
Security Proof for Password Authentication in TLS -
Verifier-based Three-Party Group Diffie-Hellman

Olivier Chevassut1, Joseph R. Milner1, and David Pointcheval2

1 Computational Research Division, Lawrence Berkeley National Laboratory, USA
2 Technology Transfer and Intellectual Property Management Department, Lawrence Berkeley National Laboratory

3 Computer Science Department, École normale supérieure, France

Abstract. The internet has grown greatly in the past decade, by some numbers exceeding 47 million
active web sites and a total aggregate exceeding 100 million web sites. What is common practice
today on the Internet is that servers have public keys, but clients are largely authenticated via short
passwords. Protecting these passwords by not storing them in the clear on institutions’s servers has
become a priority. This paper develops password-based ciphersuites for the Transport Layer Security
(TLS) protocol that are: (1) resistant to server compromise; (2) provably secure; (3) believed to be free
from patent and licensing restrictions based on an analysis of relevant patents in the area.

Keywords: Encrypted Key Exchange, Group Diffie-Hellman Key Exchange, TLS.

1 Introduction

The internet has grown greatly in the past decade, by some numbers exceeding 47 million active
web sites and a total aggregate exceeding 100 million web sites. Internet transactions encompass
all forms of commercial transactions, often where secure information such as credit cards, social
security numbers, and bank accounts are necessary to a set of transactions. Ultimately, businesses
and banks become hacking targets of the confidential data relating to their customers. Such data is
tempting to steal as a jumping off point for identity theft or direct credit card usage. A much easier
target than literally robbing a bank is to target the internet transactions of a bank, which may be
done in a variety of technical means. Thus, it becomes increasingly important that passwords never
be directly transmitted to a financial institution, as they may be compromised during transit.

What is common in practice today is that servers have public keys, but end-users (clients) will
largely be authenticated based on their human-memorizable passwords. One reason for this is that
security infrastructures aim to maintain and respect existing local security architectures of its users,
and these are largely password-based. Another is that users find passwords easier to use. Indeed,
even if a user has a public key, its matching secret key is stored on a server and the user accesses
it via a password. For all these reasons, a central problem is how a client can establish a secure
channel between itself and a server based on a password. As is standard, the central element here is
to execute an authenticated exchange of a session key 1. This is a well-studied problem, an notably
from the seminal EKE work (which stands for Encryption Key Exchange) [BM92,BPR00,BMP00];
however, what differentiates the present paper from previous work is that we want to mitigate
the damage down by system compromise, by making the server to store a transformation of the
password only [BM93,ACP05,GMR06].

Previous works have assumed servers or other parties to be honest, but we know that system
compromise is a reality which can put secret-holding servers in the hands of adversaries. Sys-
tem compromise is a reality that should not be ruled out. It is unrealistic to expect full security
in the presence of this threat: if a hacker breaks into a server that stores client passwords, the
1 The secure channel is then implemented via symmetric encryption and authentication under the session key.



2

passwords are immediately lost. This is what happens in the pw-pw model that have been con-
sidered in [BM92,BPR00,BMP00,BCP03,BCP04,ABC+07]; where the server and client both share
the password.

In this paper we propose to instead consider the pw-f(pw) model, where the server stores the
image of the password under a one-way function f [BM93,ACP05,GMR06]. Now if an adversary
breaks into a server, it obtains only f(pw). If pw is well-selected, meaning not in a too small
dictionary, the adversary will be unable to recover efficiently pw. If it is a poor password, meaning
in a small dictionary, then the adversary can mount a dictionary attack and recover pw in the time
for a number of computations of f equal to the size of the dictionary, but at least this means it
has to work harder, slowing down the attack and giving the servers administrator time to react
appropriately and inform her clients 2. The pw-f(pw) model thus provides greater security in the
face of system compromise, particularly for those users savvy enough to choose good passwords,
but also to some extent for others, particularly if a salt is used and the break-ins are detected in a
reasonable amount of time. One refers as verifier-based the pw-f(pw) scenario.

Organization of the paper. The rest of this short paper is organized as follows. In Section 1 we
describe the cryptographic protocol and its integration in TLS. This is a necessary step toward an
implementation in an open-source cryptographic library such as OpenSSL. In Section 2, we show
that TLS-V3SOKE is provably secure under reasonable computation assumptions. We then finally
conclude the paper.

2 The Patent Issue

With the proliferation of internet applications and business, there is much more monetary value
associated with the corruption of passwords. Individuals and businesses compete in the internet
marketplace using traditional method in intellectual property protection: trade secret, copyright,
trademark, and patents. One difficulty in the area of password-based key exchange is the existence
of patents covering the two cases [ABC+07]. The seminal patent in the area of two party secure
communications is that of Steven M. Bellovin and Michael J. Merritt, ”Cryptographic Protocol for
Secure Communications”, which issued on August 31, 1993 as United States patent 5,241,599 (the
’599 patent), based on [BM92]. This patent discloses a method which permits computer users to
authenticate themselves to a computer system, with password-based authentication. A method was
devised that is believed to be practicable for two party secure communications without infringing
the ’599 patent. This method has a pending United States patent application, which was published
by the United States Patent and Trademark Office as US-2005-0157874-A1 on July 21, 2005.

Similarly, the same Bellovin and Merritt were coinventors for ”Cryptographic Protocol for
Remote Authentication” in United States patent 5,440,635 (the ’635 patent) based on [BM93],
which issued on August 8, 1995. The ’635 patent discloses a cryptographic communication system
that employs a combination of public and private key cryptography, allowing two players, who share
only a relatively insecure password, to bootstrap a computationally secure cryptographic system
over an insecure network. The ’635 patent system is secure against active and passive attacks, and
has the property that the password is protected against offline ”dictionary” attacks. This patent
tackles the issue of verifier-based password key exchange.

Although the ’635 patent was only issued in the United States, it still remains an obstacle to
unfettered remote authentication. Therefore, an alternative protocol is proposed here that differs

2 The work the attacker must do can also be increased by making the function f slow to compute. We can make the
dictionary attack even harder by salting, where the server stores f(salt, pw), for some random salt that is public
but differs from user to user.



3

from the claimed ’635 invention. From a United States patent law perspective, the determination
of whether a claim is infringed based on the ”all elements” approach to the doctrine of equivalents.

”Under the ’all elements’ rule, there can be no infringement under the doctrine of equivalents
if even one limitation of a claim or its equivalent is not present in the accused device or method.”

Thus, if one element or its equivalent of the ’635 is missing, then there can be no infringement
of that claim. In the ’635 claim, there are only independent claims 1 and 9. In patent law, if an
independent claim is not infringed, then a claim depending from the independent claim (with still
more limitations, hence narrower) is also not infringed. Thus, one only needs to initially analyze
claims 1 and 9. If neither of these claims is infringed, then the entire patent is not infringed.

3 Cryptographic Protocol and Its Integration in TLS

Password derivation. The actual common information between the client and the server
is v = Upw . However, the client likely wants to see the group being used before typing his
password string password , which should actually be hashed before being used as an exponent pw .
Furthermore, one may use (C, S,pw) instead of just password to derive the exponent, we obtain a
security improvement in practice in that a client can use the same password (string) with multiple
servers and yet the respective secrets (effective passwords) will be different: One may thus use
pw = G(C ‖ S ‖ U ‖ pw) mod q, and v = Upw .

Algorithm (see Fig 1). The Client and the Server first agree on the ciphersuite to use which
in our case is TLS-V3SOKE. Once the cipersuite is agreed upon, the Server can initiate the 3-party
(dynamic) group Diffie-Hellman key exchange [ABC+06]. The Server’s cryptographic accelerator
generates a value x1 at random and computes the output gx1 which is transmitted to the Server’s
CPU. The Server’s CPU then picks at random a first value x′2 which is used to compute the verifier
as Ux′

2 , and a second value x2 in order to compute the three Diffie-Hellman values gx1 , gx2 , gx1x2 .
The Server then forms the output flow consisting of its identity, the three Diffie-Hellman values,
and the verifier. In TLS language, this flow is called the ServerKeyExchange message.

Once the Client receives the ServerKeyExchange message, the Client generates a random value
x3 and computes the Diffie-Hellman value gx1x3 and sees the Server’s CPU has having left the
group —for details see Bresson et al. [BCP02]. The Client encrypts the Diffie-Hellman value and
sends its to the Server. In TLS language, this flow is called the ClientKeyExchange message.

The Client and the Server compute the group shared secret key gx1x2x3 and the common verifier
V pw. They then both use the latter value as part of the calculation of the PreMasterSecret. The
rest of the handshake is identical to the handshake presented by Abdalla et al. in [ABC+06].

4 Security Theorem and its Proof

Theorem 1 (FS-AKE Security). Let us consider protocol from Figure 1 over a group of prime
order q, where Password is a dictionary of size N , equipped with the uniform distribution. Let A
be an adversary running within a time bound t that makes less than qactive active sessions with the
parties, and asks qhash hash queries. Let us assume that the CDH problem is hard in this group, and
the PRFs and the MAC are secure, then we have,

SuccauthS
VSOKE(A) ≤ qactive

N
+

qhashN

q
+ negl() Advake−fs

VSOKE(A) ≤ 4qactive

N
+

4qhashN

q
+ negl().

Proof. We are interested in the event S, which occurs if the adversary correctly guesses the bit b
involved in the Test-queries. We furthermore consider server (unilateral) authentication: event A is



4

Client C Server S
pw ∈ Password

pw = G(C ‖ S ‖ U ‖ pw)
(Verifier v = Upw ) (Verifier v)

Main CPU S2 Helper S1

accept← false accept← false

Choose ciphersuite:

choose Nc
R← {0, 1}∗

ClientHello : (Nc, . . .)−−−−−−−−−−−−−−−−−→
ServerHello : (Ns, . . .)←−−−−−−−−−−−−−−−−− choose Ns

R← {0, 1}∗

Compute Diffie-Hellman secrets:

choose x′
2

R← Z!
q

V ← Ux′
2

choose x2
R← Z!

q x1
R← Z!

q

Y2 ← {Y1, g
x2 , Y x2

1 } Y1←−−−−−−−− Y1 ← gx1ServerKeyExchange : (S, Y2, V )
ServerHelloDone

←−−−−−−−−−−−−−−−−−−−−−−−
choose x3

R← Zq

compute Y3 ← Y x3
1

encrypt Y3
! ← Y3 × v

ClientKeyExchange : (C, Y3
!)

−−−−−−−−−−−−−−−−−−−−−−→ decrypt Y3 ← Y3
!/v

Compute pre-master secret and authentication key:

Z = Y3
x2 = (Y x2

1 )x3

Z′ = vx′
2 = V pw = Ux′

2·pw

PreMasterSecret = Hash(C, S, v , Y2‖V ‖Y !
3 ‖Z‖Z′)

AuthKey = PRF1(PreMasterSecret, Nc‖Ns)

Compute authenticators:

AuthC = MAC.SignAuthKey(“client finished”, . . .) AuthS = MAC.SignAuthKey(“server finished”, . . .)

Abort if verification fails. Else:
Authenticator : AuthS←−−−−−−−−−−−−−−−−−

accept← true Authenticator : AuthC

[ChangeCipherSpec]
−−−−−−−−−−−−−−−−−→ Abort if verification fails. Else:

accept← true[ChangeCipherSpec]
←−−−−−−−−−−−−−−

Compute master secret and key material as in standard TLS:

MasterSecret = PRF2(PreMasterSecret, Nc‖Ns)
KeyBlock = PRF3(MasterSecret, Ns‖Nc)

←−−−−−−−−−− Secure Channel −−−−−−−−−−→

Fig. 1. The TLS-V3SOKE ciphersuites.



5

set to true if a client instance accepts, without any server partner. Let us remember that in this
attack game, the adversary is allowed to use Corrupt-queries.

Game G0: This is the real protocol, in the random-oracle model:

Advake−fs
VSOKE(A) = 2Pr[S0]− 1 AdvauthS

VSOKE(A) = Pr[A0].

Let us furthermore define the event Sw/tA = S ∧ ¬A, which means that the adversary wins the
Real-Or-Random game without breaking authentication.

Game G1: In this game, we simulate the hash oracles (Hash, but also an additional hash function
Hash′ : ({0, 1}!)3 → {0, 1}" that will appear in the Game G4) as usual by maintaining hash lists
ΛHash and ΛHash′ with all the queries-answers asked to the hash functions. We also simulate all
the instances, as the real players would do, for the Send-queries and for the Execute, Test and
Corrupt-queries.

Game G2: We cancel games in which some collisions appear on the transcripts (C, S, Y2, V, Y !
3 ),

and on the master secrets. Regarding the transcripts, the distance follows from the birthday paradox
since at least one element of each transcript is generated by an honest participant (at least one of
them in each of the qactive active attacks, and all of them in the qpassive passive attacks). Likewise, in
the case of the master keys, a similar bound applies since Hash is assumed to behave like a random
oracle (which outputs "-bit bit-strings): Pr[Coll2] = negl().

Game G3: We cancel games in which for some hash query Hash on (C, S, v , Y2‖V ‖Y !
3 ‖Z‖Z ′),

there exists pw ∈ Password such that v = UG(C‖S‖U‖pw), but the G-query has not been asked by
the adversary. We denote by NotAskPW3 this bad event: Pr[NotAskPW3] ≤ qhashN

q . This is the main
difference from previous proofs [ABC+07], since the reduction needs to make the exhaustive search
on the dictionary, hence N must be large, but not too large: say 40-bit entropy.

Game G4: In this game, we show that the success probability of the adversary is negligible in
passive attacks via Execute-queries. To do so, we modify the way in which we compute the pre-
master secret PreMasterSecret in passive sessions that take place before or after a Corrupt-query.
More precisely, whenever the adversary asks an Execute-query, we compute the pre-master secret
PreMasterSecret as Hash′(C, S, Y2‖V ‖Y !

3 ) using the private oracle Hash′ instead of the oracle Hash.
As a result, it holds that any value of PreMasterSecret computed during a passive session becomes
completely independent of Hash, Z and Z ′, which are no longer needed in these sessions. Please
note that the oracle Hash is still being used in active sessions.

The games G4 and G3 are indistinguishable unless the adversary A queries the hash func-
tion Hash on (C, S, v , Y2‖V ‖Y !

3 ‖Z‖Z ′), for such a passive transcript: this (bad) event is denoted
AskH-Passive-Exe. In order to upper-bound the probability of this event, we consider an auxiliary
game G4’, using a CDHg,G-instance (U1, U2) as input, still knowing the password pw , in which
the simulation of the players changes—but the distributions remain perfectly identical (there-
fore, Pr[AskH-Passive-Exe4] = Pr[AskH-Passive-Exe′4]), and at the same cost (5 exponentiations):
We first set U = U1. Since we do not need to compute Z for the simulation of Execute-queries,
we can simulate Y2 as {Y1 = gx1 , Ux!

2 , Ux!·x1
2 }, V = Ux′

2 as usual, and Y !
3 as gy! , for known

values of x1, x! and y!. This implicitly sets x2 to x! · logg U2. If event AskH-Passive-Exe oc-
curs, the value Z = (gy!

/v)x!·logg U2 can be extracted from ΛHash, by simply choosing at random
among the qhash elements. Since the values x!, y! and pw are known, we get CDHg,G(U1, U2):
Pr[AskH-Passive-Exe4] ≤ negl().

Game G5: In this game, we consider passive attacks via Send-queries, in which the adversary
simply forwards the messages it receives from the oracle instances. More precisely, we replace Hash



6

by Hash′ when computing the value of PreMasterSecret whenever the values (C, S, Y2, V, Y !
3 ) were

generated by oracle instances. Note that we can safely do so due to the absence of collisions in the
transcript. Like in G4, any value PreMasterSecret computed during such passive sessions becomes
completely independent of Hash, Z and Z ′.

As in previous games, we can upper-bound the difference in the success probabilities of A in
games G5 and G4 by upper-bounding the probability that A queries the hash function Hash on
(C, S, v , Y2‖V ‖Y !

3 ‖Z‖Z ′), for such a passive transcript; we call this (bad) event AskH-Passive-Send.
Toward this goal, we consider an auxiliary game G5’, in which the simulation of the players changes
slightly without affecting the view of the adversary. In this simulation, we are given a CDHg,G-
instance (U1, U2), and choose at random one of the Send(S, “start”)-queries being asked to S and
we reply as above, with x! = 1 since there is not need of random self-reducibility. If the event
AskH-Passive-Send occurs and our guess for the passive session is correct (the adversary simply
forwarded the messages), then we can extract Z = Uy!

2 /CDHg,G(U1, U2)pw from ΛHash. Similarly to
above, we get: Pr[AskH-Passive-Send5] ≤ negl().

Game G6: In this game, we extend the replacement of the oracle Hash by the private oracle
Hash′ in any simulation, but before any corruption only: instead of computing PreMasterSecret =
Hash(C, S, v , Y2‖V ‖Y !

3 ‖Z‖Z ′), even when (Y2, V ) or Y3 has been generated by the adversary, we
set PreMasterSecret = Hash′(C, S, Y2‖V ‖Y !

3 ), as long as no Corrupt-query has occurred. Clearly, the
games G6 and G5 are indistinguishable as long as A does not query the hash function Hash on
an input (C, S, v , Y2‖V ‖Y !

3 ‖Z‖Z ′), for some execution transcript (C, S, Y2‖V ‖Y !
3 ). We denote this

(bad) event by AskHbC-Active.

Game G7: In this game, we replace the pseudo-random functions by truly random functions for
all the sessions in which the value of PreMasterSecret has been derived with the private oracle Hash′.
Since the value PreMasterSecret that is being used as the secret key for the pseudo-random function
is independently and uniformly distributed, the distance can be proven by a classical sequence of
hybrid games, where the counter is on the pre-master secrets. That is, each time a new pre-master
secret is set, we increment the counter. Then, Pr[Sw/tA7] = 1

2 . But the difference involves the
pseudo-randomness of the PRFs: Pr[Dist-PRF7] ≤ negl().

Game G8: In this game, we exclude collisions on MAC keys for all the sessions in which the
pre-master secret PreMasterSecret has been derived with the private oracle Hash′(which event is
denoted CollPRF). For these sessions, the MAC keys of length "M are independently and uniformly
distributed (because the PRF were replaced by random functions): Pr[CollPRF8] ≤ negl().

Game G9: In this game, we exclude games wherein for some transcript (C, S, Y2‖V ‖Y !
3 ), there

are two verifiers v0 and v1 such that the corresponding pre-master secrets lead to a collision of the
MAC-values (which event is denoted CollM).

Since we know that MAC-keys are truly random and different from each other at this point,
the event CollM means that a MAC with a random key (one of the qhash possible values) may be
a valid forgery for another random key. Thus, by randomly choosing the two indices for the hash
queries, we get the following upper-bound: Pr[CollM9] ≤ negl().

Before proceeding with the rest of the analysis, we split the event AskHbC-Active into two
disjoint sub-cases depending on whether the adversary impersonates the client (and thus interacts
with the server) or the server (and thus interacts with the client). We denote these events AskHbCwS
and AskHbCwC, respectively. Also we denote by qfake−server (respectively, qfake−client) the number of
sessions in which the adversary impersonates the server (resp., the client). Obviously, one has
qfake−server + qfake−client ≤ qactive.



7

Game G10: In this game, we focus on AskHbCwC only. We now reject all the authenticators sent
by the adversary, impersonating the server: Pr[A10] = 0. In order to evaluate the distance between
the games G10 and G9, we consider the probability of the event AskHbCwC, in which the adversary
succeeds in faking the server by sending a valid authenticator to the client before a Corrupt-query.

To evaluate the probability of event AskHbCwC, we note that, up to the moment in which a
Corrupt-query occurs, no information on the verifier v of a user is revealed to the adversary, despite
the fact that it is still used in the computation of Y !

3 . To see that, note that, for any given transcript
(C, S, Y2‖V ‖Y !

3 ) in which Y !
3 was created by an oracle instance, and for each verifier v = Upw ∈ G,

there exists a value x ∈ Zq, such that Y !
3 = gx × v , which is never revealed to the adversary: this

is the first active attack, and the passive attacks are simulated without using v. Moreover, since
we have removed collisions on the pre-master secrets, on the MAC keys, and on the MAC values,
there is at most one verifier that can lead to a valid authenticator. As a result, the probability that
the adversary succeeds in sending a valid authenticator in each of theses sessions is at most 1/N .
Thus, we get Pr[AskHbCwC10] ≤ qfake−server/N .

Game G11: We finally concentrate on the success probability of the adversary in faking the client.
What we show in this game is that the adversary cannot eliminate more than one password/verifier
in the dictionary by impersonating a client. To do so, we first upper-bound the probability that, for
some transcript (C, S, Y2‖V ‖Y !

3 ) in which (Y2 = (Y1, Y
(1)
2 , Y (2)

2 ), V ) was created by server instance,
there are two hash queries with (v0, Z0, Z ′

0) and (v1, Z1, Z ′
1) in ΛHash, and v0, v1 possible verifiers

(that is that correspond to UG(C‖S‖U‖pw) for pw that is in the dictionary of size N) such that one
has, for i = 0, 1,

Zi = CDHY1,G(Y !
3 /vi, Y

(2)
2 ), Z ′

i = CDHU,G(V, vi).

We denote this event CollH.
In order to upper-bound the probability of event CollH, we consider an auxiliary game in which

the simulation of the players changes slightly without affecting the view of the adversary. The goal
is to use the adversary to help us compute the computational Diffie-Hellman value of U1 and U2, as
above. In this simulation, we do as in the Game G5: we set U = U1. We choose at random one of
the Send(S, “start”)-queries being asked to S and we reply with Y2 = {gx1 , U2, U

x1
2 } and V = Ux′

2 ,
in the hope that this is the session which leads to a collision in the transcript. For all other sessions,
Y2 and V are simulated as usual. Now, let us assume that the event CollH happens, with v0 = Upw0

and v1 = Upw1 . If our guess for the Send(S, “start”)-query was correct, then we can extract the
value CDHg,G(U1, U2) as (Z1/Z0)u, where u is the inverse of (pw0− pw1)x1, by simply guessing the
indices of the two hash queries involved in the collision. We note that u is guaranteed to exist since
v0 (= v1, and thus pw0 (= pw1. It follows that Pr[CollH] ≤ negl().

When the event CollH does not happen, for each transcript (C, S, Y2‖V ‖Y !
3 ) in which Y2 was

created by server instance, there is at most one verifier value v such that the tuple (Y2, Y !
3 , Z) is

in ΛHash. Thus, we get Pr[AskHbCwS11] ≤ qfake−client/N + negl().
Since Pr[A11] = 0, this concludes the proof. )*

5 Conclusion

This paper provides the open source community with strong password-based ciphersuites for TLS
that are believed to be free from patent infringements. We have added the verifier-based feature to
the 3-party group Diffie-Hellman ciphersuites of Abdalla et al. [ABC+07] to make these ciphersuites
better suited to today’s practical use in open source libraries.



8

Acknowledgments

The first author is supported by the Director, Office of Science, Office of Advanced Scientific
Computing Research, Mathematical Information and Computing Sciences Division, of the U.S.
Department of Energy under Contract No. DE-AC03-76SF00098.

References

[ABC+06] Michel Abdalla, Emmanuel Bresson, Olivier Chevassut, Bodo Möller, and David Pointcheval. Provably
secure password-based authentication in TLS. In ASIACCS 06, pages 35–45. ACM Press, 2006.

[ABC+07] Michel Abdalla, Emmanuel Bresson, Olivier Chevassut, Bodo Möller, and David Pointcheval. Strong
Password-Based Authentication in TLS Using the Three-Party Group Diffie-Hellman Protocol. In Inter-
national Journal of Security and Networks (IJSN), 2007 (to appear).

[ACP05] Michel Abdalla, Olivier Chevassut, and David Pointcheval. One-time verifier-based encrypted key ex-
change. In Serge Vaudenay, editor, PKC 2005, volume 3386 of LNCS, pages 47–64. Springer-Verlag,
Berlin, Germany, January 2005.

[BCP02] Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. Dynamic group Diffie-Hellman key ex-
change under standard assumptions. In Lars R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of
LNCS, pages 321–336. Springer-Verlag, Berlin, Germany, April / May 2002.

[BCP03] Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. Security proofs for an efficient password-
based key exchange. In Sushil Jajodia, Vijayalakshmi Atluri, and Trent Jaeger, editors, ACM CCS 03,
pages 241–250. ACM Press, October 2003.

[BCP04] Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. New security results on encrypted key
exchange. In Feng Bao, Robert Deng, and Jianying Zhou, editors, PKC 2004, volume 2947 of LNCS, pages
145–158. Springer-Verlag, Berlin, Germany, March 2004.

[BM92] Steven M. Bellovin and Michael Merritt. Encrypted key exchange: Password-based protocols secure against
dictionary attacks. In 1992 IEEE Symposium on Security and Privacy, pages 72–84. IEEE Computer
Society Press, May 1992.

[BM93] Steven M. Bellovin and Michael Merritt. Augmented encrypted key exchange: A password-based protocol
secure against dictionary attacks and password file compromise. In V. Ashby, editor, ACM CCS 93, pages
244–250. ACM Press, November 1993.

[BMP00] Victor Boyko, Philip D. MacKenzie, and Sarvar Patel. Provably secure password-authenticated key ex-
change using Diffie-Hellman. In Bart Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS, pages
156–171. Springer-Verlag, Berlin, Germany, May 2000.

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key exchange secure against dic-
tionary attacks. In Bart Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS, pages 139–155.
Springer-Verlag, Berlin, Germany, May 2000.

[GMR06] Craig Gentry, Philip MacKenzie, and Zulfikar Ramzan. A method for making password-based key exchange
resilient to server compromise. In Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages
142–159. Springer-Verlag, Berlin, Germany, August 2006.

JAWolslegel
Typewritten Text

JAWolslegel
Typewritten Text

JAWolslegel
Typewritten Text

JAWolslegel
Typewritten Text

JAWolslegel
Typewritten Text

JAWolslegel
Typewritten Text

JAWolslegel
Typewritten Text
 Also Office of Science Contract

JAWolslegel
Typewritten Text
No. DE-AC02-05CH11231.

JAWolslegel
Typewritten Text

JAWolslegel
Typewritten Text




