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Introduction

Heavy ground vehicles, especially those involved in long-haul freight transportation,
consume a significant part of our nation's energy supply. It is therefore of utmost importance to
improve their efficiency, both to reduce emissions and to decrease reliance on imported oil.

At highway speeds, more than half of the power consumed by a typical semi truck goes into
overcoming aerodynamic drag, a fraction which increases with speed and crosswind. Thanks to
better tools and increased awareness, recent years have seen substantial aerodynamic
improvements by the truck industry, such as tractor/trailer height matching, radiator area
reduction, and swept fairings. However, there remains substantial room for improvement as
understanding of turbulent fluid dynamics grows.

Qur group's research effort focused on vortex particle methods, a novel approach for
computational fluid dynamics (CFD). Where common CFD methods solve or model the Navier-
Stokes equations on a grid which stretches from the truck surface outward, vortex particle
methods solve the vorticity equation on a Lagrangian basis of smooth particles and do not require
a grid.

We worked to advance the state of the art in vortex particle methods, improving their ability
to handle the complicated, high Reynolds number flow around heavy vehicles. Specific
challenges that we have addressed include finding strategies to accurately capture vorticity
generation and resultant forces at the truck wall, handling the aerodynamics of spinning bodies
such as tires, application of the method to the GTS model, computation time reduction through
improved integration methods, a closest point transform for particle method in complex
geometrics, and work on large eddy simulation (LES) turbulence modeling.

Near wall vorticity

We developed a representation of near-wall vorticity by means of an attached regularized
sheet. This sheet has several roles It interacts viscously with the rest of the flow, receives
contributions of elements close to the wall during a redistribution and helps in capturing the high
vorticity gradients near the wall

This last role is critical if one needs to accurately measure stresses at the wall In addition, we
introduce a correction that takes info account the gradient of vorticity, which can be estimated from the
solurion of the panel solver (See dttachment 1)



Spinning boundaries

The flow around spinning objects is of particular interest because it is encountered around the
wheels of heavy vehicles and will interact with the rest of the flow. It is also interesting becaunse
of its impact on the problem of splash-and-spray.

Because we use a vorticity based formulation along with a computation of velocities by Biot-
Savart, we need to account for the vorticity inside any rotating object. This term, a volume
integral, is not the best suited for our method which uses a surface mesh to represent boundaries.
We thus switch to a surface integral by application of Gauss’s theorem,

Results for three configurations involving a spinning sphere were accomplished recently.
The rotation axis of the sphere was aligned with the stream, set perpendicular to it, or ar 45° All
cases were computed for Re=300 and a dimensionless spin velocity WR/U., of 0.5, where W is
the angular velocity. (See Attachment )

GTS Model

The flove around the GTS model was computed in collaboration with G Winckelmans' group at the
Université Catholique de Lowvain (UCL) To make this run affordable, attached vortex elements were used
on the front part of the truck and free elements were introduced upstream of the region separation (See
Attachment 2)

Timestepping

Because contemporary CFD is limited by the power of available computers, it is of interest to
reduce the wark necessary to compute a given flow. One major area of inefficiency which
remains largely untapped is the time integration process.

In Figure 1, one sees a frequency distribution of the strengths of vortex particles from one
snapshot of a very low Reynolds number (1000) truck model simulation. By dimensional
analysis, the local timescale is inversely proportional to the local strain rate tensor norm, which
for the purpose of this illustration is taken to be particle strength (a choice which is approximate
in that it neglects the symmetric part of the tensor). In a conventional timestepper-even an
adaptive one—the CFL condition limits integration rate according to the strongest gradient in the
flow. However, even at this unrealistically small Reynolds number, the mean strength is
hundreds or thousands of times smaller than that of the strongest particles, so most of the flow is
being over-resolved by the same factor. Performing timesteps which are adaptive per-particle,
rather than per-step, could potentially reduce the computational workload by orders of magnitude.

Some multiscale integration techniques are available, but are not suitable for vortex-based
fluid flow problems, which operate over a continuous range of scales and involve fairly
complicated tree-based right-hand-side evaluation. The goal of this phase of research has been
development of a new multiscale time integration scheme which is tailored to vortex particle
methods.

Such a method has been developed and refined over the course of several years, and is now
beginning to bear fruit. In Figure 2, one sees in the left column several snapshots of a simple
vortex particle flow developing in two dimensions, with corresponding particle-specific timesteps
on the right. The most significant challenge in developing the method was achieving decent
scaling for large numbers of particles; the latest incarnation scales linearly with the total number
of timesteps across all particles, as required.

Rigorous order-of-accuracy estimates have been derived (the method can be made accurate to
any order) and a number of successful tests have been performed, though more will be required,



Fast Closest Point Transform

A new Characteristic / Oct Tree (C/0T) algorithm for the closest point transform, which allows
the vortex code to work on arbitrarily complicated boundary geometries, was completed The
algorithm works by separating space into families of characteristic lines of an Eikonal equation,
and sorting them according to how they intersect cells of an oct tree. This algorithm is now
implemented and used in many areas of the code. generation/redistribution of particles around
arbitrary geometries, sampling flelds, etc .. (See Attachment 3)

Theoretical LES work

There is ongoing debate on the relationship of large eddy simulation (LES) and Reynolds-
averaged Navier-Stokes (RANS) solutions to the filtered or time-averaged direct numerical
simulations (DNS) they are designed to model. Due to the chaotic nature of turbulence, the
modeled solution is not generally the same result one would obtain by applying its simplifying
assumption to an exact solution. The problem is not merely an academic one; understanding how
a model relates to the flow being modeled is essential for choosing parameters correctly, which in
turn is essential for finding and interpreting computed turbulent flows in the context of heavy
vehicle aerodynamics.

We are investigating the implications of a new theoretical concept which treats LES as an explicit
ensemble averaging procedure. e also investigated the possibility of representing the large-
eddies of turbulence by a set of vortex filaments The results are given in attachments 4, 5, and ¢

Conclusions

Ouwr Vortex method development has gone mostly according to plan; developments i\mean it
should now be possible to simulate complicated flows around truck bodies, including those
around rotating tires. Time integration techniques have improved, although these improvements
are not yet backported into the main code. Work began on the development of Large Eddy
Simulation ensemble theory, and a vortex filament approach to LES was explored.
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Abstract. In vortex particle methods one is concerned with the problem of ¢ %
clustering and depletion of particles in different regions of the fow. The overlap ==
of the vortex blobs is indeed of primary importance for the convergence of the e
method. In this paper we consider face-centred cubic (FCC) lattices for particle [ -
redistzibution in three dimensions. This lattice is in fact the most natural way )

to pack spheres (the FCC is also known s a closest-sphere packing lattice). As ¢
a vonsequence, & point has 12 equidistant close neighbours rather than six for f,
the cubic lattice. The FCC lattice thus offers some symmetry properties that e

. ]

should prove useful for & number of reasons, e g, the core overlap issue. A few
results for this scheme are presented The problem of two colliding vortex 1ings
at Re == 250 and 500 is studied with both the FCC and cubic Iattice schemes.
This problem subjects the vortex tubes to a quite strong stretehing field and can
amply test the quelity of the lattice and the remeshing.
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1. Introduction

Vortex pazticle methods are based on the representation of the vorticity by a set of Lagrangian
elements The quality of this representation is critical for the convergence of the method Because
they are Lagrangian, the vortex elements can rapidly cluster along principal axes of compression
and form gaps alopg axes of extension

Two very different approaches to maintain an approximately vniform distribution stand out
In one, the particles are split or merge depending on the flow locally [1]-[3] This usually results
in a non-contiolled growth of the number of particles Another method consists in redistributing
particles onto a regular lattice. A nurpber of schemes have heen proposed (see [4] for a review)
They are usually designed to conserve the first moments of the particle distribution and/or to
distribute the new varticity field smoothly onto the new points.

These families of schemes are normally based on a regular cubic lattice; they are built in
one dimension at first and their extension to two and three dimensions is straightforward by use
of a tensor product. These schemes have been used with a spatially varying resolution but even
so they are still based on a cubic Jattice [5]-[7]. ‘

In this work, we introduce a new family of schemes based on the face-centred cubic {(FCQ)
lattice. It is also called a elosest-sphere packing lattice because it is in fact the patural way to
pack spheres. The motivation for this work is that this lattice is naturally closer to the spherical
nature of the particles. For example, in Hows with a boundary, it also may be helpful $o have
an isotropic cloud of particles near the wall to reduce noise in quaatities measured at the wall

This paper is organized in the following manner: the incompressible flow equations are
presented first, with the vortex method, the FCC lattice and particle redistribution, the results
and the conclusion following.

2. Three-dimensional incompressible flow

We solve the vorticity equation for an incompressible fiow in an unbounded domain:

% = (Vu) rw+ V2w (1)
Vou=0 @)

where u(z, 1) is the velocity field, v #s the kinematic viscosity end w = V x u is the vorticity.
A Helmholtz decomposition is used {o determine the velocity:

u=Vo+Vxp (3)

with V- b = 0. Here ¢ is a scalar potentisl and the corresponding velocity is irrotational. f is
the streamfunction which is related to the vorticity by the Poisson equation:

Vi = —w, (4

Journal of Turbulence 3 {2002} 046 (- , , -, -.} 2
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H

3. Vortex method

The vortex method is based on the representation of the vorticity field by a set of N Lagrangian
particles:

N
Gz, t) = Y Gilm -z, (5)
fe
‘The perticles have a position z; and a strength a; = [ wdxz. The streamfunction, the velocity
and its gradient can be computed by means of o Green funetion. This Green function is associated
with the kernel used to represent the particles One then uses the velocity and s gradient to
move the particles and update their strengths, respectively.
The basis used to represent the vorticity feld is pot neceszarily divergence free whereas
w =V % u is cleaily solercidal. This second field allows the design of some relaxation methods
for @ [8,9] and allows the monitoring of the divergence error defined by

By = ] & — wf? dm (6)

This divergence problemn con be alleviated by a certain choice of the numerical evaluation of the
stretching term in equation (1) [4.

4, Particle redistribution

As mentioned above, the vortex particle method is subject to problems of clustering and
depletion A solution copsists in creeting a new set of particles on a regular lattice. This is
called particle redistribution. This process is characterized by the oider of the highest conserved
moment, the width of the stencil (i e. how many patticles are generated for one particle of the
old set) and the smoothness of the interpolation function used

It is worth noting that the redistribution scheme can also help reduce the divergence error.
The particle pattern influences the quality of the particle interactions; these interactions at close
range play an important role when one computes the velocity and its gradient and also when a
viscous scheme is used.

A more thorough discussion can be found in [4,7]

4.1. The face-cantred cubic lattice

The cubic lattice has been so far the only lattice used for these redistributions The vortex
element method is a grid-free metheod (with the exception of the redistribution); the geometiical
pattern of the particles therefore shonld not have any influence on the convergence of the method
provided the pattern is regular

The FCC lattice offers such a regularity and also some interesting symmetry properties.
This lattice is known as a closest-sphere packing lattice; it is one of two lattices that pack the
most spheres per unit volume (the other one is the hezagonal close-packing (HCP) lattice)
We chose the FCC because it i5 possible to fit a coordinate system that is very helpful
in the design of the scheme A node of this lattice has 12 equidistant direct neighbours
against six for a cubic lattice and there are four planes with a mesh parameter h passing
through & node (three for a cubic). This lattice is not difficult to generate if one considers
it a5 the superposition of three families of two-dimensionsl hexagonal lattices, A, B and C in
figure 1.

Journal of Turbulence 3 (2002)046 (. , , . ca ) 3
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Figure 1. The FCC lattice end the interpolation function: the three families of
hexagonal planes used to generate the lattice and the isosurface Wroe, = 025

4.2. The interpolation function

The second component of the redistribution is the inferpolation rule T/ one uses to create the
new set of particles,

new __ aldyxr :Bp—:iq
Cp "Z“q ﬁ( i :
q

For the cubic lattice, several families of schemes have been introduced. The great majority of
these are based on the fensor product of one-dimensional interpolation functions For the FCO
Iattice, such & copstruction is mot possible; the interpolation function has to be built in three
dimensions from the start.

We designed a continuous second order interpoiation function that is analogous to the three-
dimensional Witches Hat Ay function for 2 cubic latsice. This rule redistributes a particle onto
the vertices of the containing tetrahedron or octehedron (four or six points respectively). This
Funetion is defined by pieces; it is a linear function inside & tetzrahedron and a piecewise linear
continuous function inside an octahedron. This function was built to conserve circulation and
its first moment and to ensure continuity with the linear function inside the tetrahedre of the
stencil. This piecewise definition is visible in the isocontour in figure 1. Analytical expressions
and C functions ase available at | ,, - . , -en html.

We call this scheme FCOC;. Notice that it is straightforward to generate smoother
interpolation Functions with a wider stencil The convelution of our scheme by a closest-point
distribution function vields a scheme with the same moment conservation but with one more
level of continuity. Improving the conservation properties tales more work.

5. Results

Our test consisés in two colliding vortex rings This configuration deforms the set of particles
and thus tests the quality of the core overlap through the simulation. There are two sets of
results. The first one is 2 well resolved case at He = 250 where we compare two second order
schemes, the Aj in the cubic lattice and owr FCCY scheme. The second set of results is a%
Re = 500 with a coarser resolution {thus under-resolved) and we consider the two second order
schemes along with a third order scheme Aff. The redistribution frequency (once every ten time
steps) was the same in all our tests

Joutnal of Turbulence 3 (2002) 046 (- , , -, ..) 4
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Figure 3. He == 500: number of particles and divergernce error

5.1. Re = 280

1/3
Because of the different lattices used, we define the prid Reynolds number as Re, = y—‘—:ﬂ;—

It will depend on the sctual density of points. The results in this section were obtained
at Rep = 12 — 4. The FCC lattice introduces fewer points than the A:; scheme and
shows the same divergence enror (fgure 2). The error decreases for t > 6 ns the rings
are decaying.

5.2, Re = 500

We now consider the under-resolved case, Rep =~ 27 — 13. One con now notice o significant
difference between the two second order schemes. The error for the FCCy scheme stays
at the level of the Mj which introduces far more paiticles becnuse of its wider stencil
(fgure 3)

Jotwrnal of Turbulence 3 (2002) 046 (- , , -, -5} 5
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6. Conclusion

We have introduced the fArst representative of & new family of interpolation schemes based on
the FOC Jattice Our scheme has two outstanding features

{i) Thanks to the many symmetries of the FOC lattice, i% is more compact than an eguivalent
schemne in o cubic lattice. This results in a slower growth of the number of particies becauss
of a tighter helo of new particles around the set of old particles.

{if} Symmelry is also beneficial to the overlap of the particle cores and allows better
commumnications between the particles even under stretching. We have observed a significant
effect in the divergence error for high fey cases

Acknowledgment

This research was supported by Department of Energy contract DE-ACO3-98EES0505

Refarences

[1] Leonard A 1980 Vortex methods for flow simulation ./ Comput Phys 37 289-335

[2] Rossi L F 1896 Resurrecting cors spreading vortex methods: a new scheme that is both deterministic and
convergent STAM J Sci Comput 17 370-07

{3] Resst L F 1997 Merging computational elements in vortex simulstions ST4M J. Sei. Comput 18 1014-27

[4] Cottet G-H and Koumoutsakos P 2000 Vorier Methods, Theory ond Practice (Combridge: Cambridge
University Press}

{5) Cottet G-H, Koumoutsakos P and Lemine Ould Salikl M 2000 Vortex methods with spotially varying cores J
Cormput Phys. 11 164

[6] Cottet G-H, Leraine M and El Homrsoui M 1998 Recent developments in vortex methods for the
simulation of unsteady incompressible flows Eleclron. Prog 3rd Int Workshop on Vertex Flows and Related
Numericel Mothads (Toulouse, 1998) ESAIM (Buropean Series in Applied and Industrial Mathematies)
http:/ /www emath fr/Maths/Proc/ Vel 7/

[7] Pioumbhans P and Winckelmans G 5 2000 Vortex methods for high resclution simuiations of viscous fow past
binf-bodies of general geometry J Comput Phys 163 354106

[8] Winckelmans G 5 and Leonard A 31993 Contributions to vortex particle methods for the computation of
thiee-dimensionnal incompressible unsteady flows J Comput Phys 100 247-73

[9] Leonerd A, Shiels D, Sukmon J K, Winckelmans G S and Ploumbans P 1997 Recent advances in high resolution
vortex methods for incompressible flows Proc 13th AJAA Computational Fluid Dynarics Conf. (Snowmuss
Village, GO, 1997} ATAA 97-2108

Journal of Turbulence 3 (2002) 046 (http://jot lop.oxg/) 6







Amdeiair 1b 1
{ ZRADUATE £\ FRONAUTICAL L ABORATORIES

......m_._,.-

';f hE
s
\

I wsTITUTE OF | ECHNOLOGY

4 ™\
Contributions to the

three-dimensional vortex element
method and spinning bluff body flows

Thesis by
Philippe Chatelain

Firestone Flight Sciences Laboratory
Guggenh@im Aeronautical Laboratory

Karman Laboratory of Fluid Mechanics and Jet Propulsion

Pasadena






Contributions to the Three-Dimensional Vortex
Element Method and Spinning Bluff Body Flows

Thesis by
Philippe Chatelain

In Partial Fulfiliment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology
Pasadena, California

2008

(Defended December 3, 2004)



i




iii

© 2005
Phil== ppe Chatelain

All F—==lights Reserved



v

T T R T

-4

IR

IR NE (D



Acknowledgements

I thank my advisor, Anthony Leonard His open-mindedness, trust and kindness truly
shaped this work None of this would have sbeen possible without my undergradu-
ate advisor, Grégoire Winclkelmans, who first introduced me to computational Auid
dynamics and vortex methods Fruitful discussions with Hans Hernung are also ac-
knowledged. My friends and {former) colleagues at the Iris lab, Mark Brady, Gerard
O'Reilly, Vincent Wheatley, James Faddy, Nikoo Saber, Paul O’Gorman and Michael
Rubel made these five years of work also a fun experience. Michael provided great
computing advice and important contributions to this vortex code

My wife, Caroline gave me her unconditional and invaluable support throughout
Many thanks also go to my parents who always put my education first and never
stopped encouraging me. Finally, I do not want to forget my friends, Francois, Lue
and Olivier

This effort was sponsored by the US Department of Energy under contract No
DE-AC03-98EE50506, and also supported by Caltech discretionary funds. The Mas-
ter’s year was funded by a fellowship of the Belgian American Educational foundation

These contributions are gratefully acknowledged



Abstract

Several contributions to the three-dimensional vortex element method for incompress-
ible flows are presented. We introduce redistribution schemes based on the hexagonal
lattice in two dimensions, and the face-centered cubic lattice in three dimensions. In-
terpolation properties are studied in the frequency domain and are used to build high-
order schernes that are more compact and isotropic than equivalent cubic schemes.
We investigate the reconnection of vortex rings at small Reynalds numbers for a vari-
ety of configurations. In particular, we trace their dissipative nature to the formation
of secondary structures

A method for flows with mov"ing boundaries is implemented. The contributions of
rotating or deforming boundaries to the Biot-Savart law are derived in terms of surface
integrals. They are implemented for rigid boundaries in a fast multipole algorithm.
Near-wall vorticity is discretized with attached panels. The shape function and Biot-
Savart contributions of these elements account for the presence of the boundary and
its curvature. A conservative strength exchange scheme was designed to compute the
viscous flux from these panels to free elements

The flow past a spinning sphere is studied for a Reynolds number of 300 and
a wall velocity that is equal to half the free-stream velocity. Three directions of
the angular velocity are considered Good agreement with previous numerical and
experimental measurements of the force coefficients is observed Topological features
such as the separation and critical points are investigated and compared amongst the
configurations.

Finally, preliminaty results for Rapping motions are presented Simple rigid ge-

ometries are used to model a fish swimming in a free-stream and a flapping plate.
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Chapter 1

The Three-Dimensional Vortex Element

Method

1.1 Introduction

Vortex element methods have been growing in popularity since the early 1980’s. As
their name indicates, they are based on the discretization of vorticity-a quantity that
has a compact support in many physical problems-thereby making this approach
interesting.

The discretization itself comes in various sorts: filaments, sheebs or particles. This
last family has shown the most dramatic progression. The treatment of the distortion
of the elements and the development of deterministic viscous algorithms have allowed
for accurate long-time simulations. During the 1990, wall boundary conditions and
faster algorithms were developed to handle high Reynolds number incompressible
flows in two and three dimensions. In recent years, we have seen the application to
compressible and reacting flows

The present work biings contributions to several areas of the method A partic-
ular focus is on the development of a framework to handle moving and deforming
boundaries This opens the way to the simulation of spinning bluff body Aows and
flapping motions, such as those encountered in biological flows.

This first chapter gives a comprehensive review of the vortex element method for
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incompressible flows, with emphases on the approaches and problems that we inves-

tigate in later chapters. We end this chapter with an overview of our contributions.

1.2 Fundamentals

1.2.1 Hypothesis and Equations
Vorticity

We are studying the three-dimensional incompressible flow of a viscous Huid. Let us

start with the Navier-Stokes’ equations

V-u =0,

9u AP
5 +(Vu)u+V(p) = yV?u.

(1.1)

The vorticity, w, is defined as

w=Vxu.
The term (Vu)u in Eqg. 1.1 can be rewritten as

(Vu)u= V. (uu)

=wxu+'§7(%ﬂ)

With this last result, the cuil of Eq. 11 becomes

V x (—3—2+wxu+v<u'u+g>) =V x vV
at 2 Pl
Sw

— 2
5 +Vx(wxu)=vVuw.

(13)




Continuing to simplify, we have

5’w )
—bT-FVx(wxu)_qu
b 2
E+(Vm)‘-uw(\?u)--w—l-g(v-‘u)—u(v--w)muvw
D ™ T
=Bt

and finally, we have the evolution equation for vorticity

% = (Vu) w+ v Vw (1.4)

where the right terms correspond to a stretching effect and a viscous diffusion respec-

tively

Stream-Function and Velocity

The previous equation allows the computation of the evolution of the vorticity field
if the velocity is known This is made possible through the use of a stream-function

1 We consider the Helmholtz decomposition of velocity
u= Vi+V x, (15)

with the gauge of ¥ set as V 4 = 0. Taking the curl of Eq 15 yields the following
Poisson equation for i:

Vi = —w | (1.6)

The computation of the velocity field therefore requires finding % and computing its

curl.

1.2.2 Discretization

A Lagrangian method considers the evolution of elements which represent small ma-
terial volumes V, An element is carried by the local How and carries the integral of

some intensive physical quantity f, o, = fvp fdV We will refer to this integral as
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the strength of the element. We can therefore write the following evolution equations

for the position x, and strength o, of an element,

2 = u(x) (L7

Af \
T +V-(fu)) dx {1.8)

de, 1/
@ = L\

where Leibniz’s theorem was used.

In the context of vortex methods, the physical quantity f is the vorticity w. For

an incompressible three-dimensional flow, the use of Eq 14 in Eq. 1.8 yields

%&g = ulx) (1.9)
doey ' .
= = / ((Vu)‘w%—uv w) dx (110)
— (Vu(s)) e+ | Viwdx, (1.11)
Va

where we use a center point rule to evaluate the first term.
‘We note that our problem has now becomne a system of ordinary differential equa-

tions and that we still need to compute its right-hand side.

1.2.3 Field Computations

Two main families of methods have been proposed to cornpute velocity from Egs. 1.6
and 15 On the one hand, grid-based solvers have given rise to the so-called Vortex-
In-Cell-VIC~ methods (see Cottet and Koumoutsakos, 2000, sec. 8.2 and references
therein) in which vortex strengths are distributed onto a grid and the velocity field
is computed using Eqgs. 1.5 and 1 6 and interpolated at the particle positions This
kind of approach is effective for periodic problems, but must be modified to enforce
far field boundary conditions.

On the other, we use a second approach which is in a sense, grid-less, and implicitly

imposes boundary conditions at infinity. We consider volume elements where the




&

distribution is singular and the strength is concentrated at the particle center,
W= Z o0 (% — %)
P

We can then use the fundamental solution of ~V2:

~VG(x, X} = §(x — %) (112}
G is also called the free-space Green’s function In three dimensions, it is given by

G, %) = ~= [ — 5| (1.13)

’ dmr "

and is a radial function which we will write as G{[x — %]} from here on. In this

approach, field computation thus amounts to a summation over the elements

Bix) = 3 Glx - %) (1 14)

i) = 3 V(G(x-%h)xap=) Kx-x)xay, (115

where we introduce K = VG.

This approach however can encounter stability problems because of the singulari-
ties the velocity field displays (Winckelmans and Leonard, 1993). Instead we employ a
regulariged distribution for the patticles wy = ) 0t;(o (% —~ ), where o is a smooth-
ing radius (. induces smooth streamn function and velocity contributions Gy and K,

respectively



In our implementation, {, is & Gaussian,

1 T

(%]} = Wﬁ@*m (116)
erf L
Ll = (?> (117)
- ar X
K (x) — Wﬁx er f( Ixi ) .%.l_}..c.l.e“ix|2/20‘2 (L].S)
7 4rix3 Vi T o

One can find more thorough discussions of the topic of this section in Winckelmans

(2004) and Cottet and Koumoutsakos (2000).

1.2.4 Viscous Term

The second iterm in Eq 1.11 still needs to be computed Several techniques have
been proposed. Random-wall methods move the elements in a Brownian motion
fashion (Chorin, 1973). Re-sampling methods act on the strengths of the elements
by sampling the exact solution of the viscous diffusion of singularities at the particle
locations. Our approach follows the method of Degond and Mas-Gallic (1989) which
is known as the particle strength exchange (PSE) scheme It is based on an infegial

representation of the Laplace opetator In RY, one can indeed write

V) = ] el — ) (F(¥) — F(y) dx + O("), (1.19)

which, integrated over the volume of an element, yields

| vraye [ 5 [l (700 - 1) axay. (1.20)
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The kernel 7, has to satisfy moment conditions (Degond and Mas-Gallic, 1989, Cottet

and Koumoutsakos, 2000) We have

/:cizjna(x)dx =dyfori, j=1,2,3
fm§1$§9~)?a(x)dx =) for i] + 7:2 =lord S '1:1 4 ig S T+ 1 (}'21)

/ x| 20, (xX)dx < oo
One technique to build a kernel n consists in using the function ¢

n(p) = m%,&%ﬂp) , (122)

which in the case of the Gaussian yields the same Gaussian. If one considers a pair
(p, q) of vortex elements, the integral of Eq 1.20 has a simple expression
dox,

2
~ - /o — 1V, 2
& |\, . gznd(xp Xq) (V00— Vo) (1 23)

which shows that the scheme is conservative. Ploumhans (2001) proved the conver-
gence of the PSE for particles with a smoothly varying core size ¢ This result allows

the use of coarser particle distributions in the wake of bluff body flows (Chapter 6)

1.2.5 Wall-Bounded Flows

There are many challenges when dealing with boundaries. Koumoutsakos et al (1994)
and Koumoutsakes and Leonard (1995) introduced a scheme to account for vorticity
creation at the wall. This scheme is based on the model of Lighthill (1963) and
consists in the incremental intzoduction of vorticity in the form of vorticity sheets
at the boundaries. Al every application, the sheet enforces the no-slip condition.
Because this sheet -y appears within a time step §t, the compatibility with a Neumann

houndary condition is immediate
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The sheet strength, -, first has to be found using a boundary element method, and
then diffused into the Sow Chapter 4 will cover this topic.

Boundaries also affect the order of the method because the interpolation and
integration over the elements assumes an unbounded space. Owr spherical test func-
WULIS 16U SULLIE vULbIGiLy luah aUlUss bUG LULLGGLY GRG Wik JEGUIie COlRDILULE Wie 584
with images to cancel spurious viscous fluxes through the wall Chapter 5 introduces

attached elements with specific test functions to alleviate this problem.

1.2.6 Vorticity Divergence

One issue that is peculiar to three dimensions is the divergence problem  Vorticity is

the cuzl of the velocity field, and as such, it satisfies
V w=V - (Vxu)=0. (1.25)

In two dimensions, this condition is met because w = w,(z,y) e;. In three dimensions
however, the discretized vorticity field will differ slightly from a solenoidal field This

problem is discussed further in Chapters 2 and 6

1.3 Numerics

1.3.1 Field Computations Acceleration

The summations in Bq 1.14 and 1.15 imply a O{N?) cost when one computes the
fields at the positions of all the elements, thus making it intractable even for modest
problem sizes.

If we consider the sum for a fixed x, we notice that the contribution of a remote
cluster of particles can be closely approximated by the influence of one virtual particle
located ab the center of the group. This is the central idea of multipole expansions
and tree codes; the set is sorted geometrically and hietarchically into a tree and a

branch cell contains information about the particles it (or its offspring) contains.
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One also needs an error control algorithm so to keep the approximation accurate
to a prescribed level The summation now reduces to a tree traversal. For a given
branch, the recursion consists in computing the interactions of its offspring if the error
criterion is not met or stopping at the branch and using its multipole information
otherwise. The loop is initiated by starting with the root cell.

There are evidently variations on this idea For more information, one may refer
to Barnes and Hut (1986), Salmon et al (1994), Salmon and Warren (1994) and
Winckelmans et al. (1995)

1.3.2 Clustering and Depletion

Because vortex elements follow the flow, they tend to cluster along axes of compres-
sion and become depleted regions of stretching. This affects the convergence of the
method, which is based on integration and interpolation over all space Historically,
the first convergence results for the three-dimensional method were derived by Beale
and Majda (1982) One may refer to Cottet and Koumoutsakos (2000) for a recent
proof and a complete historical list of references.

A central idea of these convergence results is that the error grows with some
power of h/e and o', where h is the spacing between the particles and 7 of the
highest vanishing moment of the mollifying function The Gaussian of Eq 1 16 has
r = 2. It is therefore important to keep a regular set of overlapping elements Several
techniques have been designed in this regard; we use particle location processing~
redistribution which creates a new undistorted set of elements from the old one This
technique was used in all ow simulations and will be covered in details in Chapter 2

as we investigate new arrangements for the particles

1.3.3 Time Integration

Anderson and Greengard (1985) showed that, for an inviscid problem, the time inte-
gration stability condition does not affect the convergence of the vortex method, i.e ,

the convergence rate is O{c" + 6t°) where s is the oxder of the time integration In



10
practice, this theoretical unconditional stability is tempered by other factors such as
the divergence problem o1 the presence of boundaries
We use a second order Adams-Bashforth (AB2) scheme A Runge-Kutta 2 (RK2)
scheme is used at the start, or when we have to restart the integration after a redistri-
busion. The stability of she Fol ilbegiabed witl ADZ Iy cunsiiained Ly (I iownhais,
2001)

1¢%==ﬂ?t<ozm: (1.26)

As mentioned above, there is no Courant-Friedrich-Levy condition, relating the

particle size to the time step,

Unnox A8

= < 0(1). (1.27)

For a bounded flow however, a time-step too large will lead to particles crossing
boundaries. This last quantity will therefore be monitored near the walls Other

expressions more suitable for a Lagrangian method have been proposed:
CFL = |w|max A 01 |[Vulmax At {1.28)
A last condition concerns the mesh Reynolds number

Rep, = <2 (1.29)

Rep, = ———— . (130)

It is not independent from the two preceding conditions since

CFL = Reh TPSE - (1.31)
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1.4 QOverview

Chapter 2 presents an alternative to the existing redistribution schemes based on
the face-centered cubic lattices Compactness and isotropy are benefited from the
symmetry propetties of this lattice.

Chapter 3 studies the physics of the reconnections of vortex 1ings from various
standpoints and in particular, the energy spectrum

Chapters 4 to 7 present work that broadens the applicability of the method to
moving and deforming geometries. The case of spinning spheres at Re = 300 is
considered in Chapter 6. Chapter 5 proposes a new element class to represent neai-
wall vorticity to alleviate regularization problems in those regions These elements
also implement some of the boundary conditions required in fAows with deforming
and rotating boundaries Chapter 7 discusses preliminary results for flapping and
swimming motions

Chapter 8 concludes this thesis. It includes a discussion of our results, and direc-

tions of future work.
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Chapter 2

Face-Centered Cubic Redistributions

2.1 Introduction

As we have seen in Chapter 1, the vortex element method strongly depends on in-
tegration and interpolation In particular, this translates into accuracy degradation
when our interpolating elements get too far apart

One can follow a few different approaches to tackle this problemy. One approach
consists in progressively introducing new elements in the domain While elegant, this
approach requires a costly algorithm to find the new elements’ positions and strengths
(see Gharakhani, 2001)

The other approach is to build a whole new set of elements from the old ones. This
process must take place every few time steps in order to prevent the particle distribu-
tion from getting too distorted. This redistzibution process consists in interpolating

the new strengths at the nodes of a new non-distorted lattice

2.2 Redistribution Properties

A 1edistribution scheme has two components: a lattice and an interpolation function
The term lattice is preferred to mesh because it remains a mathematical object and
can span an unbounded region of ®* Coneretely, the lattice nodes are never stored

in an array; they are generated on demand.
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Ploumhans and Winckelmans (2000) proved the second order accuracy of the particle
strength exchange for elements with a smoothly varying size. One can thus use a
stretched lattice for problems where it is interesting to vary the resolution. This
method will be applied to the simulation of bluff body flows in Chapter 6 and 7
Lhe mterpolation ruie wili be chalacterized in teiis of ibs sLWOOLILIESS, UideL Ul
accuracy and support (Fig. 2.1) We will introduce and generalize some results from

Cottet and Koumoutsakos (2000). A central result concerns the order of interpolation
/X\ >/ M\“\
45—

Figure 2 1: Redistribution in one dimension: the strength of a particle of the distorted

set {open circle) is redistributed onto four nodes (solid circles)

Let us define the new particles with positions x, and strengths o, as

o= Y e (257) 1)

4q

in terms of the interpolation function W and the old positions and strengths %, &y
If we consider an interpolated quantity 3, a,¢ (x — x,) e g vorticity or velocity, the

discrepancy we introduce can be written as
Elx) = Y 8upx—=%)— > o (x~%p)
P P

= .6 [¢(x~5cp) ~S - x)W ("“;f"’)]

The error behavior will thus be dictated by the factor inside the square brackets,

which we can express as

x5 = T (0 b 55) = - x ) W (2572
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To obtain the above expression, we have imposed
D Wix—x)=1, (23)
q

which is physically equivalent to the conservation of circulation In order to bound

f, we expand ¢ about x —x,,

- - Ky — &
[ =30 5 (0P~ %) dale - g (52} 2
7 |8l=1 oo
where 8 = 3,-- 3, are n-tuples with |3] = 8, 4+ - -+ 8, It is readily seen from
this last expression that the moments of W will characterize the error behavior, i e,
if

> xPw (x”};x")xxﬁ for0< |8l <m—1 (25)
)

then

E~ O(h™) . (2.6)

One may refer to Cottet and Koumoussakos (2000) for a full proof

Our work focuses on the development and study of interpolation functions W on
a different family of lattices For this reason, we introduce a notation that reflects the
arrangement of the new points x, = ARn, in the fashion of Merserau (1979) and Van
De Ville et al (2004) R is the matrix whose columns are the principal directions of
the lattice Let us also define the matrix R = (R™)* which defines & dual lattice A
is the lattice step and being just a rescaling, it will be dropped from the remainder
of this chapter for the sake of clarity

Let us now consider the properties of the Fourier transform of the interpolation
kernel The switch to Fourier space will indeed facilitate the development of high
order schemes. Theorem 7.2.1 from Cottet and Koumoutsakos (2000) and Schoenberg

(1973) can be generalized to multi-dimensional cases and any kind of lattice as follows
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Theorem 1. Consider the interpolation formulo

Q(x) = qaaW (x — Rn),

'!ll:'lﬂm [a B
et - AW TY

i the weinht nf tha maint Rn  Tet the internalation funetinn dernu Fosdf

enough to satisfy the condition
W (x)| < Ae™ 8™ where A >0, B> 0.

The formula is of degree m if the following two conditions on g(k) = [ W {(x)e "> dx

hold simulteneously:

g(k) — |R| has a zero of order m at k=0, (2.7)

g(k) has zeros of order m. or higher ot all k = 27Rn (n # 0). (2.8)

Proof Let us consider the interpolation function in lattice coordinates x; by definition
we have for V(y)
[Vt = ¥ (o4 2m)

Following Cottet and Koumoutsakos (2000), we multiply both sides by €*™X, sum

over n, then use the Poisson summation forrnula on the left-hand side:

Y et f Vine g = 5 E™XV (s + 2mm) (2.9)
Z gf"“ {¢—~n} V(X — n) = Z 82“.“ Xf/' (H‘a A= 27Tn) (210)
n n

We now reintroduce the physical coordinates x == Ry and define W as V{(x) = W(x)




We have V (k) = W(Rk)/ [R| and

Z C‘Ji'c "y (}C — Rn) = e’:"x Z c'-".'rn xM/ (Rfi‘i:{::?«ﬁan)
n 1
W (k + QHﬁn)
IR

Z etk Bo 7 (x — Rl‘l) = k¥ z e?:rf-hnx (211)

13

where we let k = Rk, the physical frequency We then proceed as in Cottet and

ik Bn

Koumoutsakos (2000): we develop e about 0 in the left-hand side and use the

conditions 2 7 and 2 8 on the right-hand side

e W
Z’jf > (Bn)” W (x~Rn) = e““‘———l}gl“)—]-c’)(km)

]uii v
i
= Y roxm
< i
1%
The identification of the coefficients of k shows that the interpolation is of order

) (I

2.3 Hexagonal and Face-Centered Cubic Redistri-

butions

2.3.1 Lattice Properties

The face-centered cubic lattice can be introduced in a couple of different. ways, through
mathematics o1 crystallogiaphy, for example Let us first consider the latter perspec-
tive A lattice can be defined in terms of a unit cell It is the simplest 1epeating unit
in the crystal, has parallel opposite faces, and its edges connect equivalent points of
the lattice

The face-centered cubic lattice bears its name fiom the configuration of its unit

cell (sce Fig 2 2) It is cubic and has additional lattice sites at the center of its faces



Figute 2 2: Face-centered cubic lattice: unit cell

The FCC lattice can also be constructed as the periodic stack of two-dimensional
hexagonal lattices with the spacing hetween the layers at Vv6/3h (Fig 2 3(a)} Thete
are three hexagonal lattices in a petiod A, B and C; if B lies at the origin of the coor-
dinate system in Fig 2 3(b), A is shifted by (~1/2,~+/3/6) and C, by (1/2, V/3/6)

This constiuction scheme highlights an outstanding featuse of this lattice: it cor-
1esponds to the packing of spheres As a matter of fact, the FCC lattice is one of
two lattices that pack spheres the most densely It is also called the Cubic Close
Packing lattice The second lattice to achieve this is the Hexagonal Close Packing
lattice which is huilt from the packing of two families of hexagonal lattices

On a side note, the question of finding the deusest arrangement of spheres is an
old and famous problem in mathematics Kepler (Strena sue de nive sexangula, 1611)
conjectured that the CCP— or FCC— and HCP lattices offered the densest arrange-
ments with a density of ﬁ = () 74048 This conjecture was studied for centuries,
starting with Gauss (1876) and proved only 1ecently by Hales (1992, 1997a,b)

The equivalent close-packing lattice in two dimensions is obviously the hexagonal
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Figure 2 3: Face-centered cubic lattice: constiuction with three families of hexagonal

lattices

one which we used in the construction of Fig 2 3(b) This lattice already has the
interest of the image treatment community (Merserau (1979) and Van De Ville et al
(2004)) On the one hand, it can be the pixel pattern of a sensor that will produce
digital images with the same pattern On the other, it can be interesting to resam-
ple and work on digitized images of that nature for $heir treatment hecause of the
properties of the hexagonal lattice, e g edge recognition, ete

The advantages in our frame-work are also abundant The VEM indeed uses test
and smoothing functions that have spherical~cylindrical in 2D-symmetry The close
packing property is associated with very good symmetry and isotiopy; a lattice site
is surrounded by 12 equidistant neighbois, compared to 6 for a cubic lattice These

natural properties can be beneficial in several ways:

1 The core overlap issue: Vortex elements on a FCC lattice will supposedly display

a better hehavior when subjected to strain

2 Redistiibution functions: The lattice symmetries can be used to design mote

isotropic and compact schemes



20
3 The interaction with boundaries: The numerous symmetries will help reduce

noise in quantities measured at the wall

Finally, let us mention that the matrices R and R for the hexagonal and FCC

lattices are given in appendix A

2.3.2 Interpolation Functions

Due to the nature of the close-packing lattices, we cannot use the tensor product
of known one-dimensional functions to interpolate the particles stiengths onto the
new sites The use of the lattice coordinates would indeed lead to a non-isotiopic
redistribution  The scheme construction has to be carried out in two and three
dimensions from the start We propose two methods to build interpolation functions

for the hexagonal and FCC lattices

Splines

In a first appioach, one can use the same idea as for one-dimensional splines It
consists in starting from the lowest order “closest-point” function and then taking
successive convolutions of this function with itself For two ot three dimensions such
a function is also called the indicator function of the Voronoi cell €(Van De Ville
et al , 2004) and is defined as

1 xe €
x(x) =14 1/my x€ocC (212)
0 x¢g €

where my is number of lattice sites which that position is equidistant to (ie, in 3
dimensions, 2 on a face, 3 or more on an edge, etc) By definition, the tiling of
this function over the lattice sites forms a partition of unity and by consequence, the

volume of those cells is [ x(x)}dx = |R| We define the functions §,. as
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Figure 2 4: The hexagonal and face-centered cubic lattices and their Voronoi cells

Fo = x(x) (213)
S = Fros # 5o/ / Fods (2 14)

where we introduced the following notation for the convolution

(] g)(o) = / 1€ - x) g(&) de

One sees that all the $,'s will too form a partition of unity Interestingly enough, the
functions for m 2 1 show second order accuracy The Fourler transform of g is a sinc
function (see Van De Ville et al , 2004, IT B); it vanishes at the dual lattice sites except
the origin, o (Znﬁn) = {det (R)] 0y, %, and its successors will therefore present the
second order roots at the lattice sites necessary for second order interpolation

An analytical construction scheme is described in Van De Ville et al (2004) for the
hexagonal lattice but it serves a purpose different from ours It builds increasingly
smooth splines with a growing support whereas we are more interested in increas-
ing the order of the redistribution {(Eq 2 5) and in keeping the support small, thus

preventing the cication of too many new elements



g
(%]

Compact High-Order Schemes

The nature of the FCC and hexagonal lattices allows the design of simple second oider
schemes, represented by a piecewise linear function In 2D, this yields the simple
scheme represented in Fig 2 5(a) In the three-dimensional case, the interpolation
construction is a bit more tedious To keep the scheme compact and ioilow the
hexagonal lattice example, we need to consider redistribution inside the tetzahedrons
and the octahedrons that constitute the face-centered cubic lattice In a tetrahedron,
the function is linear Inside a octahedron, the function is built piecewise linear to
be isotropic, second ordet, and remain continuous across these different regions

These schemes (given in Appendix A) are arguably the most compact second
order schemes The hexagonal scheme redistributes onto thiee points Three degrees
of freedom are needed to conserve the first two moments In thiee dimensions, the
FCC scheme redistiibutes onto four or six points when four degrees of freedom aie
needed With their small support, good conservation properties, and relatively simple
analytical expressions, they constitute an interesting starting point to build smoother
and higher order interpolations

As a first step following the method described above for the splines, we take the
convolution of these simple schemes by themselves and obtain C? schemes (Fig 2 5(b))
In doing so, we increase the support of our interpolation

The second step consists of increasing the order In the fashion of Monaghan

(1985), we use the ansatz:
W(x) = AW + Bx VW (2 15)

The generalization of this result to several dimensions and any type of lattice will
be facilitated in Fourier space Let us assume that the Fourier transform W has, as
described in theorem 1, a zero of order m at the origin and zercs of order p 2 mm + 2
at the sites of the dual lattice An example of such a function is the second order C?

hexagonal function, for which m = 2 and p = 4 (Fig 26) We can use this m-order




Figure 2 5: Second order hexagonal schemes



() C°

(b) €2

Figuie 2 6: Fourier transforms of the second order hexagonal schemes
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scheme to build a {m + 1}-order scheme:

- e 1
7 o A YA —nr . / 2
Wi(x) = (1+ m)!f’i t—x VA (2 16)

Proof Let us consider the Fourier transform of W,

W = F(AW + Bx- VW)
= AW+ B(iv) (ih)
= AW - B(V k)W — Bx V¥
= (A—nB)W — Bk VW (217)

where n = V k is the number of dimensions
We will now solve for A and B to meet condition 27 W — |R| and k - VIV both

have a zero of order m at zero In order to have W(0) = IR}, we need to impose
A—nB=1 (2 18)
We can increase the order of that root Developing Eq 2 17 about 0, we get

3 _ mMU o li—‘ Iy -}
W(k) = [R|+(~1)"—L" - Bk v((-»l) —k )+O(k )

I\/'[U
(m — 1)}

M
= [R|+ (—1)"‘#1&’ - B(-1)" k¥ + 0 (k™) (219)
where 17 is a m-tuple, 1 < iy < n, k* = ky, ky, %, , and summation ovez v; is implied
The symmetry of the mth derivatives tensor was also used If one chooses B = 1/m,
the extremum at zero will he of order m + 1
Finally, the condition 2 8 will be satisfied as well because the term, ~ Bk \valls

still has zeros of order p— 1 > m + 1 at all the dual lattice sites Rn C:

Using this 1esult for the second order (% functions for the hexagonal and FCC
lattices, we obtain the schemes shown in Fig 2 7(a) and Fig 2 8(a) We see that along

with a more compact support (12 and 40 points, respectively), the Hex and FCC
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Figute 2 7: Third order schemes in the Hexagonal (H3) and cubic (M}) lattices

schemes show better isotzopy than their counterparts on a cubic lattice (Fig 2 7(b)
and Fig 2 8(b)) built fiom the tensor product of 1D schemes

It is interesting to realize that this order improvement could also be applied to a
second order scheme in a cubic lattice This will obviously yield a scheme different
from a tensor product of third order schemes Let us consider the M} scheme in two

dimensions Built from the tensor product of one-dimensional schemes, it is
; 1 dM 3 1 dM
Mitz.) = (3Ma(o) + 3o ) (5Me000+ 10
Now applying the ahove construction in 2D to the scheme My(z,y), we get

Mile.y) = 2My()Mily) +5(5,9) -V (Ma(=) Ma(y))
Mi(z,) ~ (Mj(z) ~ Mi@)M3(0) - Mila)) - (220)

This scheme has the same order and level of continuity as the regular Mj, but as
shown in Fig 2 9, the lobes so characteristic of the tensor product have disappeated
One inconvenience though is the behavior of the scheme at the origin The scheme

does not reach the unit value, A} ;,,(0,0) = -S— This is also true to a lesser degree for
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Figure 2 8: Third order schemes in the FCC (/) and cubic (]} lattices

Figure 2 9: Isotropic third order scheme in the cubic lattice M},
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the third order FCC scheme, F3 The value at 0 is 095 The third order hexagonal
scheme does reach 1
These two schemes therefore redistribute a paticle already at a lattice site onto

several sites, creating a slightly weaker particle surrounded by wealk particles with

manitite A namatise weierhte
JOOSIRR IR AR VRS Saan s b bR

2.4 Applications

2.4.1 Implementation

While the hexagonal functions could all be derived analytically, the high order FCC
functions had to be computed The convolution of the C? scheme by itself and the
gradient of Eq 216 were computed in Fourier space We then switched back to

physical space to generate a look-up table

2.4.2 Test Cases

Our test consists in two colliding vortex rings This configuration deforms the set
of particles and thus tests the quality of the core overlap through the simulation
There are two sets of tesults The first one is a well resolved case at Re = 250 where
we compare two second order schemes: the A; in the cubic lattice and our PCC,
scheme The second set of results is at Re = 500 with a coarser resolution {thus
under-tesolved) and we consider the two second order schemes along with a third
order scheme, M} The redistiibution frequency (once every ten time steps) was the

same in all of our tests

Re = 250

Because of the different lattices used, we define the grid Reynolds number as Hep =
i/a
H:;L— It will depend on the actual density of points The results in this section were

obtained at Rep =~ 12 — 4 The FCC lattice introduces fewer points than the A,
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scheme and shows the same diveigence erzor (Fig 2 10) The error decreases for { > 6

as the rings are decaying

2 10°

o) 107

7 e B

Ediv

107

O VUV E U S OUIY BT S

{a) Number of paiticles {b) Field error

Figure 2 10: Colliding rings at Re = 250

Re = 500

We now consider the under-1esolved case, Re, =~ 27 — 13 One can now notice a
significant difference between the two second order schemes The error for the FCC,
scheme stays at the level of the M} which introduces far more particles because of its

wider stencil (Fig 2 11)

2.5 Conclusions

We have introduced the first representatives of a new family of interpolation schemes

based on the face-centered cubic lattice Our schemes have two outstanding features:

1 Thanks to the many symmetries of the FCC lattice, they aie more compact
than the equivalent schemes in a cubic Jattice This 1esults in a slower growth

of the number of particles because of a tighter halo of new particles around the
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{a) Number of particles (b) Field errar

Figure 2 11: Colliding rings at Re = 500

set of old particles At the end of our 1uns, the number of elements for the FCC
lattice was found to be ~ 15% lower than in the case of the equivalent cubic

scheme (A;)

Symmet:y is also beneficial to the overlap of the particle cores and allows for
better communication between the particles, even under stietching We have

observed a significant reduction in the divergence error for high Rep cases
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Chapter 3

Reconnection of Vortex Rings

Reprinted with permission from Chatelain, Kivolides, and Leonard (2003) Copyright
2008 by the American Physical Society.

3.1 Introduction

In flow phenomena as diverse as quantum (Kivotides et al , 2002), magnetic (Chris-
tensson and Hindmarsh, 1999), and incompressible (Leonard, 1985) fluids, it is useful
to study the physics of turbulence by modeling the system as a collection of tubular
fux loops which in the case of vortical fields are called vortex filaments An intrinsic
property of such highly structured systems is their ability to dynamically change their
topology via reconnection mechanisms. Does this change in topology aflect in turn
properties of fluid twrbulence like intermittency and scalar-mixing (which depend di-
rectly on the structure of the fow) or the dynamics of energy in wavenumber space?
Or is it the case that reconnection events are not generic and thus, have no direct
impact on the mean properties of turbulent flows? The aim of this chapter is to ad-
dress these issues by fully resolving the Navier-Stokes dynarmnics of interacting vortex
rings for three simple geometries having great potential for illuminating the physics
of reconnection. Although the flows considered are not strictly turbulent, the hope is
that in a future structural approach o the problem of turbulence, a significant part of

the flow complexity could be traced back to the physics of similar vortex interactions



a2
Incompressible vortex reconnections have an extensive bibliogiaphy (for a review of
the work up to 1994, see Kida and Takaoka (1994) and Kerr and Hussain (1989)) In
Pelz (1997), Shelley et al (1993) and Pumir and Kerr (1987), reconnections of vortex
tubes were considered with an emphasis on the possibility of singularity formation
os Re — e Tn Winckalmans (1Q0R)  tha strang intaractinme hetaeen vartey rings
were computed with the infterest in developing numerical methods and turbulence
meodels rather than in focusing on the physics of reconnection. In Aref and Zawadzki
{1991), it is discussed how a linked vortex configuration could be achieved starting
from an unlinked initial state, and in Zawadzki and Aref (1981), it is considered how
the mixing of a non-diffusing passive scalar is affected during vortex ring collision.
The reconnection of two approaching (but not colliding) vortex rings was studied
experimentally in Schatzle (1987) and theoretically in Ashurst and Meiron (1987).
This chapter extends these studies by considering generic vortex configurations and

by ecapturing more features of vortex reconnections in a turbulent flow.

3.2 Method

We solve the Navier-Stokes equations for an unbounded three-dimensional incom-
pressible viscous flow We employ the vortex element method introduced in Chap-

ter 1, along with the face-centered cubic redistributions discussed in Chapter 2

3.2.1 Diagnostics

We calculate the globel kinetic energy E and enstrophy () defined as

E = %/u-udm, (3.1)
Q = /w wds. (3.2)

For unbounded flows, the relation between kinetic energy and enstrophy is

d
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3.2.2 Spectrum

We also compute the evolution of the spectrum of the kinetic energy E(k) which, in

terms of the Fourier transform of vorticity

, 1 ‘ —ir ks
M=quj(r)e"dr, (34)
is defined as
E(k) = l(er):’/ w - w" dy, (35)
2 |k]ﬁk

where df2), denotes sin 8y, df), ddy., the solid angle element in spherical coordinates. The
calculation of the spectrum requires a double summation over the vortex elements
which results to O(N?) complexity Because of this, the calculation of the spectrum
is much more costly than the solution of the Biot-Savart law. Since the number of
particles grows substantially during our simulations; from around N = 510% at ¢t = 0
to 810° in the end, our computational resources did not allow us to compute the
spectra for all times The details of the derivation and implementation are given in

Appendix B

3.3 Results

3.3.1 Configuration

All calculations were done with the same Reynolds number: Re = -f; = 250, where T'
is the ciiculation of one ring and v is the kinematic viscosity This small value of Re
was dictated by the computational cost and the need for well-resolved reconnection
regions All the rings have the same initial I". All of our conclusions are conditioned
upon the relatively small value of Re, as well as on the common initial circulation

and should not be extrapolated uncritically to other settings. The initial vorticity

distribution in the cross-section of every 1ing is Gaussian with a cutoff

SeTeT (3 6)
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1= 1=04 1=08 1=1.6

Figure 3 1: Vortex 1ings in an offset collision: contours of vorticity (from £ = 0 to

2 4, the contour is w = 0.15wi=l; for ¢ > 2.4, it is w = 0 025wisd

where 7 is the distance to the core center, ¢ is the core radius, and wp is the azimuthal
vorticity We chose o = 0.05 R (where R is the 1adius of the ring) to ensure that the
rings are still thin when reconnections occur. Our results were made dimensionless
in the following manner: ¢ = fﬁﬁ}, T = %, W == -}i—;‘ﬁi where t, ', o' are dimensional

We studied three configurations. In the first case (Fig. 3.1), the initial rings are
placed at a distance of RB/4 apart in the z direction, offset by R along the y axis and
they move in opposite directions along the z axis.

In the second case (Fig. 3.2}, two rings of different radii (R and R/2) and of initial
separation R/4 are moving in the same direction along the z axis, with the center
of the small 1ing on a collision course with the circumference of the large one The
small ring has a larger self-induced velocity and catches up with the large ring.

Finally, in the third case (Fig. 3 3), the two rings are linked at 90°, a ring going
through the other in its center. One is moving in the positive z direction, the other

in the positive y direction.
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Figure 3 2: Vortex rings of different radii: contours of vorticity (from ¢ = 0 to 2 4,

the contour is w=0.15w

t==0
max?

for £ > 2 4, it is w = 0 05 w'=0

max

t=0

t=1.6

i=372

t=4 8

t=068

Figure 3 3: Linked vortex rings: contours of voiticity; w = 0.025w!=9
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Pigure 3 4: Vortex rings in an offset collision: evolution of the energy spectrum

3.3.2 Discussion

All three evolutions lead to ring reconnection (Figs 3 1, 32 and 3 3) and have common
features. The latter will be discussed here in the context of the first configuration,
ohserving that the phenomena are the same for the other two cases. The spectrum
at t = 0 (Fig.3.4) has the characteristic oscillations of the spectrum of isolated vortex
rings and a cutoff at the scale of ring core radius o = 005, k¥ = 20. Our results
(Figs. 3.1 and 3.5) suggest that the reconnection starts approximately around ¢ = 0.6
and ends around ¢ = 1.75 with a duration At, = 1.15. Specifically, as the rings
approach each other, they stretch and deform near the collision points so that their
respective vorticities become locally anti-parallel. The two ends of this stzetching
region eventually become reconnection kinks where in the absence of singularities,
the strong vorticity gradients are smoothed out by diffusion. This is also seen in the
graphs of the global quantities (Fig 3.5) where the beginning of the reconnection

process corresponds to a hurp in the graph of £ and to a steepening of the slope
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Figure 3.5: Vortex 1ings in an offset collision: kinetic energy and enstrophy

of E(f) between t = 0.6 and £ = 1.4 Ouwr calculation predicts that the flament
core radius increases from the initial value o == 0 054 to the value at reconnection
g, = 0.12R due to diffusion. Using this latter value, we calculate the viscous time
scale £, = o? /v = 0 36. Scaling the convective ring velocity with I'/4n R, we estimate
the time needed for a ring to traverse o,: t, = dnRo,/I' = 1 5. These times are of
the same order as At,; this indicates that both viseous and convective phenomena
participate in the reconnection physics The relative magnitudes of ¢, and At, are
different from the ones in Schatzle (1987) where the Reynolds number was 1600 and
the viscous time scale was therefore much larger than the duration of reconnection.
After some time (Fig. 3 6), we can say that two new rings are formed. The pairs
of filaments between the reconnection regions are stretched further as the new rings
niove apart from each other (£ =16 to 56) These stretched vorticity structures are
responsible for a continued transfer of energy to the smallest scales until these strue-
tures are dissipated away This conclusion is supported by the results displayed in
Fig 34 The initial exponential cutoff of the spectrium gives way to a non-exponential
region (although it still remains very steep) for ¢ > 08 The spectrum still has an
exponential cuboff that lies outside the range of Fig. 3 4; this cutoff corresponds to

scales close to the particle core size Between ¢t = 0 8 and 2 4 there is a significant
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{a) (b) ()

Figure 3.6: Voritex rings in an offset collision: contour of voiticity and vortex lines

t=0.
max?

at £ = 16 and 2.4; the transparent contour is w = 0.025w the vortex lines in (a}
and (b) were chosen to pass through the vortex core center (the meximum value of
w) at a location away from the reconnection kinks; in (¢}, a few neighboring lines are

also shown for £ = 2.4

decay of the energy spectrum for & < 20, but little change for k > 20. This last obser-
vation indicates that in the small scales of motion, an approximate balance between
energy transfer from large scales due to stretching and local energy dissipation due to
diffusion is temporazily attained. This conelusion is also consistent with the vorticity
structure shown in Fig. 3.7 where it is observed that between £ = 08 and t = 2.4
(the time of the last spectium calculation), the vorticity magnitude in the secondary
structures (where the global meximum of vorticity resides) stops increasing and in
fact it decays slightly.

It is conceivable that for He numbers higher than 250, an intermediate scaling
range that is in between the k' and k=7 regimes could appear with inertial type
of scaling [t is also expected that with increasing Re number, the hump observed
in the global enstrophy during the reconnection could become more pronounced and

(according to the previous discussion) shorter in duration
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05 05 05

Figure 3 7. Vortex rings in an oflset collision: contours of vorticity magnitude in the

plane z =0 fromi=08t0 32
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3.4 Conclusions

In conclusion, we studied three generic vortex ring configurations and we found that
in all cases, the rings reconnect. This suggests that reconnection is a common phe-
nomenon in vortex filament encounters and perhaps also in turbulent flows In addi-
tion, we observe an intensification of dissipation which is local in time and could be
a mechanism contiibuting to turbulence intermittency.

A by-product of reconnection is the formation of stretched structures with anti-
paallel vorticity which transfer energy to the smallest scales where it is rapidly dissi-
pated. Without this energy redistribution in wavenurnber space, the decay of global
kinetic energy would have been slower. This important effect depends directly on
the details of the initial vortex configuration (compare with experiments in Schatzle
(1987)} The observed intensification of small scale motions hints to an enhancement
of small scale mixing of passive scalars with Sc> 1

The excited Kelvin waves represent a fast mechanism for energy transfer, but
the small Re number of our calculations is not suitable for understanding their full
importance. In particular, they are confined to low wavenumbers in opposition to the
Kelvin waves observed in recounections in quantum fluids (Kivotides et al., 2001).
This is because quantum filaments are inviscid and have a very thin core (g ~ 0.1nm)
so that high wavermmber Kelvin waves propagate without damping even for rings with
small circulation.

Besides illuminating important physics, the present work will guide future intro-
duction of phenomenological reconnection models into vortex filament computational
methods. In this way, the applicability of the latter methods will be extended to flows

with complex vorticity configurations.
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Chapter 4

Flows Around Rotating and Deforming

Boundaries

4.1 Introduction

The Lagrangian nature of the Vortex element method makes it quite appealing for
external flows around complex and evolving geometries The applications are numer-
ous An obvicus one is the family of biological flows which cover a wide range of
Reynolds numbers, with insect flight in the medium range of Re =~ 100 — 300 This
chapter focuses on the additional steps needed in the framework of vortex methods
to account for the rotation or deformation of the boundaries We cover some funda-
mentals and existence results in Section 4.2; we then study the Biot-Savart boundary
terms in Section 4 3 In Section 4 4, we consider the boundary conditions on vorticity.

Finally, we discuss the conservation of global quantities for such flows in Section 4.5.

4.2 Kinematics

In a first step, let us consider the flow exterior to a set of bodies (¢), i.e. R3\U{Q:(2)}

as our flow domain We consider the usual Helmholtz decomposition of the velocity



field,

U o= U, Uy (4.1}

= Vx4V (4.2)

where we fix the gauge of 4 as V 1 = 0 We restrict ourselves to the case of

incompressible flows. We therefore have

Vi = ~Vxu=-—w, (4.3)
V4 = 0 (4.4)

Boundary conditions have to be imposed on the velocity field with the no-slip condi-

tion at the solid boundaries

u(x)|xesnu = ulanyy (4.5)

and possibly a free-stream velocity
Ulxoo = Ugo - (4.6)

4.2.1 Extended Domain and Fields

The development of feld computations and boundary conditions can quickly become
tedious if one considers the domain R® \ U{{%(t)} The extension of the fields to
R® facilitates our work, even more so in the case of deforming boundaries. More
explicitly, we consider the extensions of 9, w and u to R3. The extended velocity
field may therefore have some divergence inside the immersed bodies since general
deformations may involve some dilatation.

If we make the required assumptions about the regularity of the velocity field, we

can apply Poincaré’s formula (Brard (1973) and Cottet and Koumoutsakos (2000))




Figure 4.1: Boundaries and sign convention
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We assume that there is no through-flow,ie, n-uv =n u~ The sum of the two
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abave equations gives us an expression for the velocity in the extended domain R®

u(x) = (Kx) * wyg, — K * oun; + (Kx) * weayg,
(4 9)
+ K(x ~x"} x v(x')dS;
uUBn;

where K = V{7 The different terms on the right-hand side of Eq. 4.9 deserve some

attention:
o wwyn, is the vorticity inside the bodies present in the flow;
e oup, is the dilatation V - u inside the bodies;
o wgaun, 18 the vorticity present in the fow;

o -y = n x (ut — u™) are bound vortex sheets which have to appear in order to

enforce the kinematic condition of Eq 4.5.

For boundaries that move as if they were the boundaries of rigid objects, the first
two items can be simplified, the vorticity "inside” the bodies reduces to twice their
angular velocities 2W;, and the dilatation is null.

Before proceeding, we introduce the notations u;, w; and oy these will refer to
the known velocity, vorticity and divergence fields inside the deforming object 0, up

to and including 807 .

4.2.2 Boundary Vorticity and Integral Equations

Let us now concentrate on the boundary voiticity term This term is an unknown that
is solved for thiough the enforcement of the boundary conditions. One can consider
either through-flow or slip cancellation at the wall. If we use the latter, we have to

consider the limit of the tangential component of Eq. 4.9 for x — Xpq-,

u.tm(umu”;‘%f Kx"yclS)»t, (4.10)
- ua);
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where ey regroups the first three terms of the tighi-hand side of BEq 4 9 and the
vectors t lie in the local tangent plane If we match this value to the tangential wall

velocity, we obtain

(72“- _ nyds) b= (e — 1) - (4.11)
d Lian;

Well-Posedness

Eq 411 is a Fredholm equation of the second kind which justifies our earlier choice
of the no-slip condition; this guarantees well-posedness when we swikch to finite di-
mension spaces for the solution, ie, we use a panel discretization.

Tixistence

Brard (1973) considers the existence issue for Eq. 4 11 without the projection into

the local tangential plane (-t)

Ty = (—-E,;— — / K x dS’) Y oEm Ugyt — U {4.12}
LIE8Yy;

A

The existence condition requires that the right-hand side be orthogonal to ker{T™),

which is formed by the functions £{x’) = const n{x’) The condition is then
[ ne-u)=0; (419
Juaay
By the divergence theorem, we have
f Vo (e — wi)} = 0 {4 14)
La;

which is satisfied because V- u; = V ey = o; inside
Because we use the projection above, this existence condition is implicitly imposed

We should however verify that the no through-flow condition will be enforced as well
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We have

Vx(u-(Kx)swg, +K=*og) = 0
V(u— (Kx)swqg +K=xog,) = 0

for x € 0 {(u— (Kx)*wgq, + K *0q,) can therefore be expressed as the gradient of
a harmonic field & inside the boundary

(u— (Kx)swq, +K+og,)=VOwithA®=0.

Solving Eq 4 11 thus sets & to a constant on Q7 By the maximum principle, ® is

constant in £, thus implying that u-n = 8®/n =10

Unigueness

Uniqueness issues will appear if the operator on the left-hand side of Eq 4.11 has
a non-trivial kernel This in turn will depend on the topology of the problem; non-
simply-connected 8¢ will allow non-unique solutions. This is the case for any object
in two dimensions and for objects with holes in three dimensions.

For such cases, dim(ket[T]) additional conditions have to be enforced; they are
found by applying Kelvin's circulation theorem to irreducible loops in the domain
(Cottet and Koumoutsakos, 2000) For the moment, we will restzict ourselves to

simply-connected geometries

4.3 Boundary Contributions

Eq. 4.9 shows that the velocity used in Eq 1.9 and 110 must include additional
contributions from the objects in addition to the usual Biot-Savart terms (Kx) *

weauey, 80d [0 K(x~x') x 7(x')dS, if there are bound vortex sheets We proceed
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and call these contributions u,
1y = (KX) * yn, — K« oug; -+ (KX) F LWIpa\un, (415)
9, and ¢ for the corresponding stream function and potential,

'llbb = (G= g, -+ (= QJR3\UQ‘. (416)

These terms are volume integrals which may not have a convenient discretization;
one might rather have a panel representation of the boundary In addition, these
terms involve quantities that are not known in practical problems Indeed, let us
consider the swimming motion of a fish where the kinematics are imposed One may
not realistically know the velocity field and delormations inside the fish and will only
impose the displacement of the skin of the fish Similarly, from a physical point of
view, the details of the deformations inside the objects should not have an influence
on the velocity field in the flow TFor these reasons, the present section covers methods

to transform those volume integrals into surface integrals

4.3.1 Rigid Objects

In the case of a 1igid object, the dilatation sources are null and the vorticity is a

constant equal to twice the angular velocity. We stait from the stieam function:
Py(x) =) 2W; / Glx —x)dx’ (418)
i &

If we rewrite the Green’s function

Glw) = =~ = -V ( “ ) , (419)

dr - \2Ju]
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we obtain, by the divergence theorem

W, x—x ;
=N e ims A ——— -2
Vo) = =2 g o ] P56 (4.20)
M e el wdbs Bald e d dhe e Adiant Ao

o them he ARFoinad e orinneorivelr Felrine the
A ¥ WA U‘I\IJ et ek AL LA 8 M b T St B e et Nt SR MR A e e ey e p B L - i

curl and the gradient of the above expression:

wp{x) = Z “&VY‘; x /a - (e —x) ) (=) ey (4.21)

o X — x| | — %/}

VUb(X)=ZWi x/é;ﬂ ___H(X-—*x")—}-(x—x’)n_;.((x“xi)_H)I

d [x— x!|? o
.{_3((X~Jc’)<-n)(x——5x’)(x...xr)ds(x,) 22
|x — x|

Contour Dynamics

One can notice that by taking the cuil of Eq. 4.3, we obtain the following expression
Viu= -V x w (4 23)

which is at the basis of contour dynamics {Zabusky et al., 1979) If we consider
patches of constant vorticity in three dimensions, V x w is only non-zero and singulat
at the boundaries of the patches We apply Green’s function to obtain an alternative
to Bg. 4.21,

2W; n
= E -2 — 2
u ,- ym % o, — das(x). (4.24)

This approach, while yielding a simple expression for the velocity, makes no provision
for the stream function. Also of interest is that the velocity is not expressed as a cuil;

the error made in the multipole approximation could thexefore have some divergence
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Implementation

'The integrals 4 20, 4 21 and 4 22 can be evaluated with a panel description of the
boundaries As for the regular Biot-Savart law, we have to accelerate their computa-
tion through the use of multipole expansions We detail this procedure in Appendix D

along with the development of the error bound.

4.3.2 Deforming Objects

In the case of general deformations, it is far more difficult to find a surface-based in-
tegral. We present some expressions for velocity Using the idea of contour dynamics,

we have, for constant volume deformations,
(%) = Z/ Gx~x(x) x ndS + Z/ Glx—x") (V % w;) (x')dx'  (4.25)
: Bn; i ni

The second term can be rewritten in terms of velocity, thanks to the identity V x

Vxu=V(V-u}~V2uwithV u=0,
up{x) = / Gx — x"Vuy(¥) x ndS ~ Z/ Glx =~ ) VPu(x) dx’ (4 26)
We can then use Green’s second identity

f‘, (fV%g —gV?f) aV = / (fVg-gV/) nds
to obtain

f Gl = xws(x) x nd§ =) | | V3 (Glx = )il
(4 27)
-+ Z‘/anl mVx'(G X - K)) G(}C — X')erui) - ndS

We see that the second term is null because x lies outside the objects 0;
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A similar approach can be followed for dilatation. For irrotational flows, one has
Vi = Vo, (4.28)

which gives us the expression of velocity
uf (x) = Z fa N G(x — x')oi(x')n dS — Z fn i Gix — %) (Vo) () dx' (4.29)

We can use the identity above, this time with V x u = 0, and the second Green's

identity to find

WG =3 é  Gx—x)a)ndS

(4.30)
+Y | (wVwe(Gx—x)) - Gl ~x)Vyeu;) - ndS
7 Janu
One can then combine the results 4.27 and 4.30 for general deformations
up(x) =Zf G(x — %) (wi{x) x n+ om) dS
(4.31)

+Z/ (Ve (Gl ~ %)) — Glx — ¥)Vpw;) -ndS .
a0
This expression involves the velocity and components of its gradient at the surface

It can be simplified to

) = [ Gl ) (Ve m (T i)
(4.39)
+ }: 80 (0:Ve (G(x — %))} - ndS.

We then note that the factor involving the gradient and divergence of u; can be
reartanged We decompose the divergence into its components in and out of the
plane

(Ve W) = ( RN 6“;7; n) ) n, (4.33)
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where V7 is the in-plane gradient By definition of the surface normal, we have

On/dn = 0. The second term can then be combined with the term —(Veu:)t n

L o
~(Vwu)t n+ Q%i;;—lln = — (Vx:u,- - %Z‘n) -n (4 34)

to cancel the normal derivatives We can thus wiite the contributions of general

deformations as

u(x) = Z G(x — %) (—(VELu) -0+ (VD - ug)n) dS
(4 35)

Not surpiisingly, this last expression is more complicated than the one for 1igid ob-
jects. Nevertheless, it meets the physical safeguard mentioned at the beginning of
this section; it only involves the surface velocity or its derivatives in the plane of the

surface.

4.4 Vorticity Boundary Conditions

The problem of vorticity boundary conditions has two characteristics of note It
involves the introduction of vorticity at the boundaries. We follow Lighthill’s model
in this respect (see Kournoutsakos et al., 1994) and this approach yields a Neumann
boundary condition on the tangential vorticity flux The second aspect of vorticity
boundary conditions is the solenoidal character of vorticity. The vorticity lines in the
flow must connect to the ones inside & spinning or deforming object This translates

info a Dirichlet condition on the normal component of vorticity at the wall,
W Algg. = w; - nlpg,

This section will focus on this last condition, as the other aspects have been covered

in Chapter 1 Let us make the assumption that we have a regular set of particles
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Figure 4 2: Method of images: homogeneous boundary conditions

close to the wall In one dimension, this would correspond to particles located at
z; = (i + 1/2)h. One is then confronted with the problem of the inadequacy of the
unbounded smoothing functions for elements close to the boundary.

Some elegant solutions using images have been proposed in the context of viscous
algorithms. While developing a one-sided test function is possible, it is relatively
easy to complete the set of elements next to the wall with images across so that we
can still carry out the integration in Eq 1.19 over R™ These image particles will
be placed across the boundary, symmetrically so that this augmented set of elements

constifutes a good interpolation basis. We write for an interpolated quantiby

n T
fla) =Y anlle —z) + ) cfl(z— ),
=0 wn(}
with 2}, = —x, The strengths of the images can then be chosen accordingly: oy = Cp
enforces df /dz(0) = 0; of, = —a, imposes f(0) = 0. One can refer to Ploumhans
et al. (2002) for an application in three dimensions where homogeneous Neumann
and Dirichlet conditions are respectively imposed on the tangential and normal com-

ponents of vorticity.
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eoror st e R gt e

T

Figure 4 3: Method of images: heterogeneous Dirichlet boundary condition

A heterogeneous Dirichlet condition can be similarly derived Thanks to our

images, we have
ZhC(U — I,) + Zh(((}— ) =1
pe=0 p=0

and by symmetry,

2]

Y ohlm) = k(@) =

p==0 a=0

The boundary condition f(0) = fo will thus be set if we set the image strengths to
0:;, = 2hfu — Qp .

In three dimensions, the above only applies to the normal component of vorticity;
the tangential ones are treated with a zero flux condition (Ploumhans et al, 2002)
For surfaces with moderate curvatures, we will therefore build images with a position

and a strength given by

o, = (2(w;-n)V, -2, n)n+a,, (4.37)

where n, the local normal, is defined as the direction of the vector joining the closest
point on the surface to the particle and d is the norm of that vector

This scheme implicitly assumes a flat surface As a result, its efficiency is contin-
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Figure 4 4: Method of images: heterogeneous Dirichlet boundary condition in three

dirnensions

gent on the smoothness and regularity of the surface. We will see a scheme degra-
dation in regions of high curvature and on sharp edges. A first order correction that

accounts for curvature would require a more elaborate image construction

4.5 Conservation and Diagnostics

4.5.1 Linear Diagnostics

We are considering flows whose vorticity flelds have a bounded support. For such

flows, we can write (see Batchelor, 1967, 2.9)

f wdx=0. (4 38)
R3

This identity holds for inviscid and viscous problems and bounded flows too, if we

include vorticity inside the objects We should then have

/ wdx:m—/ widx. (4.39)
R30I s
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For deforming objects, we can transform this last condition into a surface-hased one

/ u:dx:»—/ nx wdS (4 40)
b RS\UQ.' S B0

For a set of 1igid objects, it reduces to
/ wdx =2 W Vol(€) (4 41)
o RI\U; i

This will be of interest when we solve for the boundary vorticity For a simply-
connected geometry, our solver should indeed converge to a solution that satisfies
Eq 438 In the viscous case, the condition will have to be enforced on the Aux of
vorticity that enters the domain and will depend on the kinematics of the boundaries
If the vortex sheets are bound to the surface, a local result can be derived Eq 4 38
is indeed based on the identity V w = 0: if we consider a small volume at the wall
(Fig 4 5}, we see that
V. Y=uw; n, (4 42)

where V is the divergence in the plane locally tangent to the surface 8Q;

T
HHHH

Figure 4 5: Inviscid flow around deforming boundaties: divergence of the hound

vortex sheets

Let us now consider the linea: impulse The identity

/xxandxm(N~l)/ade/xx(nxa)dS {4 43)
Jv v Tov
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is valid for a simply-connected volume V. We apply it to the velocity field u in
IR\ LSy

/ udxm-l—/ xxwdx—;—l/ xx {nxu)ds, (4 44)
RI\URY 2 Jravuny 2 Jaun,

thereby assuming that the objects §); are simply-connected

4.5.2 Quadratic Diagnostics

The kinetic energy is not conserved for viscous flows We detive an expression for

bounded Aows

1 1
E = §La\uniu"u@=:"/ﬂ;a\uni(v}(‘lp)‘(VX‘l‘b)d}C
= 3 [ W (VTR -V (V) % 9) dx
= JRINUN;

whete we used the relation - (V xg) =g (V xf) -V (f xg} We then have

E=~1»/ qud:c~;-5/ (ux 1) nds (4 45)
2 Jrayun, 2 Jaun,

This will hold for flows with a fast decaying w field and for which the velocity goes
to 0 at co Logically, flows with an oncoming free stream will have an unbounded
sutface term at infinity

The helicity H = [u-wdx is not conserved for a viscous flow This quantity,
which measuzes the entanglement of vorticity lines, will be particularly interesting for

Bows around spinning boundaties

4.6 Conclusions

We have introduced a basis for deforming boundaries in the framework of the thiee
dimensional vortex element method We derived the terms due to deforming or rigid

rotating objects in the Biot-Savart law and proposed a method to compute them
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from a surface integral An image method was designed to enforce the heteroge-
neous boundary condition on normal vorticity. The terms for rigid rotating objects
{(Egs. 4 20, 4 21 and 4.22) and the enforcement of boundary conditions by image parti-
cles (Eq 4 36) will be used in our study of flows around spinning spheres {Chapter 6)

and Aapping motions (Chapter 7)
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Chapter 5

Near-Wall Vorticity

5.1 Introduction

The topological adaptation of vortex elements has been the focus of many efforts.
From a computational standpoint, it may be interesting to adapt our discretization
to the local character of the vorticity and improve the cost and accuracy of the
method. A sheet-like representation of vorticity may be interesting in several flow
configurations. In wall-bounded flows, vorticity in the near-wall region is mostly
parallel to the wall and its gradients are mostly in a direction normal to the wall

The same can be said in multiphase fows where interfaces are a vorticity source

5.2 Viscous Vortex Sheets

5.2.1 Definition

In a first step, we consider singular vortex sheets with a strength () We can

regularize the sheet distribution by taking its convolution with a function ¢,

w{x) = ooy (%~ X ) () dS(X) .

shest

We choose the { smoothing function te be a Gaussian, i e., the same as the one used

for the particles The sheet is discretized with flat panels of constant strength -y; the
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above convolution can then be carried out over these panels This can be computed

efficiently by means of a two-dimensional lookup table (Appendix E)

5.2.2 Viscous Diffusion

We now need to account for the viscous diffusion of vorticity A straightforward
technique in this case is the so called cote-spreading technique which progressively
increases the smoothing radius o of the sheet. We will rather treat this problem with

a strength exchange approach as it is the one we use for the bulk vorticity.

Particle-Sheet Diffusive Transfer

We define a strength exchange scheme between particles and sheet elements As
discussed in Chapter 1, it is based on the approximation of the diffusion operator by
an integral operator Eq. 1.19. However, we will not forget to guarantee the symmetry
between the perspectives of the particle and the sheet element. This is essential in
order to keep the conservation property of the original scheme. Let us start with
the case of a particle. We can compute the transfer from 2 sheet element onto this

particle as
day
dt

[ B[ aote=) ) - wtr) dxey G

“fn
where V, and V,, are the volumes of the particle and sheet element, respectively. We
use midpeint quadrature for the integral over the paiticle volume

do
dt

2
== (w(x)Vp — cplng(x ~ xp) dx. (6.2)
T Vahcel

If we now assume that w(x) is singular inside the sheet element with a constant finite

integral -y across the thickness of the sheet element, the above expression reduces to

2

2| = ZrmVy—nh) [ e %560, 53)

di

“Ym
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where we define h as the thickness of the sheet. One technique to build a kernel g

consists in using the function ¢ (Degond and Mas-Gallic, 1989, Cottet and Koumout-

sakos, 2000,

1d
n(p) = "”P"EEC(P) , (5.4)

which in the case of the Gaussian yields the same Gaussian The last factor in Eq. 5 3
is therefore the same as for the regularization

In the converse case, the flux from the particle to the sheet element will yield

A Y mSm 2u
(—’Yd%m—l = EE(D}P b= vm V) /5,,, N (3 — %) dS(x) (5 5)

&p

This expression is identical to Eq 5.3 but for the opposite sign, as it should be to

enforce conservation.

Sheet Element to Element Diffusive Transfer

The transfer of vorticity between sheet elements can be handled in a similar fashion

The integration is more difficult to carry out, as it is a double surface integral

9
WS 2y / / (% — v) dS, dS, (5 6)
dit a* Sm J Sn

Fn

We use quadrature for their evaluation while keeping in mind the geometry of our
problem. Most of the flux goes out of the plane to the particles and therefore, we will
not require the same level of accuracy for this contribution Sample results for the

case of one-sided sheets are provided in Section 53 2

5.2.3 Biot-Savart

We canry out the convolution of the Biot-Savart kernel over a panel The integrals

do not have an analytical expression and have to be tabulated (see Appendix E)
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5.3 Wall Vorticity

5.3.1 Regularization Near Boundaries

Leb us now go back to our bounded problem It might be interesting to consider a
different set of elements in regions close to the wall for several reasons. "lLhese regions
are chaiacterized by mostly planar distzibutions of vorticity—the boundary layers—
and the inadequacy of the spherical test function of our particles. The latter evidently
affects the accuracy of the method near the wall (see Cottet and Koumoutsakos,
2000, and references therein). If we stay in the framework of regularized elements,
the regularization has to be able to deform when close to the boundaries to enforce

basic properties such as [ (dV =1

5.3.2 One-Sided Vortex Sheet
Definition

We consider the imiting case of a vortex sheet situated right at the boundary. We have
to modify its mollifier as to satisfy the above condition. We let {one-sided = 77 Cunbounded;
M has to be adjusted according to the local geometry (see Appendix E). In the case
of a flat surface, we just have M = 1/2. We will take M constant over a panel, M,
For the same reason, we need to redefine the volume of & panel For the sake of
consistency, we choose to use the same modifier My, as for the regularization The

volume associated to a one-sided panel is then S it Mn,.

Conservative Viscous Scheme

Sheet Element to Particle Diffusive Transfer Let us begin with a one-dimen-
sional problem such as the one in Section 4.4. We will now consider a set of elements
where the first one lies at x = 0 We complete the set with images except for the frst

element. For a problem with a homogeneous Neumann condition, we can thus wiite




63

Figure 5 1: Wall element definition

for the element at z = 0

doy 2
WC%R o »(;Zw (a:ho — aphs) 20 (z:)

where the factor of two is due to the image contributions, af = o; {(Fig 51) We
consider only the physical part of the central element with its half on the positive

side. We define 7 = ag/2 and h, = ho/2 We then have

g2

d 2
.E% - 2 z (aihy — vh:) 2n0(2:) .

From this last result, we propose the following ansatz for the diffusion Aux from a

particle onto a wall sheet element

(Y Sm)
dt

2
= Z A, Mh— 7, V) / LIy %,)dS (57)
- Sm ﬂ’j

cxp g

Conversely, if one were to look at the contribution to an element i > 0 fiom the
central element,

dﬂ.’g

2u
di = ;&" (O.'Dh-i - O:ih'ﬂ) Mo (‘I‘)

=1¢]

L/
= ;.2“ ("‘fhi — O.','h[}) Q'I)U(Z‘i) i
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following the same ansatz, we find that our scheme is consistent

2 m
dopl W v o, ME) / 2o = 3,)dS = — LmSm) (5.8)
) 5., M dt

dt v, 9 a

We can agive two interprefations o this apnroach  In the first place. this schemne
tacitly includes contributions from images (as seen in Section 4.4) It can also be
cousidered as a limiting case of one-sided integral operator, such as those described

by Eldredge et al (2002a,b).

Sheet Element to Element Diffusive Transfer In order to treat the diffusion
right at the wall, we take some precautions In convex regions, the unbounded algo-
rithm ignores curvature and allows a spurious Aux through the wall. In such cases, we
will consider diffusion on a curved surface, which is a popular problem in molecular
biology. From Balakrishnan (2000} and Faraudo (2002), we see that a first order
solution in peodesic coordinates is identical to the one in a flat Buclidean space; we

write

2
WtmSm) | 2 o Maheys) / f To(lx — y|') dSxdSy  (5.9)
dt o* S J Gn

Tn

where we now use [x— y|, the distance measured along the surface in the PSE kernel.

In a concave region, we use the same approach as in the unbounded case.

Example We consider the diffusion of a quantity f over a sphere of radius
R =05 with v = 001 The initial condition is a Dirac function at the top of the

sphere; the solution can be developed (Balakrishnan, 2000) as

flx,t) = ! g"“n"’gz 1+MU.EM+,..1W v 2__1:1‘._ m 3+,_
T dqrut 3R? 15 \R?/ 315 \ R? '

where u = Rarcsin(xa/R) is the geodesic distance to the source and R is the radius

of the sphere. The double surface integral is evaluated with a one point quadrature

In Fig. 5.2, we see that our scheme is consistent but its local error exhibits a pattern
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that follows the triangular mesh This is clearly due to the one point quadiature and

can be improved by increasing the order of gquadrature

008
004
oo2

S -

002
004
==l 006

B 008

— DL LR D D

(2) f (b} Error

Figure 5 2: Diffusion on a sphere: solution and error at £t = 4

Dirichlet Boundary Condition

5

In Section 4 4, we inftroduced an image constiuction to enforce the Dirichlet condition
on the normal component of vorticity at the wall Let us consider the one-dimensional
exampie with a central element The evolution equation for g is
CL'O.’{) 2v
TR (aiho — cohi) no(z:} + (atho ~ aohy) na(:)
i
The image strengths of are set to 2fgh; — oy We also assume that ap is close to the

value fohp and add the term (fohohg ~ ooho)n{0) to the above expression Because

Sohnlz:) =30, h((z;) = 1, we have

dog 2w
E}g=;5(foho—ﬂa) (5 10)

From the wall element standpoint, the strength exchange scheme theiefore amounts

to the relaxation of ag to the value fohe We note that the relaxation coefficient is
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Figure 5 3: Wall element: Biot-Savart approximation

2wALf o?, which is, up to a constant factor, the stability coefficient of the viscous
scheme We again define v = o/2 and use this approach for the normal component

of the wall elements

d(('ymc‘i:l)gm} — %%((W n)h — (-, -n)) (511)

to enforce the Dirichlet condition of {Section 4 4)

Biot-Savart

The Biot-Savart integral over the one-sided sheet is computed approximately We
consider one surface element For the sake of consistency with its definition, we
will compute its stream-function contribution as the sum of the full panel modified
by 1/M, and of a singular panel located undeineath it at the centroid of the half-

distribution
' 1 )3
= {3 - ! ! - —— e ! ! 2
., /an Yom M(Ja(x x)dS(x') + '/;‘zc “Ym (1 M) G(x —x')dS(x') (512)

This appioach is sketched in Fig 53
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5.3.3 Convection and Stretching

The vorticity carried by the elements is located at the surface We elect to convect
this vorticity at the wall speed as a consequence of the no-slip condition In the case
of a rigid object, the effect of the vortex stretching term reduces to the rotation of
the vorticity lines For deforming surfaces, stretching will have to be accounted for in
a fashion similar to the one for unbounded three dimensional vortex sheets (Brady,

2000, and references therein)

5.3.4 Redistribution

The presence of a buffer layer between the wall and the free elements may also prove
useful for redistributions near a boundary Several approaches have been proposed
to handle this problem. One can adapt the redistribution laktice to the geometry
(Koumoutsakes and Leonard, 1995) or design schemes to maintain conservation when
close to the boundary (Ploumhans and Winckelmans, 2000, Ploumhans, 2001) We
will use the attached elements in a simple scheme to enforce conservasion of vorticity
nea: the wall In a first step (Fig. 5.4(a)), the particles are redistributed without any
regard to the boundaries Some of the redistributed particles are then inside o1 too
close to the boundaries. They are destroyed and their circulation is transferred to the
nearest wall-element (Fig 54{(b)) This scheme only conserves circulation but the

construction of higher order schemes should be straightforward

5.3.5 Corrected Value at the Wall

Our use of specific elements at the wall improves the representation near the wall,
thereby ensuring conservation and a correct interpolation However the vorticity atb
the wall requires a specific treatent It is a result of the balance between its source

at the wali and the diffusion into the flow, both of which are large on most of the
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Figure 5.4: Wall element: redistribution scheme

surface. We introduce a local expression which takes the vorticity flux into account

W (Xyatl) = z (atpC (Kuall — Xp) + AL (Keatl — X5)) +

1 vot
Zm:'rm /Sm mﬁa(xwm — %)Y dS(x'} — —-(xwau)Q'\/ -

If we consider the tangential components of vorticity, the contiibutions of the par-

(5.13)

ticles, their images, and the wall element only account for the zero flux condition
during the time step The last term of Eq, 5 13 is the solution at the wall at ¢ = 4t

of the one-dimensional diffusion problem

%L:—;- = yWwiarax>0
w = Qfmt=0,z>0

O

T = constant

One could object that the flux is not known with great accuracy and affected by

numerical noise. This point is addressed at the end of this section.
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Example

We consider a one dimensional example that is somewhat 1eminiscent of ou: physical
problem  Our domain is the positive x-axis We discietize a function / with a set
of Gaussian particles for which we take 5 = {, h = o We use a wall element The
elements are therefore positioned at z; = ih

A Neumann boundary condition is imposed at z = 0, - 8f/8n = g(t) During
the fixst part of the time-step, we use our particles and thei: images to cancel the flux
at z = 0 We then integrate the contribution of a constant flux onto the elements
during the time step dal,, = [v.- 0/ /otdr (Koumoutsakos et al , 1994, Ploumhans
et al, 2002)

In the case of a sinusoidal flux g{{) = sin(2=1/T), there exists an analytical ex-

pression for the wall value

[0, 1) = -—\/—g (S (2\/2‘/—7") cos(2nt/T) - C (‘2\/7’1:) sin(?vri./T)) ,

where S(u) and C(v) are the Fresnel integrals, S(u) = [ sin(71?/2)d! and Clu) =
,[{')“ cos{mt®/2}dt In Fig 55, we investigate the behavior of the expression with re-
spect to the resolution (£,6() and the PSE stability parameter rpgg Eq 5 13 does
provide a better estimate than the stiaight summation of the shape functions and its
effectiveness is faitly constant hetween the two values of rpgp

A last point that we have already alluded to is the use of the vorticity fiux in our
corzection In piractice, this quantity is indeed solved fo1r at every time step and is
noisy in time and space The space noisiness can he imputed to the interactions of
the particles with the boundary In geneial, the boundary will not be aligned with
any of the lattice planes causing the particle coverage to be integular near the wall
‘This issue was a rationale for the development of isotropic distributions {Chapter 2)
and of near wall elements

The time issue can be addressed by not including the boundary condition enfoice-
ment in the time integiation We use a second order Adams-Bashforth like Ploumhans

et al (2002), but treat the wall boundary condition as a cor:ection that is already
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integrated in time As can be seen from its stability region, AB 2 does not damp
purely oscillatory modes and probably leads to a cycle of over-correcting fluxes from

one time step to another.

5.4 Conclusions

The vortex element method with regularized particles and Biot-Savart summation is
in difficulty near the boundaries where the interpolation and integration accuracy are
degraded We introduce wall elements which have one-sided shape functions built to
be conservative These elements interact viscously with the free elements and stay
attached to the wall, thus enforcing tacitly the no-slip condition for vorticity at the
wall. They also aliow the free elements to stand further away from the wall, thereby
lowering the chances of an element to enter the boundaries and alleviating the need

for images in the viscous scheme. The closest image is now at roughly 2 o; for a

2 x . .
(zaussian smoothing, this represents exp —3Z; < exp &= Finally, we introduced a

coriection to provide an improved estimation of wall quantities by accounting for the

Aux at the wall






Chapter 6

Flows Past Spinning Spheres

6.1 Introduction

Flow around spinning spheres are met in a wide array of domains, from sports fo
suspension problems in chemical o1 environmental engineering. Despite this ubiquity,
studies of this problem are scarce in the literature

In the case of the transverse rotation, the first observations are atiributed to
Robins (1805). However, the discovered lift effect will be named after Magnus (1853)
Barkla and Auchterlonie (1971) discuss these early works with more depth and provide
some measurements of the lift by using an experimental setup in direct continuation
of Robins’s work. Their results cover Reynolds numbers of 1.510% to 10°. There
are analytical results by Rubinow and Keller (1961) for very low Reynolds numbers
using Stokes and Oseen expansions Until recently, results were particularly rare for
intermediate Re ranges {Tsuji et ai , 1985, Oesterlé and Bul Dinh, 1998)

For an axial 1o%ation, even fewer resulis are available A couple of numerical

studies were carried out recently (IKim and Choi, 2002, Pregnalato et al , 2002).

6.2 Configuration

We are considering the impulsively started flow around a spinning sphere at Re =

UewD /v = 300 and a spin rate W1 /20y = 0 5, where IJ is the sphere diameter, Uy, is



Figure 6.1: Configuration and coordinate system

the free stream velocity and W is the angular velocity of the sphere The free-stream
is in the direction of e,. Thiee configurations are studied, one per direction of the
angular velocity vector: e, e, and v/2/2e, + v/2/%e,. Both the free-stream and the
rotation are impulsively started at ¢ =0

Fig 6.1 shows the coordinate systems used in this chapter and the orientation of
the free-stream. Cylindrical coordinates, in particular, will be used for the localization
of critical points on the sphete or in its neighborhood Al the results of this chapter

are non-dimensionalized

where * denotes the cortesponding dimensional quantities.

6.3 Stream-Wise Rotation

We start with W == e, ‘This first case is interesting for several reasons. Previous
nurnerical results by Kim and Choi {2002) show that, for certain ranges of Re and

WR/U., the wake may be fully unsteady, steady, or steady in a rotating frame
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Figure 6 2: Trumpet mapping shape and position: the mapping is cut in the neigh-

horhood of the sphere to provide a better view

We will refer to this last configuration as frozen as in our reference. QOur values of

Re = 300 and of the spin rate WR/U, = 05 correspond to a frozen configuration

A perturbation is applied to the free-stieam
Uperturh — €2 CDS(QT?U; '"" 2)) fOT t& [Qr 3]

in order to accelerate the transition to the unsteady asymmetric wake

6.3.1 Numerics

The sphere was discietized with 20480 triangles; it was generated by recursively divid-
ing the faces of a icosahedron The time step was sel to 0 0125, Particles wete redis-
tributed every 5 time steps onto a face-centered cubic lattice by using the F} scheme of
Chapter 2 The redistribution Iattice was stretched using a trumpet-shaped mapping
(Daeninck et al , 2004) which progressively reduces the resolution as one moves down-
strearn (Fig 6 2) The parameters of Table 6 1 were chosen to guarantee a roughly

constant resolution in the sphere neighborhood where the particle spacing is 0 015

Fig 63 shows the evolution of numerical diagnostics. While the problem size
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(Fig. 6 3(a)) reaches a plateau, thanks to the anisotropic redistzibution, the mesh
Reyrolds number (Fig 6.3(b)) exhibits a growth from ¢t = 156 For ¢ < 15, this
maximum is achieved in the boundary layers For ¢ > 15, the wake (Fig. 64, 67)
contains stronger vorticity structures which are transported into coarser regions of
the lattice (z > 8).

A quantity that is often useful in three dimensional vortex methods is [ |ws —
w|?dx; it measures the difference between vorticity represented by our elements
3 s @pla, (x~%,) and the curl of the velocity given by the Biot-Savart law 5 Koy (x—
%,) X 0 Because the second field is divergence-free by definition, this quantity is
often referred to as the divergence error Our results (Fig 6 3(c)) show that this
quantity is roughly constant throughout the simulation.

The last diagnostic is the Couwrant number (Fig. 6.3(d)) Because we use a La-
grangian method, the classical formulation in terms of the velocity, Cu = |ulmax 6t /A,
is not the most appropriate. Rather, one can consider a figure based on vorticity
C, = |t|max 6% or even the velocity gradient Ciyy = |VU|max 0%, which tracks the
Jargest relative displacement of material elements over a time step. Let us add some
guance here: in a bounded flow, C, still has importance as we do not want elements
to cross the boundaries

The computational time was approximately 300 hours on six processors This

includes the computation and sampling of fields for visualization purposes.
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6.3.2 Wake

We begin our analysis of the physics of this flow by considering its wake. We first
consider the vorticity structures using the Q-criterion (Hunt et al , 1988} where @ is

the second invariant of the the Vu tensor
1
Q= 3 (42 — Si35i5) (6 1)
In the case of an incompressible flow, it can be rewritten as
1
Q o —-;Tf-(VuijVuij) (62)

Q > 0 regions are characterized by the preponderance of the rotation rate over the
strain rate and the likelihood of a minimum in pressure since @ = Y;f (Jeong and
Hussain, 1995, Dubief and Delcayre, 2000). The evolution of the surfaces Q = 0
in Fig. 6.4 shows the growth of a nearly axis-symmetric wake and its tiansition to
the aforementioned frozen configuration. As Fig. 6.5 suggests, the wake consists of a
central vortex filament whose vorticity is pointing downstream-w; > 0 like the sphere
angular velocity—, and recirculations which also have some stream-wise vorticity point-
ing upstream-w, < 0~(Fig. 6.5). This configuration is evidently a consequence of the
solenoidal character of vorticity, as vortex lines originating in the back of the sphere
have to make their way to the front.

The w, < 0 structures grow in size until late into the simulation, t = 10, at which
point the oscillation of the center filament brings regions with vorticity of opposite
signs closer. The viscous cancellation of oppositely signed vorticity is then locally
enhanced, which brings even more asymmetiy to the azimuthal velocity. For this
reason, the w, < 0 corona that was somewhat diffuse for ¢ < 10 gives way to more
localized structures that are wrapped around the w, > 0 filament (Fig. 6.6 and 6.7).
These structures eventually form a steady helical strand that rotates at its own rate
(Fig. 6 4)
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(a} 1 =10 {(b) £ =12

(c)i=1d (d) £ =16

(€)= 18 (f) £ = 20

Figure 6 4: Spinning sphere at Re = 300, stream-wise 10tation: vorticity stiuctures
identified by the iso-surface Q = 0; partial transpatency of the iso-surfaces and the

dashed lines help localizing the sphere
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6.3.3 Forces

The force F acting on a body can be computed with several methods We present

results generated by two of them The first one, based on global impulse, is given by

F= _4 udx {6.3)

dt ﬁS\uQi

A formulation based on vorticity was derived in Section 4.5. We will note that the
integral above is unbounded for a flow with a free stream This can be easily fixed

by rather considering the momentum deficit in the How

Fmi/ (s — 1) dx (6 4)
dt Ea\n

The integral, once re-written in terms of vorticity, is similaz to Eq 4 44

/ (Uper — u) dx"xm}»/ xxwdx—i—ij x % {n x (Uxe; —u)) dS,
RN 2 Jrnun 2 Jaun;

(6.5)
except for a constant term, which will not have any effect because of the time differ-
entiation

The second method considers the balance of momentum over a control volume
(Noca et al , 1999); it was applied to the flow around a sphere by Ploumhans et al.
(2002). As in this last reference, we use a spherical control volume with a radius twice
that of the sphere

Ploumhans et al (2002) found the control volume approach to be more reliable
The other approach is based on the computation of the moments of vorticity in the
whole flow and as one adds the contribution of vorticity far downstream, one uses
vorticity from under-resolved regions Moreover, this vorticity appears in differences
of large terms

Fig 6 8 shows the drag coefficient €y = ~—f=— computed with both methods.

[0 2

The method based on the global impulse yields a noisier result which was filtered in

our chart and tends to d1ift off Past the initial transients, the contiol volume method



84

PR VTS ML T TV TN SN0 WS, NN TN TTC TUY VS SYAN S ST ST T |
0.65 5 i 15 20

Figure 6.8: Spinning sphere at Re = 300, stream-wise rotation: drag coefficient Ca

by the control volume (solid} and global impulse (dashed)

yields a value of ~ 0725 for the diag coefficient; it is in agreement with the value
0.70 of Kim and Chei {2002)

The transversal force coefficients C, and C, (Fig 6.9(a)) are smaller in magnitude
and appear to approach a periodic behavior. Kim and Choi (2002) find that they
follow the rotation of the wake structures and their norm Cy = m is constant
= (025 OQur results show that we have not reached this periodic regime just yet, or

that we are reaching a slightly different flow state than theirs

6.3.4 Attachment and Separation

Fig 6.10 shows the magnitude of wall vorticity at ¢ = 20 as defined in Eq 513 The
quantity 7/p = n x (w —~ 2W) (Fig. 6.11) is perhaps more interesting as it is the
actual shear up to & constant factor 1 We observe some spatial pattern in those wall
quantities; its origin is the vorticity flux in the correction term of Eq 513. This flux
is the solution given by a panel method

Fig. 6.11 also shows friction lines, lines tangent to the local shear; the lines were
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Figute 6 9: Spinning sphere at Re = 300, stream-wise rotation: transversal foice

coeflicients

seeded in the front and back of the sphere Theie are two nodal points of attachment
{(Lighthill, 1963) One is the upstream stagnation point; the other, the 1eattachment
point The lines emerging from these converge to a roughly axis-symmetric sepazration
line that we locate at & ~ 1087, a value close to the one of Kim and Choi (2002),

110° We can decompose the shear into its azimuthal and axial components

Ty = m,sin(g) — 7, cos(¢) (6 6)
7o = T7p5I(f) — cos{@)(ry cos(p) + 7. s5in{¢)) (67)

Both components (Fig 612 and 6 13) exhibit a difference in magnitude between
the front and the back of the sphete The flow in the reciiculation 1egion is slower
and has acquired a certain amount of swirl (azimuthal velocity), thus reducing the

corresponding shear component
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{a) Front

(b) Back

stream-~wise rotation: wall vorticity and

300,

Figure 6 10: Spinning sphere at Re

lines at t = 20
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(b) Back

Figure 6 11: Spinning sphere at Re = 300, stieam-wise rotation: shear and lines at

(=20
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Figure 6 12: Spinning sphete at Re = 300, stream-wise rotation: azimuthal shear

magnitude at { = 20

Figure 6 13: Spinning sphere at Re = 300, stream-wise rotation: axial shear magni-

tude at £ = 20



89

Ry 05
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Table 6.2: Spherical mapping parameters
6.4 ‘Transverse Rotation

In this case, W = e, The wall thus moves in the direction of the free-stream for

z > 0 and against it for z <0

6.4.1 Numerics

This simulation was started using the same geometry and numerical parameters as
in Section 64. At ¢ = 95, the simulation was stopped and a spherical mapping was
used for the redistributions from then on. This is the same mapping as in Ploumhans
et al. (2002); its parameters are reproduced in Table 6 2 The resolution of the
spherical mapping decreases rapidly with distance from the sphere This made the
simulation more affordable for longer times (Fig 6 14). The mesh Reynolds number
(Fig. 6.14(b)) jumps from 2 7 to 5 because the wake vorticity structures are re-sampled

onto a coarser lattice

6.4.2 Wake

The wake of a non-spinning sphere at Ae = 300 is unsteady and asymmetric (Johnson
and Patel, 1999, Ploumhans et al , 2002, Kim and Choi, 2002) The sphere indeed
starts to sustain a small amourit of lift and the shed periodic hairpin structures show
a bias in the direction of this lift. Because of its rotation, the present configuration
develops more lift and increases the bias The @ = 0 surfaces in Fig 6 15 and 6.18
give a overview of the shedding cycle of this flow  We will refer to the downwash-
inducing vortex pair as the main pair since it corresponds to the lift We will call the

upwash-inducing one the secondary pair
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The period of this Alow is T =~ 4.5 and the Strouhal frequency Stus=os = o =
0 29, Those are values to compare to the frequency of 2 non-spinning sphere St o=
0 1360 002 {Johnson and Patel, 1999, Ploumhans et al , 2002, Kim and Choi, 2002)
and the rotation frequency g‘_{ = {159
¥1g b.1¢ and 6 L& give a cioser view of tite sliedding i thuss siiutiwes Yo ol
transparent surfaces of @ = 0 and vortex lines in a y > 0 region near the sphere.
We seed vorbex lines on the suiface at locations that foliow the sphere rotation; more
precisely,
z; = Rcos{n/4) cos{e(t) + in/3)
y; = Rsin{n/4)
z; = R cos{w/4) sin(¢p(t) -+ 1w /3)

where i = 0- 5 and ¥(t) = ~Wi. Vorticity is subjected to diffusion; the vortex
lines aie therefore not material lines. The lines appear to be redirected abruptly;
some of those events actually correspond to vortex reconnections and pinch-off which
is crucial during vortex shedding,

The bottom separation {discussed below) feeds a large vorticity structure over the
shedding cycle. If we consider the section of this structure in the longitudinal plane,
we see that a kink appears between 0 and T'/3 and is the early sign of the pinch off
(5T'/6) The shed structure can be seen to be the tip of a newly formed downwash-
inducing hairpin vortex. The vortex lines inside the tails of the hairpin are seen to
be originating from the sides of the sphere (T'/2 — 5T/6) As the tip is convected
downstream, the tails are stretched and brought close to each other and to the next
hairpin tip Viscous diffusion eventually connects the tails to each other and to the

hairpin structure of the following cycle (0 — T/4, bottom right corner).
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Figure 6 156: Spinning spheie at Re = 300, transverse rotation: shedding cycle, @ =0

iso-suiface, side view

{2) O

(b) T/4

{c) T/2

(d) 37/4
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fa) 0

(b} T/4

(d) 3774

Figure 6 16: Spinning sphere at Re = 300, transverse rotation: shedding cycle, @ =0

iso-surface, top view
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(c) T/4 (d) T/3

Figure 6 17: Spinning sphere at Re == 300, transverse rotation: shedding cycle, ¢ =0

iso-surface and vorticity lines
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{2) T/2 (b) 2T/3

() 3T/4 (d) 5T/6

Figure 6 18: Spinning sphete at Re = 300, transverse rotation: shedding cycle, @ = 0

iso-surface and vorticity lines {continued)
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6.4.3 Forces

The history of the force coefficients is plotied in Fig 6 19 They were compuied using
the control volume approach We do note an abrupt transition around the time we
changed the redistribution lattice

The force coefficients are not yet showing petiodicity in time If indeed the How
and the forces remain periodic for large times, the average force coefficients can be
computed for the last cycle of the simulation between ¢ =~ 15.5 and 20 We obtain
T = 081 and G} = 0 4; the ratio of these coefficients is then C;/Cy = 049

We can compaie those values to previous correlations or analytical results that
cover a wide 1ange of conditions For small Reynolds numbers first, Rubinow and

Keller (1961) considered a Stokes expansion and found that

C, = 2w (l+ O(Re))
Cq =~ 12Re’Y1+ g—Re + o(Re)} ,

which ir our case would yield C; = 1 and Cy = 454 This is not unexpected as we
are quite far from Re <1

The work of Bearman and Harvey (1976), Barkla and Auchterlonie (1971}, Maccoll
(1928) concerned flows where 10% < Re < 10° and involved, in some cases, not spheres
but actual golf balls We will not t1y to use their results, but rather, consider more

recent work which focused on intermediate Re Tsuji et al (1985) proposed

1 (0440 1w
~ , Ko K3
Ca = Kit Re * Re*

R

The second expression assumes no effect of the rotation rate and showed good agree-
ment over their experimental range, 550 < Re < 1600 and w* < 07, the constants
K, K, and K3 are adjusted according to the Reynolds number In our case, this

yields ¢y = 02+ 005 and Cy =~ 0 66 More recently, Oesterlé and Bui Dinh (1998)
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Figwe 6.19: Spinning sphere at Re = 300, transveise 1otation: drag coefficient Oy
(solid) and lift coefficient C) (dashed)

proposed
Cy =~ 0.45 + (2w* — 0.45)e™° 075wD 4 R0 T

for the ranges, 10 < Re < 140 and 1 < w* < 6 This expression gives C; =~ 0 475 for

the present case
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6.4.4 Attachment and Separation

Fig. 6.20 and 6 21 show the magnitude of the skin friction along with skin friction lines
for several instants during a shedding cycle. The lines emerge from a first node which
remains located at ¢ = 0°, & = 14°. At all times during a cycle, the lines converge
into a second node on the top of the sphere which does move by a few degrees around
its average position at ¢ = 0, § = 110°.

The skin friction lines describe the velocity field relative to the wall at a small
distance above it The two skin friction nodes therefore correspond to stagnation
points in a frame rotating with the sphere (Fig. 6 23). Moreover, because these two
points are stationary in the laboratory frame, they must be moving in the rotating
frame. In effect, from the perspective of the sphere, there is one attachment point
and one separation point, both moving at a velocity WR in the y = 0 plane of the
sphere.

In the laboratory frame, the Aow does, however, have a separation near the bottom
of the sphere (Fig 6.22) The sepatation line stands some distance from the wall;
Fig 6.25 shows the region of its intersection with the y = 0 plane. It is relatively
difficult to locate accurately the separation point. It is a saddle point, and moreover
its eigenvectors form a very narrow angle (Fig 6 24) If we take this into consideration,
we can give a rough estimate of the position of this point which moves very little over
a shedding period, z = —0 55R, y =~ —0 87R, and corresponds to a distance from the
center of the sphere r = 1.03R, and angles § ~ 56°, ¢ = 180°. An estimation of the
rest of the line is given in Appendix F.2

Similarly, the stagnation point does not lie on the surface of the sphere Fig 6.26
gives an estimation of its position by considering the streamlines in a y = 0 plane

(Fig. 6 26(a)) and projected streamlines in an oblique slice (Fig. 6.26(b))
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Figuie 6 20: Spinning sphere at Re = 300, transverse 1otation: skin friction magni-

tude and lines, front view
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(e) t =19 (£) ¢ = 20

Figure 6 21: Spinning sphere at Re = 300, transverse rotation: skin friction magni-

tude and lines, hack view
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Figure 6 23: Spinning sphere at Re = 300, transveise rotation: velocity magnitude

and streamlines in a frame rotating with the sphere, in the y = 0 plane at ¢ = 20

Figure 6 24: Spinning sphere at Re = 300, transverse rotation, hottom separation:

localization of the saddle point
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Figuie G 25: Spinning sphere at Re = 300, transverse 1otation: velocity magnitude

and streamlines in the y = 0 plane at ¢ = 20, separation region
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Figuie 6 26: Spinning spheie at Re = 300, transverse 1otation: stagnation i1egion at

=20
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6.5 Oblique Rotation

In this last case, the angular velocity is set to W = Wm‘/é-_z(ex +e,) It loses most sym-

metries of the previous configuiations As a result, it is more difficult to investigate

6.5.1 Numerics

This simulation used a spherical mapping from the statt The parameters are identical
to those of Section 6 4 It also used a coarser mesh for the representation of the sphere
(5120 triangles) Asseen in Fig 6 27, the only outstanding features are in the numbez
of particles and the mesh Reynolds number plots At ¢ = 125, a more aggiessive
approach was adopted for the elimination of the weak elements in the wake This
had no or littie repercussion on the other diagnostics As in the previous cases, Rey,
exhibits a growth by stages, as structures ate convected into coerser regions of the

redistribution lattice

6.5.2 Wake

Fig 628 and 6 29 show the different stages of a shedding cycle The wake shates
some features with the one of Section 6 4 One recognizes in particular the hairpin
structures, which are this time wrapped around each other

The shedding appears to have a period of T' = 5, which corresponds to a Strouhal
frequency St4_gs = 02 Fig 630 and 6 31 offer a closer perspective on the periodic
shedding of this low As in the transverse case, we seed vorticity lines from points
that rotate with the sphere In this case, we added a point on the axis of rotation
at § = 135°, ¢ = 80° Because the flow is not syminetric, we only hide the 1egion
y < —0 4R A striking feature of the near wake is its similarity to the stieam-wise
rotation case of Section 63 It indeed consists in a main w, > 0 filament which

interacts with peripheial w, < 0 structures
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Figure 6 27: Spinning sphere at Re = 300, oblique rotation: numerical diagnostics
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(&) T/4

{c} T2

(d) 3T/4

Figure 6 28: Spinning sphere at Re = 300, oblique 1otation: shedding cycle, Q=20

isa-surface, side view




107

{2} O

(b) T/4

{c) T/2

(d) 3T/4

Figure 6 29: Spinning sphere at Re = 300, oblique 1otation: shedding cycle, @ = 0

iso-surface, top view
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(c) T4 (d) 37/8

Figure 6 30: Spinning sphere at Re == 300, oblique rotation: shedding cycle, ¢ = 0

iso-surface and vorticity lines
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(e) 8T/4 (d) 7T/8

Figure G 31: Spinning sphere at He = 300, oblique 1otation: shedding cycle, Q@ = 0

iso-surface and vorticity lines (continued)
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6.5.3 Forces

The force coefficients are plotted in Fig 6 32 During the last shedding cycle of our
simulation, the diag coefficients have neatly adopted a periodic behavior around the
average values Cy =~ 076, C; ~ 026 and Cy o~ —0165 We note that the diag
coefficient is between the stream-wise and transverse values and that interestingly
enough, lift has been decreased proportionally to the amount of transverse angular
velocity, C% = ‘{ZC;L =028

There is a non-zero tiansverse force C, This component manifests itself in our
plot of the wake (Fig 629), where the structures appear to have a positive y self-
induced velocity
The 1atio between the lateral force and the diag is -C_’,;Q +~C“;2 /MC’Z = 041 This
value is lower than in the case of the transverse rotation; the decrease in diag, Cu

and the transverse force, C, ate not large enough to compensate for the drop in Cs

6.5.4 Attachment and Separation

The skin friction lines have four eritical points in this configuration. There is oue
attachment node in the front of the sphere Its location is fairly constant during a
cycle, ¢ = ~14° 6 ~ 9 5° All the friction lines converge into a separation node at
¢ = 14 5°, 0 ~ 106°. The last two points were not present on the transverse case
There is an attachment node at ¢ ~ 133°, # ~ 113° which does move by a few degrees
during a cycle, and a saddle which remains at ¢ ~ 103°, & =~ 106°

As discussed in Section 6 4 4, all of these critical points do not lie on the axis of
rotation of the sphere and correspond to attachments and separations in a rotating
frame The critical points and lines for the laboratory frame are at some distance in

the low Appendix F 3 presents some additional results for the separation line
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Figure 6 32: Spinning sphere at Re = 300, oblique rotation: drag coefficient Cj
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{e) t

= 300, oblique 1otation: skin friction magnitude

Figure 6 33: Spinning sphere at He

and lines, front view
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Figure 6 34: Spinning sphete at Re = 300, oblique rotation: skin friction magnitude

and lines, back view
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6.6 Conclusions

The first objective of this chapter was the validation of the approaches discussed in
Chapter 4 and 5 Our results for the first configuration were found to be in agreement
with recent numerical results Qur force measutements for the transverse rotation
appear to be sound as they ate inside the bounds given by experimental correlations
for Re = 300

Wall vorticity measurements still display some spatial noise The oscillations
can be tracked to the solution of the boundary element method This issue can be
mitigated by increasing the size of the panels 1elative to the particles, as is done in
Section 65 Beyond those numerical considerations, the present work brings new

results for the spinning sphete flow at moderate Reynolds number
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Chapter 7

Flapping Motions

7.1 Introduction

The developments of Chapter 4 allow the study of Aows with motions more com-
plicated than the spinning sphere (Chapter 6) This chapter presents preliminary
results for flows that involve the flapping motions of rigid objects. We consider the
flow azound a simplified fish in the presence of a [ree-stream and the swimming motion

of an isolated plate.

7.2 Fish

We model a fish in a free-stream with two ellipsoids, one for the body, the other for
the fin Bach ellipsoid is generated from a sphere made of 1280 triangles which is
then stretched into an ellipsoid The body is centered at the origin; its Major axes
are 2, 05and 1 (Fig 71). The fin is located at z = 1.6; its major axes are 1, 0.3 and
15 The Reynolds number based on the free-stream is Re = U,L /v = 100 where L
is the length of the fin.

The geometry and the results are made dimensionless by the change of variables

Umt*
L

=
i
| M



Y
U |
05! < L= 03

Figure 7.1: Swimming fish: geometry

The center of the fin is in a periodic translation

z=186 (7.1)
y = 0.2588 sin (27 ft + ) (7.2)
z=10; (7.3)

its angle with the flow is also periodic

@, = 0.2618sin (27 ft + ¢&,)

7.2.1 Low Fregquency

The motion frequency is chosen as 0.25. The phase shift angles ¢¢ and ¢, are set to
0. The time step &t is 0.02 and the redistribution used a trumpet mapping (Hp = 2,
m = 400, xp = [000]). The numerical diagnostics of this simulation are shown in
Fig. 7.2.

From the momentum plot (Fig 7.3), we see that the wake is not momentum-less,
ie, I is not reaching a steady value The fish is thus not overcoming drag. Fig 7.4

and 7.5 show the vorticity structures shed by this configuration in terms of the sign
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Pigute 7 2: Swimming fish at Rey, = 100, f = 0.25: numerical diagnostics
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Figure 7.3: Swimming fish at Rey_, = 100, f = 0.25: flow momentum; stream-wise

momentumn I is solid, transverse I, is dashed

of w, in the symmetry plane and @ = 0 surfaces
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Figure 7 4: Swimming fish at Rey_ = 100, f = 0 25: w. in the z = 0 plane at { == 7 6,

contours in the interval [—5; 5] by step of 0 5, the value 0 is omitted Positive contouis

are solid; negative ones, dashed

Figuie T 5: Swimming fish at Rey, = 100, f = 025: Q = 0 surfaces at { =70
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7.2.2 High Frequency

With the intent to produce more thrust, we inciease the flapping frequency to 1 The
time step ot is 0 01 and the redistribution used a trumpet mapping (o = 2, m = 600,
xp = [100]) This simulation covers three periods of the flapping motion

We see from the diagnostics in Fig 7 6, and in particular, G, (Fig 7 6(d)), that
high values of vorticity are reached during this simulation It is explained by the
faster Alapping and the shedding of a vortex sheet at the back end of the fin This
localized peak of vorticity evidently affects the vorticity divergence (Fig 7 6(c})
From the momentum plot (Fig 7 7), we note that the transverse component exhibits
noise related to the vortex sheet shedding mentioned earlier No positive thiust was
achieved Contours of w, and @ = 0 iso-surfaces are shown in Fig 78 and 79

respectively
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=3

Figure 7 9: Swimming fish at Rey,, = 100, f = 1: ) = 0 transparent surfaces at four

stages of a stroke




7.3 Flapping Plate

Let us consider a simpler geometry with no free-stream It is a single flat ellipsoid
with major axes [1, 0.25, 2 As for the fish, the geometry and the periodic motion
are defined with respect to the first major axis of the ellipsoid L, x = x'/L  The

motion is described as follows,

z=10 (7.4)
y = 1sin (2n ft + &) (7.5)
=0, (7.6)
and
.= w/dsin (2n ft +¢,) ,
where f = 025, ¢, = —w/2 and ¢, == —x The phase difference between the transla-

tion and the rotation is such that the plate is perpendicular to the axis of translation
ab its extreme positions and reaches an angle of attack of 45° when it isat y =0
If we call A the amplitude of the translation, a Reynolds number of this flow can be

defined as

We used a trumpet mapping with Ry = 4, m = 4 and xp = [~0 500] The time step
was set to 0 02

This configuration exhibits the same numerical problems ag the high frequency
fish; the plate sheds a vortex sheet during a part of its stroke We can see from
the momentum history (Fig 7.11) that we increase the x component. We have been
thiough roughly two cycles and can already observe periodic featuzes The slope of
I is the largest when the plate is in the middle of its translation and going through
y==0{att =13 and 5) As the plate goes through the extrema of the motion
{(at £ = 2, 4 and 6), [, exhibits some noise and a slight dip We also note that the

evolution of /, displays more important slopes than I; this means that our Aapping
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Figure 7 11: Flapping plate at Re = 157 flow momentum; the component 7, is solid,

the transverse one J, is dashed

motion probably induces an important flow in the tiansverse ditection Tt may thus
require significant power (o Fyypiate) and not be very efficient in this 1espect

Fig 712 shows the vortex structures of this flow after two petiods, at { = 8
The plate sheds trailing vortices which, logically, have the same induced velocity for
stiokes in both directions The structures shed at the extreme positions are relatively
laige and have moved a fair distance in the y direction, which is in agreement with

our earlier interpretation of I,

7.4 Conclusions

From a numerical perspective, the results of this chapter show that our method can
handle complex moving geometries and that it is therefore well adapted for flapping
and swimming motions. However, they point to some shortcomings too; our method
does not adapt its resolution in an efficient manner for this family of flows and may
fail to resolve very fine scales, e g, in the case of a sepaiation at an edge Ow results
also give us a pieview of the complex physics of such flows; we see that the kinematics,

in particular, will requite a lot of cate if we want to develop thrust efficiently



Figuie 7 12: Flapping plate at Re = 157: transparent (@ = 0 surfaces at { = §; the

black line 1epresents the trajectory of the center of the plate



Chapter 8

Discussion and Qutlook

To recapitulate, our work covered a broad range of issues for the three-dimensional
vortex element method. Our first area of work was the construction and implementa-
tion of redistribution schemes based on the face-centered cubic lattice. These schemes
introduce fewer new elements and display better isotropy than their counterparts in
a cubic lattice. Our code was then used to investigate the physics of vortex ring
reconnections An algorithm to compute the vorticity autocorrelation and the energy
spectrum was implemented, however its complexity in O{N®) restricts it to small
problems

The second part of our work concerned bounded flows We derived the contribu-
tions for spinning or deforming boundarzies in the framework of the Biot-Savart law
and introduced a method to compute them from a surface integral While the kernel
for spinning rigid boundaries is quite simple and based on the angular velocity, the ex-
pression for general deformations is naturally more complex. We introduced attached
elements to represent near-wall vorticity These elements have a shape function and
a velocity kernel that accounts for the surface curvature A hybrid stiength exchange
scheme was developed for the viscous interaction between these attached elements and
free elements. They are used to enforce the wall normal vorticity boundary condition
and mitigate the need for image particles across the wall

These tools were used to compute the flow past a spinning sphere al Re = 300.

Three configurations were studied, one per orientation of the angular velocity The
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dimensionless spin rate was kept constant at 0.5 For siream-wise 1otation, we ob-
taired good quantitative agreerment with previous work for the forces and separation
position There are very few experimental or numerical results in the case of the
transverse rotation at owr Reynolds number. We could only verify that our force
coellicienss sl buunded Uy Luiiclabiuue fui sinabici aad J6igSh 416, DWoUMS 4t ohiz
scarcer if we consider an oblique rotation.

Preliminary results for more complex flows were presented in Chapter 7. We

considered the swimming motion of a simplified fish at Rey,, = 100 at two different

frequencies and the flapping motion of a plate with no free-stream

Future Work

In its current state, our code is able to handle rigid geometries that are more compli-
cated than the sphere It includes a version of Rubel (2002)’s closest point transform
code to handle the computation of the distances relative to the boundaries. To re-
duce the memory requirements, our version includes a threshold beyond which the
computed distance is approximated

The simulation of more realistic swimming o1 insect flight motions at moderate
Re will require the development of the boundary terms for deforming boundaries.
However, in many cases, the flapping limb is thin enough to be considered a mem-
brane Because its volume is small, its deformations do not induce a contribution o
Biot-Savart. Nevertheless, infinitely thin surfaces will need additional treatment in
our code.

One other possible field of application is tumbling motiens. This application will
need additional work because forces must be computed efficiently at every time step

Finally, as the results in Chapter 7 suggest, fine scales may appear rapidly for arbi-
trary flapping motions A smoothly varying particle size can thus become impractical
In the long term, we will need a more flexible adaptation of the vortex element size
if we want to treat complex deforming geometries at high Reynolds numbers The

answer may be in a combined Vortex-in-cell and Biot-Savart method where the latter




131

generates the boundary conditions of the former
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Appendix A

Face-Centered Cubic and Hexagonal

Redistributions

This section present the development and analytical expressions of the schemes pre-

sented in Chapter 2.

A.1 Hexagonal Lattice

The sites of the hexagonal latiéice are described as x, = Rn, where the matrix R's

columns contain the lattice directions

1 1/2
R =
[+ )

There is a dual lattice, defined by the matrix

R=@®)={ -
- \ —vAs v

These two lattices and their coordinate systems are presented in Fig. Al
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Figure A.1: The hexagonal lattice, its dual lattice and their coordinate systems

A.1.1 Splines

The family of splines are built fiom the indicator function of the Voronoi cell

1 if|# <05and|ff <05and |t —9 <05
Fo = (A.1)

0 otherwise

where ¢ and ¢ are dual lattice coordinates We then take successive convolutions of

Fo with itself;, we get for &

(1-2Y1 -2 —4) if|3+ 7| <1and|#]>05
4 | (1=9H1 -2 -7 if |# +94'| < 1 and |§| > 0.5
1 ~"—'—‘§< (A 2)
(1~ ~&—-¢)—(05-%)%) f|E[<05and <05
0 otherwise

\N
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For conciseness, we use variables 2', §’ that map all the sextant onto the first one

I[:?:—g,‘rl if 2 > 0 and [£] > |}

. (A3)
\ & otherwise
.
) |~ g| if 2§ > 0 and |£] <= [§]
7 = (A4
il otherwise

A.1.2 Compact Schemes

The compact schemes are expressed in the lattice coordinate system TFor the &Y
scheme, we have
1—&—7 f)F+7 <1
f)(}n = (A 5)
0 otherwise ‘

where once again we use a mapping to work in the first sextant—the fiist quarter in

the hexagonal lattice coordinate system-

iE ifE5>0

T = (A 6)
IZ+ 7yl otherwise

N 7 Hz7>0

7y = (A.7)

min{jZ|, |§]) otherwise
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The C? scheme is found by convolution of the C° scheme by itself

(& -7 - +7 -2 EF+§<2amdd >1

(7 —& - 2)(F +7 ~2)° if|g'+7]<2andf >1

(6 L2z yiz +y — L)

(#2424 28y) P47 <2and E 4§ <1

for =159 +8@EF" +§*) —&" - ) (A8)
(10 — 12(%' + §') + 1227’

— 2B (F? 4 ) 13 +7|<2andZ+7 21

+4(§:13 + yra) . il—'l - gl’d)

) otherwise

\

The third order scheme can then be written as

( (2(:'1':1'2 _ gf?) . 4:-1':!‘ _ 2?}!)
ifiF+7| <2and 3 > 1

& +7 ~2)°

(2(@,!2 . il’2) . 451 - 25&!)
fF+9]<2and g > 1

@ +7-2)°

—Z| 7212 ~ 37 — 2F) + 12%(y — 1)

~ 96~ 65+ 9] if |7+ 7] < 1
g = fféwnﬁ { —BF*(12 - 3% — 2§) + 12(% — 1)

— %(6 — BT + 37|
~| — 6 + 62° — 23°

+ 6§ — 38°F — §°]

if |# 4+ <2and & + 7 > 1

—f| — 6+ 67° — 23°

-+ 6% — 3i°% — 7°

i ) otherwise

(A-9)
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A.2 Face-Centered Cubic Lattice

The directions of the FCC lattice and its dual counterpart are given by

112 1/2 1 0 0
R=1|0 v3/2 v3/6 |, R=| —v3/3 2/3/3 0 (A.10)
0 0 6/3 ~/6/6 —/6/6 /6/2

A.2.1 Splines

The first spline is given by

1 if[#|<05and|j| <05and|3 <05
So = and [~ <06and [£~2|<05and |2—-§] <05 (A 11)

0 otherwise
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We then get by convolution

F1= 3

’

\

(1-2)A -1~ Z)

(1 A0 = DV L NG AR ) 4052
+(2/3)(C ~ #')°
+2(05 — A){0.5 — BY(C ~ )
+ (06— B)(A—1' +0.5)°
(1—-&Ni3 + (1.5 -2 + )05 - §)%
+2(05—2" + 20059 + )05~ 2)
+(05—& +7)(0.5-2)2+ 0505~ 2)
~2(05~ 2 — (7 — 2)/3)(§ ~ &)*

CD(- %)

(1-&)§%
+ (15~ 28 +§)(0.5 - ¢')%
+2(0.5 — A)(0.5 ~ BYC — )
+(05 & +HC— 2P +05(C ~2)
~C — # — B/3)B*);
0

if |#] > 0.5 and Jif'| > 0.5

and |#] > 0.5

if |#] > 058 and [{f| 205

and |2'] <05

if [} < 0.5

if 1] > 0.5 and |§/] < 0.5
and {3} < 05
and {§ — ') < ~0.5

if |#} > 05 and |5} <05
and |#] < 0.5

and (§ — &) > —05

otherwise
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where the variables Z', i, # are the dual lattice

variables reordered in decreasing

order &' > i > ' and the variables 4, B and C are defined as

A= &+C~4%-05 (A.13)
B = 3#+C-%2-05 (A 14)
C = min(l+3 ~¢,1+# ~4,05) (A15)
D = min(l+§ —&',05) (A.16)

A.2.2 Compact Schemes

We switch back to the lattice coordinates %, f, &

~

1—05(8 + | + |7 + &) + & + &)
gu +3(1 = (9] +12])
+ 201 = (7] + [E']
o A S g A )
é(a, +3(1 = (I + &)
FCCy=1q 1901 — (1#]+ &)
=g +& =+ 2]
é—(l + 301 - (|2 17
+ 2|1 — (12'] + [§')]
&+ 5 - |2+ &

=
131
i
B3t
o
31
]
e

-5 >0

if ZGFE + 5+ 3) < 0and 53 > 0

if £j3(Z-+ 7+ 5) <O and £3 > 0

if #52(F + §+7) < 0and 5 > 0

otherwise

(A17)

FC(4 was obtained numerically by the convolution of FCC by itself The high order

F(C'Cy was then computed from the combination of FCC; with its gradient These

two operations were carried out in IFourier space
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Appendix B

Energy Spectrum

B.1 Definitions

We define the Fourier transform of a field f as
7 k) = 1 —ix kd . B1
f()m(_z-;—)g—ﬂ‘ fxe X, (B1)

the inverse tiansform is
— 1 P k)e™ lcd] B.2
f(x)-—w' flk)e c. (B.2)
From these definitions, we have for the gradient operator
f= Vg = —ikg; (B 3)

it follows that
f=Vxgesf=—ikx§,
f=V-gef=-ik ¢

f=V% s f=—|kPg
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The energy is defined in the physical and Fourier spaces by Parseval’s identity,
1 27 )3
Emsfuzdx;“'(”glfﬁ-ﬁ*dk. (B.4)

The energv sneckrum is then defined as the intesral on the spherical shell k] = k

(2m)?
2

A

E(k) =

/ @ 0 k2dy, (B.5)

where £, is a solid angle measured from the origin.

B.2 Vorticity Formulation

We derive an equivalent expression based on vorticity From the relations u = V x 1

and Vgi,l} = —w, the transforms of velocity and vorticity are related by

. ) .o @
u_—zkxz,bmzkxmg (Bﬁ)
One thus has
N (27!”)3 f . ..L:J_ . E{i .2
Ek) = 5 ik x e —~ik % e k= dQ.

b

- 82 [ (5)- () () v

where the second term is nil because w is solenoidal,
R ( ‘)3 A A "
E(k) = e dfly . (B.T)

We wish to rewrite this expression in terms of quantities in physical space. By

the definition of the Fourier transform,

By =5 [ [ [ weer up)e kdxdxan,.
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We let p = x' — x and rewrite the tiiple integral as

E(k) = -i—///fw(x)w(x~§-p)ei"kdxpgdpdﬂpdﬂk;
2 Juls

the integral over £, can be carried out to finally obtain

E(k) = 2 f R () SRT) (B 8)
G rlCT'
where R, (r) is the vorticity autocorrelation
Ru(r) = / w(x) - wx +r)dxr?d, . (B 9}
L Ey

B.3 Particle Implementation

If one disposes of R,,, computing the whole energy spectrum is relatively immediate
We will use our vortex particle discretization to sample R, The sample resolution
conditions the meximum wavenumber for which we can compute the energy spec-

trum, the integrand in Eq. B.8 being oscillatory.
The discrete form is
R,{r) = Z Z Qp - Oy fH _/c,,,,(x — %pYo, (%X + T~ X,) dx 7%dQ, ;
P g =t
in the case of the Gaussian smoothing, we have to compute the term

]”m (éc:r,, * Cr:.,) r— (xq - xp)) Tder

ZJCW(IM(XQ—XP)) TECZQ,‘
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Integration is straightforward; the following two definitions ensue
= L P o3 _ gletaV
o) = S (e e
1
xnd) = =x(r/el/e

and allow us to write

Ro{r) = ZZO‘P ' aqx\/;gq:,;g(?": b, =~ %gl) -

P

(B 10)

(B.11)

(B 12)

This is a double summation over the elements. Every paiz {p,q) contributes to a few

sample points r; of R,. Their number will depend on the maximum frequency of the

computed spectrum, e g , one can set Ar = 97/(8kmax) 50 to have 8 sampling points

per period of sin{kmey7)
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Appendix C

Sources of Vorticity

C.1 Solid Boundaries

This section presents the details of the implementation of wall diffusion We have to
evaluate the contribution of the viscous flux at a wall onto the nearby free elements
and the attached elements In the vicinity of a flat wall, one may use the Green's

hunection for three-dimensional diffusion and write

ol
AQJAL ds / O’d52 Gd;ﬂ' (}C, At,]'{!, T) dT (C 1)
i}

B Ay, H (At = 1) ¢ WEwD
o AT (dau(At— 1)

where # is the Heavyside function and the factor 2 accounts for the half-space geom-

etry This expression has to be integrated over the particle volume,

lz—x E

& L] L P Ny (C3)
& == o4 o
Ao v, (drv(At — 1)

where we substituted the flux o by its value Ay/At that is constant over the time
step and noted that the Heavyside function is always unity inside the integral
We elect to perform the volume integral first and over spherical volumes. This is

justified hy the type of redistribution lattice (Face-Centered Cubic) we are using and
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by the fewer evaluations of erf that will be required.

] ] .
o +p” 4 2rp eos{d)
'/‘277 fﬂp qo{At—7)

2GgpdV =
/v,, o (47ru(At —7))**

p° sin 6 dfdpdep (C.4)

—-r) {p +r’)"
9 R, qu(.ﬁtmr} P ey sy -
—_— D'a
T ./o (dr(At — 7))* pop R

The reader will note the bound R, which we define as 4n/3 R} = V,, making it
different from the lattice step size h, be it in a FCC or cubic lattice. For convenience,

we define § = Al — 7,

9t | [lRemry ViR .
/ 2GugdV = f VAvi(v 4vbu — rie” du +
Ve -

(4mv0)? | J 2 pvis .6
(Rptr)/ VA0 .
-/ VA~V 4vlu + rie”™ du
r Vvl
The integration yields
e a -2
f 2G4igdV =(4—W-Ii@-m (6_(12‘“-’1—;) — e““m“J?\u“U"’"") )
Vp T ( c. 7)
T+ I, T — R?)
f{—=F ) —erf
e ( \/41/8) “ ( 4l
This expression can then be integrated in time,
Aanyas = Ay dS (Flo,p%) = Flp,p7)) (C.8)

where we introduced the dimensionless variables p = r/v2vA¢L, pt = (r+ R,)/ VAL
and p~ = (r — R,}/v2vAt and the function F,

o7 (3 ) (13
(Iﬂ+”m)

Finally, the surface integration is performed by means of quadrature on the panels.

(C.9)
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This approach is somewhat different from Plowmhans and Winckelmans (2000)
We indeed wanted to use the spherical nature of our elements here, too As such, our
scheme is not conservative. First, our integration is not exact and depends highly on
the regularity of the elements’ positions Second, our integral does not cover the near-
wall region where our attached elements are One can then use this region to make
the scheme conservative and give it what is left of  after transferring contributions

to particles.
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Appendix D

Rotation Kernel

D.1 Multipole Approximation Error

In this section, we will follow the development from Salmon and Warren (1994) to
obtain an error bound on multipole expansions for the rotation kernel. We have for

the stream function

f
L LR e

and for velocity

W n {(k-x) n)(x~x) '
uE ~ dr x/m Ix — x| lx —x/|° astx)

Equivalently, we can consider the function ¢; individually
Pi(x) = / H(x — x) - ndS({x")
an;

with H == 1’;‘;] ‘We then have

e () (D.1)

P =-3
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and

aG) = 377 X Vu(x) (D2)

Orne can write the multipole approximations for ¢; and V¢; as
(%) = D By () + Aday(x)
71==()

where

g———l—)—&-l . H{x — %) - ML dn

The successive multipole moments are defined as
My = / (x ~ %o){x — X0)* - - (% — %)} ndS .
s

We want to bound the error in the approximation of the gradient of ¢; which appears

in the velocity expression

Vi(x) = Z (V‘I’)(n) ) +A(VE), ()

n=l
where
(V) 00 = 0, o, VHG -~ 0) My
We have
A (V) (%) = fs (V®),, (%,%) ndS (D 3)
where
(V) (6 = T ) o xa) - (00

!
/1(1 — P8y, 1, VHX — % — t(x' ~ x0)).
(D 4)
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We can then bound this expression (see Salmon and Warren, 1994, appendix B) with

the expansion centered about the origin,

a-T’*H

1
& -

[(V‘I’)(p) (x,x')| < - —

with 7 = |z| and a = %’- If we use this evaluation in Eq. D 3 and carry out the
integration, we find
1 1 B
|2 (V8) ()] € S (D 5)

- [ TF"*“l
r

where we bounded {1—a) ™ by (1~am.) ™" and defined the moment B, = [, Ix — xo|” dS
If we use the multipoles up to order p == 2, this yields the following bound for the

velocity

(Wil 1 By

Bulgy < 7 1 — bmx g3 (D6)
IWil B('.l) 1 bmnx !
dr Bl 1 —tmm \ 7 : (D7)

where we used the inequality By < bmaxB(2); Bz is indeed a moment that is cheaper
to compute and already used in our error bounds for the normal Biot-Savart interac-

tions.

D.2 Kernel and Derivatives

For the sake of completeness, we list here the first few derivatives of H:

u

H;(u) = ——-»Iu"l (D 8)
5.. 1.
. ;= v ZEd
OF: = p o (D 9)

Sy + Syuy 4 G4

Wiy,
T
u

[uf®

BjBkHi = (D 10)
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830 + by + G5i0u
uf®

N Stsijukul + dacujug + S + Sauivg + Gt 4 Sy

iUy

—5
|uf’

luf®

(D.11)
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Appendix E

Near-Wall Vorticity

E.1 Viscous Vortex Sheets

E.1.1 Regularization

We have to carry out the convolution

w(x) = [} ot = )y dS(

The sheet is discretized with flat panels with a constant strength v The Gaussian
can be rewritten as a divergence in cylindiical coordinates attached to the panel and
centered at the evaluation point We have, in coordinates made dimensionless with

respect to o,

We can then use the 2D divergence theorem along the perimeter of the panel m

wix)l,, = Lm-}g (x x)vmds(x)

:f.
= (?")3/_ /u {dI* x n),
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Figure E.1: Sheet regularization: coordinate system

where we have introduced several notations: u = x/¢ are dimensionless coordinates,
p is the dimensionless radius in the plane of the panel, p is the radial vector, dS* and
dl* are respectively a swrface and contour element in the dimensionless coordinate
system. The integral we are left with can be decomposed in contributions from each

segment of the polygon which can be written as

2

R
f e ) (U
2y uc 4 u*

where we defined u as the coordinate parallel to the segiment and v, the perpendicular
one This last expression shows that we have to tabulate the primitive Je{u,v) =
fou -+ du for values of u and v within the the kernel cutoff (typically 5). For values

of u or v beyond the cutoff, we have an analytical form

sn (2
E.1.2 Kernel

We here give the development of the contribution to the stream-function 7. Confri-

butions to the velocity and velocity gradients are similar o1 in direct continuation of
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the present calculation We need to compute

¢(X) = Ga(x’) (X - X’)"}’(X’) dS(X’) .

sheat

As for the regularization, we consider the contribution of a single pane! and switch

to dimensionless coordinates We first have

ierf(\/ﬁ——?)

Glp,w) = (E1)
A /a4 p'l
The contribution of a panel can then be written as
1 x—%x
Y(x), = / -G ( ) Vo 5 (x)
S T o
erf(y/ 22y
= 07, | Gu-u)dst="2Im 2 g
s i Jsg Vul g
We then re-write G as a divergence in the plane of the panel
119 5 5 (0% 4 w? 5 . w?
G(p,w) = EEEEE (\/p + w?erf ( — )= vu?erf - .
2

|.:['°,_,

we then use the divergence theorem and integrate along the sides of the panel The

integral does not have an analytical form and has to be tabulated in three dimensions
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E.2 Near-Wall Elements

E.2.1 Regularization
We need to re-normalize the unbounded smoothing function by some function M (x)
that wili depend on the geometry We have

Mx) = (ol — x")dx' (E.3)

where x € 8¢ If we assume that the boundary is locally spherical-within {, support—
, with a toughly constant curvature radius R, the above integral can be written more

explicitly as a function of the local curvature R. In the concave case, we have R < 0

2r  pwf2 p2iR|/ocos(B)
M(R) = /(; ]ﬂ /ﬂ ({p)o®sinfdpdf do (E 4)
7t /2
= 2%] q(2|R|/c cos(8)) sin(8)dd (E.5)
0
7o 2R/e
= 1’ J, q(u) du (E.6)

where g(p) = [f ((#)t*dt. For the Gaussian, we have

g{p) = ;;7; (er-f(p/ﬁ) - \/5/_7?;3@“?”/2) ,

to finally obtain

1 — g=2RP/o?

M(R) = %erf(«/'}m; o) — -é\/z"/?mml—-ﬁ[—/;—_ (E.7)

In the convex case, R > 0, we just have the complementary relation

] — em-QR'-’/o"l

R/a

M) = 1 - L af(VIR/o) + Vo (E.8)

We will assume that curvature is constant across a panel In three dimensions,
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Figure E 2: One-sided panels: Regularization modifier function

it will be taken as the mean curvature which is the average of the two principal
curvatures of the surface This is a good approximation. In the case of a saddle,
where the curvatures have opposite signs, the volumes lost and gained in the two

main directions should be evened out with this average.
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Appendix F

Additional Results for the Flows Past

Spinning Spheres

F.1 Stream-Wise Rotation

F.1.1 Helicity

Helicity is a quantity defined by
H= / u-wdx

It measures the entanglement of vortex lines
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Figure F 1: Spinning sphere at Re = 300, stream-wise rotation: helicity
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F.2 Transverse Rotation

F.2.1 Helicity

This configuration remains symmetric with respect to the y = 0 plane

U‘z(": ¥y ) - ux{": —Y, ) ‘—L’I(':yy ) = ""w:t(”w =Y ")
uy(‘ v Y ) = _uy(': - ) wy(' v s ) = wy( y — W, )

U»z(";y, ) = u:(”?"'yr ) Lt):( Y, ) = —Wz(‘:"”y: )

if one neglects slight numerical deviations As a consequence, H ~ 0



162
F.2.2 Stream-Wise Vorticity
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Figure F.2: Spinning sphere at Re = 300, transverse rotation: shedding cycle, stream-
wise vorticity in the z = 2 plane; contours values ate in the interval (—4;4] by steps

of 0.5, 0 is omitted
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Figure I’ 3: Spinning sphere at Re = 300, transverse rotation: shedding cycle, stream-

wise vorticity contours in the z = 2 plane (continued)
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¥.2.3 Bottom Separation

We consider constant ¢ planes and the projection of the velocity field in those planes

For each ¢, we estimate the position of the saddle
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(a) Location with respect to the sphere (b} Cylindrical coordinates ns a function of ¢:

radius p = 7 /D (solid}, angle # (dashed)

Figure F.4: Spinning sphere at Re = 300, transverse rotation: separation line
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F.3 (Obligue Rotation

F.3.1 Helicity
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Figure J.5: Spinning sphere at Re = 300, oblique rotation: helicity
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Figure F_6: Spinning sphere at Re = 300, transverse rotation: shedding cycle, stream-

wise vorticity in the z = 2 plane; contours values are in the interval [~4;4] by steps

of 0.5, 0 is omitted
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wise vorticity in the z = 2 plane (continued)
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¥.3.3 Bottom Separation
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1 Imtroduaction

The numerical method used here is a combination of a Lagrangian vortex element method
(VEM) and 2 boundary element method (BEM). Vortex methods are based on the vorticity
formulation of the Navier-Stoles equations and on the fact that, for incompressible flows, it
is sufficient to follow the evolution of the vorticity field (the velocity can be recovered from
the vorticity).

For bluff body fows, the vorticity is only present in the boundary loyers and in the
wake. As vortex methods only require particles to carry the vorticity, they require much less
computational elerments than grid-based methods

It was only recently that direct numerical simulations (DNS} of 3-D bleff body flows
were performed using n vortex method (Ploumhans et of [4]) Such simulations were made
possible because of the impertant advances made by the “vortex methods community” in
the past ten to filteen years.

We present some recent developments on going aimed nt the extension of the vortex
method as a tool for Large Eddy Simulations of bluf body fows First, we review the
modifications that we introduced for computing 3-D flows where the attached boundary
layer regions are maodeled using infinitely thin vortex sheets while the separation regions and
the wake are modeled using vortex blobs We then present some results using this approach
applied to the flow past the Ground Transportation System (GTS). Tinally, @ new hybrid
Eulerian-Lagrangian approach is briefly presented: the near-wall regions are resolved using
o grid based method while the vortex element method is used for the convection-dominated
pact of the flow.

2 VEM and BEM with infinitely thin boundary layers

As the contributions presented here are based an the vortex and boundary element methods
developed in the frame of DNS for 3-D bluff body Hows, please refer to {4} and references
therein for more details on the these methods Also, notice thet performing simulations of
3-D fows using a vortex method requires fnst N-body solvers based on multipole expansions
running efficiently on paratlel computers ([5, 6]). Finally, an excellent gereral overview of
Lagrangian vortex methods can be found in Cottet and Koumoutsakos [1].
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2.1 Infinitely thin boundary layers

‘We here consider simulations where the thin attached boundary layer regions are modeled
using infinitely thin vortex sheet penels, while the vorticily in regions where separation is
allowed Is captured using vortex particles In practice, the body surface mesh is tagged in
order to define the “attached” reglons and the “separation” regions

Let us consider a set of Af panels, discretizing the body surface, and IV vortex particles
Let Py be the subset of "attached”-tagged vortex panels and Py the "diffusing®-tagged
panels (i e. where separation is allowed}-

One time step then goes as follows:

1 Compute the velocity field, 1, and its gradient, Vu, at particle locations from w, the
vorticity carried by the vortex particles and Py, the subset of attached vortex panels
2. Update the particles’ position and strength, for the time step, At,
%? =ul,, d_d'agi = Vul, - oy +PSE[, , (1)
where the Particle Stiength Exchange (PSE} scheme Is used to treaf the viscous diffusion.
3. Enforce the no stip boundary condition at the wall:
) Compute the slip velocity, ugip, undemeath all vortex panels (Pyy U Pygig) from the
vorticity carried by the vortex particles and Puy.
b} Compute the vortex sheet, Avy, that cancels the slip velocity at the solid boundary.
¢} For panels belonging to Py, the new panel strength is set to y; + A<y, For penels
in Payr, the vortex sheet is equivalent to a vorticity fux that must be emitted into
the Aow for the time At: v %% = %} - This amounts to modifying the strength of
the pacticles close to these panels as in [4]-
Redistribute the particles (when necessary): the old set of particles is replaced by a new
one, in which the particles are on a regular lattice

1=

2.2 Progressively diffusing panels

When using “attached” panels, it is obvious that the flow experiences an abrupt transition
as it goes from the "attached" vorticity region to the “separation” region In this transition
region, the boundary layer thickness varies from zero to a finite value {magnitude of the
local particle size)} over a very short distance

In order to ensure a smooth transition zone, “partial” diffusing panels are used: e diffusion
radio, r, is attributed to each of these panels. The idea is to ensure that a Fraction r of the
totel boundary layer vorticity, ¥, is carried by the vortex particles while the remaining
fraction (1 — r} is still attoched to the vortex panels The diffusion fraction is chosen such
that there is a smooth transition from non-diffusing panels {r = 0} to totelly diffusing panels
(r=1)

Fixst, let’s define y,,, as the total boundary Jayer strength after the no-slip enforcement:

Teot == Tponat ¥ Tpart T L7, (2)

where Ypune is the current panel strength, ..., the current strength of the boundary layer
Fraction discretized by vortex particles (see below) and Ay the vortex shest that cancels the
slip velocity at the solid boundary (Step b, Section 2 1).

We can then compute Ay, and Ay, tespectively the variation of the vortex parel
strength and the vorticity flux to be emitted onto the vortes particles, such that, for each
penel:

Vmu'!. + Avpuﬂ. =T 7:0!. (3)
Ypnael + A'Tfpmml = (1=7) Yy (4)
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Notice that these equations are solved in the local panel coordinate system for the tangentizl
vortieity components only (as the panel's strength normal component must be equal to zero)

For progressive diffusing panels, Step 3¢ (Section 2 1) is modified as follows: the new
panel strenpik is set b0 Ypunm + AV pneti the vur[:ex sheet Ay, is the vorticity Bux that

must be emitted info the Sow for the time At v 22 dn == ﬂ“f B i
Even if ypyp, the boundary Jayer streugth carried by f;he vortex particles above a given

panel, is well defined conceptually: vy, = fo Linnt 47, its evaluation is somewhat arbitrary

(Fig. 1) First, lets redefine v, as the averaged boundary layer strength (carried by the
vortex pa.rbicles) over a surface S (ideally the panel's surface):

_Is fef Wpart dz dS
Tpnt =5 —g

For each panel, we approximate this quantity as the discrete integral of wy, over an hemi-
sphere of radius R centered on the panel divided by an "equivalent” surface S.q:

5 - Zd: <R P
port Sqq

where d; is the distance of a particle to the panel center, a; is its strength, and Sy was
chosen equal to wR* It is clear that R should be greater than the local boundary layer
thickness, but also remain fairly low in order to obtain a good approximation of the local
boundary layer sbrength

— fc]gﬁwﬂnn dz d5
Yport = 5 -~

Fig. 1. Boundary layer strength carsied by the vortex particles {7,,,,) and attached {o the vortex
pa.nuls (Tptsnﬂ)

2.3 Auto diffusing panels

If one wants to perform simulations where ground eflects ate taken into account, ground
panels are necessary in order to enforce the no-slip boundary condition there Furthermore,
the wale vorticity has to interact in a viscous way with the ground This is true even if one
is not interested in the wake-ground effect {as in the fax wake for example), due to the foct
that the interaction of wake vorticity with a non-viscous ground rapidly leads to numerical
blowup This cbservation leads to the conclusion that it is necessary to use “diffusing”
ground panels over the whole wake vegion.

In order to avoid the extra cost of epsuring a few layers of particles above the whole
wake region at all times (to capture the diffused panet vorticity), we introduce “sutomatic”
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diffusing panels: as soon es vortex particles travel above these pznels, their vorticity is
diffused onto them (they act as “diffusing panels”); otherwise the panel vorticity remains
attached

2.4 Improved panel solver

The vortex sheet A<y, necessary on the body surface in order to cancel the slip velocity, is
found as the solution of a boundary integral equation The discretization of this boundary
integral equation results in a system of 2A{ linear equations for the vortex panels (ie. find
O y; for each papel) which is solved iteratively. The use of multipole expansions for vortex
panels reduces the cost of each iteration to OQ{M log M) The efficiency of this iterative
“multipole-based” selver was improved as follows:

e Choice of a good initial guess: the use of Ay; = ~2 1; x ul® (exact solution for coplanar
penels) has proved to lead to faster convergence compared to the former method where
the previous time step solution is used This is mainly because the vortex sheet is only
a gmall correclion at each time step dominated by high frequency variations as vortex
particles come lacally close to panels or not. These high frequency variations call for local
corrections which are well estimated by the exact solution for coplanar panels.

o Let A+ be the corrective vortex sheet at iteration r In order to evaluate Ay™! one
must compute the slip velocity, u™'®", induced by A" Now, instead of computing the
slip velocity induced by the whole vortex sheet A" at each iteration we can compute the
slip velocity induced by (Ay" — Ay =) and simply add it to w" ™" {linear problem)
This is advantageous because of the use of multipole expansions: as we converge to the
solution, (&Yl — Avr~7) gets smaller and thus each iteration takes less time to compute
as we can make a more extensive use of multipole expansions

o  When using “attached” panels, compute the vortex sheet correction Ay only, even for
“attached” panels {instead of solving the system for v} This correction is much smalier
compared to vy (panel’s attached vorticity) which, again, is advantageous because of the
use of multipole expansions

These modifications reduced the glabal computational time for the panel solver by a factor
2 {up o 5 in some cases)

2.5 Total cireulation

For & physical flow, one must ensure that the total vorticity remains equal to zero for
all times. As the global time integration scheme is not conservative, the sum of the particle
strengths is set bacl to zero at each time step, by distributing the difference over all particles

However, when "attached” vorlex panels are used, this simple scheme cannot be used
anymore as one must take the “atached” vorticity into account Several approaches for
enforeing the total vorticity where investigated.

o Our first approach was based on the fact that the vortex flux at the wall must be
divergence free At 2 global level, this leads te the following constraint :

AvydS=0

k Slmr.ly

We trach the tetal pmount of circulation diffused onto the vortex perticles {Iigeq} over
time The particle strengths are then adjusted to g 2t each time step

Despite the sound physical foundation of this approach, it performs very poorly in time
Actually, the basic hypothesis, ‘r’ghudy Ay d8 = 0, is brue only for 2 divergence free
vorticity feld, which is not the case in practice. Practically, as we modify A+ in order to
satisfy the total vorticity constraind, the vortex sheet no longer cancels the slip velocity
and perticles soon penetrate inside the body which finally leads to numerical blowup
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o In the second spproach we do not place any constraint on the vortex sheet We simply
ensure, ab each time step, that the total vorticity remains equal to zero by setting the
sum of the particle strengths to minus the total “attached” voriicity, — Suedy Tottoched ds

{carried by the “attached” vortex panels)
This approach produces good results, even for long time simulations

2.6 Vorticity flux at the wall for under resolved boundary layers

When performing simulations where the boundary layers are no longer well resolved, the
characteristic diffuston distance becomes small compared to the local particle size This can
become criticel ps the panel diffusion step must ensure that the total Sux of vorticity is
distributed to neighbor vortex particles The use of the classical diffusion scheme with the
correction for conservation leads to a very noisy distribution of the vorticity on the neighbor
particles. This situation degrades even Further {or simulations with ground effect where a
decreasing resolution is used in the wake

Actuelly, in these under-resolved computations, one “simply” wants to transfer the whole
varticlly fux to the fizst layer of particles above the well We therefore “relax™ the local
Reynolds number at the wall with respect to the local grid size to ensure that the vorbicity
flux can be “sufficiently well” captured This scheme gives produces resuits because of its
diffusive nature which helps to remove the bigh-frequency noise present in the computed
vorticify fux

2.7 Redistribution schemes, relaxation of the particle field divergence and
subgrid-scale modeling

The vortex particle methed has no buili-in control for keeping the vorticity Beld diverpgence-
free as time evolves When the computation is well resolved (as it has been shown in varicus
DNS results for the flow past a sphere), the divergence of the vorticity field appears to be
kept “naturally” to a fairly low value, even for long time simulations. However, as soon as
one waxats to push the resolution towards its limits, the divergence problem becomes a major
issue.

In fact, one can state that an increasing divergence of vorticity field is the sign that the
cormputation Is not well resolved locally and that energy is accsmulating in small scales of
the fliow: subgrid-scale stress modeling becomes necessary

It i clear that the redistribution step plays 2 major role here, as it is essential to leep
a good representation of the vorticity field One can go even one step further by using the
redistribution scheme as a form of subgrid-scale model: it can easily be shown that the low
order A; scheme {which oaly conserves moments of order zere and order one of the vorticity
field} bas a viscous-lite behavior The diffusion effect introduced by a A; redistribution
scheme applied every n time steps is roughly equivalent to an efective viscosity given by:

n

Fredist ™ BoRT {5)

where h is the local grid size and A? the time step.

Although gquite crude, the method enabled vs to perform long time simulations for the
flow past a hemisphere {T' = 75) with a relatively low number of particles (Fig. 2) Leb's
mention that, in the vicinity of the body, the resolution is twice coarser compared to the
resolution used for the DNS past a sphere at Re = 300 used in 77. These results show that
the vortex method is able to capture the dynamics of the complex vortex structures with a
reduced number of computational elements ard to reproduce the gualitative behavior of &
turbulent Alow past the hemisphere

However, due to its highly diffusive nature which is only controfled by the local grid
size, the redistribution interval and the time step, one cannot rely on a low order A; re-
distribution scheme to perform satisfactory subgrid seale modeling Furthermore, the effect






& G Daenindk, P Chatelain, M Rubel, G. Winckelmans snd A Leopard

Fig- 2. Flow pnst a hemisphere using the Ay redistribution seheme. Only particles with jex:] above
an arbitrary threshold are shown Top: view of the vortex porticles and their strength at an early
stage of the flow (T = €} Oune can see the vortex ring behind the body bacoming unstahle Bottom:
view of the developed turbulent flow at T' = 75

of any additionel mode! would by far be exceeded by the kighly diffusive bekavior of the
redistribution scheme

From this arises the need for high order redistribution schemes such as the A3 scheme,
which is classicelly used in DNS computations This scheme conserves up to the third mo-
ments of the vorticity distribution and acts as hyper-viscosity As the Az scheme does not
have a viscous behavior, there also is no longer enough dissipation of the small-scale energy:
this t1anslates into a rapid Increass of the varticity field's divergeace and finally leads to
numerical blowup

Before introducing more advanced subgrid-scale models, we wanted to assess the capa-
bility of the vortex method combined with a high-order redistribution scheme to capture
small flow structures compared to the local particle size In order to deal with the diver-
gence problem, we introduced a “relaxation scheme” where the particle strengths are seb
bacle to the cul of the velocity field computed at particle locations (this field is necessarily
divergence free}. This relaxation procedure is, again, a diffusive operation However, when
it is applied sufficiently scarcely, the global diffusive effect remains fairly low The particle
reset cen be seen as a2 perfodic Alier which eliminates the energy that gets acoumulated in
the small scales captured by the computation.

Very promising results were obtained using this approach for the flow past the GTS {see
Section 3) The next step will be to introduce a subgrid-scale modet (a Smagorinsly model
to start with), as it would no longer be annihilated by the effect of the redistribution scheme
The periodic relaxation scheme should then become less necessary as the energy dissipation
at small scales will be taken into account 'We however think that some active control on the
divergence-free property of the fow should still be maintained

3 Flow past the GTS

All the recent developments presented in the previous sections where tested on the Bow past
the GTS This simple geometry was used because modeling the flow using infinitely thin
attached boundary layers along the truck and allowing separation on the backface is a good
approximation of the physicel flow (at a zero degree yaw angle) The “real” ground effect
was also taken into account in this simulation: the trucl is traveling above a fixed ground
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Allazhed panels
[E] Proproasively diflusing pannls
Giltusing panois

{4 Auto difluslag panels
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Fig- 3. Left:"Numerical setup” for the flow past the GTS Right: Zoom on bedy surfece discretiza-
tion {vortex sheet panels); penels are colored by diffuslon ratio

As can be seen in Fig 3, the whole front part of the truck was tagged as an attached
boundary layer region. Then progressively diffusing panels are used in order to ensure a
smooth transition Gom the infinitely thin boundary layers to the region where diffusing
panels are used. A close up view of the panel discretization is shown in Fizg ?7 One can
see that a variable panel size is used for computational efficiency: coarse panels can be used
in the attached regions, whereas the diffusing (and progressively diffusing} panels' size is
chosen equal to the local particle size On the ground, the panels were tagged as attached
except for the wake region: the near wake region uses diffusive panels {with a transition
region}, and the far walte uses auto-diffusing panels

‘We use a redistzibution mapping which smoothly goes from a constant lattice (in the near
body region) to an exponentially growing lattice (in the far wake) At each redistribution,
the center of the mapping is "displaced” randomly around its nominal position: this reduces
the influence of the arbitrary intezsection between the redistribution lattice and the body
In the near body repion, the particle size is & = 0023 W (W s the width of the truel) The
time step is AT = 0.01 W{l/grs. Redistribution is performed every 5 steps (A3 scheme)
The relaxation scheme for the divergence of the vorticity field is applied every 50 steps.
The simulation was carried out up to T = 16, af that time the number of particles was
~ 1060000 The computation ran 50 hours on 8 Pentium 4 processors at 2 4 GHz (Beowulf
lirux cluster)

Defining 2 Reynolds number for these under-resolved computations has little meaning
{no quantified subgrid scale modeling, infinitely thin boundary Jayers) We can however
mention that the viscosity coefficient used for the PSE scheme was vpg/(Ugrs W) = 10-*

In Fig 5 one cun see the vorticity field in a slice behind the G'T'S: it ciearly shows the
developrment of a truly turbulent flow in the wake These results feature much more small
structures when compared (qualitatively) to stmulations where the Ay redistribution scheme
was used

4 A hybrid Bulerian-Lagrangian vortex method for flows with
massive separation

In the previous section, an “over-simplified” approach was used for the boundary layers:
they were modeled by infinitely thin vortex sheets in a priori defined regions It is clear that
this approach can only provide physical results in simple cases In more general situations,
the evolution of the boundary layer has to be simulated in order to determine where the
separation dynamlcally occurs
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Fig. 4. Flow pest the GTS with viseous pround effect in the wake The regions of non zero vorticity
are shown in three slices behind the trude: each slice is colored by the y-component of vorticity:

5 a LE ] 85 10 05 A 15

Fig- 5. Zoom on the vertical midplase slice behind the trucl: regions of non zero vorticity are
shown, it is colored by the vorticty y-component of vorticity (normal to the plane)

The VEM suffers from two drawbacks ia the boundary layer regions which prevent it
from working efficiently in these regions:

o The VEM uses isctropic computational elerments whereas, in the boundary layer regions,
the strong gradients in the direction normal to the wall would allew highly anisofropic
elements for computational efficiency.

o Altough the VEM performs particularly well for flows dominated by convection (due to
the implicit treatment of the convective term), it is less suited to flexible and accurate
treatment of the no-slip boundary condition.

These drawbaels currently limié the applicebility of the VEM to relatively Jow Reynolds
number Bows or Bows where an excessive degree of modeling must be introduced in the
boundary layer regions. Approaches along the lines of Detached-Eddy Simulation (DES),
combining RANS methods (boundary layer regions} and LES methods {separated regions),
are required in order to perform simulations at much higher Reynolds numbers
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Lagrangizn subdomain

TFig. 6. Example of Evlerian and Lagrangian subdomaine The Bulerfan subdomain covers only
the near-wall region In vrder to capture the thin boundary layers and the separation regions The
Lagrangian subdomain covers whole computational domain and captures wel} the wake dynamics

This Jerds naturally to the observation that Eulerian grid-based methods should be
used to resolve the near-wall regions, where viscous effects ave Important, while using the
Laprangian VEM for the convection-dominated pert of the flow The strengths and the
weglmesses of both methods are indeed complementary in such a hybrid approach.

Hybrid Bulerian-Lagrangian vortex based methods are not new. A preat challenge for
these methods is to ensure consistant boundary conditions on each subdemain (Euletian
and Lagrangian) and to allow an accurate transfer of information between these subdomains
Previous approaches (e g Cottet ef el [3]) required complex and expensive iterative methods
in order to determine the boundary conditions on each domain

We propose a new approech where the Lagrangian subdomain covers the entire compu-
tational domain (altough under-resolved in the near-wall region), while the Bulerian subdo-
main is limited to the near-wall reglon and resolves well that region (Fig. 6). This allows
to abtain the boundary condibions on the Eulerian domain directly from the information in
the Lagrangian domain {no need for iterative methods) On the other hand, the evolution of
the Lagrangian field in the near-wall region is corrected by the Eulerian information which
is well resolved there

Preliminary results where obtained for the 2-D simulation of the How past a cylinder
at He = 3000 {Fig 7) In this simulation, o fnite difference method based on the velocity-
vorticity formulation was used in the BEulerian subdemain A coarse resolution was chosen
for the Lagrangian subdomain, while the Bulerian subdomain uses a fine grid in order to
capture well the detailed dynamics in the near-wall region. A good behavior of the algorithm
was observed in terms of robustness and information transfer between subdomains. Further
investigations will focus on quantitetive velidetions of the method. The next steps will be
to extend the method to 3-D, to introduce o DES approach in the Bulerian subdomain, and
e LES model in the Lagrangian subdomain
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OCTREE ALGORITHMS FOR THE IMPLICIT CLOSEST POINT
TRANSFORM

M RUBEL~"

Abstract. Two new algerithms which find tke Implicit Closest Point Trensform are presented
Given a 2-1D polygonal surfnce in 3-D space and a test point, the slgorithms idensify the location
on the surfoce which is closest to the test point Both slgofthms give resulis which are exach to
machine precision, and can operate efficiently without zefjuiring that the points lie on a regular Jattice
or belong to a set whose positions ere known iz advance. Operating time per test point is constant
‘b both cases; the elgorithms differ in their initial setup times and memobry consumption

Key words. closest point transform, implicit closest point transform, distence transform, ou-
clidean distance {ransform, octree, level st

AMSB subject classifications. 651018, 51N20, 51N05, 68005

1. Terminology.

surface One contiguous 2-I) surface in Euclidean 3-D space
boundary A set of one or more surfaces

feature A_ay single vertex, edge, or face in a discretized boundary
EDT Euclidean Distance Transform

cPT Clesest Point Transform

FMM Fast Marching Method

c/5C Characteristic / Scan Conversion Algorithm (Mauch})
c/or Characteristic / Octres Algorithm

LUB/OT Least Upper Bound / Octree Algorithm

2. Background. When modeling a physical process with a complicated bound-
ary, it is often necessary to find how points in space are oriented relative to it For
example, one might wish to identify all points that fall within some distance of the
boundary, to classify each point as inside or outside, or to measure the frst arrival
traveltime (the shortest distance)} to each point.

The precise way to ask these questions is to apply the Buclidean Distance Trans-
form (EDT}, which maps each test point to its shortest distance from the boundary,
or more generally the Closest Point Transform (C‘PT}, which maps each test poinf o
its closest point on the boundary

Among algorithms developed to perform the CP’I‘ or EDT efficiently, the most
successful ones have approached it from the point of view of Grding viscosity solutions
to the Eikonal problem:

[ViE| =1 Thoundary = 0 (21)

Bquation 2 1 works here because its characteristic curves are normal to the bound-
ary and measure distance from it, following the natural definition of distance from a
surface. Readers seeldng a more debailed account of the theory are referred $o Sethian’s
5] review of Fast Marching Methods, which ineludes an extensive discussion

*GALCIT, Californin Instibute of Technology, 205-45 Caltech, Pasadena, CA 91125 USA,
mmbal@galmt caltech edu
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Fic 21 Mustretion of Masch’s C/8C algorithm applied outside o iripngle in 8.0 (o) Triangle
and grid of test peints (b} Chevarteristics {c} Test points sel over six eviernal charocteristic regions

For numerical reasons, most grid-based Eikonal solvers, such as [8), {3] use some
form of upwind finite differencing. The Fast Marching Method [7], [4] is en 2p-
proximate elgorithm which combines upwind fnite differencing with s prio:ity gqueue
strategy like the one in Dijkstra’s shortest-path or Dial’s shortest-forest. The FMM,
which is log-linear or linear in the number of test points, has been adapted to a variety
of applications [§], and in particular can be applied to find the EDT {6]. Kim's newer
Group Marching Method [1], works similarly but atrives at its answer in linear time.

An alternetive strategy is to solve Equation (2 1) by the method of characteristics
In formulating his Characteristic / Scan Conversion (C/SC) algorithm, Mauch {2}
observed that for a boundary geomefry composed of simple features, such as polygons,
edges, and vertices, the space filled by all characteristic lines originating from each
feature is an open polyhedron (Figure 2 1) The polyhedra may overlap At & given
test point, the characteristic line corresponding to the closest point belongs to one of
the polyhedra it falls inside.

Mauch loops over the charaeteristic regions and selects test points by scan conver-
sion (Algorithm 1}, finding the exact CPT to machine precision i linear time (linear
in both the number of test points and the numbe: of boundary elements) Further-
more, for boundaries with a sensible inside and outside, the algorithm can be extended
to provide inside/outside information as well, by foliowing the negative branch of the
solution inside the boundary (note that if & solves Equation (2.1}, then so does —1)

Because Mauch's algorithm uses scan conversion, it is currently limited to prob-
lems where all of the test points le on a regular grid However, Mauch has proposed
the use of Orthogonal Range Queries to extend the method fo irregularly-spaced test
poinis [2]

3. Bxplicit vs. Implicit. All algorithms discussed in the previous section find
the CPT or EDT explicitly. That is, each transform could have been written:
result = F'(boundary geometry; test point locations) (31)

The test point locations needed be known in advance for the algorithms to perform
efficiently. We require an algorithm that remains efficient even when test point loca-
tions are unkoown beforehand; that is, when the CPT' must be written as an implicit
function:

G (result; boundary geometty; test point locations) = 0 (32)

The algorithm must be capable of computing to the CPT Yo each test point individ-
ually in constant time






Algorithm 1 Mauch’s Characteristic / Scan Conversion Algorithm Computes the
shortest distance 5] which separates each test point * from its closest point i, on
feature Fy,.
for all test points ¢ do
6% 4= 00
end for
for all features F; on boundary do
find characteristic region R; of feature Fj
using scan conversion, select test points £* which lie within R;
for all points £ thus selected do
§ 4= signed distance from 7 to Fj
if |8} < |6}] then
8l &=
Fl = F;
£ty <= closest point on Fj to &
end if
end for
end for

4. Broad Strategy. Since no a-priori assumptions may be made about where
test points will be located, we formulate the following broad strategy to ensure that
total work will be linear in the number of test points

Divide the region of inberest into small cells in manner which yields the following
properties:

¢ It should be easy to find which cell confains a given test point

s Fach cell should have a pre-computed list of features which could contain the
closest point

o The length of each list should be no more than a constent which is indepen-
dent from the number of boundary features

Onmnce the region of interest has been divided and the closest-feature lists computed
for each cell, Algorithm {2) may be spplied to find the CPT to a test point

Algorithm 2 General algorithm for computing the shortest distance §,, which sepa-
rates the test point at £ from its closest point T, on feature Fip

8q =00
C' 4= cell that contains £
for all features Fy listed in C do
if ¥ inside characteristic region H; of feature F; then
§ 4= signed distance to F;
if {4} < [6.] then
8, &= 6§
Fep 4= Fy
Fep 4= closest point on F to 7
end if
end if
end for







"Two approaches for finding the Implicit CPT will be presented shortly Both
follow the above strategy, differing only in how they choose which features to include
in a given cell’'s Iy list. But first, a brief note is in order about how space will be
divided into ceils.

5. The Octree. One could simply divide space into upiform cells on & regular
grid. The grid spacing would have to be small enough o bound the number of features
in any one cell by a constant, so 2 more complicated boundary would naturally lead
to a finer grid.

Although simple, the uniform grid strategy wounld be inefficient when applied to
the comrmonly interesting case where regions of sharp detail are strongly localized in
an otherwise coarse surface. Instead, we employ the octree data structure, in which
a cube is divided recursively, perpendicular to its coordinate axes, until the desired
level of detail (or local cell size) is attained A quadéree, the octree’s two-dimensional
analogue, is llustrated in Figure 5.1.

Fic 51 [Nlusiration of a quadiree which has been refined in the neighborhood of an annulus

In both of the schemes described below, an octree is formed by recursively dividing
an initial octree (starting with a single “root” cell, in the simplest case) until the
number of features associated with each “leaf” cell is bounded by some constant.

6. Least-Upper Bound Approach.

6.1. Theory. In this Brst strategy to decide which features might be closest to
any test point in & given cell, we temporarily set nside Equation 2 1 and instead male
use of the triangle inequality.

Suppose we compute the shortest distances from all boundary features to the cell
centerpoint, calling these distences é;,1 = 1...N where N is the sumber of boundary
features Further suppose that the cell radius is r (that is, no point in the cell is more
than r units awny from the center). Let &, be the distance from a test point within
the cell to its closest point on the boundary. It follows from the triangle inequality
and definition of shortest distance that:

d < 1.=_1_111i):1N({5,-} +7 (6.1)

Further suppose that the closest point is on feature fk, which has minimum distance
6k away from the center of the cell Again from the triangle inequality, we conclude
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that:

8, 2 8~ {62)
Combining the two,
i AR
6 < i;}}mN(é,) + 2r (63)

Thus, when building a list of features which might contain $he closest point to
any test point in a given cell, one need only include those features for which Property
6 3 is satisfied (Figwe 61)

Fie G 1 IlHustration of Least Upper Hound crilerion Only [aces whose shortest distance from
the cell center is less than or equal L0 dmin + 27 nced be considered; the ouler three triangles can be
sofely ignored

6.2. Ampalysis. Because the number of features per cell is bounded by a constant,
the work o find the closest point to a given test point is constant Thus the total
work to perform the Implicit CP'T, once the octres is built, is linear in the number of
test points.

It is less obvious how much work and memory are required for octree construction
‘We now attempt a rough analysis

Rather than dealing directly with boundary features in our analysis, which would
preclude us fom treating the problem in 2 general way, we consider o ({#,s), the
fraction of boundary srea which needs to be considered when computing the transform
at a point £ in the center of a cell of size ¢ By construction, 0 < & < 1, and i is
inversely proportional to the number of boundary features

For LUB/OT to oze or more polygonal faces (and perhaps in more general cases,
though we have not yet proven so}, mus{Z, s} may be expanded locally about 5 = 0,
except et discontinuities:

atub (E, 5) = ag{Z)s + O(s") (6.4)

where ag > 0. Equation (6 4) can also be inverted; that is, there exists some constant
by for which:

5(F, aup) = boouus + Hafy,) (6 5)

Suppose we are building an octree according to the LUB criterion Let the tree
have N, leaf cells, of volume v;, i = 1 Ny Let ¥ be the average (arithmetic mean)
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of these volumes By definition, we may write:

Np,

- 1
'U"—'-"RITEZU; {66)

fwl

The sum of leaf volumes is a constant: the volume of the octree Substituting and
rearranging,

1 -
NLOC%' (6[}

The volume of the cell centered at £ is 3. As m%x(u:mb) ~+ 0}, the maximum cell
ceils
size goes to zero, and the average volume approaches the Riemann integral:

W / sdV (6.8)
- octree
which, after substifution, becomes
T / onub(T, )3 dE (69)
-/ oetree

The octree is constructed so as to make a the same in each cell, to the grestest
extent possible. This is the terminal occupancy criterion. Therefore, the mean of o
over the octree is proportional to @ryerm. 50 the integrand comes out front, and what
remains is a constant.

T o (6 10)

Substituting FBg (6 10) into BEg. {67} and proceeding to the small ooy Hmib
{which is the large number-of-panels limit), we obtain:

Ny, o¢ (6 11)
3

Crprm

Thus, for fixed gecmetry and terminal occupancy, the LUB/OT method scales
as:

Np =0 {N3) (6 12)

where N is the number of boundasy features.

6.3. Performance and Memory Consumption. Due fo the very large mem-
ory consumption of our implementation, it was not possible for us to test the LUB/OT
approach in a quantitetively meaningful way. Bven for small problems, memory re-
quirements quickly exceeded the capabilities of cur system

For this reason, we do not believe the LUB/OT approach to be useful by itself for
finding the Implicit CPT. The much sharper bound provided by the Characteristic /
Octree method {C/OT), whick will be discussed in the next section, leads to a more
practical direct solution Nonetheless, some lessons learned in the LUB/QT approach
will carry forward

7. Characteristic / Octree Approach.
6






7.1. Theory. The C/OT approach is based directly on Mauck's C/S5C algo-
rithm; the difference is that rather than apply scan conversion {(which limits applica-
bility to test points on regular grids), we intersect the characteristic regions with the
cells of an octree

if feature Fp contains the closest point fo a test point at £, then a characteristic
line of equation (2 1) passes from %, on Fep to £ Thus, £ falls inside the characteristic
region of feature Frp.

Suppose T is inside cell & If & has a list of all features F, £ = 1 A whose
characteristic regions intersect it, then only those features need to be considered when
finding the closest point transform of Z. So our broad approach is the same as it was
in the LUB/OT case. The difference is that we begin by finding the characteristic
region of each boundary feature, and then build the octree in such a way thet each leaf
cell stores the set of features F), whose characteristic regions intersect it. We bound
the maximum number of features per cell below & constant which is proportional to
L_ This process is depicted in Algorithm (3)

Ortorm

Algorithm 3 C/OT recursive octree construction algorithm
for all features ¥;,j =1 N do
Compute characteristic region R; of Iy
end for
Store all features F; in root cell
'+ root cell
for all features F; in C do
if Ry intersects ' then
Add Fj to list of features in ¢
if length of list > terminal cccupancy then
Divide C into eight daughter cells
Store all features F; associated with C in each of its davghters
Apply this loop recursively to each daughter of &
end if
end if
end for

For a surface composed of polygons, the characteristic regions are open polyhedra.
For the purposes of this slgorithem, it is not necessary to construct the polyhedra
explicitly; it is sufficient to find their bounding planes The process is illustrated by
example in Figare (7 1).

7.2. The Characteristic Region of a Vertex. Vertex characteristic repions
are denoted V in Figure 7.1

Each vertex has s nontrivial characteristic region if, and only if, the surface is
locally convex (in or out) That is, the region exists if and only if the adjacent face
normals all lie on one side of a plane In this case, the characteristic region bounding
planes each contain the vertex and two adjacent face normals. When it exists, the
characteristic region of a vertex is convex.

7.3. The Characteristic Region of an Edge. Edge characteristic regions are
denoted F in Figure 7 1

Each boundary edge has a nontrivial characteristic region i, and only if, the
surface is not locally flat-that is, iff its adjacent edge normals are not parallel The

7






Fic 71 Mlustration: charncteristic regions cutside a cube

cheracteristic region is a wedge bounded by four plenies: two planes which contain the
edge and an adjacent face normal, and two planes perpendicular to the edge whick
contain its two endpoints. For oriented surfaces which are locally convex, the wedge
points away from the boundary; for those which are locally concave, the wedge points
into the boundary The characteristic region of an edge is also convex

7.4. The Characteristic Region of a Face. The cutward-facing face charac-
teristic regions ate denoted F in Figure 7 1; inward-facing ones are not shown

The characteristic region of each face is the prism whose bounding planes contain
each of its adjacent edges and whose normals He in the plane of the face For the
purposes of this algorithim, we divide the region into two parts separated by the face
plane. Thus, for oriented boundaries, one of the regions is outward-facing and the
other is inward-facing. If a face is convex then its characteristic region is also convex.

7.5. Analysis. The C/OT algorithm finds the Implicit CPT in Jinear time once
the octree is built, since the work for each test point is bounded by a constant.

Analysis of the cost of octiee construction parallels that for the LUB algorithm
exactly, except that area fraction is now proportional to the square of cell length:

a’cnt(fa 3) = GI(E)SZ + 0(53) (7 1}

Carrying this change through the same reasoning presented in Section (6.2}, we
conclude that for the C/OT method:

Np =0 (N]%) (?'2)

whete Ny is the number of boundary features and Ny gives the number of leaves in
the octree.

7.6. Performance and Memory Consumption. The C/OT routines wers
tested on 2 set of trizngulated tori like the one shown in Figure (7 2), with different
numbers of surfoce triangles but otherwise identical. The octree size (given as the
number of leaf cells, 2 measure of the amount of memory consumed) does seem to

a3
follow a NZ law (Figure 7.3) This scaling also seems to be the dominant factor in
octree construction time
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Fic 73 Memory use of the C/OT oclree o5 o funclion of torus surfoce discrefization

Scaling measurements for the C/OT method were found to be sensitive to the
manner of surface refinement. Hefining in only the circumferentia! direction, for ex-
emple (which changes triangle aspect ratios) resulted in a slightly different power
law. The results shown in Fig {7.3) were obtained by refining in both directions
simultaneously.

8. Combining the Two Approaches. Because the least upper bound and
characteristic region criteria are fundamentally different, they can be combined in
a useful way. For example, if surface distances beyond some cutoff are not needed
for a particular problem, or if an approximate solution would be satisfactory beyond
some minimum distance, then the LUB criterion gives a methodical way to eliminate
features from consideration during C/OT octree construction.

If, in a given problem, the distance cutoff decreases proportionally to the maxi-
mum surface polygon size, then memory scaling can be improved beyond the % law.
Furthermore, for topologically complicated boundaries, such as those comprised of
many simple surfaces whose characteristic regions overlap, applying the LUB cutoff
could substantially decrease the unspecified constant multiplying the scaling power
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law

8. Future Worlk., Both algorithms presented are linear in the number of test
points. In memory consumption and setup time, however, the LUB/OT and C/OT
algorithms respectively scale with the cube and three-halves power of the number of
surface features. To the suthor’s Imowledge, the C/OT algorithm scales better in
memory ard setup time than any other lnown linear-time slgorithm for the exact
Implicit CPT However, better performance should still be possible.

It is clearly possible to achieve better (even linear) memory/setup scaling if one
is willing to accept an approximate solution over at least some of the test point do-
main. Supplementing the C/OT approach with LUB-like limits is an obvious starting
point, and has been implemented o some degree by P Chatelain, one of the author’s
colleagues. Thete is room for a great deal of improvement in this area however

Bven for exact solutions, though, it may be possible to do better One property
which has not yet been exploited is surface continuity. Under C/OT, features included
in a leaf cell are not arranged in any particular order, despite the fact that they may be
physically situated in ope or more topologically connected sets It may be possible to
achieve log-linear or better memory scaling by storing the perimeters of these setg——
rather than their constituent features—in octree cells. In this case, the process of
finding which characteristic region includes a certain test point would be performed
by, for example, bisection.

10. Aclmowledgments. The author gratefully aclmowledges the assistance of
P Chatelain in writing certain LUB/OT routines, and of Prof A. Leonard for helpful
suggestions and guidance.
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We investigate numerically the Navier-Stokes dynamics of reconnecting vortex rings at small
Reynolds number for a variely of configurations We find that reconnections are dissipative due 1o
the smoothing of vorlicity gradients at reconnection kinks and 1o the formation of secondary structures
of stretched antiparallel vorticity which transfer kinelic energy to smal) scales where it is subsequently
dissipated efficieritly. In addition, the relaxation of the reconnection kinks excites Kelvin waves which
due to strong damping are of low wave number and affect directly only large scale properties of

the flow

DOI: 10.1103/PhysRevL o1 90.054501

In flow phenomena as diverse as quantumn [1], magnetic
[21, and incompressible [3] fluids, il is useful to study the
physics of turbulence by modeling the sysiem as a col-
lection of Lubular flux loops which in the case of vortical
fields are called vortex filaments An intrinsic property
of such highly structured systems i their ability to dy-
namically change their topolegy via reconnection
mechanisms. Does this change in topology alffect in
turn properties of fuid torbulence such as intermittency
and scalar mixing (which depend directly on the strue-
ture of the flow) or the dynamics of energy in wave
number space? Or is it the case that reconnection events
are not generic and thus have no direct impact on the
mean properties of turbulent fows? The aim of this Letter
is to address these issues by fully resolving the Navier-
Stokes dynmamics of interacting vortex rings for thiee
simple geometries having great potential for illuminating
the physics of reconnection Although the Aows consid-
ered are not strictly turbulent, the hope is that in a future
structural approach to the problem of turbulence a sig-
nificant part of the flow complexity could be traced back
to the physics of similar vortex interactions.

Incompressible vortex reconnections have an extensive
bibliography (for a 1eview of the work up to 1994, sce
[4,51). In [6,7] reconneclions of vortex tobes were con-
sidered with an emphasis on the possibility of singularity
formation as Re — oo. In [8] the sirong interactions be-
tween vortex rings were computed with the interest in
developing numerical methods and wrbulence models
rather than in focusing on the physics of reconnection.
In [97 it is discussed how a linked vortex configuration
could be achieved starling from an unlinked initial state,
and in [10] it is considered how the mixing of a non-
diffusing passive scalar is affected during vortex ring
collision. The reconnection of two approaching (but not
colliding} vortex rings was studied experimentally in {11}
and theoretically in [12] This Letter extends these studies
by considering generic vortex configurations and by cap-
turing more features of vortex reconnections in a turbu-
lent fow
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We solve the Navier-Stokes equations for an unbounded
three-dimensional incompressible viscous flow We em-
ploy the vorticity formulation:

(f+u Vo= (@u) w+¥u, )

V=0, (2)

where # is the velocity and w is the vorticity We use a
voriex particle method [13] In this methad, the vorticity
is discietized with Lagrangian elements These elements
which carry a vector-valued Gaussian distribution of
varticity are convected and stretched by the local velocity
obtained by the Biot-Savart law The complexity of the
velocity computation is normally @(N?) with N being the
number of particles; we have used a multipole algorithm
that reduces this complexity o O(N log{N)). Viscous
diffusion is handled by the particle strength exchange
scheme

We calculate the global kinetic energy £ and enstrophy
Q) defined as

E = %[U ~ndx, (3

Q=[w-wc1x (4

For unbounded fiows, the relation between kinetic energy
and enstrophy is

Fd;E = —pfl {5)

We also compute the evolution of the spectrum of the
kinetic energy E(k) which, in terms of the Fourier trans-
form of vorticity & = [1/(2n)32] [ w(r}e™" * dr, is de-
fined as

I

E(R) = (27 [ & idQ, ©)
2 Jig=t

(154501-1
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1=0 t=04 =08 1=16

i

FIG 1. Vortex rings in an offset collision: contours of
vorticity; from ¢ = 0 to 24, the contour is w = 0 15winy; for
(> 2.4, itis w = 0025w

where d{); denoles sinf,df;d e, the solid angle element
in spherical coordinates. The calculation of the spectrum
requires a double summation over the vortex elements
which results to @(N?) complexity. Because of this, the
calculation of the spectrum is much more costly than the
solution of the Biot-Savart law. Since the number of
particles grows substantially during our simulations,
from around N=35X 10% at r=10 to 8§ X 10° in the
end, our computational resources did not allow us to
compute the spectra for all times

All calculations were done with the same Reynolds
number: Re == L = 250 where I is the circulation of one
ring and » is the kinematic viscosity This smali value of
the Re was dictated by the computational cost and the
need for well-resolved reconnection regions All the
rings have the same initial I’ All of our conclusions are
conditioned upon the smali value of the Reynolds number,
as well as, on the common initial circulation and should
not be extrapolated uncritically to other settings. The
initial vorticity distribution in the cross section of every
ring is Gaussian with a cutoff

¥
2ara

wy = ell=r)/ee)], (N

where r is the distance to the core center, ¢ is the core
1adius, and ey is the azimuthal vorticity. We chose o ==
0 03R (where R is the radius of the ring), to ensure that the
rings are still thin when reconnections occur, Our results
were made dimensionless in the following manner: r =
(Tr/R?), x = (+'/R), and w = [(R® w’)/T], where ¢, X',
and o' are dimensional

We studied three configurations In the first case
(Fig. 1), the initial rings are placed at a distance of R/4
apart in the z direction, offset by R along the y axis and
they move in opposite directions along the z axis. In the
second case (Fig 2), two rings of different radii (R and
R/2) and of initial separation R/4 are moving in the same
direction along the z axis, with the center of the small

054501-2

1=0 2 t=]12

1=16

FIG. 2 Vortex rings of different radii: contours of vorticily;
from 7 = 010 2.4, the contour {5 w = 0 15wlng; for t > 24, it
is = 005l

ring in a collision course with the circumference of the
large one. The small ring has a larger self-induced veloc-
ity and catches up with the large ring Finally, in the third
case (Fig 3), the two rings are linked at 90° a ring going
through the other in its center One is maving in the
positive ¢ direction; the other, in the positive y direction.

All three evolutions lead to ring reconnection
(Fig. 1--3) and have common features. The latter will be
discussed here in the context of the first configuration
observing that the phenomena are the same far the other
two cases The spectrum at ¢ == 0 (Fig. 4) has the charac-
teristic oscillations of the spectrum of isolated vortex
rings and a cutoff at the scale of ring core radius o =
0.03, k= 20. Our results (Fig | and 5) suggest that
{approximately) the reconnection starts around = (.6
and ends around f = 175 with a duration Az =115
Specifically, as the rings approach each other, they stretch
and deform near the collision points so that their respec-
tive varticities become locally antiparallel. The two ends
of this stretching region eventually become reconnection
kinks in which (in the absence of singularities) the strong
vorticity gradients are smoothed out by diffusion This is

FIG. 3 Linked vortex rings: contours of vorticity; o =
0025w

(34501-2




VOLUME 90, NUMBER 5 PHYSICAL

REVIEW LETTERS

week ending
7 FEBRUARY 2003

t=0 .
% e t=0.8 y
R E S R
oo =24
07k K
a3 Fa
ORI . T
10" o 10

FIG 4 Vortex rings in an offset collision: evolution of the
energy spectrum

also seen in the graphs of the global quantities (Fig 5)
where ihe beginning of the reconnection process cor e~
sponds (o a hump in the graph of {) and to a steepening of
the slope of E(7) between 5 = 0.6 and f = 1.4, Qur calcu-
lation predicts that {due o diffusion) the Rlament core
radius increases from the value g == 0.05R initially 1o
the value o, = 0 12R at the reconnection Using this
latter value we calculate the viscous lime scale 1, =
oz/v = 0.36 Scaling the convective ring velocity with
T /4wR we estimate the time needed for a ring to traverse
ot = 4wRo, /T = 1.5. These times are of the same
order a5 Ar, and so it Jooks that both viscous and con-
vective phenomena partlicipale in the reconnection
physics The present relation between 1, and Ar, is differ-
ent from the one in [11) where the viscous scale was
reported to be much larger than the duration of recon-
nection However, in [11] the Reynolds number was 1600.
The conclusion that the reconnection duration is inversely
proporticnal o the Reynolds number and thus to the
circulation of the vortices is plausible (also in agrecment
with {6,14]}, but it is subject to the condition in [11] that
the rings are merely touching themselves rather than
colliding.

r 1350

FIG 5 Voriex rings in an offset collision: kinelic energy and
enstraphy

0545013

1=16

FIG 6. Vortex rings in an offset collision: contour of vorticity
and vortex lines al 1 = 1.6 and 2 4; the lransparent contour is
w = 0025w=E; the vortex lines in (a) and (b) were chosen to
pass through the vortex core center (the maximum value of w)
at a location away Trom the reconnection kinks; in (o), a few
neighboring lines are also shown fort= 24

After some time (Fig 6), we can say that Lwo new rings
are formed. The pairs of filaments between the reconnec-
tion regions are stretched further as the new rings move
apart from each other (r = 1 6 to 56). These stretched
vorticity structures are responsible for a continued trans-
fer of energy to the smallest scales untii these structures
are dissipated away. This conclusion is supported by the
results of Fig 4 where it is shown thal the high wave
number cutoff of the spectrum becomes a nonexponential
one (although it remains still ver y steep) and that between
1= 0.8 and 2.4 there is a significant decay of the energy
spectrum for k < 20 butlittle change for & > 20 This last
cbservation indicates that in the small scales of motion an
approximate balance between energy transfer from large
scales due (o stretching and local energy dissipation due
to diffusion is attained (temporarily). This conciusion is
also consistent with the vorticity structure shown in Fig. 7

5% ) 03 5y B

0
Y Y

FIG 7 Vortex rings in an offset collision: contours of vor-
licity magnitude in the plane t =0 fromr=08t0 32
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where it 15 observed that between t = G Band 1 = 24 (the
time of the last spectrum calculation), the vorticity mag-
nitude in the secondary structures (where the global
maximum of vorticity resides) stops incteasing and in
fact it decays slightly

It is conceivable that for Reynolds numbers higher than
250 an intermediate scaling range (that is in between the
k=" and k=7 regimes) could appear with an inertial type
of scaling It is also expected that with increasing
Reynolds number the hump observed in the global ens-
trophy during the reconnection could become more pro-
nounced and (according to the previous discussion)
shorter in duration.

In conclusion, we studied three generic vortex ring
configurations and we found that in all cases the rings
reconnect. This suggests that reconnection is a common
phenomenon in voriex filament encounters and perhaps
also in turbulent flows. In addition, we cbserve an inten-
sification of dissipation which is focal in time and could
be a mechanism contributing to turbulence intermittency.
A by-product of reconnection is the formation of
stretched structures with antiparallel vorticity which
transfer energy to the smallest scales where It is rapidly
dissipated. Without this energy redistribution in wave
number space the decay of global kinetic energy would
have been slower. This important effect depends directly
on the details of the initial vortex configuration (compare
with experiments in [11]) The observed intensification of
small scale motions hints to an enhancement of small
scale mixing of passive scalars with Se = 1 The excited
Kelvin waves represent a fast mechanism for energy
transfer, but the small Reynolds number of our calcula-
tigns is not svitable for understanding their full impor-
tance In particular, they are confined to low wave
numbers in opposition to the Kelvin waves observed in
reconnections in quantum fluids {15} This is because
quantum filaments are inviscid and have a very thin
core (o~ 0.1 nm) so that high wave number Kelvin
waves propagate without damping even for rings with
small circulation,

054501-4

Besides illuminating important physics, the present
work will guide future introduction of phenomenological
reconpection models into vortex filament computational
methods In this way, the applicability of the latter meth-
ods will be extended to flows with complex vorticity
configurations
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We elzhorate the physics of systems of unconstrained, reconnecting vortex filaments with dynzmic
finite cores of uniform (“'quantized™) circulation interacting via Biot-Savart and viscous forces The
pheromenology of this purely structured turbulent system includes an inertial range with Kolmogorov's
k=573 gealing for the energy spectrum, as well as Kolmogorov's linear in r scaling for the third order

longitudinal structure function.

DOE HL1103/PhysRevLe1090.234503

The contribution of coherent structures to the statistics
of turbulent flow comprises a central problem in turbu-
lence physics Adopting a vorticity representation of fluid
flow, one can define coherent structures to be vorticity
patterns {e g., Burgers's vortices) characterized by a num-
ber of parameters (e.g, the core radivs to length ratio in
case of a filament} In order for such patterns to persist in
time their interactions should only cause their transition
from one characteristic parameter range to another with-
out simaltaneous change of their mathematical definition
Examples of such structures are described in [1] In this
Yetter we develop a novel turbulence model in order to
address the following guestion: is there a kind of low
dimensional coherent structure capable of representing
the dynamically important vorticity feld as a collection
of its manifestations?

Our approach to the question above is inspired from
previous efforts to quantize classical turbulence [2] and is
motivated by drawing an analogy with quantum fuids {3].
In particular, starting from the Gross-Pitaevskii model of
superfluids and using the Madelung transformation the
superflnid dynamics reduce to the inviscid Euler equation,
with the additional constraint that the vorticity in the flow
must be exclusively in the form of vortex filaments with
guantized circulation {4]. This exira consiraint is a pure
quantum mechanical effect Although in classical fluids
snch guantization constraints are absent, the following
questions are legitimate: How useful would it be (in
turbulence theory) to imagine a Navier-Stokes fluid
with ils circulation quantized in the same manner as in
superfluids? Can one construct a Navier-Stokes analog of
the Euler superfluid vortices? In this Letter we respond to
the questions above by formulating a heuristic quantiza-
tion of the Navier-Stokes equation. We propese a turbu-
lence model that depicts wnconstrained, reconnecting
vortex filaments with dynamic finite cores of uniform
(quantized) circelation, interacting via inertial and vis-
cous forces This formulation is much more complicated
than previously suggested vortex models of inertial range
and fine scale turbulence [5-9] These had to assume a
specific vortex structure of unknown stability analysis
and had to ignore the strong interactions between the

234503-1 0031-9007/03 /90(23)/234503(4)520.00
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vortices, as well as their reconnections These simplifica-
tions are in obligue contrast to the complexity of turbu-
lence, and there is little hope to expect that statistical
mechanics obtained from soch models coold uniock
essential tnrbulence physics Thus, this Letter ex-
tends the previous studies by avoiding many of their
simplifications

If r; is the three dimensional representation of the
centerline curve of filament i then the voitex motion is
described by

Tt = v, 1)
where ¥{r (), 1} is the Biol-Savart velocity:
— 4
Vi) = '[(.‘L xN % wolx)dx @)
T iw [x — x|3

with w{x) the vorticity vector. In the quantum Euler case
the vorticity w{x’) is & delta function along the curve of
the filament C; since lhe superfluid vortices have (at
hydrodynamic scales) infinitesimal core sizes. However,
in the classical Navier-Stokes case the vortices have
dynamic, {inite cores, and the vorlicity is distributed
This results in a more complex vorticity representation
—ri{s, f)f)

[107:
ZF,[ oils, 1) ( (s, 1)

dry 2" —ris, I}BG‘;)
g B e e Sl A8 3
(as ois. 0y 8s ! 3)

eax(x!, 1)

where o;{s} is the local core radius of filament { and the
smoothing kernel ¢ describes the way vorticity spreads
around the core centerline. T he calculations are done with
the high order algebraic kernel of {11] T is the circulation
strength attributed to all filaments and is the model’s
analog of the guantum of circulation. The formula shows
that the vorticity ficld has two constituents The first tecm
of the sum inside the integral sign models the vorticity
component along the direction of the filament tangent 5 5" :
This is the only component present in quantum voruc:es
{without the smoothing effect of £} The second term

© 2003 The American Physical Society 234503-1
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models the vorticity component along the direction x —
ri{s) and is induced by the change of o;(s) along the
filaments.

In the numerical caleulations each filament is divided
into a number of finile segments using a set of discretiza-
tion points sf, where j= 1N and 5 is the arclength
parametrization. The time integration is done with a
fow storage, third order acccurate Runge-Kutta method
1171 Both filament stretching due to the Biot-Savart
velocity field and viscous action change o. The former
effect has been taken into account by imposing for every
discretization point s/ the conservation of vortex tube
volome:

4
dr
where &/*1 is the immediate neighbor of point s/, The

viscous effect is handled by the core-spreading method
[13]:

(wai(s)x(sh) - x(s7*1)]) = ¢, 4)

497 — 9y, )

dt

where » is the kinematic viscocity and y is a factor
depending on the particular kernel { employed and equal
to v, == 2.205 for our choice of kernel. When two fila-
ments approach closer than a fraction of their correspond-
ing core radii, they reconnect The details of the
algorithm can be found in [14] where it was shown to
predict adequately the changes in tapology, the excitation
and propagation of Kelvin waves, the viscous decay of
kinetic energy, and the helicity dynamics An important
consequence of circulation quantization is a great simpli-
fication in reconnection physics. Reconnections between
vortex rings of variable circulation are much more diffi-
cult to madel efficiently Periodicity was enforced with
the rninimum image method {151 In the absence of a
proper mathematical analysis of the error committed with

FIG. I Vortex filament core centerlines at initial and stoppage

is shown

234503-2

the latter method we have done computational experi-
ments with a simple system which did not show sigaifi-
cant velocity deviations from exact reference velocity
profiles.

The initial condition of the calculations done with the
proposed model consists of 192 vortex rings in a periodic
box. The radii and orientations of the rings are chosen
using sequences of random numbers. The Reynolds num-
ber has the value Re = L = 5000 where I is the circula-
tion of the rings and » is the kinematic viscosity. The
results are made dimensionless in the following manner:
£ = %, = ’7,’;:, w =Bl where ', X, w' are dimensional
and R is a reference initial vortex-ring radins, We have
chosenI" = land R = 1;the box size is [, = 2.041. Using
the initial value of the turbulence intensity i = f2E/3 =
3.87 (with i; the velocity fluctuations and E =
1573, {u;u;) the turbulence kinetic energy) as a scale for
the velocity of convective motions and the size of the
largest resolvable eddies {(equal to half the box size) as a
scale for the length of the convective metions, we find the
inertial time scale £ == 0,26. For comparison the numeri-
cal solution ends at £, = 0.14.

Figure I shows that the artificially ordered initial con-
dition evolves (mainly because of reconnections) into
a complex tangle. The final reconnection number ex-
ceeds 9000.

Figure 2 preseats the energy spectra at two different
times ¢ = 0.09 and (., = 0.14. They lead to the same
conclusions, although due to turbulence decay the earlier
spectrum is characterized by higher energy values.
Notice that the initial condition corresponds to a non-
physical tangle state and only at ¢ = 0 05 (when an almost
linear decay sets in) is the tangle complex enough to be
realistic, At t, =0 14 the minimum tube radius in the
system is located at & = 14 and the maximum (tube
radius) at k; = 8.25. Here k = | without 2 factors We
estimated the average dissipation (&) = 25 by equating it
to the almost constant turbulent energy decay rate (Fig. 3)
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in the time interval £ = 0.07 to ¢ = (.14 aid found (&) =
42. Direct calculation using the ¢ definition is not appro-
priate since the major contribution to € comes from the
reconnection model and not from the resolved flow scales.
Assuming the formula (&) = ls;’jfw (with A the Taylor
scale) of locally isotropic turbulence to be useful in the
present context, we find the Taylor wave number k, = 37
and the Taylor scale Reynolds number Re, = 427, The
Kolmogorov microscale is moch smaller than the mini-
mum core size and is not resolved. The &k < k; part of the
spectium corresponds to the inertial range of turbulence
where vortex stretching is domiinant At k== [y viscous
effects become important and cause a sharp cutoff ob-
served between k =~ K and k& = k;, There is also evidence
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FIG.3 Evolution of tushulent escrgy £ and of reconnection

number N
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that at k == k; energy tends o pile up at subcore wave
numbers

The fully resolved calculations of [16,17] depicted
vortex stretching at subcore length scales during recon-
nections. It was shown in [14] that the intensity of this
stretching process is only partially captured by the em-
ployed reconnection model, and therefore the small scale
flow structure is mot predicted with great accuracy.
However, assuming that the physics of the inertial range
depend mainly on the effective removal of kinetic encrgy
at the smallest wave numbers and not on their detailed
structure, this should not present a problem since our
model incorporates such an effective dissipation. As
Fig. 2 indicates, the inertial range spectrum scales like
£%/3 and this provides clear evidence that stretching
effects in turbulent vortex tangles cam help explain
Kolmogorov scalings in accord with 2 line of thonght
initiated in {18].

In Fig. 3 we observe a direct correlation between the
reconnection rate and the (turbulent) energy decay rate.
This is also consistent with the findings of [16], showing
intensification of dissipation during recoanections. The
results hint at a possible mechanism of dissipation inter-
mittency in real turbolence since reconnection processes
occupy at any instant only a portion of the fluid volume.

In Fig. 4 the third order longitudinal structure function
is shown The latter s defined as

st = ([[u(x + 1) — u(x)] ;]3> (6)

and it is negative. We have first computed the Sg values
along each of the three Cartesian directions and then we
averaged. The directional sets of data were not identical

i A~

FIG 4. Third order velocity structure funclion at stoppage
time 1, = 0 14; the acwal r interval is [0 4, 0.6]
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and the present turbulence is certainly not isotropic. The
results indicate that (as in rezl turbnleat Aows) S[
nonvanishing. In addition, Sg <rina submierval of
the k™3/3 range. This scaling behavior was apparent in
all directions although its extent was varying. The
slope, however, in Fig. 4 differs significantly from the
Kolmogorov slope —3{e) valid for globally isotropic
turbulence and calculated using the {¢) =42 value
Possible reasons for this could be turbulence unsteadiness
and anisotropy, a small extent of the inertial range which
is not asymptotically distant from the viscous regime, as
well as limitations of the present model of fully devel-
oped Navier-Stokes turbulence. In this context it is worth
noticing that in the grid generated turbulence experiment
of [19] with the Re,; = 45G similar to ours, there was also
almost no renge with the slope —% (e} at ail

In conclusion, we have established a schoinoidal {from
the Greek oyoctvoetdns meaning ropelike, stringy)
kind of torbulence In doing this we have ignored the
incoherent background vorticity of real turbulence and
consequently the interaction between the latier and the
vortex filaments. In this miliew, it is important that the
system exhibits the Kolmogorov k™33 scaling, as well as
the Kolomogorov .S‘;,l « r prediction, despite the turbu-
lence being highly intermitteat and anisotropic. These
do not necessarily mean that stretched line vortices are
the sole factor of Kolmogorav phenomenology. The latter
preassumes (among other equally plavsible alternatives)
that real turbulence is solely composed of linear coherent
structures (as is the case of quantum turbulence) or that
filamentary structures dominate an apparently incoherent
background Arguments against the fatter can be found in
{20]. The existence of different turbulence species all
with the same statistical phenomenology but different
deterministic structures should not be excluded. In
this milieu, the study of hybrid systems of filament,
sheet, and volume vorticity is important In the related
area of quantum fuids the results help to understand the
k7! [3] scaling of superfluid turbulence by noting that
vortex stretching, a necessary (in this case) factor of

234503-4

Kolmagorov scaling is missing in the coreless gquantum
vortex tangles,
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Abstract

We show that a tangle of material lines in a purely structured, decaying turbulent flow presents [iat scalings for the curvature
and lorsion spectra corresponding 1o both the inertial and viscous ranges in the energy spectrum ard (hat it acquires a fractal

dimension close to 2 resembling a malerial sheet
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The study of non-local turbulence characteristics
requires the investigation of extended material objects
like lines and surfaces since extended objects encode
efficiently the effects of spatial correlations in the tur-
bulent velocity field. The geometry of material lines
is important in understanding the mixing properties of
turbulence Largescale geometrical variations of a ma-
terial interface are major contributors to concenliation
transport and small scale corrugations lead to fractal
interface dimensions which characterize the degree of
mixing. The discovery of fractal interface dimensions
and the self-similarity of geometry in the appropiiate
range of scales that they imply, as well as, the dis-
covery of universal power law regimes in the curva-
ture, torsion or Lagrangian velocity spectra simplify
physical interscale arguments and the accounting of
multiscale turbulence effects. Their imporlance for the

E-mail address: demos@palcit callech edu (D Kivotides)

G375-9601/5 - see front matter © 2003 Elsevier B VAl rights reseeved

doi:1{ HOIG/} physleta 2003 09 0GB

geomelry is similar to that of the Kolmogorov scalings
for the velocity field.

In [1-3] the curvature of material lines in lami-
nar and steady (in the Eulerian picture), chaotic flows
was studied It was verified that compression of mate-
rial elements results in line folding and curvature pen-
eration. Data for curvalure probability density func-
tions indicated that the latter might be independent of
the fiow details. At sufficiently long times the mean
curvature altained consltant values with superimposed
fine fluctuations. In [4] the correlation between cur-
vature and stretching along material lines was stud-
ied for a laminar cellular flow. A power law relation
between strelching and curvature along sharp bends
was found. In [5] the fractal dimension of & malerial
line distorted by the laminar flow of a blinking vor-
tex with no boundaiies (introduced in [G]), was calcu-
laled with the box counting algorithm and was found
to be bounded from above by the value 2. Due to the
simplicily of (he underlying flows, these studies do
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not provide information about material line dynamics
in fully developed turbulence. In {7] the distortion of
a material line by a stationary isotropic incompress-
ible turbulent low was studied. Emphasis was given
on stretching phenomena rather than on geometrical
feaures. 1u [0 H1c UuA LobnbaE GIguiinin was ulsd
to measure the dimension of a material line deformed
by a two-dimensional, Gaussian, prescribed velacity
field. Tt was concluded that the embedded line failed
to become fractal. In this Letter we employ a model
of a three-dimensional, fully structured turbulent flow
introduced in [8] in order to study geometrical prop-
erties of a tangle of closed material lines. The turbu-
lence model consists of unconstrained, reconnecting
vortex filaments with dynamic finite cores of uniform
circulation, interacting via inertial and viscous forces
1t obeys the Kolmogorov scalings for the second and
third order structure functions and it is endorsed fur-
ther by the findings of [9]. We show that a tangle of
material lines in a purely structured, decaying turbu-
fent flow presents flat scalings for the curvature and
torsion spectra corresponding to both the inertial and
viscous ranges in the energy spectrum and that it ac-
quires a fractal dimension close to 2 resembling a ma-
terial sheet.

We compute the dynamics employing a numerical
method described in detail in [8]. If ry is the three-
dimensional representation of the centre-line curve of
filament v and 7, is the representation of the curve of
material line m then the vortex and material motions
are described by

dry

E‘mv(ru(t)rf)=vuv (1)
dry, . n
“‘JI““"-V(’:rx(t)1t)“V1:1: (2)

where V, and V,, are the Biot-Savart velocities:

i —; "Ydx!
Ve =—o x ’Ex)f:’!g) x 3)

with w(x) the vorticity vector. The employed {(x’)
formula takes into account the finite core of the fil-
aments, as well as, variations of the latter along the
vortices. The viscous effect is handled by the core-
spreading scheme of {10]. When two filaments ap-
proach closer than a fraction of their corresponding
core radii, they reconnect according to the method of
[11]. We have implemented periodic boundary caondi-

tions by introducing image vortices thus augmenting
the computational complexity. Numerical experiments
determined the minimum width of the box extension
(where the image vortices are located) to be 0.37,
where I, is the size of the box. Then the deviations of
numerinal velnes fram avact anec were indiscernible.

We calculate the fractal dimension of the material
tangle employing the box counting methad of {12}
The algorithm computes N (8), the minimurm number
of boxes of size & needed to cover all points produced
by the discretization of material lines. This is done for
a range of box sizes. In the limit of very small § values
the slope of the curve N(8) becomes zero since then
the box size is smaller than the discretization distance
between the material points and N(8) is equal to the
actual number of points that make up the material
system. The box size is increased until § is comparable
to the size of the calculation box. For such & values
N(8) exhibits a step like behaviour. Using these data
we construct a log-log graph of N(8) versus §. If a
fractal dimension exists then for an adequalely large
range of § values, a slope should be visible on the
graph defining the fractal dimension D:

N8 a )
nf ———iv } = D in|l — |
n(N(amin)) " (amin) &

We compute the curvature C and the torsion T along
the closed material lines vusing second order accurate,
periodic, cubie spline interpolation. In this way, we
define three functions of the arclength & for curvature,
torsion and velocity V,,,. The latter is obtained directly
from the Biot-Savart law. Employing one-dimensional
Fourier transforms we calculate their spectra defined
as

oo
5 [x© x@as= [ Exwae ©
0
where the dommy variable X stands for €, T or Vi
and k denotes wavenumber. The present methodology
is similar to that employed in [13]. It essentially
calculates statistics by ensemble averaging treating
each material loop as a single realization of the
statistical system. ‘

The Reynolds number has the value Re = L& =
5000, where [” is the vortex circulation and v is the
kinematic viscosity. The Taylor scale based Reynolds
number is Re; = 427 The box size is [y = 2.04]
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Fig 1 Material fines tangle at initial and stoppage times To serve clarity, only one eighth of the cotmputational box is shown

These values and the vortex positions are chosen to be
the same as in [B] so that the dynamics of the Aow are
familiar The initial conditions include 192 randomly
placed vortex rings (Fig. 1 of [8]) and an equal number
of material rings (Fig. 1). The length of the latter is
L = B69 91 and it is discretized into N = 28940
material points. As it is observed in [8] the calculation
presents an initial transient which corresponds to a
period of intense recomnection rate and very fast
energy decay. This transienl ends at around ¢ = 0.05
where a decaying turbulence state appears with an
almost copstant dissipation rate (¢) ~ 42. Since this
transient is an arlifact of the initial conditions, we
have chosen to report our findings after this transient
has ceased. The results are made dimensionjcsfs in the
following manner: t = %, X o= %, o = 5—;:“1 wheie
t', x', o' are dimensional and R is a reference initial
vorlex-ring radius. We have chosen /"= 1 and £ = [.
Using the initial value of the turbulence intensity u =

1/%}3 = 3.87 (with u; the velocily fluctuations and

E=1 ,?m»l (it} the turbulence kinetic energy) as
a scale for the velocity of conveelive motions and the
size of the largest resolvable eddies (equal 1o half the
box size) as a scale for the length of the conveclive
motions, we find the inertial time scale te = 0.26.
Therefore, the numerical solution stoppage time of
te = 0.09 is of the same order as (he large eddy
turnover time which represents the largest correlation
time in fully developed turbulence

InFigs. 1 and 2 it is observed that due to turbulence
action the length of the material system grows rapidly.
Also cbserved in Fig. 2 is that the tangle has a
fractal dimension D = 1.97 over a significant 1ange
of scales at stoppage time. At the same time, its length
is L® = 2857.82 (L°/L" ~ 3.3) and it is discretized
into N¢ = 69375 material points. L¢ exceeds by a
factor 455 the lengthiest of the initial material loops.
In addition, the average discretization length on the
lines is As = 0.04 and the average intetline spacing

isly =,/ lg /L% =0 055.1n {14] a monotonic increase
in the fractal dimension of a tangle of quantum line
vortices was found. Instead, the present investigation
indicates a possible saturation of the malerial tangle
dimension lo a value slightly smaller than 2 or in
other words the system of lines tends to become a
malerizl sheet. This comparison points to the different
physics of material and vortex lines but also to a
possible effect of viscous forces and turbulence decay
since in [14] the system was conservative. The present
turbulence is three-dimensional, dynamic and has
non-Ciaussian features (non-zera third order structure
function). Despite these, by applying the box counting
method 1o a single material line of length LE=21.08
and N{ = 514 number of poinls (compared to the
initial values of L? = 6.27 and of N0 = 209), it was
found that the Jatter failed to become fractal as it was
also reported in {5] for a two-dimensional, Gaussian,
kinematic (urbulence. This indicates that the fractal
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dimension observed in Fig. 2 is due to the existence
of many material loops.

In Fig. 3 the histograms for curvature, torsion and
Lageangian velocity length are shown. These quanti-
ties exhibit different behaviour. Torsion’s histogram is
approximately symmetric around 0. In contrast to cur-
vature it does not present long tails. The Lagrangian
velocity histogram presents a fatler peak than the
other two. These observations are in agreement with

the spectra of the same quantities seen in Fig. 4. The
torsion spectrum is flat for a wide range of scales and
then presents a decay regime with a large scaling ex-
ponent. In comparison, the curvature spectrum pos-
sesses the same structure but the absolute value of
the decay regime exponent is much smaller. The lat-
ter indicates that (relative to torsion) high curvature
values are more energetic. This concurs with the tail
observed in the histogram of curvature. The physical
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values of lorsion and curvature exhibit a spiky profile
along the material lines which is consistent with their
flat spectrum al low wavenumbers. The Lagrangian
velocity spectrum presents also two discernible scal-
ing regimes.
By comparing the three geometric specira with the
energy spectrum in  [8], we observe hat their low
wavenumber scaling regimes terminate al approxi-
mately k = 40 and that they correspond to both the
inertial and viscous regimes of the latter. In addition,
the apparent cut-off in the geometric specira is shifted
by approximately a decade toward the high wavenum-
bers compared Lo the cut-off in the energy spectrum.
The curtent turbulence model is inspired by pre-
vious DNS studies of homogeneous, isotropic urbu-
lence [9,15] that suggest the existence of coherent
vorticity in the form of vortex tubes over all scales
of motion. The model was shown to reproduce key
Mavier-Stokes dynamics and kinematics [8,16].
However, it is not certain that the present results
coincide with the phenomenology of vortex tubes in
actual turbulence. This is becavse the latter lubes in-
teract with Lhe incoherent bath of turbulent vorticity
(inside which they reside) and as a consequence their
behaviour is modified. One way of addressing this is-
sue is by noticing that in [17] it was found thal the
coherent tubes of the flow contained 73% of the (o-
tal Aow entrophy and that the non-recognizable back-
ground vorticity contained the 1est 27%. Therefore, it
is reasonable to expect that various physical aspects
(like the ones investigated here) might be mostly dete-
mined by the interactions between the coherent vortex
structures (which are [ully captured in our calculation)
rather than by the interactions between the tubes and
the unorganized vorticity or the pure effect of the lat-
ter, Certainly, this is the case for key quantities like
energy spectra and vorticity pdf’s as shown in [17] In

the same work (Figs. 1 and 4), it was also remarked
that the coherent vorticity is nearly indistinguishable
from the total one.

Admittedly, the above arguments are heuristic and
only a future calculation of the same problem with
DNS (accompanied by careful comparison of the two
sets of results), could lead to definite conciusions.
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