 

utilizing image analysis techniques can provide an important tie between sonic velocity 

values and permeability in carbonate rocks.  Most of this work was scheduled to be 

performed in Year 3 of the originally funded project, and as such, only a general 

introduction is presented here. 

 
Petrophysically Significant Lithofacies 

 From basic core analysis, six petrophysically significant facies have been chosen 

based on rock fabric and related pore architecture versus depositional environment. These 

six facies are:  

 P-1: Muddy Bioherm 

 P-2 and P-3: Reef Core (framework reef and internal reef detritus) 

 P-4: Capping Skeletal Wackestones, Packstones, and Grainstones  

 P-5: Laminated Mudstones  

 P-6: Cyanobacterial Mats 

 

Muddy Bioherm (P-1) 

 This is a mud dominated facies often associated at the initiation of reef growth in 

the “mud-mound” stage. This facies can be further divided into two lithofacies; a styolitic 
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mudstone with lithoclasts and <10% grains and another that is a mudstone to wackestone 

containing stromatactis. Porosity and permeability within the muddy bioherm is relatively 

low compared to the other facies. The little porosity that exists is due primarily to molds 

and intercrystalline pore types.  Minor solution enhancement along stylolites and 

microfractures produce slightly higher porosity values. 

 A subset of the mud-rich facies is a stylolitic mudstone with lithoclasts and minor 

skeletal grains that is likely a part of the Lockport formation, below the actual Pinnacle 

reef. The stylolites are wispy, indicative of the primarily mudstone matrix. The lithoclasts 

add to the nodular look of this facies. Gill (1977) suggested that the elliptical shape of 

nodules and the presence of dark argillaceous material around the nodules were a result 

of compactional forces resulting from the burial of heterogeneous sediment. He 

recognizes this fabric in the Belle River Mills field in St. Clair County. Most Niagaran 

reef cores do not reach down to the Lockport Formation and thus it is only observable in 

a few wells. 

 A mudstone to wackestone lithofacies containing stromatactis marks the gradual 

transition from off reef to the biohermal core. This facies contains more skeletal grains 

than the aforementioned mudstone. The stromatactis feature is characterized by a flat 

bottom with an irregular upper surface, creating a void that is often filled with cement or 

internal sediment. The origin of stromatactis is still problematic. Bathurst (1980) 

suggested that these features in carbonate mud mounds are a result of cement and 

sediment fill of cavities which have developed between submarine-cemented crusts. 

Recently, however, it has been suggested that it is actually a type of fenestral porosity 

caused by rapid, uninterrupted sedimentation and the subsequent decay of organics that 
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leave a characteristic pore shape that may be later filled with cements (Hladil, 2005). 

Nonetheless, several studies have indicated stromatactis is a well known feature of 

carbonate mud mounds from around the world (Krause et. al, 2004). 

 

Reef Core (P-2 and P-3) 

 This facies is characterized by large skeletal organisms, little mud, and cavities 

filled with skeletal debris. This facies is quite often interbedded with skeletal 

wackestones, packstones, and grainstones. Based upon their coexistence with reef 

framework (vertically integrated), these facies are interpreted as skeletal detritus that 

occurs within cavities of the framework reef, and as such are differentiated from the 

wackestone to grainstones that occur at the top of a reefal succession. The dominant pore 

types in the reef core facies include vugs, molds, and intraparticle pores. Anhydrite and 

salt occlude pores in some reefs.  

 A lithofacies of reef framework (P-2) is used when the rock is primarily 

composed of reef building organisms, such as stromatoporoids, tabulate corals, and algae 

(Gill, 1975 and 1977) or microbialites. Framebuilders in growth position within reefs 

typically only make up about 30% of the reef of the actual reef core, with the rest of the 

reef composed of detritus (Gill, 1975; Wood, 1999). These organisms produced the 

wave-resistant framework of the reefs. The characteristics of this facies are vuggy 

porosity, cm-dm scale reef cavities, cavity fills of cement and/or internal sediment, and 

intraparticle porosity if corals are present. In addition, there is little to no mud in this 

facies except inside cavities.  
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 The reef framework with detritus (P-3) facies consists of reef framework with 

abundant detritus. Forty to ninety percent of the rock volume of a reef typically consists 

of rubble, sediment, and voids (Wood, 1999) so it is important petrophysically to include 

a facies which includes a mix of reef frame builders with detritus. This facies designation 

was used when there is more than 25% detritus intermixed with reef framework 

organisms. The detritus consists of sand to silt sized skeletal debris from the reef 

framework or associated reef dwelling organisms. Pore types associated with this facies 

are moldic, interparticle, vuggy, and intraparticle. 

 The P-3 facies has tentatively been subdivided into a mud rich facies (wackestone 

to mud rich packstone) and a grain rich facies (mud lean packstones and grainstones). 

The mud dominated wackestones to packstones within the reef contain approximately 10-

30% skeletal grains that are generally sand to silt sized, but locally range up to cm scale. 

The most common pore types observed in this facies are moldic and vuggy pores. The 

molds can often be solution-enhanced and might be classified as a vug if the origin of the 

void space cannot be determined. The wackestones to packstones can occur anywhere 

within the reef, but are commonly found near the base, interbedded with the reef 

framework, and following the muddy bioherm facies stratigraphically. 

 The mud-lean packstone to grainstone within the reef is a grain supported facies. 

Allochems consist of skeletal, grapestone, or peloidal grains. Grain size varies from sand 

to silt sized, but can be as large as one to two centimeters. These larger grains tend to 

occur near the base of the reef in the mud mound-reef transition zone. Moldic and 

interparticle porosity dominate this facies. 
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Capping Skeletal Wackestone to Grainstone (P-4) 

 The P-4 wackestone to packstone facies occurs stratigraphically either at the base 

of reefs or as a capping unit and is therefore interpreted as not being associated with reef 

growth. Muddier facies (wackestones) occur often at the end of the mud-mound stage and 

during the transition into reef growth and may mark a significant flooding interval.  The 

common pore types in this facies include molds and solution-enhanced molds or vugs.  

 

Packstone to Grainstone 

 This facies, like the aforementioned facies, is not associated with the reef growth 

but interpreted as a grainstone shoal on top of the reef. Compositionally this is a grain 

dominated facies composed of skeletal, peloidal, or grapestone grains. Most often, these 

grainstone caps are comprised of skeletal grains, although a few cores have shown the 

occurrence of peloids and grapestones.  Grapestones may indicate a transition from the 

shelf, behind the reef, into the tidal flat environment.  Moldic and interparticle porosity 

dominate this facies. 

 

Laminated Mudstone (P-5) 

 This facies consists of laminated to locally burrowed mudstones with rare skeletal 

fragments.  The lack of bioturbation is indicative of a restricted environment hostile to 

benthic infauna (hypersaline and/or low oxygen levels). Porosity and permeability is 

consistently poor with minor intercrystalline porosity associated with the dolomitized 

matrix. 
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Cyanobacterial Mats (P-6) 

 Most often, this facies occurs at the top of the reef sequences and is regionally 

known as the “supratidal island stage.” It is easily recognized on gamma-ray logs as a 

high intensity reading compared to the facies below (due to increased organic material) 

and by density contrasts related to the abrupt transition from pure carbonate to 

interbedded anhydrite with carbonate. Mudcracks and laminations are key sedimentary 

structures that help in addition to identifying this facies in core. 

 Variations within the facies include ripped up cyanobacterial mat with a 

wackestone to packstone matrix, laminated cyanobacterial mat, cyanobacterial mat 

altered with evaporites, and evaporites interbedded with a mudstone. Even though there 

are several subdivisions, there appears to be no petrophysical significance between the 

various units. Minor fenestral porosity, produced by the decay and degassing of 

cyanobacteria and other organics through the sediment, is present in this facies.  

Image Analysis 

Porosity in reservoir rocks consists of pore types whose size and shape are 

controlled by the depositional fabric and post-depositional processes (McCreesh et al., 

1991). Most of the image analysis studies currently in the literature have been performed 

on sandstone reservoirs (Stout, 1964; Ehrlich et al., 1991). This is due in large part to the 

complexity of pore geometries and pore architecture in carbonate rocks relative to other 

sedimentary rocks (Anselmetti et al., 1998). This complexity can be attributed to the high 

diagenetic potential of carbonate rocks. Physical properties (e.g. sonic velocity) in 

carbonates are a function not only of the total amount of porosity, but the pore geometries 

and pore architecture as well (Anselmetti et al., 1998).  

In fluid reservoirs, permeability depends on the three-dimensional connectivity of 
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the pore network (Ehrlich et al., 1984). While viewing the three-dimensional aspects of a 

pore network is limited to analytical techniques such as CT scans, it has been shown that 

a two-dimensional slice, or thin section, has a predictable relationship to the three-

dimensional network it was extracted from (Ehrlich. 1984). As such, to further evaluate 

the pore network in these rocks, 23 thin sections were analyzed using various image 

analysis techniques utilizing the software program ImagePro Plus (Figure 44).  

Images of the thin sections were obtained with a Leica M240 Petrographic 

microscope at 8x magnification with a Leica DC480 12V Camera. Two images were 

analyzed per thin section; one of the upper portion and one of the lower portion of the 

thin section. Other studies (Anselmetti et al., 1998; Ehrlich et al., 1991) suggest that 

several images should be taken at several different magnifications, but for the purpose of 

this study, the macroporosity was of main interest and could be analyzed accurately at the 

8x magnification.  

 Thin section images were then imported into the Image-Pro Plus program. Color 

cube based color segmentation was used to separate the pore space from the solid space. 

Other studies have binarized pore phases and matrix using blue and gray tones 

(Anselmetti et al., 1998), but have also suggested that picking colors by color cube color 

segmentation is also effective, albeit with slightly reduced accuracy relative to the 

binarized technique. Common parameters such as pore size, pore shape, and abundance 

was calculated from the program. Of these parameters, the pore shape/roughness 

parameter, combined with the distribution of pore sized within a rock, provides the most 

information about the three-dimensional pore network.  
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Figure 44.  Photomicrograph illustrating pore geometries as highlighted in image 
analysis.  Various calculations of pore size, roughness, length/width etc can be calculated 
with Image Pro Plus, allowing for characterization of pore architectures and comparisons 
with permeability values.  Much of this work was scheduled to take place during Year 3 
of the project. 
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 The roundness parameter from the image analysis program is a ratio of the pore 

perimeter to the pore area: 

 

Roundness = Perimeter2 / (4 * π * Area) 

 

 However, Anselmetti et al. (1998) suggest using a similar roundness/shape 

parameter: 

γ = Perimeter / (2 * √( π * Area)) 

 

 For the purpose of this study the gamma (γ) value is primarily used to describe the 

pore shape/roughness. For pores that yield a value closest to 1 (the lowest ratio), the more 

rounded the pore is, and values higher than 1 indicate a more elongated or irregular 

shaped pore. An interparticle pore between perfectly spherical grains will have a γ value 

of 1.9 whereas cracks may have values greater than 5 (Anselmetti et al., 1998). The more 

branching pores, the more likely they are to form a connected pore network (Anselmetti 

et al., 1998). 

 Thin sections from all 5 wells were grouped by facies. Plots of pore size and 

gamma were then made to evaluate the pore shape and size distribution. In addition, plots 

were made of pore area and roundness to compare the results of the two different 

equations used. These plots were then used to determine the cause of the variable 

permeabilities that occur within each facies.  

 

Initial Image Analysis Results (By Facies) 

 In general, the reef core (P-2), reef core with detritus (P-3) and the capping 

grainstone intervals (P-4) exhibit the best porosity and related permeability. The gamma 
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value in these facies tends to reflect more irregularly shaped pores as opposed to rounded 

pores. Some of the grainstones on top of the reef interval exhibit the best reservoir 

properties; porosity is high and the pores are irregular, but still are dominated by moldic 

pores. Some of the porosity and permeability variability within the facies can also be 

attributed to microporosity in the fine crystalline dolomite matrix. This explains some of 

the more mud dominated fabrics having high permeability but low porosity. In order to 

accurately characterize the microporosity, analysis with a scanning electron microscope 

(SEM) would be needed as was planned for Year 3 of the project.  Initial results are 

summarized in Figures 45-58. 

 

Facies P-2: Reef Core  

Three main petrophysical differences that exist in this facies (from looking at whole core 

data initially) 

 (1) High Porosity and High Permeability 

• Miller-Fox has porosity from 2 to 15% with permeability from 0.2 

to 10,000 md for this facies 

• Umlauf has porosity ranging from 6 to 17% with permeability 

from 1 to 1,000 md for this facies 

(2) Marginal Porosity and Marginal Permeability 

• Charlton (northern trend) has porosity ranging from 5 to 20% with 

permeability ranging from 0.5 to 80 md 

• Fugere (southern trend) has porosity ranging from 1 to 7% with 

permeability from about 0.5 to 90 md 

(3) Low Porosity and Low Permeability (mostly salt occluded pores) 
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• Highlander (southern trend) has porosity from 0 to 2.5% with permeability around 

1 md  

• The Miller-Fox and the Highlander were chosen for image analysis because the 

represented the most diversity in the facies 

• Image analysis of the Miller-Fox showed this facies to have porosity ranging from 

2.3 – 1.1% 

• Image analysis of the Highlander showed this facies to have a porosity range from 

4.3 to 5.1% 

• The majority of the pores are small mesopores (Choquette and Pray, 1970). The 

main pore types are fracture, vuggy, and moldic 

• Pores 150 microns or larger, in diameter, tend to increase in branching – these 

tend to be the fractures and solution enhanced vugs 

• Pores less than 150 microns, in diameter, tend to take on a more rounded 

appearance and are pin-point vugs and moldic in origin 

• Miller-Fox pores less than 150 microns actually are more branching probably 

because this pore type is intercrystalline 

• Gamma (roundness) values for this facies can range from 1.3 to 1.5, making this a 

more permeable facies in some areas 

• What makes this facies more permeable can be the dolomitization of the marine 

cemented reef, creating intercrystalline porosity, the abundance of detrital 

material, and the presence of fractures (either through burial and/or due to the 

brittle nature of the marine cement and early diagenetic fracturing). 

 

Facies P-3: Reef Core with Detritus 

 Three main petrophysical differences that exist in this facies (from the initial evaluation 

of whole core data) 
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 (1) High Porosity and High Permeability 

• Miller-Fox: Porosity ranges from 3 to 15% with Permeability 

ranging from 0.1 to 100,000 md 

• State Charlton (northern trend): Porosity is from 5 to 15% and 

Permeability ranges from 0.1 to 100 md for facies 2B 

• Umlauf: Porosity ranges from 2 to 10% and Permeability ranges 

from 0.2 to 100 md for facies 2B 

(2) Marginal Porosity and Marginal Permeability 

• Fugere: Porosity ranges from 3 to 10% and Permeability ranges 

from 0.5 to 11 md for facies 2B 

(3) Low Porosity and Low Permeability 

• Highlander: Porosity ranges from 0 to 3% with Permeability 

ranging from 0.8 to 5 md for facies 2B. Porosity is occluded by salt 

 

The focus to date has been on the high and marginal porosity values because they are the 

most frequently occurring values in the cores. 

 

Marginal Porosity and Permeability 

• Image analysis calculates a porosity of 1.8 – 4.2% in the Charlton well 

• Image analysis calculates a porosity of 2.7 – 2.75% in the Fugere well 

• Image analysis calculates a porosity of 3.2 – 5.6& in the Miller-Fox well 

• 75-90% of the pores are well rounded 

• 10-25% of the pores are branching 

• 60-70% of the pores for a given sample are 100 microns or smaller 

• Average Gamma for the samples is about 1.4 to 1.6, so the pores are irregular in 

shape 
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• This facies is very heterogeneous due to the reef core AND detritus – the more 

detritus, the more variable pore types exist, resulting in more branching and 

interconnected pores with a higher permeability 

• The Charlton thin-sections have detritus and reef framework with fracture, 

interparticle, moldic, and pin-point vuggy porosity which all adds to a more 

interconnected pore network 

 

Good Porosity and Permeability 

• Whole core data from the State Charlton show a porosity ranging from 5 to 20% 

with permeability ranging from 0.1 to 100 md 

• Whole core data for the Miller-fox 1-11 shows porosity ranging from 5 to 10% 

and permeability ranging from 10 – 10,000 md 

• The State Highlander has a porosity of about 0.5% and 1 md permeability – since 

this is averaged of 5 foot intervals, this looks biased based on the properties of the 

surrounding rock types 

• Image analysis porosity for the Charlton well is 8.7 – 9.4% 

• Image analysis porosity for the Highlander well is 10.2 – 13.2% 

• Average Gamma is 1.4 

• Pores are sub-rounded to angular– abundant moldic and vuggy porosity 

• Larger pores (with an area of 50,000 um^2 or larger) are more branching because 

it looks like several pores were solution enhanced to form the vugular shapes 

• Only a small percentage of the pores are this size and shape though 

• Good permeability is due in large part to intercrystalline matrix microporosity 

 

P-4: Packstone to Grainstone (>1 mm) 

• Whole core analysis for Umlauf shows porosity from 4 – 6% with about 8 md 
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permeability 

• Image analysis for Umlauf shows a porosity of 10% and a gamma value of 1.2 

• Pores are rounded, not branching, yielding low permeability values 

• Intercrystalline matrix porosity from the dolomite may enhance the permeability 

values if present 

• The predominant pore type is moldic 

• This facies is only locally present in the cores, as the capping packstones to 

grainstones usually occur with millimeter or less fragments. The fragments in this 

facies are 1 mm or larger 

 

P-4a: Packstone to grainstone with small (mm or less) size particles 

• Whole core analysis for the State Charlton shows porosity ranging from 5 to 20% 

with permeabilities ranging from 1 to 100 md 

• Whole core analysis for the Fugere shows porosity ranging from 3 to 7% with 

permeability ranging from 1 to 100 md 

• Whole core analysis for Umlauf shows porosity ranging from 15 – 20% with 

permeability of around 100 md 

• Whole core analysis for the Miller-Fox shows porosity ranging from 0.1 – 5% 

with permeability values less than 10 md 

• This facies in the Miller-Fox is actually salt occluded 

• The state Charlton was used for image analysis 

• Image analysis for the Charlton showed a porosity of 21.5 – 29% with a gamma 

value of 1.4-1.5 

• These appear to be moldic pores that were solution enhanced, allowing for more 

interconnected branching geometries 
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Sonic Velocity 

 
Sixteen (16) core plugs from the Miller-Fox were analyzed at the University of 

Miami for sonic velocity. Six (6) of these plugs were also evaluated using image analysis. 

Additional analyses from the Miller Fox and other reef cores were planned for Year 3 of 

the project as originally defined.  However, the facies characteristics (rock fabric and 

pore geometry) of the Miller-Fox are similar to that of the other wells from other 

locations in the basin and therefore the sonic velocity values retrieved for the Miller-Fox 

1-11 are probably a good first order characterization of the same facies from other wells. 

Once the acoustic properties of the plugs are determined, the velocities can be correlated 

to the sonic logs. The pore architecture and related permeability will hypothetically show 

an inverse relationship with sonic velocity values. The seal and reservoir facies then can 

be predicted within the established sequence stratigraphic framework.  

 Modifications of rock due to cementation and dissolution alter the physical 

properties in rock, resulting in a dynamic relationship between depositional facies and 

diagenesis recorded by physical parameters such as porosity, permeability, and sonic 

velocity (Grammer et al., 2004). This relationship and the variability caused by the 

depositional and diagenetic fabrics of carbonates makes predicting physical properties, 

such as velocity and porosity, more difficult than in siliciclastic sediments (Anselmetti 

and Eberli, 1999). Early marine cements can decrease porosity and add rigidity to 

younger rocks, resulting in an increase in velocity much more than that of sediments 

responding only to compaction (Grammer et al., 2004). The main factor in controlling the 
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sonic velocity in rocks is porosity; however, the pore architecture is equally important in 

the resultant velocity (Eberli et. al., 2003). Graphs of porosity vs. velocity of various pore 

types have an exponential best fit curve with scattering that reflects pore type and its 

resultant elastic property (Grammer et al., 2004). Moldic porosity in rocks exists within a 

stiff frame and provides rigidity in a rock that result in high velocity. Fabric destructive 

dolomitization results in a rock containing intercrystalline porosity with low rigidity as 

well as low velocity (Grammer et al., 2004).   

 Wireline logs are the most powerful tool used in predicting the downhole 

lithology from physical properties because cores are not the most cost efficient. The 

knowledge of the porosity-velocity correlation in carbonates can be used to improve 

wireline log interpretation by being able to predict parameters such as pore type, 

permeability trends, and diagenetic fabrics in addition to the parameters that are 

measured with the wireline tool (Anselmetti and Eberli, 1999).  
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 Miller-Fox 1-11  (3495 ft.)    Highlander (3990 ft.) 
 
 
Figure 45.  Core photos of petrophysically significant facies P-2. 
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Figure  46a.  Whole core porosity and permeability frequency for P-2 for all Niagaran 
cores examined to date for petrophysical facies P-2. 
 
 
 
 

 
 
Figure  46b.  Whole core porosity and permeability frequency by well for Niagaran cores 
examined to date for petrophysical facies P-2. 
 
 

Facies 2A Porosity Frequency for Niagaran Reef Wells

0
5

10
15
20
25
30
35
40
45
50
55
60

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 More

Porosity %

Fr
eq

ue
nc

y

Facies 2A Permeability Frequency for Niagaran Reef Wells

0
5

10
15
20
25
30
35
40
45
50
55
60

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

More

Permeability (md)

Fr
eq

ue
nc

y

Facies 2A Porosity Frequency for Niagaran Reef Wells

0
5

10
15
20
25
30
35
40
45
50
55
60

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
More

Porosity %

Fr
eq

ue
nc

y Miller-Fox
Highlander
Charlton

Facies 2A Permeability Frequency for Niagaran Reef Wells

0
5

10
15
20
25
30
35
40
45
50
55
60

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

M
or

e

Permeability (md)

Fr
eq

ue
nc

y Miller-Fox
Highlander
Charlton



 132

 
 
 
 
 

 
 
      Miller-Fox 1-11 (3495 ft.)    Highlander (3990 ft.) 
Porosity:  top 2.3%, bottom 1.1%   Porosity: top 5.1%, bottom 4.3% 
 
 
Figure  47.  Thin section photomicrographs (8x magnification) with porosity values from 
image analysis calculations for petrophysical facies P-2. 
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Figure  48.  Correlation of laboratory measured sonic velocities to sonic log values in 
Petrophysical Facies P-2.  In this sample there is a measured gamma value of 1.3. 
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Figure  49.  Core photographs from Petrophysical facies P-3.  Top left:  Fugere (4335 ft.);  
top right: Charlton (4921 ft.); bottom: Miller Fox 1-11 (3611 ft.) 
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Figure  50a.  Porosity and permeability frequency for all Niagaran cores examined to date 
for petrophysical facies P-3. 
 
 
 
 
 
 

 
 
 
Figure  50b.  Porosity and permeability frequency by well for all Niagaran cores 
examined to date for petrophysical facies P-3. 
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 Charlton (4921 ft.)  Fugere (4335 ft.)      Miller Fox 1-11 (3611 ft.) 
 Porosity:   Porosity:       Porosity: 
 top:  1.8%   top:  2.7%       top:  5.6% 
 bottom: 4.2%   bottom:  2.75%      bottom:  3.2% 
 
 
 
Figure  51.  Thin section photomicrographs (8x magnification) with porosity values from 
image analysis calculations for petrophysical facies P-3. 
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Figure  52.  Graph of pore size versus “gamma” and variation in pore shapes. 
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Figure  53.  Graph correlating pore area to pore perimeter.  The good fit to the trend line 
indicates that most pores are well rounded and not irregularly shaped (branching).   
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 Gamma:  1.6      Gamma:  1.4 
 
 
 
Figure  54.  Correlation of laboratory measured sonic velocities to sonic log values in 
Petrophysical Facies P-3.  In this sample there is a measured gamma value of 1.3. 
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Figure  55.  Core photograph from petrophysical facies P-4 with only small vugs visible.  
Charlton (4710 ft.) 
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Figure  56a.  Porosity and permeability frequency for all Niagaran cores examined to date 
for petrophysical facies P-4. 
 
 
 
 
 
 
 

 
 
 
Figure  56b.  Porosity and permeability frequency by well for all Niagaran cores 
examined to date for petrophysical facies P-4. 
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 Charlton (4710 ft.) – top   Charlton 4710 ft. – bottom 
 Porosity:  29%     Porosity:  21.5% 
 Gamma:  1.5     Gamma:  1.4  
 
 
 
 
Figure  57.  Thin section photomicrographs (8x magnification) with porosity values from 
image analysis calculations for petrophysical facies P-4. 
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Figure  58.  Graph of pore size versus “gamma” illustrating the more irregular shape of 
larger (>100 microns) pores. 
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 SUMMARY OF CURRENTLY AVAILABLE GEOLOGIC DATA (THROUGH PHASE  II)  

 

Ordovician Trenton/Black River Production 
 

The Ordovician Trenton-Black River Formation is a fractured, dolomitized 

reservoir that has produced 140 MMBO and 260 BCFG in the State of Michigan. 

However, theories concerning the nature of fracturing, the controls exerted by the original 

depositional rock type and pattern, the extent of dolomitization, the types of fluids 

involved, and the various stages of diagenesis are still evolving. All previous studies deal 

only with data from specific field areas. There has never been a basin-wide synthesis and 

analysis of these data despite the fact that the Trenton-Black River Formation is one of 

the largest hydrocarbon producing reservoirs in the state. It is doubtful that the current 

Trenton-Black River exploration model, developed from independent field studies, 

adequately encompasses all the exploration and exploitation opportunities that exist for 

this reservoir in the Michigan Basin. Increasing the current total recovery for this unit by 

only 1% would add 1,380,000 BO and 2.6 BCF to the already recovered reserves. It is 

reasonable to expect that a comprehensive, basin-wide examination of the Trenton-Black 

River Formation, resulting in the development of additional exploration models and 

methods could ultimately produce a 5% increase in recoverable reserves (6.90 MMBO 

and 13 BCF).        

 

Trenton-Black River Discovery and Development  

Drilling began in 1884 along the Findlay-Kankakee Arch in Indiana and Ohio 

(Davies, 1996, 2000) resulting in the first Trenton-Black River discoveries. This led to 

the drilling of over 100,000 wells and the production of 500 MBO along the Bowling 

Green Fault Zone. 

The first commercial Trenton-Black River discovery in the State of Michigan 

occurred in 1936 in Monroe County. This resulted in the Deerfield Field located along 

the Lucas-Monroe monocline, an extension of Bowling Green Fault zone in Ohio. 

Reservoir quality dolomite lenses in the upper 125’ of the Trenton Group produced more 

than 608 MBO by 1959 from 40 wells drilled on 360 acres.  
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The Albion-Scipio Field, a giant (>120 MMBO) Trenton-Black River field 

located in Calhoun & Hillsdale Counties, Michigan was discovered in 1955 – 1958 

(Davies, 1996, 2000). The Scipio Field discovery well was the Houseknecht No. 1 (Sec 

10, T5S-R3W – Hillsdale Co.) which was originally drilled for Devonian gas but proved 

dry. It was then deepened based upon the advice of a psychic family friend, encountered 

oil at 3900’, and was completed at 140 BOPD with “considerable” gas. The Albion Field 

was discovered by the Rosenau No. 1 (Sec 23, T3S-R4W, Calhoun Co.) and completed 

for 200 BOPD. Subsequent drilling discovered the Pulaski, Barry, Sponseller, Van Wert, 

and Cal-Lee Fields; all to become part of the Albion-Scipio Trend. Over 961 wells were 

drilled by 1986, of which 573 are still producing.  

 Stoney Point Field (5 miles east and sub-parallel to Albion-Scipio) was not 

discovered until 27 years later in 1982 when the JEM Casler No. 1-30 (Sec 30, T4S-

R2W, Jackson Co.) encountered dolomite reservoir 115’ into the Trenton at 3910’. This 

well hit lost circulation at 4248’. Casing was set and the well was tested at 2000 BOPD 

from perforations at 4161’ - 4179’. The bottom hole pressure drop never exceeded 3 psi 

and the well was put on production at 220 BOPD. Two hundred and ten wells were 

drilled around the Stoney Point Trend between 1983 and 1987. Seventy five wells were 

oil and gas producers. 

Estimated oil-in-place figures are difficult to accurately calculate due to 

difficulties in establishing a reliable porosity number; however, Scipio Field is estimated 

to have 170 MMB OOIP, Albion Field is estimated to have 120 MMB OOIP. No figures 

are available for Stoney Point Field. There are 18 Trenton-Black River fields that have 

produced in Michigan. 

  

Stratigraphy and Structure  

The Trenton-Black River Formation was originally deposited during the 

Ordovician in open marine conditions. Wackestone - mudstones were deposited on a 

basin-wide scale. Trenton-Black River carbonates in the Stoney Point Field area (south-

central Michigan) are open marine, subtidal carbonates, typically crinoidal 

packstones/wackestones and mudstones with pervasive burrowing. Trenton rocks in the 
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Deerfield Field area (SE Michigan) prograde from open marine to intertidal carbonates 

while Black River rocks remain subtidal (Davies, 1996, 2000). The Trenton is overlain by 

the Utica Shale that forms a regional seal. This is in turn overlain by reef and inter-reef 

carbonates of the Niagara Formation and Salina Formation evaporates. 

 Repeated reactivation of a Precambrian left-lateral wrench fault system (en 

echelon faults with a total of 2.5 miles of offset) occurred throughout the early to mid 

Paleozoic. These faults (dominant set oriented N30W, conjugate set oriented east-west) 

are thought to have provided conduits through which dense Salina residual evaporite 

brines were able to flow downward into the Trenton-Black River formation. Dissolution 

and dolomitization of the Trenton-Black River occurred immediately adjacent to faults 

resulting in long, linear, porous dolomite reservoirs associated with downward collapse 

of overlying units. The collapsed interval extends into the Devonian section where it dies 

out. Fractures in the Utica Shale must have healed at the cessation of faulting to provide a 

seal for the Trenton-Black River reservoir. Tight un-dolomitized limestones act as lateral 

stratigraphic seals (Allen and Wiggens, 1993). DeHaas and Jones (1984, 1989) proposed 

cave development related to karsting responsible for lost-circulation zones; however, this 

theory has been largely discounted by recent workers. 

Budros (APPG Annual Meeting, 2004) proposes that “sags” or “grabens” 

overlying dolomitized reservoirs (thereby defining Trenton-Black River fields) are in fact 

negative flower structures due to Reidel shear faulting with trans-tension and are not the 

result of previously considered collapse due to dissolution. He also proposes that some 

fields are characterized by positive flower structures produced by Reidel shear faulting 

with compression. 

Faulting has compartmentalized the Albion-Scipio Trend. These compartments 

are probably due to a combination of Reidel shear negative and positive flower structures 

along the same fault trend; however, this hypothesis demands further investigation. These 

discontinuities do account for dry holes drilled apparently “directly on trend” (Davies, 

1996, 2000).  

Fields such as Deerfield Field exhibit a more circular pattern rather than a long, 

linear NW - SE pattern typically considered indicative in the current Trenton-Black River 
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exploration model. It is thought that secondary east-west oriented faults may have played 

a more significant role in the development of dolomitized reservoir facies in the Deerfield 

Field. Fractures and faults with minor displacement play an important roll controlling 

dolomitization and porosity development (Davies, 1996, 2000). 

  

Trenton-Black River Reservoir Characteristics   

 Reservoir dolomites are composed of coarse crystalline dolomitized limestone 

host rocks that are vuggy and cavernous. Fractures and vugs are often solution enlarged 

and contain white saddle dolomite with minor anhydrite. Porosity normally ranges from 

2-5%, but 8-12% porosity is present, though uncommon. Permeability is extremely 

variable (0.01 – 800 md) but is generally low (85% of samples < 10 md). Porosity and 

permeability plots do not show any uniform relationships. Isotopic, fluid inclusion and 

water chemistry analyses all indicate a hydrothermal genesis for reservoir dolomites with 

a dual source of fluids from the Salina and Trenton - Precambrian Formations (Allen and 

Wiggens, 1993).     

 

Origin of Dolomite   

Shortly after discovery of the Albion-Scipio Trend, Burgess (1960) determined 

that reservoir dolomite was a secondary mineral formed as Cambrian and Lower 

Ordovician waters moved up along fracture zones (analogs - Dover and Colchester Fields 

in Ontario). 

Ells (1962) observed that Albion-Scipio Field dolomites were similar to 

Mississippi Valley-Type (MVT) lead-zinc mineral deposits. He proposed that 

magnesium-bearing waters ascending through fractures were responsible for 

dolomitization. 

Beghini and Conroy (1966) stated that Trenton-Black River reservoirs were 

formed by pre-Black-River Group waters that moved through faults and fractures to 

produce secondary dolomite. 

Buehner and Davis (1968) concluded that the Trenton-Black River reservoir 

facies was epigenetic dolomite related to a fault system. 
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Shaw (1975) described a mineral assemblage (including sphalerite) in Albion-

Scipio cores similar to MVT mineral deposits. He noted 2-phase fluid inclusions in 

Albion-Scipio dolomites and pore filling saddle dolomites that he believed were 

precipitated from fluids at a minimum of 80 degree C. He also identified a liquid-

hydrocarbon phase in some fluid inclusions indicating hydrocarbons were present at time 

of cementation. These observations allowed him to propose a model of replacement 

dolomitization and development of intercrystalline porosity during the Middle to Late 

Silurian by waters percolating through fractures. Magnesium was sourced from 

underlying Prairie du Chien dolomite or Trempealeau Formations. Then, a second phase 

of dolomitization occurred during Lower to Middle Devonian as hot fluids from the basin 

center created cavernous porosity, subsequent collapse, and precipitation of a MVT 

assemblage. 

Ardrey (1978), DeHaas and Jones (1984, 1989) proposed that diagenesis of the 

Trenton-Black River in Albion-Scipio area was due to exposure as indicated by the top-

of-Trenton unconformity. They also stated that dolomitization must have resulted from a 

mixing model based on the observation that Trenton Formation water is less saline than 

water in shallower horizons; therefore, it could not be of hydrothermal origin. 

Taylor and Sibley (1986) identified 3 major types of dolomite (1) regional 

dolomite not associated with the field area, (2) cap dolomite that occurs in the top 40 feet 

(related to interaction of the Trenton with Fe-rich fluids formed during the de-watering of 

the overlying Utica Shale) (3) fracture-related dolomite (formed during deeper burial at 

approximately 80 degrees C based on geochemical results). 

Budai and Wilson (1986) identified various MVT accessory minerals, including 

pyrite, calcite, anhydrite, barite, celestite, sphalerite, and fluorite in association with 

saddle dolomite cements. They proposed a hydrothermal model with Paleozoic and 

Precambrian basement rock as sources of iron, sulfur, and other trace metals. 

Hurley and Cumella (1987) proposed a model based on (1) carbon, oxygen, and 

strontium isotopes, (2) fluid-inclusion geothermometry, (3) brine geochemistry, and (4) 

regional hydrologic constraints. Dolomitizing fluids were thought to be Silurian-

Devonian hypersaline sea-waters that moved down fracture zones to meet with hot 
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limestone-dissolving fluids moving up from the basement. These fluids mixed in a 

pattern consistent with the known distribution of dolomite reservoirs and lost-circulation 

zones. This model is supported by Coniglio et al (1994) for Ordovician rocks in Ontario 

(Davies, 1996, 2000). 

 

Exploration  

 Originally, the Albion-Scipio Field was discovered by the advice of a psychic. 

“Trendology” quickly become the exploration method of choice as the linear field pattern 

began to emerge. Indications of a northwest-southeast linear fracture zone associated with 

a top-of-Trenton synclinal sag (up to 60’ recognized in early producing wells) has been 

the long held exploration model for the Trenton-Black River Formation. 

Gravity was used through the 1960’s and early 70’s to define basement faults 

along the Albion-Scipio Trend. This met with limited drilling success because dolomite 

porosity mutes the density contrast between the regional limestones and dolomite 

reservoir rocks.  

Magnetics was used in the 1970’s to detect basement discontinuities and faults; 

however, this also proved to have limited use. The giant Albion-Scipio does not appear as 

an individual feature on magnetic maps. Recently, micromagnetic surveys and resistivity 

profiles have been employed, but their significance is not yet proven. 

Reflection-seismic is currently the primary exploration method; however, there 

are problems associated with this technique: (1) variable till overburden thicknesses 

produce noise and statics problems, (2) secondary porosity, the dominant reservoir 

characteristic, is not detected by P-waves, (3) reservoir dolomites (2-5% porosity) have 

an acoustic impedance similar to the regional limestones, and (4) reservoir geometries are 

difficult to image. To date, reflection-seismic Trenton-Black River discoveries have been 

based on: (1) disruptions (sags) at the Trenton event, (2) internal waveform changes, (3) 

disruption of lower events, and (4) recognition of faults from offsetting events and/or 

diffractions. 
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Soil gas geochemistry studies above Scipio field showed no correlation between 

soil gas and producing parts of the field; however, soil gas geochemistry reportedly 

played an important role in the Stoney Point Field discovery. 

  

Exploitation  

Secondary Recovery has been minimal. Results were discouraging from a pilot 

waterflood of the Haskell Unit (near south end Scipio Field). Marathon Oil has drilled a 

number of Trenton-Black River horizontal wells that show considerable promise for 

future exploitation. 

 

Summary  

This was intended to be (prior to funding being revoked) the first comprehensive, 

systematic study to determine the basin-wide relationships of:  (1) original carbonate 

depositional patterns, (2) formation of early stage diagenetic dolomites vs. later stage 

burial and hydrothermal dolomites, (3) types and patterns of faulting, (4) types and 

patterns of dolomitization resulting from this faulting, (5) resulting reservoir rock quality, 

(6) oil accumulations (field delineation and orientation), and (7) hydrocarbon production. 

The current Trenton-Black River exploration model of looking for a seismic sag 

associated with basement faults in long linear patterns appears to be only partially 

correct. It is possible, in light of evolving geological concepts concerning the Michigan 

Basin, that other styles of Trenton-Black River fields exist. However, no exploration 

models covering these variations have yet been developed. This work will provide 

numerous opportunities to expand our understanding of Trenton-Black River 

hydrocarbon accumulations and significantly add to known reserves.  

 

Silurian Niagaran Production 

General Observations 

1. Production data for the Niagaran Trend is generally good. The play began in the 

early 1950’s and hit its peak during the 1970’s-1980’s. Digital data bases 
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developed by the state beginning in 1981 include a large portion of the data for 

this play. 

 

2. The log plot of the data displays a curve typical of that for a mature play. Nearly 

all field sizes are represented and no “gaps” in field size occur. The slope of the 

curve is shallow indicating full representation of each field size. Future potential 

is probably resource limited for this particular exploration model; however, new 

technology, combined with a new/expanded exploration model could potentially 

re-set the curve to a higher level.  

 

3. There are 1,162 fields in this play. There are 1,063 fields producing oil. This 

volume of data makes it difficult to plot trends including individual field names. 

Rather, data can best be examined as categories based upon field size. 

“Cumulative Oil Production” can be broken down into 5 basic categories:  1) 

Fields 1-10 million barrels cumulative oil production, 2) Fields 100,000 – 1 

million barrels cumulative oil production, 3) fields 10,000 – 100,000 barrels 

cumulative oil production, 4) fields 1,000 – 10,000 barrels oil cumulative 

production and 5) fields less than 1,000 barrels cumulative oil production.   

 

4. Fields making less than 1,000 barrels oil cumulative production are probably not 

economic based upon oil production alone. The sharp drop-off in fields of this 

size is probably due to the fact that no one purposely looks for this sized field. 

However, a few disappointing fields of this size do occur and are produced to 

recover at least some of the cost of exploration and development.  These fields, in 

most cases, are associated with gas production that makes the venture economic.  

 

5. Gas is produced in 991 fields compared to oil being produced in 1,063 fields. Gas 

production volumes remain somewhat level in relationship to oil production 

volume (1 million BOE). 
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6. Brine is produced in 664 fields. Production of brine is roughly related to oil 

production. The larger oil fields all produce brine whereas the smaller the oil 

field, the less likely it is to produce brine. Only 8 fields produce only gas and 

brine. Brine volumes are roughly related to oil volumes. Only 28 fields produce 

more brine than oil. (refer to Cumulative Oil-Gas-Brine Production by field 

Graph)  

 

7. The State of Michigan imposes a 200 barrel-per-day maximum allowable on 

production which often distorts the true capabilities/performance of the affected 

wells. 

 

8. The graph of “Discovery Size (Cumulative Oil) by Year of Discovery” displays a 

wide variety of field performance for each year. Although originally kicked-off in 

1950, Niagaran fields did not hit peak oil productivity until 1971 when drilling 

boomed with the discovery of 32 new fields that year. The 1970’s represent the 

“best times” for Niagaran discoveries, with a sharp decline after 1981. This data 

set does not include the onset of horizontal drilling during the 1990’s. 

 

9. There are 1,162 fields in the Niagaran Trend. The oldest field in the trend was 

discovered in 1950. Only 9 fields in the Niagaran Trend have produced more than 

35 years. Nearly one half of the fields have produced for 15 – 30 years (531 

fields). Only 181 fields have produced for 5 years or less. Seventy-three fields 

were either produced for less than one year or not produced at all. 

 

10. “Cumulative Oil Production” varies substantially when plotted against “Years of 

Production.” However, the best producers in each age bracket show impressive 

results. Nearly 10,000,000 barrels of cumulative oil have been produced by fields 

in the 30 to 50 year age bracket. Fields in production from 22 years to 30 years 

have top producers in the 1-5 million barrel range. Top producing fields in the 5 – 



 153

22 year bracket still hit the 1 million barrel mark other than for year 9.  Even 

fields in production for only 1 year have obtained the 100,000 barrel mark.  

 

 

 

Devonian Dundee Trend Production 

General Observations 

1. Production data for the Dundee Trend is generally good. Dundee production 

statistics go back to 1934 although commercial Dundee production began in 1928 

and has remained a stalwart of the Michigan Basin ever since. Its production 

ranks second only to that of the Niagaran Trend; however, the Niagaran Trend 

contains 1,162 fields vs. only 178 fields in the Dundee Trend. 

 

2. The log plot of the data displays a curve typical of that for a mature play. Nearly 

all fields sizes are represented and no “gaps” in field size occur. The slope of the 

curve is shallow indicating full representation of each field size. Future potential 

is probably resource limited for this particular exploration model; however, new 

technology, combined with a new/expanded exploration model could potentially 

re-set the curve to a higher level.  

 

3. There are 178 fields in this play. There are 155 fields producing oil. This volume 

of data makes it difficult to plot trends including individual field names; therefore, 

data has been examined as categories based upon field size. “Cumulative Oil 

Production” can be broken down into 7 basic categories: 1.) 8 Fields making 10-

50 million barrels cumulative oil production, 2.) 30 fields 1 – 10 million barrels 

cumulative oil production, 3.) 50 fields making 100,000 – 1 million barrels 

cumulative oil production, 4.) 39 fields making 10,000 – 100,000 barrels oil 

cumulative production and 5.) 20 fields making 1,000 – 10,000 barrels cumulative 

oil production, 6.) 8 fields making 0 – 1,000 barrels cumulative oil production, 

and 7.) 14 fields making 0 oil production.   
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4. Fields making less than 1,000 barrels oil cumulative production (9 fields) are 

probably not economic based upon oil production alone. The sharp drop-off in 

fields of this size is probably due to the fact that no one purposely looks for this 

sized field. However, a few disappointing fields of this size do occur and are 

produced to recover at least some of the cost of exploration and development.   

 

5. Gas is produced in 41 fields compared to oil being produced in 155 fields 

(although many fields may have initially had gas, production was limited due to 

infrastructure and much of the gas production was flared). 

 

6. Brine is produced in 141 fields. Only 13 oil fields do not produce brine. Only 4 

gas fields do not produce brine.  

 

7. The State of Michigan imposes a 200 barrel-per-day maximum allowable on 

production which often distorts the true capabilities/performance of the affected 

wells. 
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Abstract 
 As oil imports in the United States approach 60% of total daily consumption, 

more efforts are being expended to maximize recovery from known domestic oil fields.  

As part of this effort, CO2 flooding of reservoirs has been proven to be an effective 

means to increase the recovery of oil bypassed during primary production, albeit often at 

significant cost due to capture, compression and transportation of adequate CO2.  At the 

same time, global and national interest in the viable geological sequestration of 

anthropogenic CO2, a major greenhouse gas when emitted into the atmosphere, is also 

becoming more significant.  In the Michigan Basin, the juxtaposition of the Devonian 

Antrim Shale natural gas trend, one that contains high levels of associated CO2, with the 

mature Niagaran (Silurian) reef oil play, characterized by reservoirs with high 

percentages of stranded oil, may provide an economically viable model to combine EOR 

efforts with the geological sequestration of CO2. 

 Niagaran pinnacle reefs in the Michigan Basin have produced over 450 MMBO 

since the late 1960’s.  Due to the complex heterogeneity of the reef reservoirs, however, 

primary production averages only around 30% with secondary waterflood programs 

typically capturing an additional 12%.  The northern reef trend in the Michigan Basin 

comprises an immense hydrocarbon resource, located in hundreds of closely-spaced, but 

highly compartmentalized reef fields in northern Lower Michigan. These geologically 

complex carbonate reef reservoirs present significant opportunity for enhanced oil 

recovery operations because of known traps, quantifiable remaining oil, existing 
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infrastructure and very few secondary recovery projects to date, but also great challenges 

to modeling for maximum sweep efficiencies and recovery factors during miscible 

CO2/EOR projects. 

 In the northern reef trend, a local source for subsequent CO2 flooding is readily 

available as a byproduct of Antrim Shale production.  The annual production of CO2 

separated from Antrim gas is approximately 21 BCF, the majority of which is currently 

vented directly into the atmosphere.  The close proximity of a source of high quality CO2 

from several gas processing plants throughout the northern reef trend, a region with over 

800 Niagaran reef fields, provides an economically viable opportunity to combine CO2 

flood EOR operations with geological sequestration of CO2 greenhouse gases. In this 

paper, initial results of a pilot project where CO2 from the Antrim Shale is being injected 

into several Niagaran reefs are discussed along with reservoir characterization issues 

associated with these heterogeneous reservoirs. Similar EOR projects throughout the 

northern reef trend could provide an economic foundation for CO2 sequestration 

programs.  This is especially the case if they are designed alongside industrial activities 

that generate easily captured CO2 emissions streams, such as other gas processing plants 

or future ethanol plants planned for the region.  

 
 

Introduction 
Geologic sequestration of anthropogenic CO2 is currently being combined with an 

EOR program in Silurian-aged reefs in the northern part of the Michigan Basin. This 

region is especially suitable to combining EOR activities with sequestration of 

greenhouse gases due to the coincidence of two distinct oil and gas-related plays with 

associated generation of significant quantities of anthropogenic carbon dioxide .  A major 

northeast-southwest trend of oil and gas fields was developed in Silurian (Niagaran-aged) 

reefs during the 1970’s, known as the “northern” Niagaran reef trend, and today there are 

over 800 individual reefs known in the Trend (Figure 1).   Cumulative production from 

Niagaran reefs exceeds 450 MMBO and 2 TCF of gas, but production from the fields has 

declined significantly in the last decade.  Many of the reefs have either reached, or are 

nearing their economic limit in the primary phase of hydrocarbon production, yet only a 
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few of these have been converted to secondary recovery operations (water flooding or gas 

re-injection), producing moderate amounts of additional oil.   

Coincident with the northern Niagaran reef trend, but in a slightly east-west 

trending pattern, is the more recent development of significant natural gas production 

from the Middle Devonian Antrim Shale (Figure 2).  Developed in the late 1980’s and 

early 1990’s, nearly 8000 low-volume Antrim Shale wells have been drilled, resulting in 

cumulative natural gas production of approximately 2.5 TCF.  Associated CO2 in the 

Antrim gas is currently removed at 6 centralized gas-processing plants in the region and 

the majority of this processed CO2 is currently vented directly to the atmosphere. The 

CO2  removed from the Antrim Shale gas stream is of very high quality (at least 99% pure 

CO2) with only small quantities of associated water and residual methane. 

One of the largest gas processing plants in Otsego County has had an average CO2 

production of over 1 BCF/month for the last ten years, or an average of approximately 15 

BCF of CO2  produced each year.  Merged production of CO2 from all Antrim gas 

processing plants in the region has been averaging about 21 BCF/year.    Continued 

production from this play is estimated for an additional 30-40 years, resulting in total gas 

recovery of approximately 5 TCF.  The total CO2 content, estimated at 15-30% in Antrim 

gas, would result in an additional CO2 production of 375-750 BCF from northern 

Michigan gas processing plants over the projected life of the play. Here we report on the 

synergistic value of the current EOR program in Niagaran reefs in the northern Michigan 

Basin and discuss outstanding reservoir characterization issues that need to be more fully 

addressed to maximize both the sequestration of CO2, and the economic benefits of EOR 

activities. 

 

General Geological Setting 
 The Michigan Basin is a roughly elliptical, major intracratonic basin located in 

the midwest portion of the United States and centered on the Lower Peninsula of the 

State of Michigan (Figure 3). A structural basin of over 300,000 square kilometers in 

area, the Michigan Basin also includes the eastern half of Michigan’s Upper Peninsula, 

portions of northern Ohio and Indiana, northeastern Illinois, eastern Wisconsin and 
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southwestern Ontario, Canada.  The Basin is bounded by the persistent, structurally stable 

areas of the Wisconsin and Kankakee Arches to the west and southwest, the Findlay Arch 

of Ohio and Algonquin Arch of Ontario to the southeast and east, and the Canadian 

Shield to the north. Sedimentary deposits in the Basin attain a maximum thickness of 

nearly 17,000 feet (5200 m) and include sandstones, shales, carbonates and evaporites of 

Cambrian through Pennsylvanian age. Discontinuous, thin redbeds of Jurassic age occur 

in the Basin center. A Pleistocene veneer of glacial deposits blankets nearly all of the 

Lower Peninsula with thicknesses up to 1200 feet (366 meters). Natural outcrops occur in 

numerous areas around the Great Lakes shoreline as well as in a few inland stream and 

river valleys. Quarries expose bedrock in areas where the glacial drift is thin or absent. 

Bedrock (subcrop), structural (depth) and isopach maps can be effectively made for these 

sedimentary rock formations using well data from over 58,000 oil and gas and other types 

of wells.  

 
Silurian Pinnacle Reefs 

Silurian age (Niagaran) pinnacle reefs exist in two well-defined belts in the 

subsurface of the Michigan Basin (Figure 1).  Although pinnacle reefs from the Michigan 

Basin were first discovered in 1885 (Shaver, 1977), most reefs were not found until after 

the development of seismic reflection profiling.  The major period of Niagaran reef 

exploration took place in the 1970’s and 1980’s, but ongoing refinement of 3-D seismic 

acquisition and processing has continued to lead to more discoveries in the Basin, 

especially along the northern (northwestern) trend. To date, there have been over 1100 

reefs identified in the northern and southern trends at depths ranging from 3000 to 7000 

feet (915 to 2135 meters). The height of the reefs are quite variable, with an average of 

about 350 feet (107 m), with taller reefs, up to approximately 700 feet (210 m) high 

found in the northern trend (Figure 4).  The diameter or lateral extent of the reefs is quite 

variable, with smaller but taller reefs in the north and shorter, more broadly developed 

reefs found in the southern trend.  In the northern trend, the aerial distribution of reefs is 

typically between 40-150 acres, with more laterally extensive reef development (100 to 

1000 acres) in the south (Sandomierski, 2007). 
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Cumulative production from Niagaran reefs throughout the Michigan Basin has 

exceeded 450 MMBO and 2 TCF of gas with primary recovery efficiencies of 25-35% 

for the northern trend, and 15-20% for reefs in the southern trend (Brock et al., 1995).  

Secondary recovery programs, primarily gas re-injection and water injection for pressure 

maintenance, started in the early 1970’s.  Brock and others (1995) identified several 

factors for water flood fields that might also affect EOR and sequestration potential in 

northern Niagaran reef trend reservoirs. Overall the reefs have generally good injectivity 

and productivity due to good, albeit highly heterogeneous, reservoir quality and high 

gravity oil (Gill, 1977). Individual fields have limited lateral extent, many with 3 or fewer 

wells, comprised of discrete reservoirs that are encased by impermeable evaporites that 

form regional seals (Figure 4).  

 
 
CO2/Enhanced Oil Recovery Operations and Geological Sequestration Potential of 

northern Niagaran Pinnacle Reefs 
 

Following the initial discoveries in the late 1960’s and ‘70s, Niagaran reef trend 

oil reservoirs in Michigan have produced more than 450 MMBO.  Of this, more than 270 

MMBO has been produced from approximately 2000 wells in the northern reef trend 

fields from reservoirs at depths ranging from 5,000 to 7,000 feet (1525 to 2135m) mostly 

in Grand Traverse, Kalkaska, Manistee, and Otsego counties (Figure 2).   

Otsego County has produced more than 100 MMBO and significant natural gas 

from over 320 wells in approximately 125 fields in the reef trend. Currently only a small 

number of fields in the entire northern reef trend (about 34) are operating under 

secondary or tertiary production (Tinker, 1983), and approximately half of these fields 

have achieved significant secondary water flood oil recovery (Brock, and others, 1995). 

The Chester 18 field in Otsego County is the most successful, having produced more than 

9 MMBO in primary recovery and nearly 4MMBO from secondary water flood.  From 8 

injector and 11 producer wells, this field shows an estimated 13% incremental secondary 

oil recovery (assuming 30% primary recovery factor) as a result of careful field 

operations management (Tinker, 1983). 
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CO2 EOR Programs in northern Niagaran Reefs 
In the mid-1990’s, a CO2/EOR program was developed by Core Energy LLC in 

two adjacent Niagaran reef fields in Otsego County, the Dover 33 and 36 fields, utilizing 

processed CO2 from produced Antrim gas. An additional reef field CO2/EOR project in 

the Dover 35 field has been in place since early 2004 and two others, the Charlton 30/31 

and Charlton 6, are in the initial stages of CO2 injection for EOR (Figure 5).  The Dover 

33 field produced 1.3 MMBO through primary production, with decline rates of around 

15% since 1971 (Figure 6a).  Injection of CO2 for EOR was initiated in 1996, resulting in 

an additional 488,800 BO produced from the field through 2006, or about 38% of 

primary production.  Decline rates over the first 10 years of CO2 injection average around 

30%.  Cumulative oil production in the field is currently about 1.8 MMBO. 

The Dover 36 field was developed in 1973, with primary production of 1.15 

MMBO through 1996 when CO2 injection was initiated (Figure 6b).  Primary production 

declined at an average of 15% over these 23 years.  Enhanced oil production from CO2 

injection through 2006 is 288,000 BO, or about 25% of primary production. Cumulative 

production from the field is around 1.4 MMBO. 

Recovery factors represented by the EOR decline curves from the Dover 33 (12% 

OOIP) and Dover 36 (8% OOIP) fields are the result of only minimal field development 

and management due to the emphasis on utilization of existing exploration and original 

production bore holes to reduce development costs. Production from Dover 36 is 

currently greater than 70 BOPD and increasing.  At present, it appears that EUR from the 

Dover 36 field may be about 34% of primary oil production.  Incremental enhanced oil 

recovery factors that approach primary recovery are theoretically possible given 

application of existing and emerging technologies for more effective reservoir 

characterization and exploitation. 

 
Carbon Sequestration Potential in northern Michigan Niagaran Pinnacle Reef 
Reservoirs 

The association of a substantial anthropogenic CO2 emissions stream from Antrim 

Shale gas processing plants, existing CO2 pipeline and compression infrastructure, and 

significant potential and ongoing enhanced oil recovery activities in the region make this 

area ideal for a synergistic combination of EOR activities and geological sequestration of 
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CO2 (Figures 2 and 7).  Net CO2 utilization factors in the course of CO2/EOR range from 

10-50 mcf/bbl or 0.6 to 3 tons CO2/bbl of oil recovered (Steve Meltzer, pers. comm.). 

Given the estimates of gross CO2 supply presented above, the projected ultimate CO2 

/EOR from Niagaran reef reservoirs (using all Antrim gas processing plants as CO2 

sources) is 25-75 MMBO. Initial estimates of net utilization factors of 6 mcf/bbl for CO2 

/EOR in the two mature flood fields, Dover 33 and 36, suggest that estimates of 

incremental CO2 /EOR using Antrim CO2 may be more optimistic, and as high as 125 

MMBO if applied to the entire northern Niagaran reef trend.  

Approximately 8 BCF of CO2 has been injected into five reefs by Core Energy 

since 1997.  Although some CO2 has been moved from reef to reef, the pipelines and reef 

reservoir system is a closed system, therefore it is assumed that all the CO2 originally 

injected is still contained in one of the reef reservoirs. Therefore about 8 BCF or 465,000 

tons of CO2 has been sequestered during this EOR process. 

Based on the geological CO2 sequestration potential presented above, it is 

possible that virtually all produced Antrim CO2 could be effectively sequestered through 

commercial CO2 /EOR operations. If CO2 emission quotas are invoked in the future for 

the U.S., additional CO2 disposal costs may be added to Antrim gas processing and 

production, currently the 10th most prolific gas play in the continental United States. The 

additional cost of Antrim gas production, due to potential CO2 emissions penalties, may 

place commercial limits on Antrim gas production. Demonstration of the commercial 

viability of CO2 /EOR operations in addition to the sequestration potential available in 

Devonian saline aquifer targets in the proposed project area (Barnes et al., this volume) 

will provide local geological sequestration options that may continue to support 

economic gas production from the Antrim gas play. 

 
 

Reservoir Characterization Issues 
 
 Because of the considerable compartmentalization observed in many of the 

Niagaran reefs, a major issue that needs to be addressed to fully develop these pinnacle 

reef reservoirs for combined EOR/CO2 sequestration programs, is development of a 

better understanding of the lateral and vertical heterogeneity of the reservoir. A number 
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of studies have indicated that the Niagaran pinnacle reefs in the Michigan Basin consist 

of  3-4 major vertical zones, related most often to an overall shallowing of conditions 

associated with reef development over time (e.g. Mantek, 1973; Huh, 1973; Mesolella et 

al. 1974; and Sears and Lucia, 1979).  In many reefs, these 3-4 zones result in 

considerable variability in reservoir quality both laterally and vertically. At the present 

time, the most commonly accepted model for the pinnacle reefs, developed by Huh 

(1973) shows a lower biohermal stage that transitions into an organic framework reef, 

which is then capped by supratidal carbonates and evaporites (Figure 8).  More recent 

work by Sandomierski (2007), however, has shown that the reefs may be much more 

complex than earlier studies have suggested, with multiple stages of episodic growth 

related to relative sea level fluctuations.  These sea level fluctuations, and the associated 

facies variability, result in a complex reservoir architecture that better defines the 

heterogeneity observed in the subsurface.  To fully evaluate the reservoir quality and 

distribution in these reefs therefore, it is often necessary to do a fully integrated reservoir 

characterization analysis including the following: 1) Lithofacies analysis from core and 

wireline logs; 2) Interpretation of depositional environments and subsequent prediction of 

the probable scale and distribution of established geobodies; 3) Interpretation of the 

diagenetic overprint and control on reservoir properties (porosity, permeability and sonic 

velocity), which is often tied to lithofacies and depositional environment; and 4) 

Development of a high resolution sequence stratigraphic framework which will define the 

lateral and vertical reservoir architecture and provide a means to transfer the reservoir 

model to other reefs in the basin.  Of these activities, development of the sequence 

stratigraphic framework may prove to be the most fundamentally important aspect of 

reservoir characterization for both CO2 EOR and sequestration. 

 
Developing a Sequence Stratigraphic Framework 
 Incorporating the data into a sequence stratigraphic framework is critical to 

accurate correlation and mapping of individual facies tracts as it provides additional 

information on the temporal and spatial distribution of facies belts, as well as additional 

data on probable reservoir geometries.  An iterative approach is utilized whereby the 

probable lateral and vertical distribution and geometries of potential reservoir facies is 
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determined by the vertical stacking patterns of facies and cycles within the context of 

dynamic depositional models.  The primary fabric of the rock, which is related to 

depositional environment, and the vertical stacking patterns of the facies provide insight 

into probable primary and secondary porosity and permeability, diagenetic susceptibility, 

and the resulting petrophysical characteristics of potential reservoir and seal facies.  The 

end result is that by developing a sequence stratigraphic framework, the operator can 

enhance the predictability not only of the lithofacies and depositional environments, but 

also the potential for reservoir-quality porosity and permeability, the petrophysical 

character, and the inherent 3-D geometries likely to be found in the subsurface. 

Sequence stratigraphy is the first stratigraphic method that allows us to interpret, 

and subsequently predict, the distribution of reservoir-significant, genetically-related 

chronostratigraphic units.  The recognition of genetically-related packages of strata adds 

a predictive capability to sequence stratigraphy that is lacking in other stratigraphic 

methods.  Through sequence stratigraphy, one is able to recognize different facies that 

coexisted in the depositional environment during a given period of time.  By combining 

depositional models with time, sequence stratigraphy is capable of documenting the 

dynamics in a depositional system and, therefore, the distribution and architecture of 

facies belts, and thus potential reservoirs through time.  These two key aspects, the 

identification of genetically-related sedimentary packages, and the evaluation of 

depositional systems in a dynamic mode, rather than simply as static systems (i.e. "facies 

models") results in the major strength of sequence stratigraphy – i.e. the enhanced 

predictability of sedimentary packages (and therefore probable reservoir geometry), and 

the prediction of the lateral and vertical continuity of strata across a sedimentary basin. 

 Sequence stratigraphic interpretation looks at the distribution of genetically-

similar depositional systems within the context of a dynamic sedimentary system during 

the rise and fall of sea level, unlike standard facies models which consider a static model 

of the system (i.e. a snap-shot in time).  By categorizing and differentiating depositional 

packages that form during rises of sea level (transgressive systems track - TST), from 

those formed during a highstand of sea level (HST) when the carbonate platform is 

flooded, or a lowstand of sea level (LST) when sea level has dropped to expose the 
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platform, one can predict both the facies types, as well as geometries that might be 

expected in both landward (shoreward) or seaward (basinward) directions.  These 

packages of sedimentary deposits are characterized by a hierarchy of sequences deposited 

during different frequencies of sea level change.  The result is that the sedimentary record 

is characterized by larger-scale (seismic scale) sequences of LST-TST-HST deposits that 

are made up of smaller-scale high frequency sequences and cycles (also LST-TST-HST) 

deposited during higher frequency fluctuations in sea level.  Within this hierarchy, these 

repetitive patterns are typically referred to as 3rd and 4th order sequences (seismic or 

formation scale), and 5th order, generally shallowing-upward, cycles.  These 5th order 

cycles are generally only 5-10 m (16-33 ft) thick, but are critically important as they often 

make up the fundamental reservoir (flow) units in carbonates. 

 
Petrophysical Characterization 

One of the major tasks in reservoir characterization and modeling is to translate 

geological information into petrophysical properties that can be extracted from 

geophysical data sets and/or used to populate sedimentary bodies in reservoir modeling 

(e.g. Eberli et al., 2004; Masaferro et al., 2004). This task is particularly challenging in 

carbonates, where cementation and dissolution processes continuously modify the 

mineralogy and pore structure. In extreme cases, this modification can completely reverse 

the original pore distribution so that grains are dissolved to produce pores, while the 

original pore space is filled with cement to form the rock. All these modifications alter 

the physical properties of the rock, thereby resulting in a dynamic relationship between 

depositional facies and diagenesis which is recorded by physical parameters such as 

porosity, permeability and sonic velocity (Grammer et al. 2004).   

 
Sonic velocity tied to pore architecture 

Establishing a predictable connection between pore type and pore architecture to 

measured sonic velocity values will help operators more fully recognize, and ultimately 

predict reservoir type and quality in the subsurface with increased confidence.  Because 

pore geometry is a crucial factor in controlling acoustic properties in carbonates, detailed 

characterization of pore types and pore architecture through petrographic and image 

analysis techniques should provide a tool to predict pore architecture, and therefore 
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permeability of reservoir rocks, through refined analysis and interpretation of the sonic 

log borehole and seismic data.  

Seismic data has proven to be increasingly important in reservoir characterization.  

High-resolution 3-D seismic surveys produce data sets from which amplitude variations 

can be used to interpolate between wells. Reservoir saturation is evaluated with AVO 

(amplitude variation with offset), and time lapse surveys delineate production histories 

and assist in secondary recovery.  Inversions of seismic volumes into a porosity volume 

can be used to predict high porosity intervals.  Because of the degree of uncertainty in 

these geophysical data, accurate interpretation is dependent upon the understanding of the 

rock physics in the imaged sediments (Mavko et al., 1998).  Although sonic velocity is 

largely controlled by porosity, many factors such as clay content and mineralogy may 

complicate the relationship. This is especially true in carbonates where velocity is 

controlled by the combined effect of depositional lithology and several post-depositional 

processes that cause a unique velocity distribution (Wang, 1997, Rafavich et al. 1984; 

Anselmetti and Eberli, 1993).  

The poor relationship between porosity and velocity in carbonates results from the 

ability of carbonates to form cements and certain fabrics with pore types that can enhance 

the elastic properties of the rock without filling all the pore space.  The importance of the 

pore type on the elastic property, and thus the velocity, is illustrated in Figure 9 which 

shows that different pore types form clusters in the velocity-porosity diagram. The 

resulting characteristic pattern observed for every group with the same dominant pore 

type can explain why rocks with equal porosity can have significantly different velocities. 

The most prominent velocity contrasts at equal porosities are measured between coarse 

moldic rocks and rocks with interparticle porosity (Anselmetti and Eberli, 1993).  Moldic 

rocks at 40-50% porosity can have Vp up to 5000 m/s, whereas rocks with similar 

amounts of interparticle porosity or microporosity have velocities that can be lower by 

more than 2500 m/s (Anselmetti and Eberli, 1993).  

The complicated relationship between porosity and velocity that is observed, 

which would also result in a similar porosity-impedance pattern, implies that impedance 

contrasts between two layers can occur even without a porosity change, i.e. solely as a 
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result of different pore types and pore system architecture.  To further complicate 

interpretation, two layers with different porosity values can have very similar velocities 

and may, therefore, exhibit no impedance contrast between them (Grammer et al. 2004). 

As a result, the scattering in a porosity-velocity diagram has negative implications for 

seismic inversion and AVO analyses in carbonates.  The scattering produces an 

uncertainty in seismic inversion that most current inversion techniques are not able to 

reduce. For example, if a single line from a theoretical equation or a best-fit line through 

the data set is used for inversion, all the velocity values above the line will underestimate 

porosity and reserves while all the data points below will overestimate porosity and 

reserves. Similarly, variations in pore type can cause variations in the amplitude with 

offset that might be more pronounced than variations in saturation or bed thickness.  To 

reduce the uncertainties in seismic inversion and AVO analysis, additional study and 

development of new theoretical approaches are needed that show the physical 

relationship between pore types, the rock-frame flexibility, and the elastic behavior in 

carbonates (Eberli et al., 2004).   

 The elastic property and resultant sonic velocity of a porous rock is directly 

related to its rigidity, which in turn is controlled by a variety of parameters such as 

porosity, the pore structure, mineralogy, saturation, and pressure (Eberli et al., 2004). In 

carbonates, many of these parameters are in continuous flux because post-depositional 

dissolution and precipitation processes continuously alter the mineralogy, porosity and 

pore structure. The result is a wide range of sonic velocity in carbonates (Figure 10), in 

which compressional wave velocity (Vp) ranges from 2000 to 6600 m/s and shear wave 

velocity (Vs) from 600 to 3500 m/s (Anselmetti and Eberli, 1997, 1999). Porosity and 

pore-types are the main parameters that control velocity in carbonates, whereby variation 

in pore-type is the main reason for variable velocity at a given porosity. Unlike in 

siliciclastic sediments, mineralogy and compaction have less effect on velocity. The 

velocity-porosity relationship is poorly defined showing a typical scatter so that any kind 

of two-dimensional prediction from velocity to porosity will likely result in large errors 

(Figure 10). 
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Sequence Stratigraphic Framework and Petrophysical Characterization of 
Niagaran Reefs 
 Sandomierski (2007) and Grammer et al. (2006) have shown that the Niagaran 

pinnacle reefs in the northern trend of the Michigan Basin may consist of a tripartite 

hierarchy of sequences, high frequency sequences and cycles that influence lateral and 

vertical distribution of reservoir flow units.  While the overall shallowing-upward trend 

identified by previous workers is consistent throughout the Basin, Sandomierski (2007) 

has shown that some northern trend reefs may develop in multiple cycles related to higher 

frequency fluctuations in relative sea level than has been previously reported.  In this 

model, Sandomierski illustrates that each of the major zones of the reef complex, as 

reported by others, actually consists of a number of shallowing upward cycles that control 

reservoir heterogeneity, especially in a vertical sense (see Figure 11). 

Correlation between porosity and permeability is notoriously difficult in 

carbonate reservoirs (Grammer et al. 2004) and most workers suggest there is no 

correlation between reservoir quality porosity/permeability and facies types within the 

Niagaran pinnacle reefs (e.g. Wylie and Wood, 2005).  More detailed facies analysis on 

these reefs, however, indicates that there may be a distinct correlation between facies 

type and measured porosity and permeability (Figure 12), and that prediction of the 

reservoir quality is therefore enhanced due to the consistency of vertical stacking patterns 

observed in many of the reefs (Sandomierski, 2007).  As illustrated in Figure 11, 

characterizing the distribution of porosity and permeability relative to the sequence 

stratigraphic framework shows that porosity and permeability in the reefs may be 

enhanced near cycle and sequence boundaries as a result of primary facies and 

subsequent diagenetic modification (Grammer et al., 2006 and Sandomierski, 2007). 

Recognition of the sequence stratigraphic framework of the reefs, whether for    

CO2 flood/EOR or CO2 sequestration, is critical because preliminary characterization of 

pore type and pore architecture and comparison with laboratory measured sonic velocities 

indicate that some of the facies found in the Niagaran reefs can produce misleading 

porosity and permeability values from wireline log signatures alone (Grammer et al. 

2006).  Figure 13 illustrates how, as expected, reef facies with high porosity and 

permeability have low sonic velocities, and that those with high porosities but low 
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permeability typically exhibit higher sonic velocity values.  There are some facies types, 

however, that do not follow the predicted pattern and have high porosity and high 

permeability but also high measured sonic velocities. This anomalous pattern is due to the 

pore system architecture, and is typical of facies with large isolated vugs and fractures 

but low matrix permeability as illustrated in Figure 14. 

 
 

Summary 
Anthropogenic CO2 is being geologically sequestered as part of an ongoing EOR 

program in Silurian-aged (Niagaran) pinnacle reefs in the northern part of the Michigan 

Basin. The high volume of regionally available CO2, related to processing of produced 

gas from the coexisting Devonian Antrim play, makes this area a prime candidate for the 

synergistic combination of EOR activities with the sequestration of a major greenhouse 

gas. A detailed understanding of the reservoir architecture and petrophysical signatures of 

various reservoir facies is an important part of a successful CO2/EOR program in these 

reefs.  Because of the considerable lateral and vertical variability observed in many of the 

reefs, optimal placement of injection wells and producers is critical to maximize both the 

produced hydrocarbons, as well as the volume of sequestered CO2 (Figure 15).  To 

accomplish this, these reefs need to be analyzed with an integrated reservoir 

characterization work flow that combines wireline log and rock data with measured 

petrophysical data to maximize the modeling of these reservoirs. 

Whether it is the maximum CO2 injection rate in an injection well or the 

productive rate of oil wells, the success or failure of an EOR project is determined largely 

by the reservoir properties and the proper responses to them.  Toward this end, an 

integrated geophysical-geological-engineering-operational approach would be 

recommended for designing and operating any Niagaran CO2 EOR or sequestration 

project. 

Although detailed core or reservoir description information is often not available, 

or in some cases has not been closely studied prior to start up of some existing projects, it 

would be advisable to incorporate a geologic perspective on all ongoing projects.  This 

will provide a synergistic effect in that a more detailed geologic understanding may aid 
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the other disciplines in interpreting well production, choosing recompletion intervals, 

remaining patient in awaiting well responses or refining OOIP calculations.   

The opposite is also true.  Ongoing, dynamic operational feedback from 

production characteristics of wells, test results from new reservoir intervals, GOR 

behavior of producing wells, pressure buildup responses or indications of reservoir 

compartmentalization will in turn aid the geologist in deepening his interpretation of the 

static reservoir framework based upon logs and rock samples. 

This type of synergistic approach, therefore, is recommended to provide an 

increased understanding and interpretation of data from existing fields while also 

incorporating it with available data for the next potential reservoir to help minimize risk 

in future EOR/sequestration operations. 
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Figure Captions – Appendix 1 

Figure 1. Distribution of Silurian (Niagaran) pinnacle reef trends in the northern and 
southern part of Michigan, rimming the Michigan Basin.  Modified from Michigan DNR 
ESRI ArcMap database. 
 
Figure 2. State-wide well penetrations map showing the northern and southern Niagaran 
reef trend and the Antrim gas play area of northern lower Michigan. 
 
Figure 3. Generalized structure map (top Ordovician Trenton Fm.) showing the elliptical 
Michigan Basin and associated regional structural highs.  The Michigan Basin covers an 
area of approximately 315,000 km2 and was filled with more than 5200 m (17,000 ft.) of 
Paleozoic sediments. 
 
Figure 4.  Schematic cross section extending from the shelf edge into the center of the 
Michigan Basin during Silurian time showing the general distribution of pinnacle reefs 
and capping evaporites. 
 
Figure 5.  Core Energy LLC operations layout in Otsego County, Michigan. 
 
Figure 6 (A and B). Core Energy LLC Niagaran reef fields CO2/EOR production decline 
curves for primary and CO2/EOR production in the Dover 33 and Dover 36 fields.  
 
Figure 7.  Northern Niagaran reef trend fields and cumulative production. Inset shows 
Otsego County production and the location of Antrim gas processing plants. 
 
Figure 8.  Generalized conceptual model of Niagaran pinnacle reef structure with 
associated facies.  Modified from Gill (1977) after Huh (1973). 
 
Figure 9.  Graph of velocity vs. porosity of various pore types of carbonates with an 
exponential best fit curve through the data for reference.  Different pore types cluster in 
the porosity-velocity field, indicating that scattering at equal porosity is caused by the 
specific pore type and its resulting elastic property.  From Grammer et al., 2004, as 
modified from Anselmetti and Eberli, 1993. 
 
Figure 10.  Compressional wave velocity and porosity of pure carbonates compared to the 
time average and Woods equations. A large scattering of velocity values exists at equal 
porosities, and a large range of porosity at a given velocity. This scattering introduces 
uncertainty in seismic inversions.  Modified from Anselmetti and Eberli, 1999. 
 
Figure 11.  Details of a Niagaran reef in the northern reef trend showing facies variability 
(different color) and stacking patterns, as well as the sequence stratigraphic framework 
and hierarchy.  In some reefs, porosity and permeability tend to increase towards the top 
of both large and smaller (higher frequency) cycles. 
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Figure 12.  Porosity and permeability distribution from a northern reef trend pinnacle reef 
illustrating how porosity and permeability values cluster with detailed facies analyses.  
Modified from Sandomierski (2007). 
 
Figure 13.  Laboratory measured porosity vs. permeability and porosity vs. p-wave 
velocity for a Niagaran reef from the northern reef trend.  Most of the data fall within 
expected ranges, with high porosity/high permeability samples exhibiting slow p-wave 
velocities (samples 5 and 15) and high porosity/low permeability samples exhibiting high 
p-wave velocities.  Samples 8 and 9 are anomalous, exhibiting high porosity and 
permeability, but also high p-wave velocities.  This anomaly is the result of large (cm 
scale), but localized vugs and fractures within an overall tight matrix.  See also Figure 14. 
 
Figure 14.  Thin section photomicrographs of anomalous samples in Figure 13.  Sample 8 
(3524 ft.) and Sample 9 (3540 ft.) both exhibit high porosity and permeability values, but 
have anomalously high measured sonic velocities as well.  This is due to the pore system 
architecture, which is characterized by large (mm to cm scale) isolated vugs and fractures 
but with very low matrix porosity. 
 
Figure 15.  Schematic diagram of Niagaran pinnacle reefs illustrating the importance of 
well placement for maximum sweep efficiency for EOR and sequestration of CO2.  
Modified from Gill (1977). 
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APPENDIX  2  
INITIAL SUMMARY OF CURRENTLY AVAILABLE GEOLOGIC DATA  (TASK 2) 

 
Ordovician  - Trenton-Black River Production Analysis Data and Graphs 

(Prairie du Chien, Trempealeau generally not productive) 
 
 

DISCOVERY 
 1884 – Drilling begins on Findlay-Kankakee Arch in Indiana and Ohio 
  Indiana-Lima trend 
   100,000 wells 
   500 MBO Bowling Green Fault Zone (Albion-Scipio analog) 

1917 – SW Ontario – Dover Field 
narrow, elongate, east-west trending dolomitized reservoir          

   with synclinal expression 
   highly variable dolomitization 
   4 separate pools 
   production from 2800-3200’ 
   249 KBO and 12.8 BCF CUM 
 1920 – Dundee Township, Monroe County, Michigan 
   First Trenton oil in Michigan 
   Noncommercial 
 1936 – Deerfield Field, Monroe County Michigan 
   First Commercial Trenton oil in Michigan 
   Along the Lucas-Monroe monocline 
    Extension of Bowling Green Fault zone in Ohio 
   Dolomite lenses in upper 125’ of Trenton Group 
   1959 – 40 wells drilled on 360 acre field 
   1959 – 608 KBO CUM 
 1954 – Northville Field, Washtenaw, Oakland and Wayne Counties, Michigan 
   drilled as gravity prospect 
   faulted anticline 
   production from 
    Dundee (Devonian) 
    Salina-Niagaran (Silurian) 
    Trenton-Black River (Ordivican) 
     Fractured and dolomitized limestones 
     East flank of structure 
     Production is fault associated 
 1955-58 – Albion-Scipio, Calhoun & Hillsdale Counties Michigan  
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1955 - Scipio Discovery Well – Houseknecht No. 1 (Sec 10, T5S-
R3W – Hillsdale Co.) 

    Originally drilled for Devonian gas - Dry 
    Deepened on advice of family psychic friend 
    1/57 - Encountered oil @ 3900’ 
    Comp @ 140 BOPD and “considerable” gas 

9/57 – Confirmation well – Stephens No. 1 (Sec 10, T5S-R3W – 
Hillsdale Co.) 

 Spetacular blowout – hit lost circulation @ 3769’ (235’ into 
Trenton) 

    Shut-in – craters began to form around location 
    Flowed for 25 houras @ 15 MMCFGPD 

11/58 – Albion Discovery well Rosenau No. 1 (Sec 23, T3S-R4W, 
Calhoun Co.) 

    Comp @ 200 BOPD 
Subsequent drilling discovered Pulaski (1959), Barry, 
Sponseller, Van Wert, Cal-Lee Fields – All part of the 
Albion-Scipio Trend 

   1986 - 961 wells drilled, 573 still producing 
1989  –  330 Trenton penetrations in Albion Field 
 631 Trenton penetrations in Scipio Field 
 
12/82 – Stoney Point Field Discovery (sub-parallel to Albion-

Scipio 5 miles east) 
    JEM Casler  No. 1-30 (Sec 30, T4S-R2W, Jackson Co.) 
   Encountered dolomite reservoir 115’ into Trenton @ 3910’  
   Hit lost circulation @ 4248’, casing set 
   Tested @ 2000 BOPD from perfs 4161’-4179’ 
   BHP drop never exceeded 3 psi 
   Put on production @ 220 BOPD (1/83) 
   1983 –1987 – 210 wells drilled around Stoney Point Trend 
   1987 – 75 wells oil and gas producers in Stoney Point Trend 
  

STRATIGRAPHY 
 Trenton – Limestone, brown-gray, fossiliferous with carbonaceous partings 
  Top-of-Trenton Unconformity: 
  Rooney (1966) – southward thinning of Trenton toward Findlay 

arch in Ohio 
  DeHaas and Jones (1984,1989) – Exposure and karsting to produce 

caverns 
Keith (1985) and Gray (1983) – dismissed any top-of-Trenton 

unconformity, considered this surface to be a marine hardground  
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 Black River – Limestone, tan-gray, lithographic; altered to porous dolomite  
 

TRENTON-BLACK RIVER TRAP 
 Deerfield Field 
  Lucas-Monroe monocline (extension of Bowling Green Fault Zone) 
 
 Northville Field 
  Faulted anticline 

Albion-Scipio Trend and Stoney Point Trend 
Stratigraphic traps, limited development of porous, fractured dolomite 

reservoirs within the tight regional Trenton-Black River limestone 
northwest-southeast, left-lateral strike slip faulting (en echelon 
faults) offset 2.5 miles 

Reactivated basement faults, primarily Precambrian, w/ additional 
reactivation during Late Ordovician-Early Silurian?, Late-Silurian-
Early Devonian?, Mississippian? 

Synclinal sag-like compartments related to down-dropping over partly 
extensional, en echelon breaks in the underlying section 

Diagenetic porosity development (dolomitization) near faults 
Sharp contacts between dolomite and regional limestone 
Albion-Scipio, Stoney Point Fields– no anticlinal closure 

    
 

TRENTON-BLACK RIVER SEAL 
(1) Overlying Utica Shale 
(2) Non-porous, finely crystalline, ferron “cap dolomite” at the top of the Trenton 

Group 
(3) Non-dolomitized regional Trenton-Black River limestone  

 (4)  Trace fluorite, sphalerite, barite mineralization observed as late-stage pore 
 fillings 
 
TRENTON-BLACK RIVER CHARACTERISTICS 
 Porosity 
  Vuggy, cavernous 
  Intercrystalline 
  Open fractures, often solution enlarged 
  2-5% normal 
  8-12% present but uncommon 
 
 Permeability 
  Extremely variable (0.01 – 8000 md) 
  Generally low (85% of samples < 10 md) 
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  Porosity/Permeability plots show no uniform relationship 

Capillary Pressure 
 High entry pressures in cap dolomite (confirms seal) 
 High entry pressures in Trenton-Black River = moderate to poor reservoir 

rocks 

Log Signatures 
 Lost circulation – most wells cased and then logged 
 Gamma ray – neutron log typical 
 Neutron porosities range 2-10% (4-6% most common) 

Modern gamma-ray logs, porosity of 26% observed at Utica Shale   
  baseline 

Many wells show < 0% neutron porosity = no cement behind casing 
 Base of zone usually at gas/oil contact 
Thin shale layers acted as flow barriers during dolomitization, so most 

Reservoirs located below persistent shale layers - particularly true 
for “E” Shale (Best developed in northern portion of Albion Field) 
and Black River Shale (Best developed in southern portion of 
Albion Field) 

  Typical log – Figure 18 in Hurley and Budros 
  
Fractures 

  Dominant trend N30W 
Secondary trend east-west (Finnigan’s Finger north of Haskell Unit) 
Open, partially filled, and filled 

Filling = saddle dolomite w/ calcite and anhydrite locally present, 
 trace amounts of MVT minerals 

  
Lost Circulation Zones/Caves 

  Some zones encountered in cap dolomite (seal) 
  30% of wells in Albion-Scipio encountered lost circulation 
  54% of wells in Stoney Point encountered lost circulation 
  Bit drops up to 62’ reported in Albion-Scipio - rare 
  Bit drops up to 8’ reported in Stoney Point – rare 

DeHaas and Jones (1984, 1989) propose cave development related 
to karsting responsible for lost-circulation zones; however, few 
others agree with this relationship due to: 

1.) bit drops rare, most zones solution-enlarged fractures or 
vuggy rock 

2.) Trenton-Black River arbitrarily divided into 4 levels w/ 
no true geological relationship to caves and lost-
circulation zones 
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3.) Synclinal depression across field persists through Early 
Devonian - Cave formation would collapse under 1500’ 
of overburden 

4.) Geochemical data shows reservoir dolomites 
precipitated from hot solutions, some dissolution 
porosity is a late-stage event 

5.) No cave features such as flowstone, cave sediments, 
cave pearls observed 

6.) Core shows no karst features at Trenton/Utica contact – 
rather phosphatic and pyritic mineralization suggest a 
hardground (same as top-of-Trenton contact in Indiana) 

7.) If caves formed during Ordovician – then Utica Shale 
should have filtered down into subsurface and this is 
not observed. 

It appears that Mammoth Cave analog is not correct, rather, lost-
circulation zones were probably developed by fracturing and 
dolomitization in a hydrothermal setting in a burial environment 
(Hurley and Budros)  

  

 

RESERVOIR COMPARTMENTS 
  Determined by: 
   Structure Maps 
   Fluid Contacts 
   Oil and Gas Ratios 
   Bottom-hole Pressures 
   Lateral Well Drilling Data 
  Inter-well Scale shows en echelon synclinal compartments 
  Field Scale shows free gas cap with 150’-200’ oil column 

Pulaski Break – Major non-dolomitized discontinuity of fluid levels  
  between Albion and Scipio Field 

  Stoney Point Field – 4 major compartments based on BHP’s and decline  
   rates 
  Albion Field – 3 major compartments based on BHP’s and decline rates 

Albio, Scipio and Stoney Point Fields – subtle east-west permeability 
barriers due to fracture zones that have undergone mylonitization 
and/or pervasive cementation 

Finnigan’s Finger – east-west production due to incomplete late-stage 
crystallization 

Compartment Boundaries vs. Lost Circulation Zones 
Most lost circulation zones on up-dip (south) side of barriers 

between Group 2 and 4, and Groups 1 and 2 (Figure 27, 
Hurley and Budros) 
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Lost circulation zone decrease southward in Group 2 Suggesting 
 that dolomitizing fluids move upward along east-west fracture 
 zones 

Dolomites also formed on undersides of shales suggesting upward 
fluid flow 

Stoney Point - Dolomites/lost circulation zones concentrated in 
lower part 

 

ORIGIN OF DOLOMITE 
1) Burgess (1960) – Reservoir dolomite was a secondary mineral formed as 

Cambrian and Lower Ordovician water moved up along the fracture zone 
(analogs- Dover and Colchester Fields in Ontario) 

 
2) Ells (1962) – Magnesium-bearing waters ascending through fractures 

responsible to dolomitization (Albion-Scipio Field similar to Mississippi 
Valley-type [MVT] lead-zinc mineral deposits) 

 
3) Beghini and Conroy (1966) – Reservoir formed by pre-Black-River Group 

water that moved through faults and fractures to produce secondary dolomite 
 
4) Buehner and Davis (1968) – Reservoir is epigenetic dolomite related to a fault 

system 
 
5) Shaw (1975) – Described a mineral assemblage (including sphalerite) in 

Albion-Scipio cores similar to MVT mineral deposits. He noted 2-phase fluid 
inclusions in Albion-Scipio dolomites. Pore filling saddle dolomites 
precipitated from fluids at minimum of 80 degree C temperature. He identified 
a liquid-hydrocarbon phase in some fluid inclusions indicating hydrocarbons 
were present at time of cementation. Proposed a model of replacement 
dolomitization and development of intercrystalline porosity during Middle to 
Late Silurian by waters percolating through fractures. Magnesium is sourced 
from underlying Prairie du Chien dolomite or Trempealeau formations. 
Second phase - during Lower to Middle Devonian as hot fluids from basin 
center created cavernous porosity, subsequent collapse, and precipitation of 
MVT assemblage. 

 
6) Ardrey (1978), DeHaas and Jones (1984, 1989) Diagenesis of Trenton-Black 

River in Albion-Scipio area due to exposure (top of Trenton Unconformity). 
Dolomitization is the result of mixing models based on the observation that 
Trenton formation water is less saline than water in shallower horizons; 
therefore, it could not be of hydrothermal origin. 

 
7) Taylor and Sibley (1986) – They identified 3 major types of dolomite (1) 

regional dolomite not associated with Field, (2) Cap dolomite that occurs in 
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the top 40 feet (related to interaction of  the Trenton with Fe-rich fluids 
formed during the de-watering of the overlying Utica Shale) (3) fracture-
related dolomite (formed during deeper burial at approximately 80 degrees C 
based on geochemical results) 

 
8) Budai and Wilson (1986) – They identified various MVT accessory minerals 

including pyrite, calcite, anhydrite, barite, celestite, sphalerite, and fluorite in 
association with saddle dolomite cements. They proposed a hydrothermal 
model with Paleozoic and Precambrian basement rock as sources of iron, 
sulfur, and other trace metals. 

 
9) Hurley and Cumella (1987) – They proposed a model based on carbon, 

oxygen, and strontium isotopes fluid-inclusion geothermometry, brine 
geochemistry and regional hydrologic constraints. Dolomitizing fluids were 
Silurian-Devonian hypersaline sea water that moved down fracture zones to 
meet with hot limestone-dissolving fluids moving up from the basement. 
These fluids mixed in a pattern that is consistent with the distribution of 
dolomite reservoirs and lost-circulation zones. 

 
  

SOURCE ROCK 
 Trenton Black River Sequence is the primary source 
  Shaley layers have TOC’s 20-25 wt% 

Burial history indicates maturity reached in the Carboniferous for the 
central basin area 

TAI (visual kerogen) and pyrolysis (Tmax) indicate thermally maturity for 
oil and gas 

  Utica Shale (above Trenton – traditionally considered source) – TOC’s too 
  low 
 

HYDROCARBONS 
 Paraffinic 
 41-43 degree API 
 0.0.02% Sulfur 
 0.974 cp Viscosity (at reservoir conditions) 
 GOR’s – 400 – 600 scf/STB 
 Cloud Point – 70 degree F 
 Free gas cap at time of discovery 
  

WATER CHARACTERISITCS 
 Connate water dense, CA-rich brine 
 North of Albion - 234,000 mg/L Total dissolved solids 
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 South of Scipio – 196,000 mg/L Total dissolved solids 
 Formation water resistivity approximately 0.03 ohm-m at 104 degree F (BHT) 
  

RECOVERY MECHANISMS 
 Original Recovery 
  Solution-gas drive 
  Gas cap expansion 
  Gravity drainage 
  Limited water drive 
 Current Recovery 
  Stoney Point Field – Pressure is still high (approximately 1100 psig) 
  Albion-Scipio Field 

Pressures down to 100-150 psig 
Gravity drainage now main mechanism 

 Volumetric Calculations meaningless – unable to accurately estimate porosities 
 Material Balance Calculations suggest: 
  Scipio Field – 170 MMB OOIP 
  Albion Field – 120 MMB OOIP 
  Stoney Point Field – Not Available 
 Secondary Recovery 

Pilot Waterflood of the Haskell Unit (near south end Scipio Field) – 
discouraging results 

  Marathon Oil – drilled a number of horizontal wells with considerable  
   promise 

 

EXPLORATION TECHNIQUES 
 Originally - Advice of psychic after dry hole exploring for Devonian gas 

Early - “Trendology” 
  Linear Fracture Zone (northwest – southeast) 
  Top-of-Trenton synclinal sag (up to 60’) recognized in producing wells 
 1960’s - early 70’s – Gravity defined basement fault along Scipio Trend 
  Limited drilling success 

Dolomite porosity mutes density contrast between regional limestone and 
reservoir Dolomite 

 1970’s - Magnetics used to detect basement discontinuities and faults 
   Albion-Scipio does not appear as an individual feature on magnetic maps 
 Recently – Micromagnetic surveys and resistivity profiles have been employed 
   Significance not yet proven 
  Reflection-seismic currently the primary method – Problems: 
  Variable till (overburden) thicknesses produce noise and statics problems 

Secondary porosity (dominant reservoir component) not detected by P- 
   waves 
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Reservoir dolomites (2-5% porosity) have similar acoustic impedance as 
 regional limestones 

  Reservoir geometries hard to image 
  Reflection-seismic Trenton-Black River discoveries based on 
   Disruptions (sags) at Trenton event 
   Internal waveform changes 
   Disruption of lower events 
   Recognition of faults from offsetting events and/or diffractions 

Soil gas geochemistry studies above Scipio field showed no correlation 
between soil gas and producing parts of the field (despite Stoney Point 
Field discovery) 

LANDSAT – effective as a regional tool but interpretations of individual 
anomalies subjective  

Stoney Point Field - Soil-gas geochemistry 

 

DEVELOPMENT 
 Albion-Scipio Trend 
  Initial Maximum Allowable 150 BOPD and/or 200MCFGPD 
  7/1/60 - Maximum Allowable reduced to 125 BOPD and/or 165 MCFGPD 
  7/1/61 - Maximum Allowable reduced to 100 BOPD and/or 150 MCFGPD 

(applies only to wells drilled in center of NW qtr of SE qtr of 40 
acre unit  

  Current – Oil allowable lifted, gas allowable 150 MCFGPD 
  Developed on 20 acre spacing 
  Decline rate 15% per year 

Stoney Point Trend 
  Maximum Allowable 150 BOPD and/or 175 MCFGPD 
  Drilling window maximum is 10 acres per 40-acre unit 
  Developed on 40 acre spacing 
  Decline rate 15% per year 
 Subsurfacing mapping useful as development tool 
  % dolomite in Trenton-Black River sequence 
  Hydrocarbon shows in Trenton-Black River sequence 

Isopach Traverse Limestone (Devonian) to top of Salina Group (Silurian) 
showing thick of synclinal sag over productive part of field 
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Trenton – Black River Trend:  Production Analysis  
 

General Observations 
1. Production data for the Trenton – Black River trend varies in quality and 

completeness. The State of Michigan did not require complete production data 
reporting until xxx. Digital data bases developed by the state beginning in 1981 
generally do not include data before that date or data before and after that date 
may be cataloged in different groupings. 

 
2. Production data are often grouped by lease hold and not necessarily by either 

individual well or by geological producing unit (e.g. – Albion Scipio 1 – 7 South 
Units). There is no means to separate the data and recalculate results based upon 
more geologically based, flow-unit parameters.  

 
3. Initial potential data was never recorded for most wells in the trend. Only long-

term and/or average data are available in most instances. Data is often duplicated 
as leasehold results and trend summaries. However, it is seldom clear as to 
exactly what data are included.    

 
4. The State of Michigan imposes a 200 barrel-per-day maximum allowable on 

production which often distorts the true capabilities/performance of the affected 
wells. 

 
5. During the beginning stages of field development, many operators produced the 

oil and flared the gas. Complete gas production data were only recorded during 
the later stages of field development as oil production declined and the gas cap 
was blown down to extend the economic life of the field. 

 
6. Graphs of “Cumulative Oil and Cumulative Gas Production by Field” show an 

expected exponential decline in field size. “Gaps” in the curve are “filled” by 
“trend data” which give a distorted view as to the particular field sizes discovered. 
When these trends are omitted (difficult to accurately identify) a pattern emerges 
showing a few very large fields discovered (Albion-Scipio Trend), a large number 
of 1-5 well size fields discovered, and only a few intermediate field sizes 
discovered. Dr. Christopher Swezey of the U.S.G.S. interprets this to mean that 
there are still intermediate sized Trenton-Black River fields to be found. He 
calculates that as much as 723 million barrels of oil, 2,002 billion cubic feet of 
gas, and 112 million barrels of NGL’s may yet remain. The play is not resource 
limited as much as it is technology limited. It represents the greatest single 
remaining potential reserves for a particular reservoir in the State of Michigan.  

 
7. Most fields have produced more oil than gas. However, there are 5 fields in the 

trend that have produced more gas than oil. These are: Albion-Pulaski-Scipio 
Trend, Albion-Scipio 3 South, Albion-Scipio 4 South, Albion-Scipio 5 South, and 
Northville.  
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8. Only Stoney Point field has produced more brine (bbls) then gas (BOE).  

 
9. Cumulative Oil Production can be divided into approximately 5 main groups:  

a.) >10,000,000 bbls 
Albion-Pulaski-Scipio Trend, Scipio-Fayette-Moscow, Stoney Point, 
Pulaski-Homer Twp, Albion Twp. 

b.) 500,000 – 6,000,000 bbls 
Adams Twp, Sheridan Twp, Lee Twp, Hanover, Albion-Scipio 6 
South, Albion-Pulaski-Scipio Trend, Albion-Scipio 5 South, 
Northville, Dearfield, Albion-Scipio 3 South, Albion-Scipio 4 South 

c.) 5,000 – 50,000 bbls 
Albion-Scipio 2 South, Reading Section 25, Albion-Scipio 1 South, 
Northville?, Henrietta, Tekonsha, Lee Section 34 (Black River), 
Freedom, Reading, Medina, Springport, Green Oak 

d.) 500 – 5,000 bbls 
Rattle Run, Summerfield, Albion-Scipio 7 South, Huron, Hanover 
Section 13, Summerfield Section 07, Macon Creek, Summerfield 
Section 19, Blissfield, New Boston,  Newburg, Cadmus, Olivet, 
Sumpter 

e.) 0 - 60 bbls 
Ridgeway Section 01, Winterfield 

 
10. Cumulative Gas Production can be divided into approximately 5 groups: 

a.) >100,000,000 MCF 
Albion-Pulaski-Scipio Trend 

b.) 6,000,000 – 100,000,000 MCF  
Scipio-Fayette-Moscow Trend, Pulaski-Homer Twp, Stoney Point, 
Albion Twp, Northville, Albion Scipio 4 South 

c.) 1,000,000 – 6,000,00 MCF 
Adams Twp, Albion Scipio 5 South, Albion-Pulaski-Scipio Trend, 
Albion Scipio 3 South, Reading Section 3 South, Reading Section 
25, Albion Scipio 1 South, Albion Scipio 6 South, Sheridan Twp 

d.) 300,000 – 1,000,000 MCF 
Albion Scipio 2 South, Hanover, Lee Section 34 (Black River), 
Lee Twp 

e.) 50,000 – 300,000 MCF 
Cadmus, Winterfield, Green Oak, Blissfield  

 
11. There is little correlation between “Years of Production” vs. “Cumulative Oil 

Production by Field” or “Year of Discovery.” Longest producing fields (most 
years of production) range from discovery dates of 1935 (Deerfield), 1947 (New 
Boston),  1954 (Northville), 1961Springport, and 1967 (Green Oak). However, 
these fields do not reflect the greatest cumulative oil totals. Instead, 
accumulations from these fields are similar to those from fields having produced 
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for the fewest years (Reading Section 25 – disc 1999, Henrietta – disc 1979, 
Albion-Pulaski-Scipio Trend – disc 1981). Fields reflecting “Maximum  Oil 
Accumulation” are associated with “Years of Production” intermediate in range 
(Scipio-Fayette-Moscow Trend – disc 1957, Albion Twp – disc 1959, Albion-
Pulaski-Scipio Trend – disc 1960, Pulaski-Homer Twp – disc 1959, Stoney Point 
– disc 1984, Albio-Scipio6 South – disc 1982, Adams Twp – disc 1967, Sheridan 
Twp – disc 1967). The lack of correlation between “Years of Production,” 
“Cumulative Oil Production by Year” and “Year of Discovery” leads one to 
speculate that fields of varying reservoir types and production capabilities, 
overprinted by the learning curve of discovery, have been mixed into a single data 
base. Approximately four groups can be identified within this data base: 

 
(1) > 30 years of production; Deerfield, Northville, Springport, New Boston, 
 
(2) 20 – 30 years of production; Green Oak, Freedom, Ridgeway Section 01, 
Summerfield, Albion-Scipio 1 South, Albion Scipio 3 South, Hanover, Scipio-
Fayette-Moscow, Tekonsha, Albion Twp, Albion-Pulaski-Scipio Trend, Macon 
Creek, Medina, Pulaski-Homer Twp, Stoney Point, 
 
(3) 10 – 20 years of production;  Blissfield, Lee Section 34 (Black River), Albion 
Scipio 2 South, Albion Scipio 5 South, Cadmus, Albion Scipio 6 South, 
Northville, Albion Scipio 4 South, Adams Twp, Lee Twp, Olivet, Sheridan 
 
(4) 0 – 10 years of production; Reading, Albion Scipio 7 South, Summerfield 
Section 19, Winterfield, Rattle Run, Reading Section 25, Summerfield Section 07, 
Huron, Henrietta, Newburg, Sumpter, Albion-Pulaski-Scipio Trend, Hanover.  
 

12. There appear to be four distinct groups of “Field Size” in comparison to “Year 
Discovered.”  

 
(1) 1935 -1960; Deerfield, Sumpter, Huron, New Boston, Freedom, Northville, 

Ridgeway Section 01, Scipio-Fayette-Moscow Twp, Summerfield, Albion Twp, 
Hanover, Pulaski-Homer Twp, Tekonsha, Albion-Pulaski-Scipio Trend,  

 
(2) 1960 – 1967; Macon Creek, Medina, Springport, Blissfield, Adams Twp, 

Green Oak, Lee Twp, Sheridan Twp,  
 
(3) 1969 – 1984; Olivet,, Reading, Henrietta, Newburg, Albion Scipio 1 – 6 

South, Northville (Gas Storage), Albion Scipio 7 South, Stoney Point, 
  
(4) 1985 – 1999; Winterfield, Cadmus, Lee Section 34 (Black River), Rattle Run, 

Hanover Section 13, Summerfield Section 07, Summerfield Section 19, Reading 
Section 25. Each group displays a general trend of increasing field size through time. 
This “re-setting of the curve” may reflect discovery of differing field types followed 
by increasing knowledge of how to explore and develop these new types. 
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13. Nearly one-half of the Trenton – Black River fields produce only oil (Albion-

Scipio 7 South, Deerfield, Freedom, Henrietta, Macon Creek, Medina, New 
Boston, Newburg, Northville, Olivet, Reading, Ridgeway Section 01, Springport, 
Summerfield, Summerfield Section 07, Summerfield Section 19, Tekonsha, 
Hanover Section 13, Huron, Rattle Run, Sumpter) . 

 
14. The other half of the Trenton – Black River fields produce both oil and gas 

(Albion-Pulaski-Scipio Trend, Scipio-Fayette-Moscow, Pulaski-Homer Twp, 
Stoney Point, Albion Twp, Northville, Albion-Scipio 1-6 South, Adams Twp, 
Reading Section 28, Sheridan Twp, Hanover, Lee Section 34 (Black River), Lee 
Twp, Cadmus, Winterfield, Green Oak, Blissfield) . 

 
15. Winterfield is the only field in the trend to produce only gas. This is primarily a 

Dundee Formation field producing both oil and gas from that interval. Only one 
well in the field penetrates the deeper Trenton – Black River Formations 
producing gas from those intervals. 

 
Current Activity  
Data from the first 4 years of the Albion – Scipio field which are contained in the Albion 
– Scipio Field Folio Series is currently being entered into a computer data base. These 
data are lease based and reported upon a monthly schedule. It is thought that these data 
more accurately reflect initial production conditions and are more consistently reported. 
These data will be analyzed when data entry is complete. 
 

1. Fields from each category defined above will be correlated to the newly 
developed  index covering data quantity, quality and availability for each field. 
Fields in each category ranking high in data coverage will be selected for detailed 
study.   
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Representative Well Summaries (Trenton/Black River) 
 

HOWARD DUNLAP No. 1 
James O. Kelly 

Drilling Contractor – Union Rotary Corporation (Rotary) 
 
 
Field:   Exploratory Extension - Albion field – Oil & Gas – Black River 
API #:   21-025-22108-00-00  
Permit #:  22108 
Location: 
  Township:  Lee 
  County:  Calhoun 
  Well:   SE NW SE  Sec. 22, T1S – R5W 
   990’ from north line, 990’ from west line of quarter section 
Datum:  GL  -  elevation 930’ 
Logging Datum: RKB – 943’ (3’ above rig floor 940’) 
Spud:   01/31/1960 
Completed:  03/03/1960 
Cored:  No Cores 
DST:   DST #1 

4,230’ – 4,320’ (top Trenton formation), open 1 hr, gas to 
surface in 17 min, recovered 40’ mud, ICIP – 1,053#, 
FCIP – 1,256# 

   DST #2 
4,414’ – 4,474’ (base Trenton formation), open 1 ½ hrs, gas 
to surface in 2 min, est. 5.5 MCFGPD, blew down to 1,800 
MCFGPD, ICIP – 1,725#, FCIP – 1,055#  

Csg:   8 5/8” @ 955’ w/ 300 sxs cmt 
   5 ½” @ 4,580’   w/ 230 sxs cmt 
TD:   Drlr  -  4,910’ (St. Peter?, Prairie Du Chien formation) 
   Lgr   -  4,912’ (St. Peter?, Prairie Du Chien formation) 
PBTD:   4,660’ (Black River formation) 
Perfs:   04/20/1960 

Perfs 4,457’ – 4,463’ 
03/15/1960 - sand frac w/ 2,000 gals acid plus 500 bbls oil 
& 5,000# sand 
Perfs 4,488’ – 4,498’ w/ 40 shots, treated w/ 5,500 gals 
acid 

06/21/1960 - sqzd all perfs, CO to 4,660’, 
Perfd 4,580’ – 4,660’, treated with 10,000 gals acid and 
5,000 gals water 
Perfd 4,600’ – 4,636’, Vibra-fracd w/ #10 charges 

IP:   “Excessive gas” – restricted (State proration) to 16 BOPD 
Current Status: 09/28/1961 – P&A 
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BLAIR No. 1 
Turner Petroleum Company and McClure Oil Company 

Harry Roberts - Rotary 0’ – 3,680’ 
McClure Drilling Corporation – Cable Tool 3,680’ – 3,826’ 

 
Field:   Exploratory Extension – Oil – Trenton formation 

Opened the “Pulaski field” portion of the trend between the Albion 
and Scipio field areas 

API #:   21-  
Permit #:  21273 
Deepened Permits 10/22/1963 - #1454 Projected TD 3,900’ 

05/15/1969 - #1599 Projected TD 3,920’ 
Location: 
  Township:  Pulaski 
  County:  Jackson 
  Well:   SE NW SW  Sec. 20, T4S - R3W 
   990’ from north line, 990’ from west line or quarter section 
Datum:  GL  -  elevation 1,008’ 
Logging Datum: Rotary Table (RT) – 1,012.5’ (4.5’ above GL) 
Spud:   11/26/1958 
Completed:  01/09/1959 
Cored:  No Cores 
Csg:   8 5/8” @ 224’ w/ 200 sxs cmt 
   5 ½” @ 3,680’   w/ 25 sxs cmt 
TD:   Drlr  -  3,826’ (in Trenton formation) 
   Lgr   -  3,832’ (in Trenton formation) 
Shows:  3,766’ – 3,768’ - Show of gas (40 MCFG)  
   3,777’ - Gas (gauged 70 MCFG) 
   3,795’ - Gas (gauged 100 MCFG) 
   3,810’ – 3,815’ - Oil in bailer 
   3,815’ – 3,820’  - Spray of Oil (est. 700 MCFG & 25-30 BOPD) 
   3,820’ – 3,826’ - Increase Oil and Gas – Well Flowing to Pits 
Contacts:  Gas/Oil – 3,766’ 
   Oil/Water – 3,810’ 
Original Perfs: Open Hole Completion (Top Trenton formation) 
IP:   Before acid – FARO 160 BOPD restricted (State proation) 
Deepened TD: 12/13/1963 – 3,910’ 

Treated open hole 3,844’ – 3,890’ 
    Treated open hole 3,815’ – 3,832’ 
    8/23/1963 - 3,000 gals 15% HCl 

12/13/1963 – 3,000 gals 15% HCl 
Deepened TD:  05/10/1969 – 05/16/1969 - 3,826’ 
IP:    6/18/1969 - 500 gals mud acid – IPP 115 BOPD 
Current Status: 11/27/1963 – Reworked; McClure Oil Company interest to Patrick 

Petroleum Company  09/25/1991 – P&A complete 
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ORVILLE HERGERT #2 

McClure Oil Company 
 
 
Field:   Albion Scipio 5 South 
API #:   21-059-22196-00-00  
Permit #:  22196 
Location: 
  Township:  Scipio 
  County:  Hillsdale 
  Well:   SE SW SE  Sec. 25, T5S - R3W 
   330’ north of section south line, 990’ east of section west line 
Datum:  GL  -  elevation 1182.6’ 
Logging Datum: RKB - 1192’ (9.4’ above GL) 
Spud:   03/05/1960 
Completed:  04/25/1960 
Cored:  Core #1 – 3,892’-3,938’   (Recovered 44.33’) 
   Core #2 - 3,938.5’-3,988’ (Recovered 49.5’) 
   Core #3 – 3,988’-4,038’   (Recovered 51’) 
   Core #4 – 4,038’-4,060’   (Recovered 24’) 
    Bleed green oil – no fractures 
Csg:   9 5/8” @ 1010’ w/ 400 sxs cmt 
   5 ½” @ 4021’   w/ 175 sxs cmt 
TD:   Drlr  -  4060’ (Black River formation) 
   Lgr   -  4058’ (Black River formation) 
Perfs:   Open Hole Completion 4021’ – 4060’ (Black River formation) 
IP:   After acid – FARO 51 BO in 3 hours on 4/64” choke; 

pinched flow to 150BOPD; 5/03/60 Treated 4021 – 4060’ 
w/ 500 Mud Acid + 2500 Regular Acid 

Current Status: Abandoned 08/07/90 
05/02/91 – Approved P&A 
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J.C. TURNER #1 
Continental Oil Company 

Drilling Contractor; Original Hole – Parker Drilling Company 
Drilling Contractor; Well Deepened – E.F. Moran (Rotary) 

 
 
Field:   Exploratory – First Trenton Test in Area 
API #:   21-025-09261-00-00  
Permit #:  9261 
Location: 
  Township:  Albion 
  County:  Calhoun 
  Well:   NE SE NE Sec. 15, T3S R4W 
   990’ from south line, 330’ from east line of quarter section 
Datum:  GL  -  elevation 1,022’ 
Logging Datum: DB – 1,032’ 6” (10’ 6” above ground level) 
Spud:   12/05/1941 
Completed:  12/27/1941 
Deepened:  05/04/1943 
Re-Completed: 06/18/1943 
Cored:  Core #1 – No Record 
   Top Devonian Traverse Limestone – 1,600’ 
   Core #2 – 1,625’ – 1,632; (Recoverd 7’ – Saved 2’6”) 
   Core #3 – 1,633’ – 1,640’ (Recovered 6’ – Saved 1’) 
   Core #4 – 1,640’ – 1,643’ (Recovered 1’) 
   Core #5 – 1,644’ – 1,6462’ (Recovered 16’) 

Core #6 – 1,662’ – 1,676’ (Recovered 14’) 
Core #7 – 1,6476’ – 1,694’ (Recovered 15’3”) 
Core #8 – 1,694’ – 1,712’ (Recovered 18’) 
Core #9 – 1,712’ – 1,730’ (Recovered 17’9”) 
Core #10 – 1,730’ – 1,748’ (Recovered 16.33’) 
Top Dundee formation– 1,800’ 
Core #11 – 1,800’ – 1,805’ (Recovered 4’2” –  

Drld 1,748’ – 1,800’) 
   Core #12 – 1,805’ – 1,810’ (Recovered 5’) 
   Core #13 – 1,810’ – 1,828’ (Recovered 17’9” – Saved 17’1”) 
   Core #14 – 1,841’ – 1,859’ (Recovered 17’4” – Saved 16’8”) 
   Core #15 – 2,170’ – 2,188’ (Recovered 17’ -  

Drld 1,859’ – 2,170’) 
   Top Bass Island formation – 2,182’ 
   Core #16 – 2,188’ – 2,206’ (Recovered 16’6” – Saved 14’10”) 
   Top Salina formation – 2,233’ 
   Top Niagaran formation 2,687’ (?) 

Core #17 – 2,845’ – 2,881’ (Recovered 10’10” – Saved 8’10”) 
   Core #18 - 2,863’ – 2,881’ (Recovered 5’8”) 
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   Core #19 – 23 – No Cores Labeled with these numbers 
   Top Ordovician Cincinnatian Series – 3,326’ 
   Top Ordovician Utica Shale – 3,662’ 
   Top Ordovician Trenton formation– 3,952’ 
   Core # 24 – 3,948’ – 3,966’ (Recovered 16’6” – Saved 14’7”) 
    3,950’ – 3,964’ - Saturated, Bleeding oil 

3,959’ – 3,964’ - Best Porosity 
   Core #25 – 3,966’ – 3,979’ (Examined 12’6”) 
   Core #27 – 3,997’ – 4,015’ (Examined 17’) 
   Core #28 – 4,015’ -4,033’ (Examined 16’8”) 
Csg:   13” @ 395’ 
   8 1/4” @ 1,582’ 
Original TD:  12/27/1941 - 1,609’ 
Deepened TD: Permit # 365 – 02/17/1943 – to 4,000’ 

Permit # 374 – 04/30/1943 – to 4,500’ 
05/04/1943 - Drlr  -  4,286’ 

   05/04/1943 - Lgr –  4,281’ 
Perfs:   Traverse Limestone Gas Pay: 
    1,600’ – 1,605’ 3-5,000,000 CFG 
    1,605’   3,004,000 CFG 
    1,607.5’ -  5,000,000 CFG 
    1,609’ -  10,500,000 CFG 
IP: Trenton formation Dry, Plugged Back to Traverse Limestone 

1,600’ – 1,605’ -  FARO 10,200,000 CFGPD 
Current Status: 04/04/43 – Dry Hole (Trenton) 
   07/09/1943 - P&A – Traverse Limestone (Gas)  
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CASLER # 5-30 
JEM Petroleum Corporation 

Drilling Contractor - James Bigard Drilling Co. 
 
 
Field:   Stoney Point 
API #:   21-075-36587-00-00  
Permit #:  36587 
Location: 
  Township:  Hanover 
  County:  Jackson 
  Well:   SE NW SE  Sec. 30, T4S – R2W 
   981’ from north line, 986’ from west line of quarter section 
Datum:  GL  -  1,105’ elevation  
Logging Datum: RKB -  1,117.6’ (12.6’ above GL; 1,115.6’ Rig Floor) 
Spud:   10/25/83 
Completed:  Drlg - 11/05/83, Well – 11/19/83 
Cored:  Core #1  -  4,081’ – 4,088.4’ (Cut 9’, Recovered 7.4’) 
   Core #2  -  4,097’ – 4,118’ (Cut 21’, Recovered 21’) 
   Core #3  -  4,118’ – 4,134’ (Cut 16’, Recovered 16’) 
   Core #4  -  4,134’ – 4,166’ (Cut 32’, Recovered 32’) 
   Core #5  -  4,166’ – 4,190.4’ (Cut 24’, Recovered 24.4?) 
Lost Circulation 4,235’ – drilled blind to 4,256’(TD) 
Csg:   11 ¾” @ 397’ w/ 150 sxs cmt 
   8 5/8” @ 2,065 w/ 150 sxs cmt 
   5 ½” @ 4,256’ w/ 350 sxs cmt 
TD:   Drlr  - 4,256’ (Black River formation) 
Perfs:   11/15/83  -  4,207’- 4,212’ (Black River formation) w/ 4 spf 
IP: FARO 220 BOPD; 45o API grav; 89.6 MCFGPD; 

H2S – 67 grains/100 cu. ft.; BHP 465 psi @ 4,209’ 
Current Status: 6/19/2001 – Shut In 

12/11/2002 – Permitee Changed to: 
Whiting Oil and Gas Corporation 
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HAROLD I. MANN  #6 
The Ohio Oil Co.  

Marathon Oil Co. (MOC) 
Drilling Contractor – McClure Drilling Corp. (Rotary) 

 
 
Field:   Albion Scipio 5 South 
API #:   21-059-22381-00-00  
Permit #:  22381 
Deepen Permit #: 1544 
Location: 
  Township:  Scipio 
  County:  Hillsdale 
  Well:   SE NW NE Sec. 23, T5S - R3W 
   990’ from north line, 990’ from west line of quarter section 
Datum:  GL  -  elevation 1173.6’ 
Logging Datum: RKB – 1,175’ 
Spud:   5/12/1960 
Completed:  6/01/1960 
Cored:  Core #1 – 3,939’ – 3,965’ (Recovered 26’) 
   Core #2 – 3,966’ – 3,993’ (Recovered 27’) 
   Core #3 – 3,994’ – 4,035’ (Recovered 40.5’) 
   Core #4 -  4,036’ – 4,088’ (Recovered 50.6’) 
Core/Log Depth Core #1, 2, 3  -  4.5’ shallow to  log 

Core #4  -  6.5’ shallow to log  
Csg:   9 5/8” @ 1,010’ w/ 625 sxs cmt 
   5 ½”   @ 4,150’   w/ 250 sxs cmt 
TD:   Drlr. - 4,150, Lggr -  4,154’ (Black River Formation) 
Completion: 6/03/1960 - Perfd 4,071’ – 4,085’ w/ 57 shots 
 Pre-acid FARO 250 BOPD 

Acidized w/ 500 gals MCA and 3,500 gals 15% RA 
 After Acid FARO 125 BOPD restricted 
Current Status: P&A – 8/10/94 
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PAUL TAYLOR 1-35 
Marathon Oil Company 

Drilling Contractor – Bigard Drilling Co. (Rotary)  
 
 
Field:   Exploratory – Albion Area 
API #:   21-023-31348-00-00  
Permit #:  31348 
Location: 
  Township:  Quincy 
  County:  Branch 
  Well:   NW NE NE  Section 35, T6S, R5W 
   330’ from north line, 920’ from east line of quarter section 
Datum:  GL  -  elevation 1,030.2’ 
Logging Datum: RKB – 1,042.9’ (12.7’ above GL) 
Spud:   11/28/1976 
Completed:  12/10/1976 
Cored:  Core #1 – 3,090’ – 3,101’ 

(Core Barrel Jammed - Cut 11’, Recovered 8”) 
   Core #2 – 3,101’ – 3,159’ 

(Cut 58’, Recovered 59.9’- Picked-up 1.9’ of Core #1) 
   Core #3 – 3,361’ – 3,420’   (Cut 59’, Recovered 59’) 
Csg:   11 ¾” @ 320’ w/ 245 sxs cmt 

8 5/8” @ 1,525’ w/ 165 sxs cmt (Pulled 660’) 
TD:   Drlr  -  3,730’’ (Prairie Du Chien formation) 
   Lgr   -  3,729’ (Prairie Du Chien formation) 
Perfs:   Dry Hole – No Perfs 
IP: 12/10/1976 – Well plugged; 50 sxs cmt @ 3,000’, 50 sxs cmt @ 

1,900’, cut 8 5/8” csg and pulled, 50 sxs cmt @ 690’, 75 sxs cmt @ 
325’, 10 sxs cmt @ 30’, Cut csg 3’ below GL, welded steel plate 
on top, filled rat hole to surface 

Current Status: D&A – Plugged 12/10/1976 
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W.F. and Florence M. Rosenau No. 1 
Tom Mask and McClure Oil Company 

Harry Roberts (Rotary 0’ – 3,955’) 
McClure Oil Company (Cable Tool 3,955’ – 4,084’) 

McClure Oil Company (Rotary 4,084’ – 4,329’) 
 
Field:   Albion Field – Oil – Black River Formation Discovery 
API #:   21-025-21195-00-00  
Permit #:  21195 
Location: 
  Township:  Albion 
  County:  Calhoun 
  Well:   NW NW SW Sec. 23, T3S, R4W 
   330’ from north line, 330’ from west line of quarter section 
Datum:  GL  -  986.5’ 
Logging Datum: RKB – 991.3’ 
Spud:   10/04/1958 
Completed:  12/15/1958 
Cored:  Core #1 – 3,892’-3,938’   (Recovered 44.33’) 
   Core #2 - 3,938.5’-3,988’ (Recovered 49.5’) 
   Core #3 – 3,988’-4,038’   (Recovered 51’) 
   Core #4 – 4,038’-4,060’   (Recovered 24’) 
Csg:   8 5/8” @ 368’ w/ 155 sxs cmt 
   5 ½” @ 3,902’ w/ 35 sxs cmt 
   4” lnr (452’) @ 4,300’ w/ 120 sxs cmt 
TD:   Drlr  -  4,314’ (Black River formation) 
   Lgr   -  4,324’ (Black River formation) 
Lost Circulation: 3,930’ – 3,940’ 
   4,085’- lost tools w/ 2,800 MCF & spray of oil 
Perfs:   01/24/1959 – Perfd 4,218’ – 4,238’ w/ 101 shots 

01/25/1959 – Treated w/ 500 gals mud acid 
01/28/1959 – Perfd 4,172’ – 4,192’ w/ 101 shots 
01/28/1959 – Treated perfs 4,172’ – 4,238’ w/ 250 gals mud acid 
and 1,500 gals regular acid 

IP: Before Acid – FARO 168 BOPD 
After Acid FARO 45 BOPD restricted (State proration) 

Reworked:  10/11/1960 – 10/25/1960 
Sqzd all perfs, perfd 4,182’ – 4,192’ w/ 40 shots, treated w/ 1,000 
gals mud acid, 10,000 gals regular acid, IPP 75 BOPD, no water, 
State allowable 40 BOPD  

Current Status: 02/23/1961 – Reworked 
05/03/1961 – Plugged Back 
07/10/1961 - Converted to BDW (Pay Zone Abandoned – Plugged 
back to Niagaran formation for brine diposal)  

 09/09/1987 – P&A Approved 
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VIRGIL W. SKINNER #1 
The Ohio Oil Co.  

Marathon Oil Co. (MOC) 
 
 
Field:   Albion Scipio 
API #:     
Permit #:  21833 
Deepen Permit #: 1544 
Location: 
  Township:  Scipio 
  County:  Hillsdale 
  Well:   NW SE SE  Sec. 23, T5S - R3W 
   1021’ from south line, 990’ from east line of  quarter section 
Datum:  GL  -  elevation 1112.2’ (1113’) 
Logging Datum: RKB – 1124.2’ (1125’ - 12’ above GL) 
Spud:   09/13/1959 
Completed:  10/08/1959 (Original Hole) 
Cored:  Core #1 – 3,875’ – 3,898’ (Recovered 21.6’) 
   Core #2 – 3,898’ – 3945.5’ (Recovered 44.7’) 
   Core #3 – 3,945.5’ – 4,003’   (Recovered ?) 
Csg:   10 ¾” @ 730’ w/ 480 sxs cmt 
   7”       @ 3,592; w/ 100 sxs cmt 
   4 ½” lnr   @ 4,001’   w/ 85 sxs cmt 
Original TD:  Drlr  -  4,003’ (Trenton formation ?) 
Original Perfs: 10/13/1959   3,912’ – 3,928’ w/ 64 holes (Trenton formation ?) 
   10/14/1959 - Treated perfs 3,912’ – 3,928’ w/ 1,500 gals. acid 
   After acid – FARO 218 BO 
DST #1 3,900’ – 3,950’(2) GS in 8 min, Steady blow throughout, Rec. 1 ½ 

bbls OGCM, IBHP 1540# in ½ hr., FBHP 1584# in ½ hr., Rec. 
335’ oil and 325’ O&GCM 

DST #2 3,950’ – 4,000’ (1/2) GS in 2 min., Steady blow, Shut-in 1 hr., 
Rec. 225’ GCM, ICIP 1560#, FCIP 1560#, IBHP 1872#, IFP 52#, 
FFP 124#, FBHP 1872# in ½ HR. 

Spud Re-complete: 10/10/1966 
Final TD  4,025’   
Re-completed: 10/18/1966 (Deepened Hole)  
Completion: 10/14/1959 – perfd 3,912’ – 3,928’ w/ 64 shots 

11/22/1966, Squeezed perfs 3,912’ – 3,928 w/ 200 sxs cmt, 
deepened hole to 4,025’,  Acidized open hole 4003’ – 4,025’ w/ 
2000 gals. acid, IP (permitted) 110 BOPD, Completed open hole 

Current Status: 08/05/1994 – Approved P&A 
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ROBERT SPONSELLER #1 
C.J. Simpson 

Drilling Contractor – D.B. Lesh Drilling Co. (Rotary) 
 
 
Field: Exploratory Extension – Oil – Base of Black River formation 

Opened “North Adams field” (southern extension of Scipio field) 
API #:     
Permit #:  22180 
Location: 
  Township:  Adams 
  County:  Hillsdale 
  Well:   NW NW NW  Sec. 4, T6S – R2W 
   330’ from north line, 330’ from east line or quarter section 
Datum:  GL  -  elevation 1,171’  
Logging Datum: RKB – 1,181.8’ 
Spud:   03/27/1960 
Completed:  04/15/1960 
Cored:  No Cores 
Csg:   8 5/8” @ 1,001’ w/ 450 sxs cmt 
   5 ½” @ 4,078’   w/ 150 sxs cmt 
TD: Drlr  -  4,099’ (Base of Black River formation – Pipe strap 

correction at TD – 4,099’ drlg depth = 4,087’ csg depth) 
   Lgr   -  ’ ??      (Base of Black River formation) 
Bit Drop: 4,098’ – 4,099’ 

Kelly dropped free for 6”, completely lost circ of drlg fluid, no 
blowback to surface, pumped fresh water into lost circ zone at rate 
of 3 bbls per min, well remained dead, ran 5 ½” csg w/ formation 
packer shoe @ 4,078’ (Black River formation), regained circ above 
packer, cmtd w/ 150 sxs cmt 

DST:   DST#1 
3,760’ -3,951’, 1 hr 50 min, recovered 150’ gas & 45’ mud, no 
shows, ICIP – 86# in 15 min, FCIP – 86# in ½ hr 
DST #2 
3,255’ – 3,292’, 2 hrs, recovered 720’ mfresh water & 720’ salt 
water, ICIP – 835# in 30 mon, FCIP – 785# in 30 min 

Perfs:    
IP:   FARO 720 BO in 24 hours through a 6/64” chk 
Current Status: 08/08/2000 – P&A 
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Stephens No. 1 
Aurora Gasoline and McClure Oil Company 
Drilling Contractor – McClure Oil Company 

(Rotary 0’ – 3,769’; Cable Tool 3,769’ – 3,772’) 
 
 
Field:   Exploratory – Oil & Gas – Scipio Field Confirmation - Trenton 
API #:   21-059-20676-00-00  
Permit #:  20676 
Location: 
  Township:  Scipio 
  County:  Hillsdale 
  Well:   SE SW NE Sec. 10, T5S R3W 
   330’ from south line, 990’ from west line of quarter section 
Datum:  GL  - 1,018’  
Logging Datum: RKB – 1,030’ (12’ above GL) 
Spud:   08/13/1957 
Completed:  09/18/1957 
Cored:  No Core 
Csg:   13 3/4” @ 57’ 
   8 5/8” @ 203’ w/ 200 sxs cmt 
   5 ½” @ 3,756’ w/ 550 sxs cmt 
TD:   Drlr  -  3,928’ 
   Lgr   -  3,927’ 
Perfs:   Open Hole Completion  
IP: Lost Circulation @ 3,769 ½’ Blew out, Flowed out-of-control for 

25 hours, FARO 100 BO per hour and 15-20,000 MCFG, Initial 
Production before acid - 165 BOPD restricted (State proration) 

Reworked: 10/11/1961 – 10/13/1961 
Sqzd w/ 1,200 sxs cmt, 
CO to 3,928’ - New TD, perfd 3,834’ – 3,867’ w/ 92 shots, treated 
w/ 250 gal mud acid and 250 gals regular acid, FARO 36 
MCFGPD 
10/30/1962 – 11/09/1962 
Sqzd w/ 2,400 sxs cmt, CO to 3,875’, perfd 3,859’ -3,867’ w/ 32 
shots, treated w/ 500 gals regular acid, swbd, FARO 5 bbls oil and 
80 bbls water / 12 hours, Sqzd w/ 4,185 sxs cmt, cmt job failed, 
POP as gas well, CP 800#, TP 1,000# 
09/28/1964 – 10/06/1964 
CO to TD (3,928’), Deepened to 3,930’ – New TD, treated w/ 
2000 gals acid, recovered gas, sqzd twice, Deepened to 3,953’ 
New TD, set pkr, treated w/ 2000 gals acid at 2,953’ - 3,926’, no 
results, perfd 3,736’ – 3,740’ w/ 16 shots, Gauged 150 MCFGPD   

Current Status: 09/11/1992 – P&A completed 
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VANWERT #1 
McClure Oil Company 

Drilling Contractor – McClure Drilling Corporation 
(Rotary 0’ – 4,000’, Cable Tool 4,000’ – 4,021’) 

 
 
Field:   Exploratory Extension - Scipio Field – Oil – Black River formation 
API #:   21-059-21751-00-00  
Permit #:  21751 
Location: 
  Township:  Adams 
  County:  Hillsdale 
  Well:   SE SE SE  Sec. 8, T6S – R2W 
   330’ from south line, 430’ from east line of quarter section 
Datum:  GL  -   
Logging Datum: RKB – 1,153’ above SL 
Spud:   08/04/1959 
Completed:  09/09/1959 
Cored:  No Cores 
Csg:   8 5/8” @ 366’ w/ 300 sxs cmt 
   5 ½” @ 4,000’   w/ 185 sxs cmt 
TD:   Drlr  -  4,021’ (Black River formation) 
   Lgr   - (Black River formation) 
PBTD:   3,996’ 

Well reported making “some” bottom hole water 
   Plugged Back 4,022’ – 4,007’ with gravel 
   Plugged Back 4,007’ – 3,996’ with lead wool 
DST:   DST #1 
    3,873’ – 3,921’, open 40  min, recovered gas to surface in 

4 ½ min, recovered OCM in 15  min, flowed oil in 33  min, 
“lots” of gas, IBHP - 1,574#, FBHP - 1,548# in 30 min, 
IFP - 934#, FFP - 960# 

   DST #2 
3,949’ – 4,000’, open 90 min, recovered gas to surface in 3 
min, flowed oil in 23 min, flowed 50 bbls oil to tanks in 1 
hour, IBHP - 1,574# in 30 min, FBHP – 1,560# in 30 min, 
IHMP – 1,872#, FHMP 1,872#, IFP – 338#, FFP – 418# 

Perfs:   09/11/1959 – perfd 3,984’ – 3,990’ w/ 24 shots   
   (Black River formation) 
IP: Before Acid – FARO 50 BO per hour on DST, 

After Acid - FARO 720 BOPD 
09/14/1959 – Treated 3,984’ – 3,990’ w/ 500 gals Mud Acid, 
FARO 30 BO per hour 

Reworked:  02/21/1965 – 04/05/1965 
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Present TD – 3,998’, Sqzd perfs 3,984’ – 3,990’ w/ 100 sxs cmt 
(02/14/1965), sqzd perfs again w/ 200 sxs cmt (02/15/1965), shut 
down 24 hrs, 500 bbls fluid - 50% oil, treated w/ 2000 gals 15% 
acid, swbd So & Gas, 50# Pressure, Pumped 30 – 35 BOPD 
09/20/1967 – 09/26/1967 
 Perfd 3,920’ – 3,936’ w/ 12 shots, acidized, IPP 6 BOPD 
05/08/1968 
Perfd 3,920’ – 3,936’ w/ 12 shots, treated w/ 750 gals 15% acid, 
IPP 6 BOPD 

Current Status: 08/26/1967 – 09/01/1967 - To Patrick Petroleum Company  
07/.25/1969 – P&A complete 
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WINTER No. 1 
McClure Oil Company and Perry Fulk 

Drilling Contractor – McClure Drilling Corporation  
(Rotary 0’ – 4,236’, Cable Tool 4,236’ – 4,242’) 

 
 
Field:   Exporatory Extension – Albion Field – Oil - Trenton 
API #:   21-025-22205-00-00  
Permit #:  22205 
Location: 
  Township:  Sheridan 
  County:  Calhoun 
  Well:   NW NE NE  Sec. 19, T2S – R4W 
   330’ from line, 990’ from east line of quarter section 
Datum:  GL  -  elevation 968.3’  
Logging Datum: RKB – 980.1’ (1.6’ above Rig Floor – 978.5’) 
Spud:   03/13/1960 
Completed:  05/19/1960 
Cored:  No Cores 
DST:   (Preliminary Report – Lost Circulation 4,185’ – 4,194’) 

DST 4,179’ – 4,236’ (Trenton formation), open 30 min, recovered 
gas to surface in 3 min, mud in 4 min, oil in 7 min, flowed oil for 
14  min, ICIP - 1,806#, FCIP - 1,806# in 30 min, IFP – 1,520#, 
FFP – 1,700#, IHMP – 2,000#, FHMP – 2,000# 

Csg:   9 5/8” @ 1,005’ w/ 590 sxs cmt 
   5 ½” @ 4,236’ (TD) w/ 135 sxs cmt 
TD:   Drlr  -  4,236’ (Rat hole ? to 4,242’) 
   Lgr   -  4,229’ 
Deepened TD: 4,242’ 
Perfs:   
IP:   Before Acid – FARO 30 BO per hour, 

After acid – FARO 40 BO in 1 hr 15 min 
(Preliminary Report – FARO 102 BO in 1 hr on 3/4” choke) 
5/24/1960 – treated 4,232’ – 4,242’(deepened TD) w/ 500 gals 
mud acid, FARO 150 BOPD 

Current Status: 07/31/1980 – P&A complete 
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NIAGARAN TREND 
PRODUCTION ANALYSIS 

 
General Observations 
1.) Production data for the Niagaran Trend is generally good. The play began in the 

early 1950’s and hit its peak during the 1970’s-1980’s. Digital data bases 
developed by the state beginning in 1981 include a large portion of the data for 
this play. 

 
2.) The log plot of the data displays a curve typical of that for a mature play. Nearly 

all field sizes are represented and no “gaps” in field size occur. The slope of the 
curve is shallow indicating full representation of each field size. Future potential 
is probably resource limited for this particular exploration model; however, new 
technology, combined with a new/expanded exploration model could potentially 
re-set the curve to a higher level.  

 
3.) There are 1,162 fields in this play. There are 1,063 fields producing oil. This 

volume of data makes it difficult to plot trends including individual field names. 
Rather, data can best be examined as categories based upon field size. 
“Cumulative Oil Production” can be broken down into 5 basic categories: 

 1.) Fields 1-10 million barrels cumulative oil production, 2.) fields 100,000 – 1 
million barrels cumulative oil production, 3.) fields 10,000 – 100,000 barrels 
cumulative oil production, 4.) fields 1,000 – 10,000 barrels oil cumulative 
production and 5.) fields less than 1,000 barrels cumulative oil production.   

 
4.) Fields making less than 1,000 barrels oil cumulative production are probably not 

economic based upon oil production alone. The sharp drop-off in fields of this 
size is probably due to the fact that no one purposely looks for this sized field. 
However, a few disappointing fields of this size do occur and are produced to 
recover at least some of the cost of exploration and development.  These fields, in 
most cases, are associated with gas production that makes the venture economic.  

 
5.) Gas is produced in 991 fields compared to oil being produced in 1,063 fields. Gas 

production volumes remain somewhat level in relationship to oil production 
volume (1 million BOE). 

 
6.) Brine is produced in 664 fields. Production of brine is roughly related to oil 
production. The larger oil fields all produce brine whereas the smaller the oil field, 
the less likely it is to produce brine. Only 8 fields produce only gas and brine. Brine 
volumes are roughly related to oil volumes. Only 28 fields produce more brine than 
oil. (refer to Cumulative Oil-Gas-Brine Production by field Graph)  
 
7.) The State of Michigan imposes a 200 barrel-per-day maximum allowable on 

production which often distorts the true capabilities/performance of the affected 
wells. 
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8.) The graph of “Discovery Size (Cumulative Oil) by Year of Discovery” displays a 

wide variety of field performance for each year. Although originally kicked-off in 
1950, Niagaran fields did not hit peck oil productivity until 1971 when drilling 
boomed with the discovery of 32 new fields that year. The 1970’s represent the 
“best times” for Niagaran discoveries, with a sharp decline after 1981. This data 
set does not include the onset of horizontal drilling during the 1990’s. 

 
9.) There are 1,162 fields in the Niagaran Trend. The oldest field in the trend was 

discovered in 1950. Only 9 fields in the Niagaran Trend have produced more than 
35 years. Nearly one half of the fields have produced for 15 – 30 years (531 
fields). Only 181 fields have produced for 5 years or less. Seventy three fields 
were either produced for less than one year or not produced at all. 

 
10.) “Cumulative Oil Production” varies substantially when plotted against 

“Years of Production.” However, the best producers in each age bracket show 
impressive results. Nearly 10,000,000 barrels of cumulative oil have been 
produced by fields in the 30 to 50 year age bracket. Fields in production from 22 
years to 30 years have top producers in the 1-5 million barrel range. Top 
producing fields in the 5 – 22 year bracket still hit the 1 million barrel mark other 
than for year 9.  Even fields in production for only 1 year have obtained the 
100,000 barrel mark.  

 
CURRENT ACTIVITY 

1.)  Fields from each of the 5 basic categories defined above will be correlated to the 
newly developed  index covering data quantity, quality and availability for each 
field. Fields in each category ranking high in data coverage will be selected for 
detailed study.   
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Silurian Niagaran Trend 
Production Analysis Graphs 
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DUNDEE TREND 
PRODUCTION ANALYSIS 

 
General Observations 
2.) Production data for the Dundee Trend is generally good. Dundee production goes 

back to 1934 and has remained a stallwart of the Michigan Basin ever since. Its 
production ranks second only to that of the Niagaran Trend; however, the 
Niagaran Trend contains 1,162 fields v.s. only 178 fields in the Dundee Trend. 

 
2.) The log plot of the data displays a curve typical of that for a mature play. Nearly 

all fields sizes are represented and no “gaps” in field size occur. The slope of the 
curve is shallow indicating full representation of each field size. Future potential 
is probably resource limited for this particular exploration model; however, new 
technology, combined with a new/expanded exploration model could potentially 
re-set the curve to a higher level.  

 
3.) There are 178 fields in this play. There are 155 fields producing oil. This volume 

of data makes it difficult to plot trends including individual field names; therefore, 
data has been examined as categories based upon field size. “Cumulative Oil 
Production” can be broken down into 7 basic categories: 

 1.) 8 Fields making 10-50 million barrels cumulative oil production, 2.) 30 fields 
1 – 10 million barrels cumulative oil production, 3.) 50 fields making 100,000 – 1 
million barrels cumulative oil production, 4.) 39 fields making 10,000 – 100,000 
barrels oil cumulative production and 5.) 20 fields making 1,000 – 10,000 barrels 
cumulative oil production, 6.) 8 fields making 0 – 1,000 barrels cumulative oil 
production, and 7.) 14 fields making 0 oil production.   

 
4.) Fields making less than 1,000 barrels oil cumulative production (9 fields) are 

probably not economic based upon oil production alone. The sharp drop-off in 
fields of this size is probably due to the fact that no one purposely looks for this 
sized field. However, a few disappointing fields of this size do occur and are 
produced to recover at least some of the cost of exploration and development.   

 
5.) Gas is produced in 41 fields compared to oil being produced in 155 fields 

 
6.) Brine is produced in 141 fields. Only 13 oil fields do not produce brine. Only 4 

gas fields do not produce brine.  
 
7.) The State of Michigan imposes a 200 barrel-per-day maximum allowable on 

production which often distorts the true capabilities/performance of the affected 
wells. 

 
CURRENT ACTIVITY 

1.) Work is currently underway to further develop data covering Reed City v.s. 
overall Dundee Formations. 
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2.) Dundee Cumulative production v.s. Year Discovered data is currently being edited 

for analysis. 
 

3.)  Fields from each of the 7 basic categories defined above will be correlated to the 
newly developed  index covering data quantity, quality and availability for each 
field. Fields in each category ranking high in data coverage will be selected for 
detailed study.   
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Devonian Dundee Trend 
Production Analysis Graphs 
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Appendix 3:  Representative Project Presentations at Professional Meetings 
 
WMU Project Staff activity at Eastern Section AAPG Annual Meeting in Buffalo, NY 
October 8-11, 2006 
 Session Chair  - Oral Technical Session: New Approaches to Carbonate 
 Reservoirs of Eastern America, Michael Grammer  
 
 Session Chair - Oral Technical Session: Geological Carbon Sequestration in the 
 Eastern U.S., William Harrison,  
 
Papers presented: 

• New Insight into the Reservoir Architecture of Silurian (Niagaran) Pinnacle Reefs 
in the Michigan Basin - G. Michael Grammer, W.B. Harrison, III,  D.A. Barnes, 
and R. Gillespie, Western Michigan University, A.E. Sandomierski, Exxon Mobil 
Production Company 

• Albion/Scipio Field, Michigan:  What does a detailed look at cores tell us about 
the reservoir? - Robb Gillespie, David A. Barnes, G. Michael Grammer, and 
William Harrison, III, Western Michigan University 

• Potential for Geological Carbon Sequestration in the Michigan Basin - William B. 
Harrison III, David A. Barnes, G. Michael Grammer, and Amanda Wahr, Western 
Michigan University 

• Combining CO2 sequestration with EOR activities – a synergistic approach for 
the future: An example from the Michigan Basin - G. Michael Grammer, David 
A. Barnes, William B. Harrison III, Western Michigan University and Robert G. 
Mannes, CORE Energy 

• Geological Carbon Sequestration Potential in Devonian Saline Aquifers of the 
Michigan Basin, USA - David A. Barnes, Amanda Wahr, William Harrison, III, 
G. Michael Grammer, Western Michigan University and Neeraj Gupta, Battelle 
Memorial Institute 

 
Posters Presented: 

• Hydrothermal Dolomite: Occurrence and Mechanisms, Michigan Basin, USA 
 David A. Barnes, G. Michael Grammer, William Harrison, III, and Robb 

Gillespie, Western Michigan University 

• Subsurface Stratigraphy of the Devonian Dundee Formation, Michigan Basin, 
USA – A Log Based Approach - Joshua P. Kirschner, and David A. Barnes, 
Western Michigan University 

 
 
Posters Presented: 

• Four Student Job Quest posters presented by Jessica Crisp, Josh Kirshner, Amy 
Noack and Amanda Wahr 
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Appendix 3a – abstract presented at Annual AAPG Meeting in March 2006 
 

Hydrothermal Dolomite Reservoirs (HTDR) in a Mature Petroleum 
Province, Michigan Basin, USA 

David A. Barnes, Department of Geosciences and Michigan Basin Core Research 
Laboratory, Western Michigan University, 1903 W. Michigan Ave, Kalamazoo, MI 
49009, phone: (269) 387-8633, barnes@wmich.edu, G. Michael Grammer, 
Department of Geosciences, Western Michigan University, Kalamazoo, MI 49008, 
William Harrison, III, Western Michigan University, Kalamazoo, MI 49008, and 
Robb Gillespie, Michigan Basin Core Research Laboratory, Department of 
Geosciences, Western Michigan University, Kalamazoo, MI 49008.  

Carbonate reservoirs with a strong overprint of fracture related hydrothermal dolomite 
(HTDR) have unique spatial distribution, internal geometry, and hydrocarbon 
production characteristics. Recognition of HTDR in mature but under-studied basins 
has important commercial implication. Improved reservoir characterization and 
enhanced recovery operations and support for untested exploration concepts can result 
from identification of HTDR. One of the first well-documented examples of HTDR in 
a giant oil field is the Trenton/Black River (T/BR), Albion-Scipio field in the 
Michigan basin, USA. Wrench faulting and Riedel shear related features, including 
dilational fractures, and primary facies controlled fluid flow conduits are considered 
fundamental to the origin of HTDR relative to regional limestone in Albion-Scipio. 

Sedimentologic and petrologic analysis of several producing formations in core 
including T/BR, Ordovician St. Peter Sandstone (aka “PdC”), and Devonian Dundee 
Formation throughout the Michigan basin indicates a pervasive overprint of 
hydrothermal dolomite. Hydrothermal mineralization is also observed in units in the 
basin as young as Mississippian/Pennsylvanian age. Structural mapping and log 
analysis in the T/BR and Dundee suggest close spatial relationship among gross 
dolomite distribution and interpreted, wrench fault-related NW-SE and NE-SW 
structural trends. Hydrothermal origin of much dolomite in several stratigraphic 
intervals, from Ordovician through Mississippian/Pennsylvanian age and persistent 
association of this dolomite in reservoirs coincident with wrench fault-related features 
is strong evidence in support of HTDR in multiple producing intervals in the 
Michigan basin. Recognition of HTDR in these and other reservoir formations should 
result in revitalized and improved exploration/exploitation activity and increased 
production in Michigan and other mature petroleum provinces. 
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Appendix 3b – abstract presented at Annual AAPG in March 2006 
 
Evaluating Controls on the Formation and Reservoir Architecture of Niagaran 
Pinnacle Reefs (Silurian) in the Michigan Basin: A Sequence Stratigraphic 
Approach 
 
SANDOMIERSKI, A.E., GRAMMER,G.M. and  HARRISON, W.B., III,  
Western Michigan University, Kalamazoo, MI  

 
Silurian-aged (Niagaran) pinnacle reefs have been productive in the Michigan Basin for 

60+ years, but extensive lateral and vertical heterogeneity limits primary production to as 
little as 25%. Enhanced recovery efforts are generally focused on water and CO2 floods, or 
horizontal drilling, but the connectivity of the reefs laterally and vertically is poorly 
understood and unpredictable, leading to marginal success in many reefs.  Niagaran pinnacle 
reef growth has previously been described as continuous growth during a single relative sea 
level rise. In this model, the characteristic shoaling upward sequence varies from a microbial 
mound facies at the base, with a stromatoporoid-dominated reef core capped by algal 
laminites and anhydrites that form a regional seal for many of the reefs in the Basin.  

Detailed core analysis within a sequence stratigraphic framework, however, indicates 
that the overall shoaling sequence is made up of higher frequency depositional cycles, each 
bounded by exposure or flooding surfaces. These tens of meters to meter scale cycles support 
an episodic reef growth model controlled by multiple fluctuations in relative sea level, and 
provides a means to predict reservoir quality since porosity and permeability is often related 
to primary facies in these reefs.  Because many cycles contain reservoir facies bounded by 
low permeability units, the result is often significant vertical compartmentalization.  This 
core-based understanding of the episodic nature of pinnacle reef growth, as well as the 
vertical facies successions and resulting impact on reservoir heterogeneity, should lead to 
enhanced predictability of reservoir architecture from wireline log signatures alone. 

 
 
 



 305

 
Appendix 3c – abstract presented at Eastern Section AAPG in Oct. 2006 

 
 

Albion/Scipio Field, Michigan:  What does a detailed look at cores tell us 
about the reservoir? 
 
Gillespie, R. (robb.gillespie@wmich.edu 269-387-8633), Barnes, D. A., Grammer, G.M., and 
Harrison, W.B., Michigan Geological Repository for Research and Education, Western Michigan 
University, Kalamazoo, MI 
 
Michigan’s only giant oil field, the Albion/Scipio Field, has produced over 125 million barrels of 
oil and is used as an analog for much of the Trenton-Black River exploration in Eastern North 
America.  Current reservoir models, based on published literature suggest extensive fracturing 
and brecciation followed by pervasive hydrothermal dolomitization created the field’s reservoir 
architecture.  The general impression of this reservoir is one of facies-independent and fabric-
destructive processes, especially dolomitization that created the reservoir quality. 
 
Detailed examination of numerous cores from the field and a few outside the field, do show 
some intervals of extensive fracturing and brecciation along with hydrothermal (saddle) dolomite 
cement. Many other cores show only limited fracturing and rare saddle dolomite cement.  Some 
of the cores, in the heart of the field, show almost no fracturing although much of the cored 
interval is dolomitized.  Several well cores show interbedded dolomite and limestone with 
primary facies fabrics and textures very well preserved in both lithologies.  Depositional 
environments can easily be interpreted from most of the core material.  These cores show a 
diverse set of shallow shelf and peritidal facies stacked in multiple cycles through the Black 
River and Trenton intervals. 
 
It appears from this core study that fracturing and brecciation is very laterally restricted to the 
proximity of major faults within the field.  Wells a short distance from these faults may show 
little or no fracturing.  Dolomitization does, however, extend well beyond the fractured zone.  
Primary sediment texture and porosity may have provided sufficient fluid pathway to transmit 
the dolomitizing fluids substantial distance from the major faults. 
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Appendix 3d – abstract presented at Eastern Section AAPG in Oct. 2006 
 
 
Subsurface Stratigraphy of the Devonian Dundee Formation, Michigan Basin, 
USA – A Log Based Approach 
 
JOSHUA P. KIRSCHNER (joshua.p.kirschner@wmich.edu) and David A. Barnes 

Western Michigan University, Geosciences and MGRRE, Kalamazoo, MI, 49008 
 
A distinct hard ground surface separates two disparate facies tracts in numerous, Middle 
Devonian, Dundee Formation cores in the Michigan basin subsurface.  This sharp stratigraphic 
contact can be distinguished by scour and/or dissolution of a partially lithified surface, which is 
commonly bored and/or eroded, and overlain by rip up clasts. This contact is thought to represent 
both a subaerial or subaqueous exposure surface and a subsequent period of slow sediment 
accumulation.  Supratidal to shallow marine, shoal-water carbonate facies occur below this hard 
ground surface, basin wide.  A lithologically homogeneous, fossiliferous mudstone-wackestone 
facies overlies the hard ground surface in core and is indicative of transgression to more distal, 
open marine conditions.   
 
Careful analysis of hundreds of wireline logs throughout the basin reveals a ubiquitous gamma 
ray marker (grm) that coincides with this hard ground/marine flooding surface in core. Although 
present across much of the basin, the grm does not always occur apparently due to local 
variability of carbonate lithofacies, especially in more open marine Dundee successions in the 
eastern basin.  A corresponding decrease in porosity, inferred from lithodensity logs, commonly 
coincides with the grm and is typically present even when the grm is not. 
 
Formal lithostratigraphy does not subdivide the Dundee Formation in the Michigan basin 
subsurface.  This investigation supports the idea that the Rogers City Limestone formation 
recognized in outcrop is a laterally extensive unit, which can be differentiated from the 
underlying Dundee (aka “Reed City equivalent”) Formation throughout the Michigan basin 
subsurface.  Log-based, member scale, stratigraphic subdivision of the Dundee Formation is 
important in understanding the primary depositional history and the distribution of highly 
productive secondary dolomite reservoirs in the upper Rogers City Member. 
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Appendix 3e – abstract presented at Eastern Section AAPG in Oct. 2006 
 
 
New Insight into the Reservoir Architecture of Silurian (Niagaran) Pinnacle Reefs in 
the Michigan Basin 
 
Grammer, G. Michael1, Sandomierski, A.E.2, Harrison, W.B., III1, Barnes, D.A. and 
Gillespie, R.1 

1Michigan Geological Repository for Research and Education, Western Michigan 
University, Kalamazoo, MI 49008 
2ExxonMobil Production Company, Houston, TX  77002 

 
Silurian-aged (Niagaran) pinnacle reefs have been productive in the Michigan Basin for over 60 
years, but extensive lateral and vertical heterogeneity in the reservoirs may limit primary 
production to as little as 25%. Enhanced recovery efforts have generally been focused upon 
horizontal or directional drilling and waterfloods, but the internal reservoir architecture is often 
poorly understood which leads to marginal economic success in many reefs. Recent detailed 
facies analysis from core suggests that vertical compartmentalization in some pinnacle reefs is 
the result of complex facies variability, and that the vertical distribution of these facies can be 
constrained, and therefore predicted, within a sequence stratigraphic framework.   
 
The sequence stratigraphic framework of the Miller Fox 1-11 reef, Oceana Co., MI, is 
characterized by a tripartite hierarchy of sequences, high frequency sequences, and cycles. 
Large-scale sequences (90-120 ft) correspond reasonably well to the commonly accepted 
“pinnacle reef model” in the Basin which describes an overall shoaling from mud mound to 
coral-stromatoporoid framework reef, to a restricted marine algal/stromatolitic unit which is 
ultimately capped with supratidal algal mats and evaporites.  Smaller scale high frequency 
sequences (35-50 ft) and cycles (3-10 ft), however, consisting of shoaling upward packages 
bounded by low permeability facies, result in the potential for vertical permeability baffles or 
barriers within the overall “pinnacle reef” complex. Because there is a distinct correlation 
between various facies types and porosity/permeability values within these higher resolution 
packages, enhanced understanding of how these facies are distributed should result in more 
effective primary and enhanced production efforts. 
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Appendix 4: Miscellaneous Project Presentations (titles) 
 

 
1. An overview of Hydrothermal Dolomite (HTD) Reservoirs with examples from the 
Michigan Basin (PTTC, 2007) 
 
2. Reservoir Characterization of Shallow-Shelf Carbonates, Dundee Limestone, Central 
Michigan Basin (PTTC, 2007) 
 
3. Albion-Scipio Field, Michigan:  What does a detailed look at outcrop analogs and cores 
tell us about the Reservoir?  (PTTC, 2007) 
 
4. Hydrothermal Dolomite (HTD): Occurrence and Possible Mechanisms in the Michigan 
Basin, USA (Eastern Section AAPG, 2007) 
 
5. New Insight into the Reservoir Architecture of Silurian (Niagaran) Pinnacle Reefs in the 
Michigan Basin (Eastern Section AAPG, 2006) 
 
6. Combining CO2 Sequestration with EOR activities – a synergistic approach for the future:  
An example from the Michigan Basin (Eastern Section AAPG, 2006) 
 
7. Carbonate Reservoir Characterization:  A new look at a Niagaran Pinnacle Reef (PTTC, 
2006) 
 
8. Hydrothermal Dolomite in the Michigan Basin (presentation for DOE-NETL, 2006) 
 
9. Trenton/Black River Oil and Ggas Reservoirs in Michigan (Eastern Section AAPG, 2006) 
 
10. Recent advances in Carbonate Sedimentology and Stratigraphy applied to the Silurian 
Niagara Group, Michigan Basin (PTTC, 2005) 
 
11. Modern Analogs for Michigan Basin Analogs (DOE site meeting and field trip, Tampa, 
FL 2005) 
 
12. Michigan’s Paleozoic Carbonate Formations and their Modern Analogs (PTTC, 2005) 
 


