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ABSTRACT 

Rock containing a compliant, fluid-filled fracture can be viewed as one case of heterogeneous 
poroelastic media. When this fracture is subjected to seismic waves, a strong contrast in the elastic 
stiffness between the fracture itself and the background can result in enhanced grain-scale local 
fluid flow. Because this flow—relaxing the pressure building up within the fracture—can increase 
the dynamic compliance of the fracture and change energy dissipation (attenuation), the scattering 
of seismic waves can be enhanced. Previously, for a flat, infinite fracture, we derived poroelastic 
seismic boundary conditions that describe the relationship between a finite jump in the stress and 
displacement across a fracture, expressed as a function of the stress and displacement at the 
boundaries. In this paper, we use these boundary conditions to determine frequency-dependent 
seismic wave transmission and reflection coefficients. Fluid-filled fractures with a range of 
mechanical and hydraulic properties are examined. From parametric studies, we found that the 
hydraulic permeability of a fracture fully saturated with water has little impact on seismic wave 
scattering. In contrast, the seismic response of a partially water-saturated fracture and a 
heterogeneous fracture filled with compliant liquid (e.g., supercritical CO2) depended on the 
fracture permeability. 
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1. INTRODUCTION 

A fracture serves as an efficient conduit for fluid transport in low-permeability rock. This 
makes characterizing the hydraulic properties of fractures essential for predicting subsurface fluid 
transport. It is often desirable to estimate the permeability of fractures at depth from geophysical 
measurements (seismic methods, in particular), although currently, no well-established effective 
and practical techniques exist. Because seismic properties of fluid-bearing, poroelastic materials 
are generally affected by their permeability (e.g., Biot, 1956ab; Johnson et al., 1978), in principle, 
the permeability of a fracture should also be reflected in its interaction with seismic waves.  

Previously, Nakagawa and Schoenberg (2007) derived a simple model (in the form of boundary 
conditions) for predicting how a fracture with a range of mechanical and hydraulic properties 
affects scattering of seismic waves. This model assumed a fracture to be a thin layer of 
homogeneous poroelastic material embedded within a homogeneous background. Surprisingly, the 
model predicted that the permeability of a fracture (along the fracture plane) did not affect the 
scattering of seismic waves. This is a somewhat disappointing result, if we want to use seismic 
waves to determine the permeability of a fracture.  

Note, however, that the simplified conceptual model for a fracture used in the Nakagawa and 
Schoenberg (2007)’s model—a fracture envisioned as a flat, homogeneous, poroelastic layer 
embedded within a background poroelastic medium—may not be adequate for predicting the 
behavior of a real fracture. For fracture-parallel fluid flow to occur between high and low-pressure 
regions within a fracture, the length scale of wave-induced pressure variation (pressure diffusion 
length, or Biot’s slow-wave wavelength within the fracture) has to be comparable to or longer than 
the distance between neighboring peaks and troughs of pressure, along the fracture plane. This is 
usually not the case for a thin, homogeneous fracture in which the speed of the wave-induced 
pressure propagation is significantly slower than the incident waves: the fluid is practically 
“frozen” in the fracture-parallel direction. 

In contrast, if the mechanical and hydraulic properties of a fracture are heterogeneously 
distributed along the fracture plane, the intrinsic pressure diffusion length within the fracture may 
become comparable to or surpass the length scale of the heterogeneity, resulting in relaxation of 
wave-induced pressure (Figure 1). In recent years, the effects of “mesoscale” (larger than 
grain/pore size but smaller than the wavelength of propagating waves) heterogeneity in rock on 
enhanced seismic velocity dispersion and attenuation have been widely recognized (e.g., Dutta and 
Odé, 1979ab; Norris, 1993; Johnson, 2001; Pride and Berryman, 2003ab). Therefore, we should be 
able to expect the same heterogeneity-induced poroelastic behavior for a fluid-filled, 
heterogeneous fracture.  

In this paper, we will examine how the heterogeneity within a single fracture can affect the 
scattering of seismic waves, particularly as a function of fracture permeability. We will first briefly 
review the poroelastic seismic boundary conditions derived by Nakagawa and Schoenberg (2007). 
Subsequently, these conditions will be extended to include the effect of fracture-parallel fluid flow. 
Further, an analytical framework will be built to compute plane wave scattering by a fracture with 
heterogeneously distributed mechanical and hydraulic properties, applying the method used by 
Nakagawa et al. (2004). Finally, the derived equation will be solved numerically for particular 
fracture models to demonstrate how different types of heterogeneity affect the fractures’ seismic 
responses.  

The results of the numerical study indicate that when a fracture is saturated with a stiff fluid 
(e.g., water), the seismic wave scattering is hardly affected by the fracture permeability, even when 
the distribution of the fracture compliance is strongly heterogeneous. However, if the compliance 
of the fluid is very high (e.g., supercritical CO2) or the stiff fluid locally contains gas bubbles, 
seismic wave scattering can be affected by the (fracture-parallel) permeability.  
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2. POROELASTIC SEISMIC BOUNDARY CONDITIONS FOR A FRACTURE 

In this section, we will first review the poroelastic seismic boundary conditions for a 
homogeneous fracture (fracture and fluid properties do not change along the fracture). 
Subsequently, these boundary conditions will be extended to heterogeneous fractures. In both 
cases, we will limit our discussions to fractures without in-filling gouge materials, or fractures 
with highly permeable gouge materials. This restriction allows us to assume the continuity of fluid 
pressure across a fracture, which greatly simplifies of the mathematical treatment. 

2.1 Boundary conditions for a homogeneous fracture 

Nakagawa and Schoenberg’s seismic boundary conditions (2007) for a fracture filled with a 
highly permeable material (or without such materials) are given by:  
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where the square brackets [*] indicate the difference (or jump) in the related quantity across the 
fracture. (A similar model was proposed by Bakulin and Molotkov [1997].) The equations assume 
a Cartesian coordinate system with the 1, 2-directions aligned with the fracture plane (i.e., the 3 
direction is the fracture-normal direction) (Figure 2). The symbols used in these equations are 
summarized in Table 1. 

Equation (1) was derived originally by modeling a fracture as a thin, homogeneous poroelastic 
layer with a well-defined thickness h. However, by considering the equations’ physical 
implications and by slightly changing the interpretation of the “fracture thickness,” these boundary 
conditions can also be applied to a fracture consisting of partial contacts between two solid 
halfspaces. 

The physical meaning of the expressions of Equation (1) (defined for a “homogeneous fracture” 
with uniform distributions of the characteristic parameters) is as follows: the first four boundary 
conditions state continuity of total stress and fluid pressure across a fracture. The fifth and sixth 
conditions state proportionality between seismically induced small perturbation of shear stress and 
displacement jump across a fracture. The remaining expressions show the poroelastic constitutive 
relationships. The seventh expression represents the effective stress law (thus including the Biot-
Willis effective stress coefficient α), and the eighth and last expression states the conservation of 
mass by equating the volume of fluid expelled by a fracture (left-hand side of the equation) to the 
fluid displaced by a closing fracture (the first term in the right-hand side, including α) and the 
volume changes of fluid and solid within the fracture through ηM. For a fracture modeled by a 
poroelastic layer, this last coefficient ηM is defined by: 
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where M is the Biot’s storage coefficient, and Ks and Kf are the bulk moduli for solid and fluid 
within the fracture, respectively (e.g., Pride, 2003). From this definition, ηM  can be used to 
measure the fluid effect on the compressibility of a fracture. Note that, instead of ηM, the fracture 
Skempton coefficient B%  (Nakagawa and Schoenberg, 2007—also see Table 1 footnote) can also be 
used, which quantifies how much of the total stress “uniaxially” (normally to the fracture) applied 
to a fracture is counteracted by fluid pressure, under undrained conditions.  

For a fracture consisting of partial contacts between two solid halfspaces, we need to define two 
concepts related to “fracture thickness”—“mechanical thickness” hM and “hydraulic thickness” hH. 
The hM concept is defined for the zone including the fracture asperities and a part of the 
background medium—the part experiencing the local perturbation of stress and deformation 
caused by surface heterogeneities (e.g., Myer, 2000). Therefore, defining the mechanical fracture 
thickness is somewhat arbitrary. The static parameters appearing within the boundary conditions 
(ηT, ηNd, ηM, α, and B% ) are defined as effective medium parameters for the materials within this 
thickness. This representation of fracture properties has been shown to be sufficient for describing 
the scattering behavior of seismic waves, as long as the thickness of the zone is much smaller than 
the seismic wavelengths (Schoenberg, 1980; Pyrak-Nolte et al., 1990; Rockhlin et al., 1991). In 
contrast, a separate fracture thickness hH—which is closely related to the hydraulic permeability of 
the fracture—needs to be defined for studying the dynamic, flow properties. (The thickness hH  is 
usually smaller than hM.)  

However, note that because the above boundary conditions expressed in Equation (1) do not 
depend on the permeability of a fracture, the scattering of seismic waves computed using the 
above equations is not affected by the fracture permeability. 

2.2 Boundary conditions for a heterogeneous fracture 

One major difference between a homogeneous fracture (represented by a poroelastic layer) and 
a more realistic, heterogeneous fracture is that there should be an enhanced fluid motion within a 
heterogeneous fracture, induced by a local fluid-pressure gradient. This is analogous to the locally 
induced fluid flow within a heterogeneous porous medium, which can result in a much larger 
seismic-wave-velocity dispersion and attenuation compared to a classical, homogeneous porous 
medium studied by Biot (Biot, 1956ab).  

The locally induced flow can have an impact on the seismic boundary conditions in two ways, 
if the fluid-inertia-related effects can be neglected for the small thickness of the fracture. These are 
(1) the effect of viscous shear stress resulting from fluid motion within the fracture (which disrupts 
the continuity of shear stresses in the first and second expressions in Equation [1]), and (2) 
changes in the fracture-normal fluid flux caused by the flow parallel to the fracture (which 
modifies the fluid-flux discontinuity condition in the last expression of Equation [1]).  

The first effect, however, can be ignored for fracture thicknesses that are much smaller than the 
length scale of local fluid-pressure variation and heterogeneity along the fracture surface. For 
simplicity, we assume a one-dimensional fracture with a hydraulic fracture thickness hH. Also, the 
background is assumed to be impermeable. If the local variation of fluid pressure ( )fp∆ −  occurs 
over a small distance ∆L(>>hH), the average shear stress τ in this section is given (see Figure 3) by  
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Note that the effect of the fluid inertia is ignored because we are already assuming a long 
wavelength. Although a constant fracture thickness is assumed here, the inequality also holds for 
spatially varying fracture thickness. This result indicates that the fluid flow-induced shear stress 
can be ignored compared to the effect of induced fluid pressure within a fracture.  
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The second effect can be included in the last expression in Equation (1) as follows: 
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The newly added third and fourth terms account for the influx of fluid at the point of consideration, 
from the surrounding locations within the fracture plane. The superscript (2) indicates that the 
related quantities are two dimensional, expanding in the 1, 2 directions. Also, the bars (“-“) above 
the relative flow displacement w1 and w2 indicate averaging across the fracture thickness. The fluid 
flux in the fracture-parallel direction can be evaluated via Biot’s solution for oscillatory flow 
between flat parallel walls (Biot, 1956b): 
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Note that the first term on the right hand side of the Equation (5) represents the flow induced by a 
pressure gradient, and the second term represents the apparent flow caused by the moving frame of 
reference (background rock or fracture surfaces). For simplicity, we assume an isotropic second-
rank diagonal permeability tensor for the flow parallel to the fracture: 
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For the flow within a fracture, the components of the above matrix are defined for flow 

spatially averaged across the fracture thickness. Therefore, 1, 2-direction components of relative 
fluid flux w& and acceleration u&&  are also averaged quantities across the fracture thickness. By 
introducing Equation (5) into Equation (4), 
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where we defined a new, spatially varying characteristic parameter (fracture permissivity) 
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Note that this parameter can become a second-rank tensor through a related permeability tensor, 
(2) ( )ωk , if necessary. 

Summarizing the results, the boundary conditions for a heterogeneous, fluid-filled fracture are 
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The superscripts “+” and “-” indicate the individual sides of the fracture. (Note that the precise 

location where the boundaries are defined is somewhat ambiguous, because the fracture thickness 
hM and hH should be defined through mechanical and hydrological properties of a fracture, rather 
than its actual geometry.) Also, in Equation (11), the solid frame displacement (or acceleration) 
along the fracture is approximated as an average of the displacements across the fracture as 

( ) / 2+ −= +u u u . 

3. COMPUTATION OF WAVE SCATTERING BY A HETEROGENEOUS FRACTURE 

To examine the scattering of plane waves by a heterogeneous fracture, the above seismic 
boundary conditions are assumed to be valid at each location on the fracture. In this model, the 
heterogeneity is represented by spatially varying characteristic fracture parameters such as fracture 
compliances ηNd, ηT, ηM, Biot-Willis coefficient α, fracture Skempton coefficient B% , and fracture-
parallel hydraulic permissivity ( ).ς ω  When spatial Fourier transforms are applied to Equations (10) 
and (11), the multiplications between the variables and the characteristic fracture parameters 
become convolutions in the wavenumber domain, which represent multiple scattering of waves 
involving both specular and nonspecular scattering (resulting in conversions in wavenumber) 
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(Nakagawa et al., 2004). Representing the transformed variables by a tilde (“~”), the transformed 
equations are 
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Note that, in the above equations, the superscripts + and – indicate the direction of wave 
propagation (“+”=“down-going”, “–”=“up-going”), rather than the sides of a fracture. The 
superscript “I” indicates a plane wave propagating in the positive x3 direction. The transformed 
stress and displacement vectors are a function of wavenumbers 1 2( , )k k . Also, the transformed 
matrices ′η%  and ′′η%  in Equation (18) can involve spatial derivative operators that must be treated 
carefully when convolved with stress and displacement vectors.  

In matrix form, the displacement and stress (pressure) components of plane waves can be given 
by 
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U± and S± are the displacement and stress coefficient matrices, respectively, which relate the 
amplitudes of two shear waves and fast and slow compressional waves, given by the coefficient 
vector a±, to the displacement and stress (and pressure) on the fracture surfaces. E± are the 
diagonal phase-advance matrices. [Explicit forms of these matrices can be found in Nakagawa and 
Schoenberg (2007).] In the following derivations, I will take advantage of the fact that if the stress 
vectors were used as primary variables, the continuity of total stress vector across a fracture 
[Equations (10) and (17)] results in simpler equations. On the fracture, E±=I(identity matrix). 
Therefore, from Equations (19) and (20),  
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Introducing Equation (22) into the matrix Equation (18),  
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Combining Equations (23) and (17), 
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The matrix-vector multiplications +Gτ%  and IHτ%  in Equation (24) must be performed before the 
wavenumber convolutions indicated by “*.”  For a spatially periodic fracture, the above equation 
can be expressed in a discrete form. In this case, the convolution operators are replaced by 
matrices as ˆ* →η η% % , ˆ*′ ′→η η% % , and ˆ*′′ ′′→η η% % . Therefore, Equation (24) becomes 
 

( ){ } ( )ˆ ˆ ˆ ˆˆ ˆˆˆ ˆ ˆ Ii iω ω+′′ ′ ′′− + + = +H η η G η τ I η Hτ% % % %% % . (27) 
 
The solution of the scattering problem can be obtained numerically by solving this matrix equation 
for a given spatial distribution of fracture properties and an incident wave.  
 

4. EXAMPLES 

The solution of the scattering problem formulated in the previous section can be obtained for a 
flat, two-dimensional fracture within a homogeneous background. However, for computational 
reasons, we will examine only one-dimensional fractures in the following examples. Also, these 
examples are computed only for an incident (Biot’s) fast P wave, and only the amplitude of 
reflected fast P wave is examined (Note: This amplitude is obtained for the coherent component 
[specular component] of the reflected waves). 

4.1 Model fracture 

In the following examples, we assume a simple, one-dimensional fracture with smoothly 
varying local fracture properties. The material properties of the background poroelastic medium 
are summarized in Table 2. The examples in the following sections were computed for an 
underground reservoir used for geological CO2 sequestration, and the material properties are given 
for elevated temperature and pressure (T=55oC, P=15 MPa). 

To specify the fracture model, we first assume a “hydraulic fracture width hH” profile given by 
( )14 cos 2

1( ) 10
x

L
Hh x

π− +

=  (m) (28) 
 

where L is the one periodic length of the fracture. At each point along the fracture, this width is 
used to calculate the local fracture permeability Tk  (and permissivity ς ) via Equation (6) and the 
storage compliance ηM via Equation (2), for different types of fluids and local fluid saturation. To 
obtain a fracture compliance distribution correlated to hH, we simply assume that both dry-normal 
and shear compliances are given by ηT, ηNd [m/Pa]=10-6×hH [m]. Although this model is 
admittedly arbitrary, it should suffice for examining the salient nature of seismic wave scattering 
by a fluid-filled fracture. 

In each example, we will use background materials with two different permeability values (as 
shown in Table 2) and a range of fracture permeability. The permeability of the fracture is 
specified by multiplying a reduction factor F (=0.001, 0.01, 0.1, and 1.0) to the reference fracture 
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permissivity refς (obtained using Equation [9]). Physically, this can be viewed as the permeability-
reducing effect of rough fracture surfaces and/or gouge material. The Biot-Willis coefficient for 
the fracture α is assumed to be 1.  

 

4.2 Homogeneous fracture:Saturated by water 

In the first example, we examine a homogeneous, water-saturated fracture. For this fracture, the 
hydraulic width is assumed to be 1 mm.  

Reflection coefficients of fast P waves for a normally incident wave are shown in Figure 4a, as 
a function of wave frequency. Each curve corresponds to different background permeability 
(high=10 µD or low=10 D). From the plot, the amplitude of the waves is higher for the high-
permeability background. This is because the wave-induced fluid pressure within a fracture is 
dissipated into the background medium, which effectively increases the (normal) compliance of 
the fracture. In contrast, the permeability of the fracture itself has little impact on the amplitudes of 
reflected waves, because the fluid cannot move along the fracture for the normally incident P wave.  

When a P wave is obliquely incident upon a fluid-filled fracture, the pressure gradient induced 
along the fracture should result in fluid flow, which changes the P-wave reflection depending on 
the fracture permeability. Figure 4b shows the reflection coefficients for obliquely (45o) incident 
fast P-waves. Although a range of fracture permissivity values are used, the results are all 
indistinguishable from one another, for the both high and low background permeability cases. This 
result indicates that in contrast to the large differences caused by the background permeability, the 
fracture permeability (permissivity) still has little impact on the reflection amplitude for obliquely 
incident P waves.  
 
 

4.2 Homogeneous fracture:Saturated by water 

As discussed in the Introduction, the lack of sensitivity to the (fracture parallel) fracture 
permeability can be attributed to the inability of fluid to move between a peak and a trough of 
pressure within a homogeneous fracture. Therefore, if a heterogeneous distribution of fracture 
compliance and fracture width result in a fluid pressure distribution with a much shorter length 
scale, the fluid may be able to move within a fracture, making scattering of the wave fracture-
permeability dependent. 

To examine this possibility, reflections of normally incident, fast P waves were computed for a 
water-saturated, heterogeneous fracture, using the model derived via Equation (28). Figure 5 
shows a schematic view of the periodic, one-dimensional, heterogeneous fracture. The dry normal 
fracture compliance and fracture storage compliance distributions are shown for one period (L=0.1 
m) along the fracture (Figure 6). Note that we assume that the shear fracture compliance is 
identical to the dry normal compliance at each point.  

Contrary to our expectations, the amplitudes of reflected waves were not significantly affected 
by fracture permeability. Figure 7 shows qualitatively the same results as the homogeneous 
fracture case, showing large increases in P-wave reflection for larger background permeability, but 
little change for a range of fracture permeability.  

4.2 Heterogeneous fracture:Partially saturated by water 

In this example, using the same fracture model, the fluid saturation of the fracture was locally 
reduced down to 50% over a small range within the fracture (Figure 8). This resulted in locally 
increased fracture storage compliance via Equation (2) (Kf was reduced by volume averaging 
between fluid and gas—Figure 9).  
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For the low-permeability background case, an introduction of a small amount of compliant gas 
(air under T=55 oC and P=15 MPa) dramatically increased the compliance of the fracture, resulting 
in a higher reflection amplitude than the fully saturated fracture (Figure 10). Particularly, for the 
low-permeability background, the reflection amplitude shows a transition between high-reflection 
to low reflection regimes. Interestingly, the transition frequency is dependent on the fracture 
permeability (permissivity), which indicates that the flow within a fracture plays a role in altering 
the reflection amplitude.  

4.3 Heterogeneous fracture:Saturated by supercritical CO2 

The overall compliance of a fracture can also be reduced by replacing the water within the 
fracture by a more compliant fluid. At the given T, P state, CO2 is supercritical, with much higher 
compliance and lower viscosity than water (bulk modulus=0.0726 GPa, viscosity=5.12×10-5 Pa·s). 
The compliance distributions are shown in Figure 11.  

Figure 12 shows the resulting reflection amplitudes. Although the effect of fracture-
permeability difference for the low-permeability background case is not as dramatic as the 
partially saturated water, the overall reflection amplitudes are much larger than the water-saturated 
fracture.   

4. DISCUSSIONS AND CONCLUSIONS 

This paper presents a set of displacement-stress boundary conditions for computing the 
scattering of seismic waves by a fluid-filled, heterogeneous fracture. The heterogeneity of the 
fracture is represented by a distribution of characteristic fracture parameters (fracture compliances, 
storage compliance, hydraulic width, [along-fracture] permissivity, Biot-Willis coefficient).  

The examples for seismic wave scattering (fast P-wave reflections) computed using this model 
showed some interesting characteristics of interaction between seismic waves and a fluid-filled 
fracture.  

When a fracture is embedded in a high-permeability background, the reflection of the wave can 
be significantly large compared to a fracture within a low-permeability (or impermeable) 
background. This is because the fluid pressure within a fracture can dissipate into the background, 
increasing the overall normal compliance of the fracture.  

For a low-permeability background, the permeability of the fracture itself can play a significant 
role, because the degree of pressure dissipation within a fracture determines the overall 
compliance of the fracture. In Figure 13, normalized amplitude and pressure distributions (to the 
maximum value in each profile) at 316 Hz are shown for the background and fracture 
permeabilities (permissivity) used in the previous section. For the normal-incidence cases, 
increasing the fracture   permeability generally makes the amplitude profile flatter and the phase 
profile more even. 

This demonstrates that the fracture permeability is indeed controlling the pressure dissipation in 
the fracture. For the case of a homogeneous, water-saturated fracture with an obliquely incident 
wave (Figure 13a), the changes in the profiles are minimal. This seems to indicate that the fluid 
does not flow within the fracture. The heterogeneous, water-filled fracture does show some 
changes, although the relative magnitude of the changes is small, possibly because the low 
compliance of the fluid does not allow a large displacement.  

In contrast, the fractures partially saturated with water and with supercritical CO2 exhibit very 
large changes in the pressure amplitude and phase profile (Figure 13c and d). In both cases, large 
pressures are found around the low ηNd and small hH area (or fracture “asperities”) for low-
permeability fractures. These high pressures are dissipated into low-pressure areas between the 
asperities. Essentially, this is the “squirt flow” effect (e.g., Dvorkin et al., 1994) for a fracture. 

In summary, the amplitude behavior of a fast P-wave reflected by a fluid-filled fracture can be 
understood as follows (Figure 14): In a low-permeability background, the frequency and 
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permeability of a fracture determine whether the fracture is in a “relaxed” or “unrelaxed” regime. 
Larger reflection amplitudes result from the “relaxed” regime, since the overall fracture 
compliance is larger. If the background permeability is large, the reflection amplitude can be even 
larger (owing to the pressure dissipation into the background), and the fracture permeability can 
lose its effect on the wave reflection. 

 Finally, for the case when a compliant liquid (supercritical CO2) is saturating a fracture, the 
enhanced compliance of a fracture allows more fluid flow, which increases the compliance of the 
fracture—and hence the reflection of seismic waves and permeability sensitivity. This last result is 
particularly important for discriminating the infiltration of the CO2 phase within fractures during 
geological sequestration of CO2.  
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Table 1. Symbols used in this paper. 
Symbols Variables 
i,j=1,2,3 
ω 
ki 

τij  
pf 
ui 
wi 

kij(ω) 
kT 

ς T 

φ 
Ks 
Kf 
M 
ρf 
ηf 
h 
hM 
hH 

φ 
ηT 

ηNd 

ηM 

α 
B%  

 
Circular wave frequency (2π×Hz) 
wavenumber 
Total stress tensor (Pa) 
Fluid pressure (Pa) (positive compression ) 
Solid frame displacement (m) 
Relative fluid displacement (m) 
2D fracture permeability tensor (m2) 
Isotropic fracture permeability (m2) 
Isotropic fracture permissivity (m3/Pa s) 
porosity 
Solid (mineral) bulk modulus 
Fluid bulk modulus 
(Biot’s) Storage modulus (Pa) 
Fluid density (kg/m3) 
Fluid viscosity (Pa·s) 
Fracture thickness (for a layer) (m) 
Mechanical fracture thickness (m) 
Hydraulic fracture thickness (m) 
Fracture porosity 
Shear fracture compliance (m/Pa) 
Dry, normal fracture compliance (m/Pa) 
Material fracture compliance (m/Pa) 
Biot-Willis coefficient 
Fracture Skempton coefficient 

 

NOTE: The fracture Skempton coefficient is defined via /Nu MB αη η=%  where ηNu is the normal compliance 

of an undrained fracture (Nakagawa and Schoenberg, 2007) 
 

Table 2. Background properties 
Variables Value 
Porosity 
Permeability 
 
Solid bulk modulus 
Fluid bulk modulus 
Frame bulk modulus 
Frame shear modulus 
Solid density 
Fluid density 
Fluid viscosity 
Tortuosity 
Saturation ratio 

0.15 
10-17 m2× or 10-11 m2 
(10µD or 10 D) 
36.0 GPa 
2.46 GPa 
9.00 GPa 
7.00 GPa 
2,700 kg/m3 
992 kg/ m3 
5.03×10-4 Pa·s 
3 
1.00 

 



 

 

 
 

Figure 1. Heterogeneity-induced pressure can result in a steeper pressure gradient within a fracture, which 
occurs at a scale comparable to or shorter than the pressure diffusion length. 

 
 
Figure 2. Coordinate system used in the seismic boundary conditions. Incident plane waves are assumed 
to propagate within the 1,3 plane. We also assume that the fracture is located at x3=0. 
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Figure 3. Force equilibrium along a section of a fluid-filled fracture. The effect of inertia is neglected.  
 

 
(a) Normal incidence 



 

 

 
(b) Oblique incidence (45o) 

 
Figure 4. Reflection coefficients of fast P waves for a water-saturated, homogeneous fracture 
 

 
 

Figure 5. One-dimensional, periodic, heterogeneous fracture model 
 

 
Figure 6. Fracture compliance distribution for a water-saturated, heterogeneous fracture. (Note: shear 
compliance is identical to the dry, normal compliance.) 
 

 
 



 

 

Figure 7. Normal-incidence reflection coefficients of fast P waves for a water-saturated, heterogeneous 
fracture 
 

 
 

 
Figure 8. Saturation profile of a partially saturated, water-filled fracture 

 
Figure 9. Fracture compliance distribution for a partially saturated, water-filled fracture  
 

 
 
Figure 12. Reflection coefficients of fast P waves for partially water-saturated, heterogeneous fracture 
 

 
 



 

 

 
Figure 11. Fracture compliance distribution for a supercritical CO2-saturated heterogeneous fracture  
 

 
 
Figure 12. Reflection coefficients of fast P waves for a supercritical CO2-saturated, heterogeneous fracture 
 



 

 

 [Normalized Amplitude] [Phase delay] 

 
 (a) Homogeneous, water-saturated fracture; 45 o incidence 

 

 (b) Heterogeneous, water-saturated fracture; Normal incidence 

   

 (c) Heterogeneous, partially water-saturated fracture; Normal incidence 

  

  (d) Heterogeneous, CO2-saturated fracture; Normal incidence 

 
Figure 13. Fluid pressure distribution within a fracture at 316 Hz. The amplitudes are normalized to the maximum amplitude for each profile.  



 

 

 
 

 
 

Figure 14. Effect of background and fracture permeability on the reflection of fast P waves 
 
 
 
 
 
 
 
 
 
 
 


