

SAND99-1953J

RECEIVED
AUG 11 1999
OSTI

Coordination Compounds of Strontium. Syntheses, Characterizations, and Crystal Structures of $[\text{Sr}(\mu\text{-ONc})_2(\text{HONc})_4]_2$ and $\text{Sr}_5(\mu_4\text{-O})(\mu_3\text{-ONep})_4(\mu\text{-ONep})_4(\text{HONep})(\text{solv})_4$ (ONc = $\text{O}_2\text{CCH}_2\text{CMe}_3$; Nep = CH_2CMe_3 ; solv = tetrahydrofuran or 1-methyl-imidazole).

Timothy J. Boyle*, Cory J. Tafoya

Sandia National Laboratories, Advanced Materials Laboratory, 1001 University Boulevard. S.E., Albuquerque, New Mexico 87106

Brian L. Scott

Los Alamos National Laboratories, CST-18, Chemical Science and Technology Division - X-ray Diffraction Laboratory, Los Alamos, New Mexico 87545

Joseph W. Ziller

Department of Chemistry, University of California - Irvine, Irvine, CA 92717

* Author to whom correspondence should be sent.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

Abstract: We have synthesized and characterized two novel Sr compounds: $[\text{Sr}(\mu\text{-ONc})_2(\text{HONc})_4]_2$ (**1**, ONc = $\text{O}_2\text{CCH}_2\text{CMe}_3$), and $\text{Sr}_5(\mu_4\text{-O})(\mu_3\text{-ONep})_4(\mu\text{-ONep})_4(\text{HONep})(\text{solv})_4$ [ONep = OCH_2CMe_3 , solv = tetrahydrofuran (THF), **2a**; 1-methyl-imidazole (MeIm), (**2b**)], that demonstrate increased solubility in comparison to the commercially available Sr precursors. The two metal centers of **1** share 4 unidentate bridging $\mu\text{-ONc}$ ligands and complete their octahedral geometry through the coordination of 4 monodentate terminal HONc ligands. The structural arrangement of the central core of **2a** and **b** are identical, wherein 4 octahedral Sr atoms are arranged in a square geometry around a $\mu_4\text{-O}$ ligand. An additional 7-coordinated Sr atom sits directly atop the $\mu_4\text{-O}$ to form a square base pyramidal arrangement of the Sr atoms but the apical Sr-O distance is too long to be considered a bond. In solution, compound **1** is disrupted forming a monomer but **2a** and **b** retain their structures.

Key Words: Metal alkoxide, Strontium, Neo-pentoxide, t-butyl acetate

Introduction

Thin films of strontium containing electroceramic materials are of increased interest for the development of electronic devices. In particular, two Sr containing materials that have been of recent interest are $\text{SrBi}_2\text{Ta}_2\text{O}_9$ (SBT) and $(\text{Ba}_{1-x}\text{Sr}_x)\text{TaO}_3$ (BST).¹⁻²⁵ SBT is being considered for use in non-volatile memory devices due to its low fatigue on platinum electrodes.¹¹⁻²⁵ BST is of interest as a tunable high dielectric constant material for a number of telecommunication applications.^{2,6-10} While many routes exist to generate thin films, solution routes (i.e., dip or spin-coating) are often favored since they are simple, flexible, inexpensive, and in-line with existing semi-conductor technologies.¹ Solution routes involve three steps: (i) dissolution of a precursor in a solvent, (ii) deposition of precursor solution onto a substrate, and (iii) thermal treatment to convert the metallo-organic species to the ceramic phase. Both $\text{Sr}(\text{OAc})_2$ ($\text{OAc} = \text{O}_2\text{CMe}$) and $\text{Sr}(\text{OPr}^i)_2$ ($\text{OPr}^i = \text{OCHMe}_2$) are common starting materials for solution methods to SBT and BST since they are commercially available; however, their poor solubility in standard organic solvents greatly limits the development of alternative precursor solutions and frustrates optimization of the properties of the final ceramic material.

We have synthesized novel Sr precursors that demonstrate increased solubility for the production of thin films of SBT and BST.¹⁻⁵ Our investigations have focused on small chain (≤ 6 carbons) non-aromatic alkoxide (OR) and carboxylic acetate (ORc) precursors. The small carbon count is necessary to maintain low processing temperatures and to minimize residual carbon content. At the same time, increasing the steric bulk of the pendant ligands increases the solubility and reduces oligomerization.²⁶ Therefore, by judiciously choosing the appropriate ligands the solubility of the precursor can be increased without effecting the processing temperature.

One pendant hydrocarbon chain that has proven to be extremely beneficial in generating high quality films at low processing temperatures is the neo-pentyl ($\text{CH}_2\text{CMe}_3 = \text{Nep}$) moiety.^{1,2,27} The Nep chain is attractive for solution routes to materials for two reasons: (i) the β -hydrogens allow for the "cross-linking" of metal centers upon exposure to atmospheric humidity, yielding uniform films and (ii) the *t*-butyl moiety, due to the steric hindrance, minimizes oligomerization

and increases the solubility of the modified species. Figure 1 is a schematic representation of two of the commercially available ligands that employ the Nep hydrocarbon moiety in their structures: HO₂CCH₂CMe₃ (HONc) and HOCH₂CMe₃ (HONep).

This report details the syntheses, characterizations, and solution behaviors of novel Sr precursors ligated by the ONc and ONep moieties. The resultant products were identified by single crystal X-ray diffraction as [Sr(μ -ONc)₂(HONc)₄]₂ (1) and Sr₅(μ_4 -O)(μ_3 -ONep)₄(μ -ONep)₄(HONep)(solv)₄ (solv = tetrahydrofuran (THF), 2a; solv = 1-methyl imidazole (MeIm) and •(MeIm)₂(C₆H₈) 2b] and found to be soluble in standard organic solvents. These precursors have been successfully integrated into novel precursor solution routes to thin films of SBT and BST, details of which have been presented elsewhere.^{2,14,28}

Experimental

All compounds described below were handled with rigorous exclusion of air and water using standard Schlenk, vacuum line, and glovebox techniques. All solvents were freshly distilled and dried from sodium benzophenone ketyl prior to use. Solution NMR spectra were obtained on a Bruker 400 MHz spectrometer and referenced against the residual protons in toluene-*d*₈. FT-IR data were obtained on a Nicolet Magna System 550 spectrometer. Thermal gravimetric analysis/differential thermal analysis (TGA/DTA) experiments were performed on a Polymer Laboratories STA 1500 instrument. Elemental analyses were performed under an argon atmosphere and obtained on a Perkin Elmer 2400 series II CHNS/O analyzer. The following compounds were used as received: strontium metal (Aldrich, Sr^o), strontium acetate (Fisher, Sr(OAc)₂), neo-pentyl alcohol (Aldrich, HONep), and *t*-butyl acetic acid (Aldrich, HONc).

[Sr₂(μ -ONc)₂(HONc)₄]₂ (1). In a vial, HONc (~5 mL) was added to Sr(OAc)₂ (0.251 g, 1.22 mmol). The reaction mixture was heated with stirring until a clear, pale yellow solution was obtained. The reaction was allowed to cool to room temperature, stirred for an additional 12h, concentrated by rotary evaporation, and allowed to sit at glovebox temperatures until crystals

formed (< 5 days). The resulting X-ray quality crystals proved to be $[\text{Sr}_2(\mu\text{-ONc})_2(\text{HONc})_4]_2$ (1). First crystalline yield 42.2 % (0.402 g - final yields were not optimized). ^1H NMR (400.1 MHz, toluene-d₈) δ 12.56 (1.0H, bs, $\text{HO}_2\text{CCH}_2\text{C}(\text{CH}_3)_3$), 2.23 (4.1H, s, $\text{O}_2\text{CCH}_2\text{C}(\text{CH}_3)_3$, $\text{HO}_2\text{CCH}_2\text{C}(\text{CH}_3)_3$, 1.13 (19.9H, s, $\text{O}_2\text{CCH}_2\text{C}(\text{CH}_3)_3$, $\text{HO}_2\text{CCH}_2\text{C}(\text{CH}_3)_3$). ^{13}C NMR (100 MHz, tol-d₈) δ 100.6 ($\text{O}_2\text{CCH}_2\text{C}(\text{CH}_3)_3$, $\text{HO}_2\text{CCH}_2\text{C}(\text{CH}_3)_3$), 50.1 ($\text{O}_2\text{CCH}_2\text{C}(\text{CH}_3)_3$, $\text{HO}_2\text{CCH}_2\text{C}(\text{CH}_3)_3$, 31.0 ($\text{O}_2\text{CCH}_2\text{C}(\text{CH}_3)_3$, $\text{HO}_2\text{CCH}_2\text{C}(\text{CH}_3)_3$), 30.4 ($\text{O}_2\text{CCH}_2\text{C}(\text{CH}_3)_3$, $\text{HO}_2\text{CCH}_2\text{C}(\text{CH}_3)_3$). FT-IR (KBr pellet, cm^{-1}) 2955(s), 2903(m), 2864(m), 2564(w), 1943(w), 1702(s), 1578(s), 1471(m), 1402(m), 1364(m), 1268(m), 1224(m), 1187(w), 1144(m), 1046(m), 961(w), 935(w), 900(w), 806(m), 788(w), 773(w), 739(m), 704(m), 647(m), 633(m), 611(w), 506(w), 478(m), 431(w). TGA/DTA (oxygen) [weight loss up to $^{\circ}\text{C}$ (% total weight loss)/thermal event, $^{\circ}\text{C}$]: 125 $^{\circ}\text{C}$, 22.5%/sm endo (120 $^{\circ}\text{C}$), 200 $^{\circ}\text{C}$, 54.7%/sm endo (187 $^{\circ}\text{C}$), 448 $^{\circ}\text{C}$, 77.5%/lg exo(390 $^{\circ}\text{C}$). Elem. Anal. Calcd for: (i) $\text{C}_{36}\text{H}_{68}\text{O}_{12}\text{Sr}$: Theoretical C, 55.40%; H, 8.78%; (ii) $\text{C}_{30}\text{H}_{56}\text{O}_{10}\text{Sr}$ (-1 HONc): Theoretical C, 54.22%; H, 8.27. Found C, 54.19%; H, 8.70%.

$\text{Sr}_5(\mu_4\text{-O})(\mu_3\text{-ONep})_4(\mu\text{-ONep})_4(\text{HONep})(\text{solv})_4$ (solv = THF or MeIm). *Method A.* In a Schlenk flask HONep (5.0g, 16.5 mmol) was added to Sr° (1.0 g, 11.4 mmol) in THF (~15 mL) for **2a** (or MeIm for **2b**) and heated at reflux temperature for 48 hours. After this time, all of the volatile materials were removed by vacuum distillation. Extraction with hot THF for **2a** (or toluene for **2b**) resulted in a clear yellow-tinged solution, which upon cooling, yielded X-ray quality crystals. For the THF solvent system the crystals proved to be $\text{Sr}_5(\mu_4\text{-O})(\mu_3\text{-ONep})_4(\mu\text{-ONep})_4(\text{HONep})(\text{THF})_4$, **2a**. For the MeIm system the crystals proved to be $\text{Sr}_5(\mu_4\text{-O})(\mu_3\text{-ONep})_4(\mu\text{-ONep})_4(\text{HONep})(\text{MeIm})_4\bullet(\text{MeIm})_2(\text{C}_7\text{H}_8)$, **2b**. *Method B.* A three-neck round-bottomed flask was charged with Sr° (21.7 g, 0.247 mol) fitted with two septa and a nitrogen

adapter and then transferred to a Schlenk line that was attached to an $\text{NH}_3(\text{g})$ cylinder. The flask was placed in an acetone/dry ice bath (-78°C) and fitted with a cold finger that was also cooled to -78 °C. NH_3 gas was condensed (~ 250 mL) into the flask and the resulting blue solution was stirred for 1/2 h. HONep (75.6 g, 0.739 mol) dissolved in a separate Schlenk flask in THF/tol (50:50 mixture, ~125 mL) and syringed onto the dissolved Sr^+ . The resulting mixture was manually stirred for 1/2 hour and then allowed to warm to room temperature. The resulting off white slurry had the volatile components removed *in vacuo* to yield a pale yellow powder that was redissolved in hot THF, dried by rotary evaporation to yield a pale yellow powder which was used without further purification. The analytical data of this material was consistent with the crystals of **2** isolated previously. Yield 88.9% (75.6 g). ^1H NMR (400 MHz, THF-*d*8) δ 3.38 (2.57H, mult., $\text{OCH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{O}$), 3.29 (1H, s, ONep), 2.99 (1.79H, s, ONep), 1.55 (3.08H, mult., $\text{OCH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{O}$), 1.08 (7.89H, s, ONep), 0.66 (21.16H, s, ONep). $^{13}\text{C}\{^1\text{H}\}$ (100.6 MHz, THF-*d*8) δ 66.2 (ONep), 27.6 (ONep), 26.1 (ONep). FT-IR (KBr pellet, cm^{-1}) 3622(w),

3516(w), 2959(mb), 2899(w), 2860(w), 1633(wb), 1481(mb), 1395(w, sh), 1322(w), 1262(w), 1222(w), 1156(w), 1096(m), 1017(m), 937(w), 891(w), 824(w), 705(w), 612(w), 559(w), 473(wb). Elem. Anal. Calcd for $\text{C}_{61}\text{H}_{132}\text{O}_{14}\text{Sr}_5$: C, 47.96; H, 8.70. Found: C, 47.63; H, 7.87.

X-ray Collection, Structure Determination, and Refinement.

Compound 1. Colorless, square rods of **1** were immersed in a pool of mineral oil bathed in argon. A single crystal was then attached to a thin glass fiber using silicone grease and immediately placed under a liquid N_2 stream on a Siemens P4/PC diffractometer. The radiation used was graphite monochromatized $\text{MoK}\alpha$ radiation ($\lambda = 0.71073 \text{ \AA}$). The lattice parameters were optimized from a least-squares calculation on 25 carefully centered reflections of high Bragg angle. The data were collected using ω scans with a 1.80° scan range. Three check reflections monitored every 97 reflections showed no systematic variation of intensities. Lattice determination and data collection were carried out using XSCANS Version 2.10b software. All data reduction,

including Lorentz and polarization corrections and structure solution and graphics were performed using SHELXTL PC Version 5.03 software. The structure refinement was performed using SHELX 93 software.²⁹ The data were corrected for absorption using the ellipsoid option in the XEMP facility of SHELXTL PC. Data collection parameters are given in Table 1.

The structure of **1** was solved in space group Cmc2₁ using direct methods and difference Fourier techniques. The strontium atom and the majority of all non-hydrogen atom positions were revealed. All hydrogen atoms were fixed in ideal geometries, with C-H distances of 0.97 Å (methylene), 0.96 Å (methyl), or 0.93 Å (aromatic). All hydrogen atoms were refined using the riding model in the HFIX facility in SHELXL 93. All hydrogen atoms had their isotropic temperature factors fixed at 1.2 (aromatic and methylene) or 1.5 (methyl) times the equivalent isotropic U of the atom they were bonded to. Ten peaks with F_o^2 much greater than F_c^2 were omitted; peak scans showed these peaks to be twinned. The carbon atom C(37) was refined with a weak ISOR restraint to keep it from going non-positive definite. The high residuals and anomalous bond distances in the structure are attributed to a small twin crystal. Solutions were also obtained in space groups Ama2 and Cmcm, but refinements in these space groups proved to be more problematic. The final refinement included anisotropic thermal parameters on all non-hydrogen atoms and converged to $R_1 = 0.0898$ and $R_{2w} = 0.2468$.

Compound 2a. An irregularly shaped, colorless crystal of **2a** was mounted using standard air sensitive handling techniques (*vide infra*). The data were collected on a Bruker P4/CCD/PC diffractometer, with a sealed MoK α X-ray source. A hemisphere of data was collected using a combination of ϕ and ω scans, with 30 sec. exposures and 0.3 frame widths. The final cell was determined from a least-squares refinement on 8192 reflections. Data collection, indexing, and initial cell refinement were handled using SMART software.³⁰ Frame integration and final cell refinement were carried out using SAINT software.³¹ The SADABS software package was used to perform the absorption corrections.³²

The structure was solved in the space group Cmc2₁ using direct methods and difference Fourier techniques. This solution yielded all of the strontium and oxygen atom positions. A refinement, with all strontium and oxygen atoms refined anisotropically, converged to R1(14%). Subsequent location of ONep and THF ligand carbon atoms was problematic due to disorder in the crystal structure. Fragment models for the THF and ONep ligands were constructed using literature coordinates. The FRAG command within SHELXTL was used to constrain the ligands to ideal geometry which resulted in a final R1= 9.4%. The final refinement included anisotropic temperature factors on Sr and O atoms only, and H atom positions were not considered. The temperature factors on Sr and O atoms were well behaved, but the C atom temperature factors were, on average, abnormally large. These large temperature factors are attributed to extreme disorder and/or pseudo-symmetry. Additional refinements were attempted in the space groups Cmcm and Ama2, but this did not improve the model. The structure was refined as a racemic twin, and the absolute structure (Flack) parameter refined to 0.562(4). Structure solution, refinement, graphics, and creation of publication materials were performed using SHELXTL 5.1 software.²⁹ Additional details of data collection, and structure refinement are given in Table 1.

Results and Discussion.

Initial attempts to generate Sr precursors with increased solubility were realized through the introduction of larger sterically hindering ligands that possessed the Nep hydrocarbon chain, HONc and HONep (Figure 1). The synthesis, solid state, and solution behavior of these derivatives are described in detail.

Synthesis. The carboxylate ligands of Sr(OAc)₂ were readily metathesized by dissolution of the starting material in an excess of the desired HORc (eq 1). A number of sterically varied commercially available HORc were investigated. The HONc substituent was of particular interest due to the presence of the Nep hydrocarbon moiety. The metathesis of the OAc for the ONc ligand was accomplished by heating a mixture of Sr(OAc)₂ in excess HONc until the solution became clear (eq 1), whereupon the heat was removed and the reaction was stirred overnight. After 12 hours, the mixture was allowed to sit at glovebox temperatures until crystals formed (~ 1 - 2 days)

which proved to be $[\text{Sr}(\mu\text{-ONc})_2(\text{HONc})_4]_2$ (1). The thermal ellipsoid plot of 1 is shown in Figure 2. The elemental analysis of this material from sample to sample was inconsistent; however, the majority of the analyses had a stoichiometry consistent with $\text{Sr}(\text{ONc})_2(\text{HONc})_3$. The volatility of the weakly coordinated HONc solvent upon heating would account for the variable analytical data.

For the production of the alkoxide derivatives, Sr° metal was reacted with the parent alcohol (HONep) in THF at reflux temperatures (eq 2). The reaction from eq 2 was heated until a majority of the metal had been consumed. The volatile component of this reaction mixture was removed by vacuum distillation to yield a white powder. Upon extraction with hot THF, followed by slow cooling to room temperature, X-ray quality crystals were isolated which proved to be $\text{Sr}_5(\text{O})(\text{ONep})_8(\text{HONep})(\text{THF})_4$, 2a. Figure 3a shows the central core of 2a. Low yields of 2a were drastically improved by exposing fresh surfaces of the Sr° under inert atmospheric conditions prior to introduction into the reaction. With careful and rapid handling of the crystals, we were able to obtain several elemental analyses with acceptable percentages; however, due to the volatility of the solvent ligands, a wide range of results was also noted. In an attempt to further reduce the oligomerization of 2a, an alternative strong Lewis basic solvent, methyl-imidazole (MeIm), was used in place of THF. A similar synthesis and crystallization was performed as noted for 2a (see eq 2). X-ray crystallography indicated that an identical structural arrangement was adopted with the MeIm replacing the THF bound solvent molecules (additional solvent molecules of MeIm and toluene were located in the unit cell). Figure 3b shows the thermal ellipsoid plot of the central core of 2b.

Solid State.

Crystal Structure. While there are a number of reports detailing the preparation of Sr containing alkoxide or acetate compounds, few report the structure of these precursors. In order to fully exploit these compounds it is necessary to know their structure; hence we initiated solid state characterization of 1, 2a and 2b.

The few strontium carboxylate complexes that have been crystallographically characterized include the following: $[\text{Sr}_2(\mu\text{-OAc})_2(\text{OAc})_2(\text{H}_2\text{O})]_\infty$ ³³, $\{[\text{Sr}(\text{OAc})_2(\text{H}_2\text{O})_2][\text{H}_2(\text{OAc})_3]\}_\infty$ ³⁴, and $\{[\text{Sr}(\text{OAc})(\text{H}_2\text{O})_2][\text{H}(\text{OAc})_2]\}_\infty$ ³⁵. These species exhibit a wide range of coordination (6-9) numbers for Sr metal centers. The mixed ligated species $[\text{Sr}_2(\text{OAc})_2(\text{NO}_3)_2(\text{H}_2\text{O})_3]$ ³⁶ has also been structurally characterized. For each of the bound acetate ligands in the above compounds, the acetate moieties act as either a chelating or chelating-bridging ligand.

Figure 2 shows the solid state structure of **1** wherein each of the 8-coordinated metal cations adopt a unique distorted square anti-prism geometry for Sr metals. The Sr metal centers of this molecular complex are joined through 4 monodentate $\mu\text{-ONc}$ ligands with the remaining coordination sites being filled by monodentate (terminal) HONc solvent molecules. Since all of the ORc ligands act as unidentate bridging moieties, the bite angle of the acetate ligands $[(\mu\text{-O})\text{-C}-(\mu\text{-O})]$ would be expected to be significantly elongated in comparison to those angles observed for other ORc species of Sr; however, the $(\mu\text{-O})\text{-C}-(\mu\text{-O})$ angles of **1** are consistent with the previously reported bite angle (119.9-124°) range. This may be accounted for by the large size (Sr^{+2} : 1.32 - 1.58 Å)³⁷ of the Sr cation which does not require constraint of the ONc ligand; thus, the energetically relaxed state of the ONc ligand exists whether chelating or bridging. It was observed that the constrained ONc ligands have a small range for their bite angle (121-123 °) and that the terminal ONc vary through a larger range (119 to 125°). The Sr-O distances of **1** (av. 2.60 Å) are in agreement with literature reports. The $\text{Sr}(1)\text{-O}(5)$ distance of 2.74 Å is one of the longest Sr-O bonds reported for carboxylate derivatives.

The structures of several $\text{Sr}(\text{OR})_2$ have been reported in the literature: $[\text{Sr}(\text{OMe})_2]_\infty$ (no molecular subunits),³⁸⁻⁴⁰ $[\text{Sr}(\text{OEt})_2(\text{HOEt})_1]_\infty$,⁴⁰ and $\text{Sr}_4(\text{OPh})_8(\text{PhOH})_2(\text{THF})_6$.⁴¹ The first two were poorly characterized by powder diffraction studies and the latter successfully introduced large sterically hindering aryloxides to avoid polymeric structures. We have successfully isolated the first "Sr(OR)₂" that has been characterized by single crystal X-ray analysis using the simple sterically demanding ONep ligand.

The central cores of **2a** and **2b** are shown in Figures 2a and b, respectively. Both compounds consist of 4 Sr cations arranged in a square geometry surrounding a μ_4 -O ligand. An additional Sr cation is located directly above the μ_4 -O but the distance is too great to be formally called a bond. The Sr atoms are thus arranged in a square-based pyramid (sp) geometry around a μ_4 -O. There are four μ_3 -ONep ligands on each face of the pyramid linking three Sr atoms. On the base of the skeletal arrangement of Sr atom, four μ -ONep ligands bridge between the metals. To complete the octahedral (Oh) geometry of the Sr atoms, solvent molecules are terminally coordinated. For **2a**, the solvent molecules are a mixture of HONep and THF ligands; whereas, for **2b** MeIm replaces the THF ligands. Furthermore, significant disorder in the apical bound HONep solvent molecule for both **2a** and **2b** which is most likely a representation of the HONep being present in more than one position on the molecule and the forced mirror plane that occurs for these space groups. For these compounds, the HONep ligand was always isolated in the apical position, regardless of the solvent introduced. Furthermore, for **2b**, the unit cell solvent molecules are very disordered and reduce the reliability of the metrical data noted for the external ligands of this structure. The structures of **2** and **3** are reminiscent of the $\text{Y}_5(\text{O})(\text{OPr}^i)_{13}(\text{HOPr}^i)_5$ complex previously isolated by Hubert-Pfalzgraf and co-workers.⁴²

Due to the solvent molecule disorder little discussion concerning the distances and angles associated with the peripheral ligands will be presented; however, the core arrangement of **2a** and **2b** are very well defined and the metrical data is sufficiently reliable to warrant discussion. The basal Sr-O distances of **2a** and **2b** are av. 2.54 Å. The apical Sr-O distance of **2a** (2.982(14) Å) and **2b** (2.95 Å) are longer than what is acceptable for a Sr-O bond. However, some interaction is expected due to the propensity of Sr to adopt high coordination numbers. The square base pyramidal central core is irregular which is in contrast to the very regular arrangement of the $\text{Y}_5(\text{O})(\text{OPr}^i)_{13}(\text{HOPr}^i)_5$ complex. The Y_5 -(μ_4 -O) distances are statistically equivalent.⁴² The basal $\text{Sr}_4(\mu_4\text{-O})$ plane should ideally possess four 90° angles and two 180° angles. The 90° angles are

present for **2a** and **2b**; however, the 180° angles are reduced to 170° angles which removes the O(1) atom from the plane of the Sr atoms. Each [Sr-O]₂ square was found to be elongated, further distorting the sp central core. Furthermore, for the Y₅-(μ_5 -O) structure it was reported that the Y-(μ_3 -O) distances were shorter for the apical than the basal metals. In contrast, **2a** and **2b** have statistically similar distances reported for all of the Sr-(μ_3 -ONep) distances but the Sr-(μ -ONep) distances vary significantly. As is often observed in metal alkoxides, increased binding of the alkoxide leads to longer bonds: for **2a**, Sr-(μ -OR), av. 2.45 Å > Sr-(μ_3 -OR), av. 2.53 Å] and for **2b**, Sr-(μ -OR), av. 2.46 Å > Sr-(μ_3 -OR), av. 2.52 Å.

FT-IR Spectroscopy. The FT-IR spectrum of **1** has two types of carboxylate ligands present at 1693 and 1573 cm⁻¹ that differ from the starting HONc carboxylate stretch at 1706 cm⁻¹. The multiplicity and consistency between **1** and HONc indicates that the 1693 cm⁻¹ stretch most likely represents the terminal bound HONc ligands and the more encumbered μ -ONc ligand stretches are shifted to a higher stretch at 1573 cm⁻¹. The Sr-O stretches were noticeably weak in the spectrum of **1** in comparison to **2a** and **2b**.

The FT-IR spectra of **2a** and **2b** are, as expected, nearly identical. The ONep ligand stretches dominate the spectra with minor differences associated with the different solvents (THF and MeIm) that are coordinated. There is a relatively strong peak present around 550 cm⁻¹ for both samples which may be indicative of the Sr-(μ_4 -O) stretches associated with these compounds.

Solution State:

Molecular Weight Determinations. Solution molecular weight (MW) determinations by the Signer Method⁴³ were undertaken to determine the nuclearity of **1** and was found to be av. 754 ± 26. This is approximately 1/2 the of the solid state structure (MW = 1561.1). The solution MW of **2a** and **2b** were not undertaken due to their low solubility in toluene.

NMR Spectroscopy. Crystals of **1**, **2a**, and **2b** were dried by rotary evaporation at room temperature and then redissolved in toluene-*d*₈ to elucidate their solution behavior. All samples were prepared as concentrated as possible to minimize dynamic solution behavior.

The ¹H NMR spectrum of **1** consists of only one set of ONc resonances (δ 12.56, 2.23, and 1.13 ppm) which are significantly shifted from the starting acid (HONc: δ 12.29, 1.98, 0.93). This spectrum can be interpreted as either the solid state structure of compound **1** is: (i) retained with rapid exchange of the terminal and bridging ONc ligands or (ii) disrupted to form a mononuclear species. If the former were true, low temperatures should slow the exchange; however, variable temperatures NMR spectra did not show new peaks except at -90°C, whereupon, a shoulder on the methyl peak was observed. Over the same temperature range the methylene peak broadens and shifts slightly but no peak deconvolution was observed. For the acidic proton, the peak shifts from δ 12.5 at room temperature to 15.1 ppm at -90°C but remains a broad singlet. Due to the lack of observable bridging and terminal ligand exchange, the NMR data (and the MW determination) indicate that **1** adopts a mononuclear complex in solution.

The NMR recorded spectrum of **2a** in THF-*d*₈ is very simple with only two resonances observed (δ 3.27 and 0.81). The ONep resonances consist of one sharp and one broad set of resonances in an approximate 1:3 ratio. This is not consistent with the solid state structure and some dynamic behavior must be associated with **2a**. Exchange of half of the μ_3 -ONep ligands with the μ -ONep ligands would yield a spectrum consistent with the observed ratio and could be easily envisioned (see Figure 3). VT-NMR spectroscopy (25°C to -100°C) revealed a number of resonance changes in the methylene region but no new peaks were observed. The methyl region displayed a number of new resonances that appear at 0°C and continue to sharpen and change chemical shifts as lower temperatures are approached.

The ¹H NMR spectrum of **2b** was collected in C₆D₆ and proved very similar to that of **2a** with the inclusion of MeIm peaks at δ 7.45, 7.37, 6.28, 2.61 ppm. In the methylene region at least 7

peaks are identifiable with up to 5 methyl resonances. If the structure is asymmetric in solution then eight types of ONep resonances should be present. Furthermore, with the more Lewis basic MeIm solvent donating more electron density to the metal, there is a less likelihood that disruption of the μ_3 -ONep ligands observed in the solid state would occur in solution. Therefore, these data indicate that the MeIm structure remains intact in solution.

Conclusion

We have successfully isolated and characterized two novel Sr complexes that demonstrate increased solubility in organic solvents when compared to "Sr(OAc)₂". These included a solvated dinuclear complex as observed for **1** and a penta-nuclear arrangement of Sr atoms around a μ_4 -O atom recorded for **2a** and **2b**. The increased solubility of **1** and **2a - b** is a result of decreased oligomerization induced by the steric bulk of the Nep pendant hydrocarbon chains along with the coordination of solvent molecules. NMR and MW determinations indicate that **1** is mononuclear in solution, while, NMR data indicate that **2a** and **2b** maintain their general nuclearity in solution with rapid ligand exchange.

Acknowledgment. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy. The authors would like to thank K.A. Krause for her technical assistance.

Supporting Information. A complete list of data acquisition and thermal parameter listing is supplied (53 pages). Information concerning obtaining this material is listed on any current masthead.

References

- (1) Boyle, T. J.; Al-Shareef, H. N.; Buchheit, C. D.; Cygan, R. T.; Dimos, D.; Rodriguez, M. A.; Scott, B.; Ziller, J. W. *Integrated Ferroelectrics* 1997, 18, 213.

- (2) Boyle, T. J.; Clem, P. G.; Rodriguez, M. A.; Tuttle, B. A.; Heagy, M. D. *J. Sol-Gel Sci. Tech.* **1998**, *in Press*,
- (3) Boyle, T. J.; Buchheit, C. D.; Rodriguez, M. A.; Al-Shareef, H. N.; Hernandez, B. A.; Scott, B.; Ziller, J. W. *J. Mater. Res.* **1996**, *11*, 2274.
- (4) Rodriguez, M. A.; Boyle, T. J.; Hernandez, B. A.; Buchheit, C. D.; Eatough, M. O. *J. Mater. Res.* **1996**, *11*, 2282.
- (5) Rodriguez, M. A.; Boyle, T. J.; Buchheit, C. D.; Drewien, C. A.; Hernandez, B. A.; Eatough, M. O. *Integrated Ferroelectric* **1997**, *14*, 201.
- (6) Jose, K. A.; Varadan, V. K.; Varadan, V. V. *Microwave Opt. Tech. Lett.* **1999**, *20*, 166.
- (7) Kumar, S.; Messing, G. L.; White, W. B. *J. Am. Ceram. Soc.* **1993**, *76*, 617.
- (8) Saha, S.; Krupanidhi, S. B. *Mater. Sci. Engin. B - Solid State Mater. Adv. Tech.* **1999**, *57*, 135.
- (9) Tsai, M. S.; Sun, S. C.; Tseng, T. Y. *J. Am. Ceram. Soc.* **1999**, *82*, 351.
- (10) Yamamichi, S.; Yamamichi, A.; Park, D. G.; King, T. J.; Hu, C. M. *IEEE Trans. Electron Dev.* **1999**, *46*, 342.
- (11) Joshi, P. C.; Ryu, S. O.; Zhang, X.; Desu, S. B. *J. Korean Phys. Soc.* **1998**, *32*, S1583.
- (12) Kato, K.; Finder, J. M.; Dey, S. K.; Torii, Y. *Integrated Ferroelectrics* **1997**, *18*, 237.
- (13) Koiwa, I.; Tani, K.; Mita, J.; Iwabuchi, T. *Jap. J. Appl. Phys. Part 1* **1998**, *37*, 192.
- (14) Lakeman, C. D. E.; Boyle, T. J.; Rodriguez, M. A. *Integrated Electronics* **1998**, *22*, 565.
- (15) Lee, J.-S.; Park, J.-W.; Park, J.-S.; Park, H.-D.; Shin, S.-M. *J. Mater. Sci. Lett.* **1997**, *16*, 941.
- (16) Lee, K. B.; Lee, H. S.; Cho, S. K. *J. Korean Phys. Soc.* **1998**, *32*, S1565.
- (17) Noguchi, T.; Hase, T.; Miyasaka, Y. *Jpn. J. Appl. Phys. Part 1* **1996**, *9B*, 4900.
- (18) Noguchi, T.; Hase, T.; Miyasaka, Y. *Jpn. J. Appl. Phys. Part 1* **1996**, *9b*, 4900.
- (19) Osaka, T.; Ono, S.; Sakakibara, A.; Koiwa, I. *IEICE Trans. Elect.* **1998**, *E81C*, 545.
- (20) Seong, N. J.; Choi, E. S.; Yoon, S. G. *J. Vacuum Sci. Tech. A - Vacuum Surf. Films* **1999**, *17*, 83.
- (21) Seong NJ; SG, Y. *Phys. IV* **1998**, *8*, 255.

(22) Elbouanani, M.; Bubb, I. F.; Scott, J. F.; Cohen, D. D.; Dytlewski, N.; Martin, J. W. *Integrated Ferroelectrics* 1997, 16, 159.

(23) Chen, T. C.; Thio, C. L.; Desu, S. B. *J. Mater. Res.* 1997, 12, 2628.

(24) Chen, T. C.; Li, T. K.; Zhang, X. B.; Desu, S. B. *J. Mater. Res.* 1997, 12, 1569.

(25) Boyle, T. J., *U.S. Patent 5 683 614, 1997.*

(26) Bradley, D. C.; Mehrotra, R. C.; Gaur, D. P. *Metal Alkoxides*; Academic Press: New York, 1978.

(27) Boyle, T. J.; Alam, T. A.; Dimos, D.; Moore, G. J.; Buchheit, C. D.; Al-Shareef, H. N.; Mechenbier, E. R.; Bear, B. R. *Chem. Mater.* 1997, 9, 3187.

(28) Boyle, T. J.; Pedrotty, D. M.; Tafoya, C. J.; Ziller, J. W. *Abstracts of Papers of the Am. Chem. Soc. April 2, 1998, 215(pt.1), 521-INOR.*

(29) XSCANS and SHELXTL PC are products of Siemens Analytical X-ray Instruments, Inc., 6300 Enterprise Lane, Madison, Wisconsin 53719. (a) SHELX-93 is a program for crystal structure refinement written by G. M. Sheldrick (1993) Univ. Of Göttingen, Germany. (b) SHELXTL PC Version 4.2/360, 1994, Bruker Analytical X-ray Instruments, Inc., Madison, Wisconsin 53719. (c) SHELXTL Version 5.1, 1997, Bruker Analytical X-Ray Systems, 6300 Enterprise Lane, Madison, WI 53719.

(30) SMART Version 4.210, 1997, Bruker Analytical X-Ray Systems Inc., 6300 Enterprise Lane, Madison, WI 53719.

(31) SAINT Software Users Guide, Version 4.05, 1997, Bruker Analytical X-Ray Systems, 6300 Enterprise Lane, Madison, WI 53719.

(32) SADABS George M. Sheldrick, 1997 Brucker Analytical X-Ray Systems, Inc.: Madison WI.

(33) Groombridge, C. J.; Harris, R. K.; Packer, K. J.; Hursthouse, M. B.; Walker, N. P. C. J. *Solid St. Chem.* 1985, 59, 306.

(34) Trunov, V. K.; Endeladze, N. O.; Efremov, V. A. *Zh. Strukt. Khim.* 1988, 29, 104.

(35) Trunov, V. K.; Chubinidze, A. D.; Efremov, V. A.; Velikodnyi, Y. A. *Koord. Khim.* 1984, 10, 403.

(36) Lengauer, C. L.; Giester, G. *Acta Cryst. Sec. C.- Crystal Structure* 1997, 53, 870.

- (37) Shannon, R. D. *Acta Cryst.* **1976**, *A32*, 751.
- (38) Lutz, H. D. *Z. Anorg. Allg. Chem.* **1967**, *353*, 207.
- (39) Staeglich, H.; Weiss, E. *Chem. Ber.* **1978**, *111*, 901.
- (40) Ya, N.; Turova, B. A.; Popovkin, A.; Novoselova, A. V. *Dokl. Aka. Nauk SSSR* **1966**, *167*, 604.
- (41) Drake, R. S.; Streib, W. E.; Chisholm, M. H.; Caulton, K. G. *Inorg. Chem.* **1990**, *29*, 2707.
- (42) Poncelet, O.; Sartain, W. J.; Hubert-Pfalzgraf, L. G.; Folting, K.; Caulton, K. G. *Inorg. Chem.* **1989**, *28*, 263.
- (43) Clark, E. P. *Analytical Ed.* **1941**, 820.

List of Tables

Table 1. Data parameters for X-ray collection of: $[\text{Sr}(\mu\text{-O}_2\text{CNep})_2(\text{HO}_2\text{CNep})_4]_2$ (**1**), $\text{Sr}_5(\mu_4\text{-O})(\mu_3\text{-ONep})_4(\mu\text{-ONep})_4(\text{HONep})(\text{THF})_4$ (**2a**), $\text{Sr}_5(\mu_4\text{-O})(\mu_3\text{-ONep})_4(\mu\text{-ONep})_4(\text{HONep})(\text{MeIm})_4\bullet(\text{MeIm})_2$ (toluene) (**2b**).

Table 2. Select bond distances (\AA) and angles (deg) for **1** and **2a-b**.

Table 1. Data parameters for X-ray collection of: $[\text{Sr}(\mu\text{-O}_2\text{CNep})_2(\text{HO}_2\text{CNep})_4]_2$ (1), and $\text{Sr}_5(\mu_4\text{-O})(\mu_3\text{-ONep})_4(\mu\text{-ONep})_5(\text{HONep})(\text{THF})_4$ (2a) and $\text{Sr}_5(\mu_4\text{-O})(\mu_3\text{-ONep})_4(\mu\text{-ONep})_5(\text{HONep})(\text{py})_4 \cdot (\text{MeIm})_2$ (toluene) (2b).

Compound	1	2a	2b
chemical formula	$\text{C}_{72}\text{H}_{136}\text{O}_{24}\text{Sr}_2$	$\text{C}_{61}\text{H}_{132}\text{O}_{14}\text{Sr}_5$	$\text{C}_{61}\text{H}_{124}\text{N}_8\text{O}_{10}\text{Sr}_5$ $\cdot (\text{C}_4\text{H}_6\text{N}_2)_2(\text{C}_7\text{H}_8)$
formula weight	1561.05	1483.41 (1527.81)	1824.13
temp (K)	203	203	158
space group	orthorhombic $\text{Cmc}2_1$	orthorhombic $\text{Cmc}2_1$	monoclinic $\text{C}2/\text{m}$
a (Å)	21.304(5)	17.408(3)	23.0393(13)
b (Å)	21.448(4)	22.631(5)	18.4713(10)
c (Å)	23.061(3)	22.826(5)	22.8761(13)
α (deg)			
β (deg)			98.6140(10)
γ (deg)			
V (Å ³)	10537.2(34)	8993(3)	9625.59(9)
Z	4	4	4
λ (Mo K α radiation) (Å)	0.71073	0.71073	0.71073
D_{calcd} (Mg/m ³)	0.987	1.128	1.259
μ , (Mo, K α) (mm ⁻¹)	1.066	2.990	2.806
R1 ^a (%)	8.98 ^c	9.39 ^d	15.10 ^e
wR2 ^b (%)	24.68	25.72	35.28
R1 ^a (all data, %)	13.15 ^c	11.94 ^d	21.43 ^e
wR2 ^b (all data, %)	31.81	27.32	39.28

$$^a \text{R1} = \frac{\sum |F_o| - |F_c| |}{\sum |F_o|} \times 100$$

$$^b \text{wR2} = [\sum w (|F_o|^2 - |F_c|^2)^2 / \sum (w |F_o|^2)^2]^{1/2} \times 100$$

Final weighting scheme calc:

$$^c w = 1/[\sigma^2(F_o^2) + (0.2118P)^2]$$

$$^d w = 1/[\sigma^2(F_o^2) + (0.2000P)^2]$$

$$^e w = 1/[\sigma^2(F_o^2) + (0.1572P)^2 + 226.4793P]$$

$$\text{where } P = (F_o^2 + 2 F_c^2)/3$$

Table 2. Select bond distances (\AA) and angles (deg) for **1**, **2a**, and **2b**.

Distance (\AA)	1	2a	2b
Sr--Sr	Sr(1)-Sr(1a) 4.498(2)	Sr(1)-Sr(1a) 3.573(3) Sr(2)-Sr(2a) 3.581(3)	Sr(1)-Sr(2) 3.729(2) Sr(1)-Sr(3) 3.723(2) Sr(2)-Sr(2a) 3.586(2) Sr(2)-Sr(3) 3.577(2) Sr(3)-Sr(3a) 3.585(2)
Sr-(μ_4 -O)			
apical	---	Sr(3)-O(1) 2.974(12)	Sr(1)-O(3) 2.952(9)
basal		Sr(1)-O(1) 2.543(11) Sr(2)-O(1) 2.539(11)	Sr(2)-O(3) 2.538(6) Sr(3)-O(3) 2.546(6)
Sr-(μ_3 -ONep)			
apical	---	Sr(3)-O(3) 2.549(17) Sr(3)-O(2) 2.497(12) Sr(3)-O(5) 2.506(15)	Sr(1)-O(2) 2.496(9) Sr(1)-O(5) 2.476(10) Sr(1)-O(6) 2.489(10)
basal		Sr(1)-O(2) 2.516(11) Sr(1)-O(5) 2.538(10) Sr(2)-O(2) 2.555(13) Sr(2)-O(3) 2.69 (3)	Sr(2)-O(2) 2.532(7) Sr(2)-O(5) 2.553(7) Sr(3)-O(2) 2.537(8) Sr(3)-O(6) 2.543(7)
Sr-(μ -ONep)	---	Sr(1)-O(4) 2.50(1) Sr(1)-O(6) 2.58(2) Sr(2)-O(4) 2.39(1) Sr(2)-O(7) 2.65(2)	Sr(2)-O(1) 2.438(9) Sr(2)-O(4) 2.447(6) Sr(3)-O(1) 2.463(8) Sr(3)-O(7) 2.450(7)
Sr-(μ -ONc)	Sr(1)-O(9) 2.531(11) Sr(1)-O(10) 2.625(12) Sr(1)-O(11) 2.513(12) Sr(1)-O(12) 2.599(10)	-----	-----
Sr-O(solv)	Sr(1)-O(2) 2.543(13) Sr(1)-O(3) 2.675(15) Sr(1)-O(5) 2.741(13) Sr(1)-O(7) 2.586(11)	-----	-----
Angles (deg)			
$\text{O}_{\text{term}}\text{-Sr-O}_{\text{term}}$	O(2)-Sr(1)-O(3) 69.2(4) O(2)-Sr(1)-O(5) 106.2(4) O(2)-Sr(1)-O(7) 70.2(4) O(3)-Sr(1)-O(5) 67.6(4) O(3)-Sr(1)-O(7) 106.9(3) O(5)-Sr(1)-O(7) 69.2(4)	-----	-----

(μ -O)-Sr-(μ -O)	O(9)-Sr(1)-O(10) 76.3(4) O(9)-Sr(1)-O(11) 80.4(4) O(9)-Sr(1)-O(12) 126.5(3) O(10)-Sr(1)-O(11) 126.2(3) O(10)-Sr(1)-O(12) 76.0(4) O(11)-Sr(1)-O(12) 80.5(4)	O(6)-Sr(1)-O(4) 111.3(5) O(4)-Sr(2)-O(7) 110.6(5)	O(1)-Sr(2)-O(4) 111.5(4) O(1)-Sr(3)-O(7) 110.7(4) O(7)-Sr(3a)-O(1a) O(4)-Sr(2a)-O(1a)
(μ_3 -O)-Sr-(μ -O)	----	O(2)-Sr(1)-O(4) 75.3(4) O(2)-Sr(1)-O(6) 140.1(6) O(5)-Sr(1)-O(4) 143.6(4) O(5)-Sr(1)-O(6) 73.3(6) O(2)-Sr(2)-O(4) 76.4(4) O(2)-Sr(2)-O(7) 140.2(5) O(3)-Sr(2)-O(4) 143.7(5) O(3)-Sr(2)-O(7) 71.43(5)	O(2)-Sr(2)-O(1) 72.0(4) O(2)-Sr(2)-O(4) 143.8(3) O(5)-Sr(2)-O(1) 143.6(3) O(5)-Sr(2)-O(4) 75.4(3) O(2)-Sr(3)-O(1) 74.5(2) O(2)-Sr(3)-O(7) 143.8(3) O(6)-Sr(3)-O(1) 143.5(3) O(6)-Sr(3)-O(7) 75.6 (3)
(μ_3 -O)-Sr-(μ_3 -O)		O(2)-Sr(1)-O(5) 79.6(4) O(2)-Sr(2)-O(3) 80.4(5) O(2)-Sr(3)-O(5) 80.6(3) O(3)-Sr(3)-O(5) 132.1(5)	O(2)-Sr(3)-O(6) 79.1(3) O(2)-Sr(2)-O(5) 78.6(3) O(5)-Sr(1)-O(2) 80.7(2) O(2)-Sr(1)-O(6) 80.7(2)
(μ -O)-C-(μ -O)	O(9)-C(25)-O(9a) 121.0(22) O(10)-C(30)-O(10a) 120.2(28) O(11)-C(35)-O(11a) 120.8(19) O(12)-C(40)-O(12a) 123.6(20)	----	----
O _{term} -C-O	O(1)-C(1)-O(2) 125.0(19) O(3)-C(7)-O(4) 124.1(20) O(5)-C(13)-O(6) 119.5(19) O(7)-C(19)-O(8) 123.5(17)	----	----
Sr-(μ_4 -O)-Sr		Sr(1)-O(1)-Sr(2) 89.67(7) Sr(1)-O(1)-Sr(1a) 89.3(5) Sr(1)-O(1)-Sr(2a) 170.1(5) Sr(2)-O(1)-Sr(1a) 170.1(5) Sr(2)-O(1)-Sr(2a) 89.7(5) Sr(2a)-O(1)-Sr(1a) 89.67(7)	Sr(2)-O(3)-Sr(2a) 89.9(3) Sr(2)-O(3)-Sr(3a) 170.1(4) Sr(2)-O(3)-Sr(3) 90.0(2) Sr(2a)-O(3)-Sr(3a) 89.4(1) Sr(2a)-O(3)-Sr(3) 170.1(4) Sr(3a)-O(3)-Sr(3) 89.5(3)

List of Figures

Figure 1. Schematic representation of: (a) HO₂CNep (HONc) and (b) HONep (HONep).

Figure 2. Thermal ellipsoid plot of 1. The *t*-butyl groups have been removed for clarity. Thermal ellipsoids are drawn at the 50% level.

Figure 3. Thermal ellipsoid plot of the central core of (a) 2a and (b) 2b. Thermal ellipsoids are drawn at the 50% level.

Figure 4. Schematic representation of the solid state and proposed solution state structure of 2a.

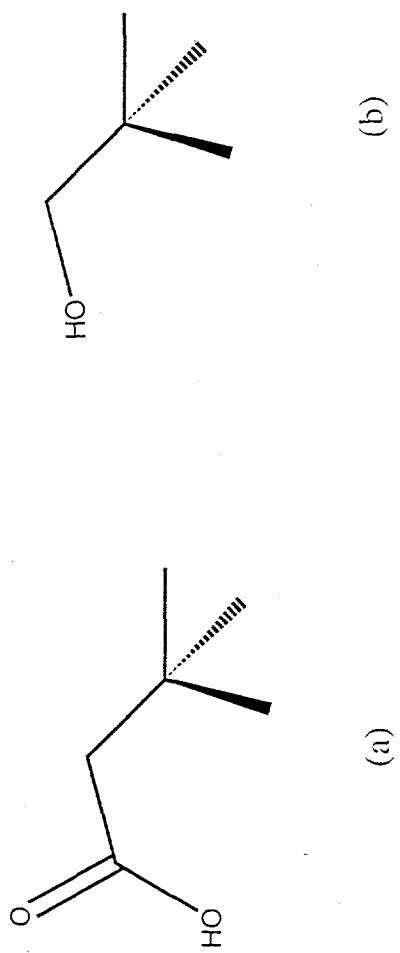
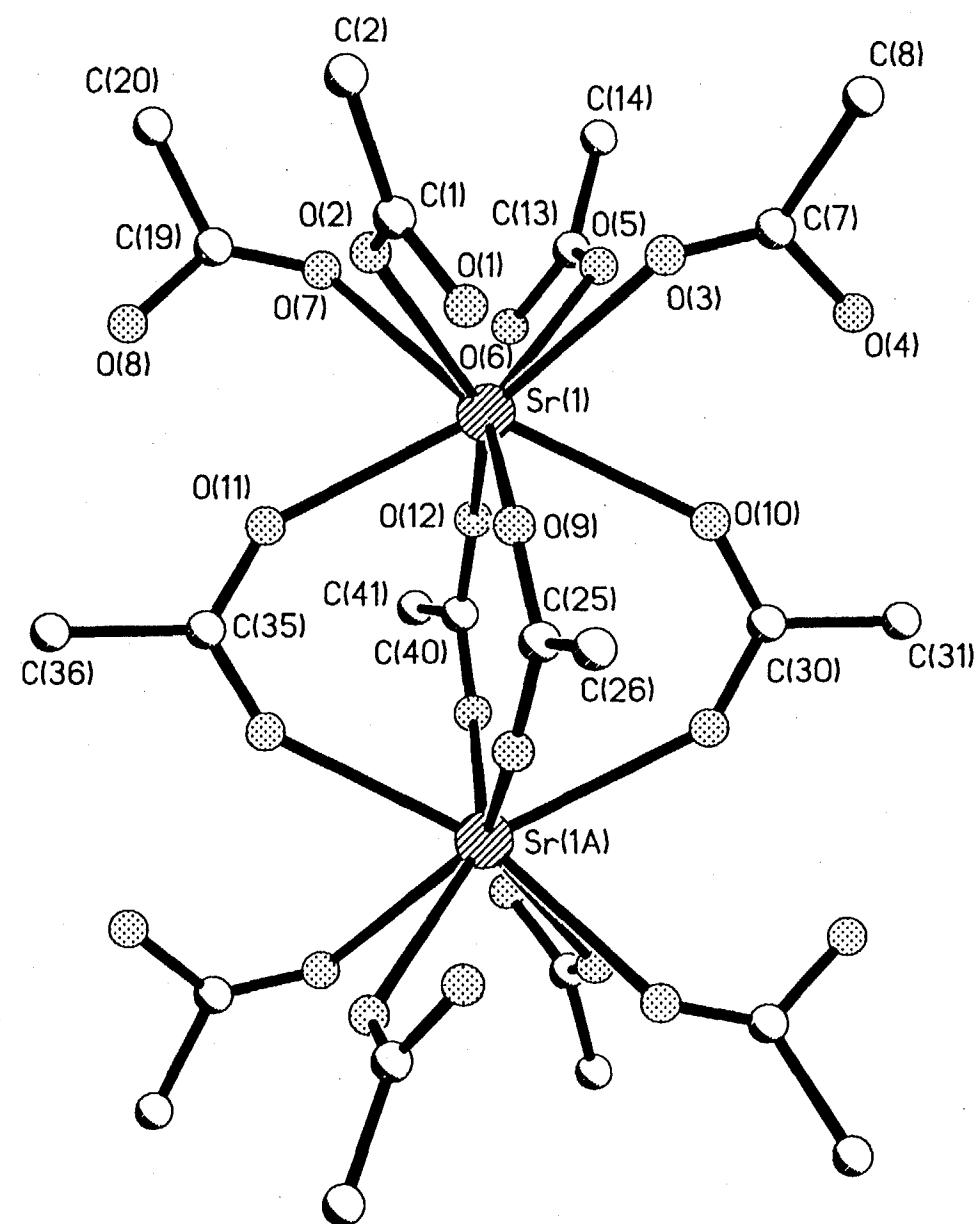
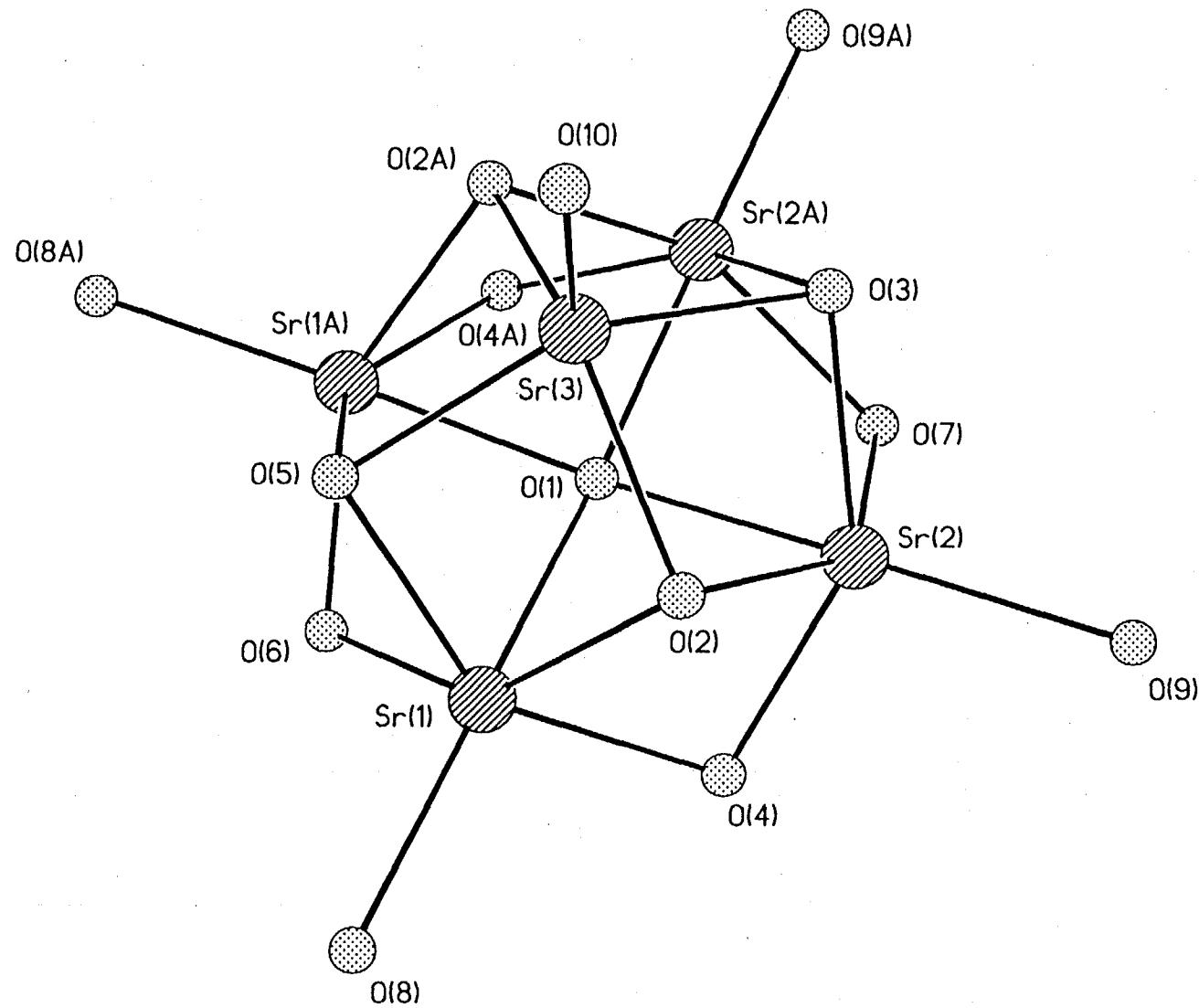
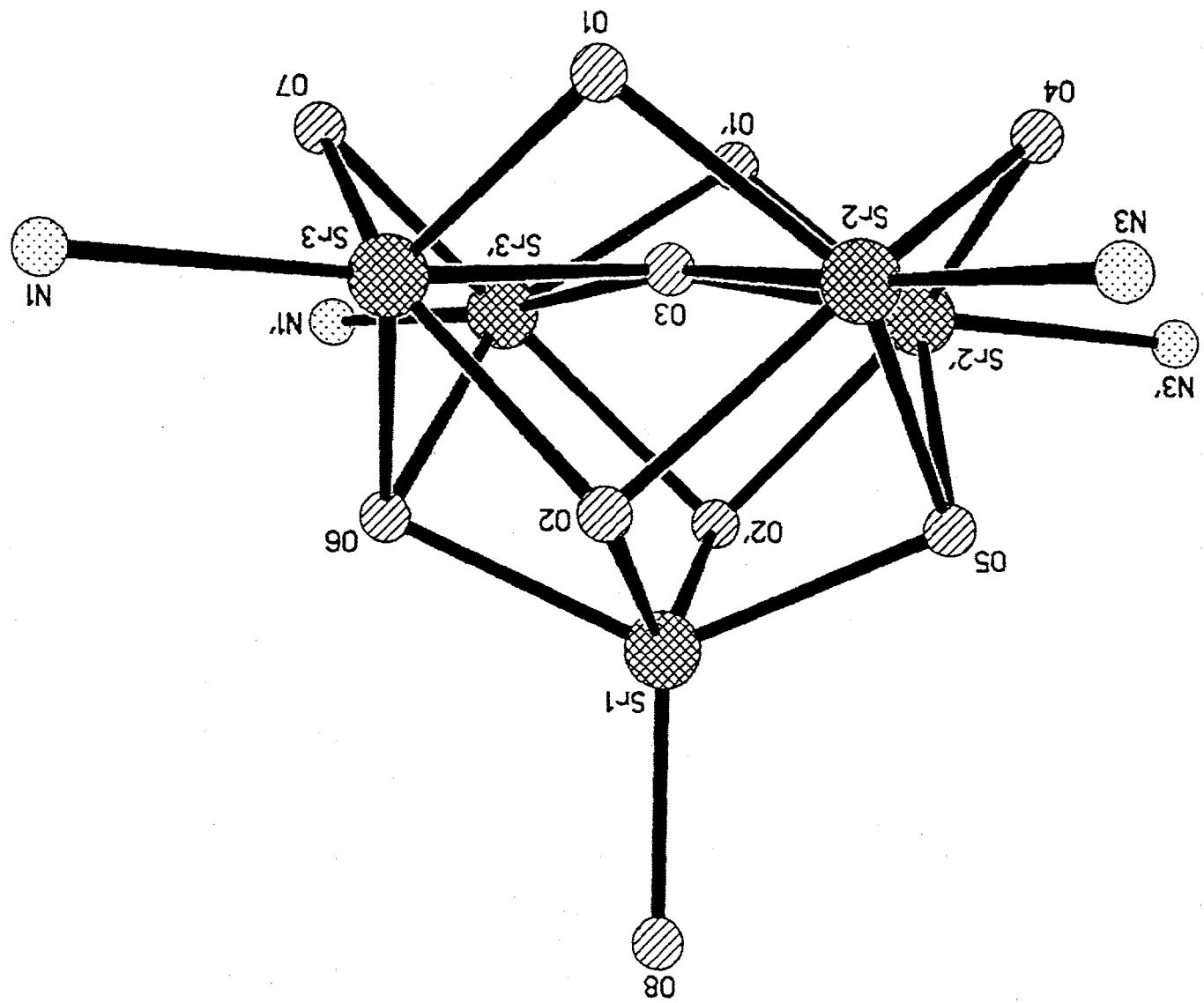
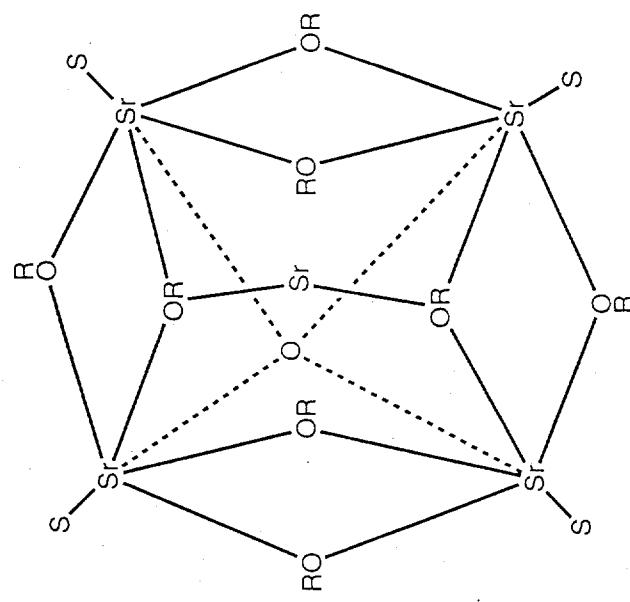
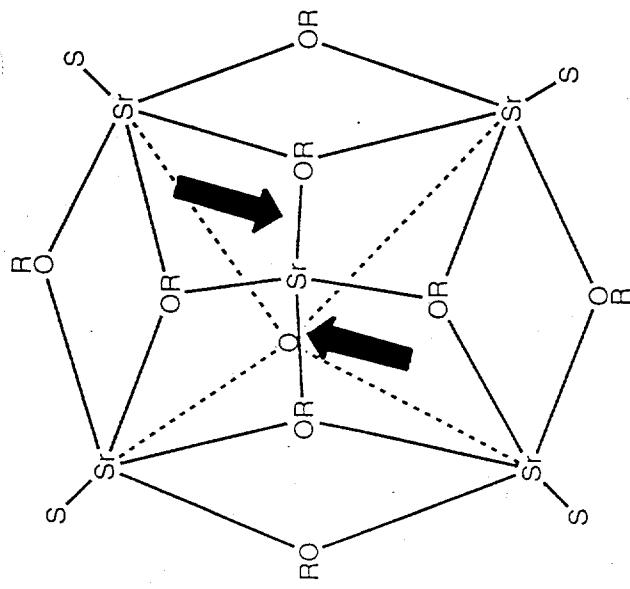






Figure 1. Schematic representation of ligands: (a) t-butyl acetic acid (HONc) and (b) neo-pentanol (HONp).



tol

