LBL-37238
UC-403

7/

E Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA

. é
' EARTH SCIENCES DIVISION
Low Frequency Elastic Wave Scattering by
an Inclusion—Limits of Applications
R. Gritto, V.A. Korneev, and L.R. Johnson
May 1995
( T - TmTmTTT - —“"——\j

. ¢
“ M N :
LNV IV S 78 ST T
AL "};!owé- Ulakf" Bk

Prepared for the U.S. Department of Energy under Contract Number DE-A C03-76SF00098




DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is belicved to contain correct information, neither
the United States Govemment nor any ageacy thereof, nor The Regeats of the
University of Californiz, nor any of their employees, makes any warranty, express or
implied, or assumes any legal responsibility for the accuracy, completeness, or
uscfulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference hercin to any
specific commercial product, process, or service by its trade mame, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United Suates Government or any agency
thereof, or The Regeats of the University of California. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States
Govermnment or any agency thereof, or The Regeats of the University of California.

Available to DOE and DOE Contractors
from the Officc of Scientific and Technical Information
P.O. Box 62, Oak Ridge, TN 37831
Prices available from (615) 576-8401

Available to the public from the
National Technicz] Information Service
US. Dep of C
5285 Port Royal Road, Springficld, VA 22161

Lawrence Berkeley Laboratory is an equal opportunity employer.



DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.



LBL - 37238
UC- 403

Low Frequency Elastic Wave Scattering by an Inclusion

Limits of Applications

Roland Gritto, Valeri A. Korneev and Lane R. Johnson

Earth Sciences Division
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

Data processing was done at the Center for Computational Seismology, Lawrence Berkeley Laboratory, under
support from the Director, Office of Energy Research, Office of Basic Energy Sciences, Geosciences Program,

through U.S. Department of Energy under contract DE-AC03-76SF00098.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED @

T S oon e Bl ol P



Low Frequency Elastic Wave Scattering by an Inclusion - Limits of
Applications

Roland Gritto, Valeri A. Korneev and Lane R. Johnson

Department of Geology and Geophysics, and Center for Computational Seismology,
Earth Science Division, Lawrence Berkeley Laboratory, University of California,
Berkeley, California 94720

ABSTRACT

The present investigation considers various approximations for the problem of
low frequency elastic waves scattered by a single, small inclusion of constant elastic
parameters. For the Rayleigh approximation containing both near and far field terms,
the scattered amplitudes are investigated as a function of distance from the scatterer.
Near field terms are found to be dominant for distances up to two wavelengths, after
which far field solutions correctly describe the scattered field. At a distance of two
wavelengths the relative error between the total and the far field solution is about 15%
and decreases with increasing distance. Deriving solutions for the linear and quadratic
Rayleigh-Born approximation, the relative error between the nonlinear Rayleigh
approximation and the linear and quadratic Rayleigh-Bomn approximation as a function
of the scattering angle and the parameter perturbation is investigated. The relative
error reveals a strong dependence on the scattering angle, while the addition of the
quadratic term significantly improves the approximation for all scattering angles and
parameter perturbations. An approximation for the error caused by linearization of the
problem, based entirely on the perturbations of the parameters from the background
medium, and its validity range are given. We also investigate the limit of the wave
parameter for Rayleigh scattering and find higher values than previously assumed. By
choosing relative errors of 5%, 10% and 20% between the exact solution and the Ray-
leigh approximation, we find the upper limits for the parameter k,R to be 0.55, 07

and 0.9, respectively.
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1. Introduction

Scattering of seismic waves is a fundamental process in the propagation of waves through the
Earth. In recent years, numerous authors have turned to the theory of scattering to describe the compli-
cated nature of seismograms that occur in various places, believed to be caused by inhomogeneities and
sequences of layering within the structure of the Earth. Different scale lengths are the focus of attention,
varying from mantle (Haddon and Cleary, 1974; Doombos, 1976; Aki, 1980), over crustal (Aki, 1969;
Wu, 1982; Sato, 1984), to regional and even local scales on the order of a few meters (Wu and Aki,
1985; Herraiz and Espinosa, 1987; Sams and Goldberg, 1990). The common objective of these studies
is to apply statistical approaches to determine the heterogeneity and the elastic parameters of the
medium and to distinguish between different attenuation processes like intrinsic and scattering atienua-
tion (Frankel and Clayton, 1986; Frankel and Wennerberg, 1987; Frankel, 1991). Lately, the theory of
localization, well established in quantum mechanics, solid state physics and optics, was introduced to
seismology (O’Doherty and Anstey, 1971) to investigate scattering brocesses during propagation, and to
determine possible limits in wave propagation (Richards and Menke, 1983; White, Sheng, Zang angd
Papanicolaou, 1987; White, Sheng and Nair, 1990), although presently it is unclear whether the com-
mon approach of treating the Earth as a self averaged random medium is valid (Shapiro and Zien,

1993).

As an alternative to statistical methods, deterministic approaches are a valuable tool to estimate
local parameters by direct measurements, Such approaches require exact solutions for the scattering
problem, but only a few exist for special cases. Even though these cases are based on simplified
geometries for the numerous shapes and sizes of inhomogeneities that are present in the Earth, they are
difficult to implement, and hence solutions in terms of asymptotic approximations are developed. The
assumptions used in the derivation of asymptotic solutions are usually expressed in the form of strong
inequalities where some combination of parameters is assumed to be much less or much larger than
unity. For instance, for the case of Rayleigh scattering it is assumed that the parameter kR, where k is
the wavenumber of the incident wave and R is the radius of the scatterer, satisfies the condition

kR <« 1. In the same manner, for the case of linearizing the inverse problem, we assume "very small"
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relative deviations of elastic parameters and density. Such assumptions are convenient at the stage of
mathematical development, but they present problems when attempting to determine the actual bounds
on parameters during application of the results. Indeed, in realistic situations while operating with
parameters having finite values, there is always a problem in justifying the validity of the approximation
and determining the accuracy of the solution. What is the actual difference between the exact solution
and the approximation which has been used? What are the upper limits of the parameters which can be
used and still retain a specified level of accuracy in the solution? For the case of Rayleigh scattering of
elastic waves, it appears that the limits of the approximation have not yet been quantified. An addi-
tional problem occurs when more than one assumption is involved in that they may be contradictory.

This is a possibility for the case of Rayleigh scattering (@ — 0) in the far field (r — o), where the

wr . . . . . .
parameter —— is assumed to be large. The intention of the present paper is to investigate the accuracy
»

of several asymptotic solutions and quantify the limits under which these approximations are applicable.
We present the error for the application of the asymptotic solutions as a function of various parameters
and estimate under which conditions a given approximation provides an acceptable solution to the

scattering problem.

Recently, Korneev and Johnson (1993a, 1993b) derived a solution for the scattering of an elastic
P wave by a spherical inclusion of arbitrary contrast and developed asymptotic solutions for this prob-
lem. We investigate their low frequency Rayleigh approximation which is valid for an arbitrary distance
between the observation point and the inhomogeneity and compare it to the solutions based on near
field and far field approximations. We present the validity range for these limited approximations with
respect to the distance of observation and discuss the relative contributions of the near and far field
terms to the complete Rayleigh approximation. It should be noted here that, while these approximations
were derived from the exact solution for a sphere, they depend only upon the volume of the scatterer
and not upon its shape, and thus should be valid for the general class of inclusions with approximately
equal dimensions.

The Rayleigh approximation can be used to model the scattering process of low frequency waves

by an inhomogeneity. A common goal in seismology is to determine the elastic properties of this
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inhomogeneity by inversion techniques. However, since the dependence of the solution on the elastic
parameters is nonlinear, the inversion of the data often is preceded by a linearization of the problem.
For this purpose, we derive a linearized solution in terms of the elastic parameters and assess the error
as a function of their perturbations. Furthermore, the improvement of the approximation by accounting
for higher order terms is investigated. The determination of the relative error is based on the parameter
values of the inhomogeneity and the background medium. Often these values are unavailable, particu-
larly in the planing stage of an experiment when anticipated errors play an important role. Therefore,
we develop an equation for the approximate error due to linearization of the problem which is based
entirely on the estimated parameter perturbations from the background values. Finally, we investigate

the upper limit for the Rayleigh approximation (kR << 1) as a function of parameter perturbation.

2. Rayleigh approximation for an elastic sphere of arbitrary contrast

A derivation of the exact scattering solution for a homogeneous elastic sphere was given by Kor-
neev and Johnson (1993a, 1993b). In their second paper they derive a low frequency approximation for
a spherical inclusion. However, because of its low frequency range, this approximation simultaneously
provides a solution for a wide range of arbitrary shaped 3-dimensional structures. For reasons of clar-

ity, we restate the exact solution again and follow their derivation of the low frequency approximation.

The investigated scattering problem consists of an elastic inclusion defined by the parameters A,
; and p; (in the following, the index v=1 denotes the medium of the inclusion) embedded in a homo-
geneous medium with constant parameters A, W, and p, (in the following, the index v=2 refers to the
background medium). The geometry for this situation is shown in Figure 1. A joint Cartesian (x,y,z)

and spherical (r,0,0) coordinate system with its origin at the center of the inclusion is considered.

Throughout the paper, we will use an incident plane P wave of the form

i@ - —2)
3 VP‘»

U = ¢ 3 = Uye'® ¢Y)




i Scattered Wave

Inhomogeneity

Y

Background

Incident Plane Wave

Figure 1 Geometry of the problem. The properties of the inhomogeneity and the background are
denoted by v = 1 and v = 2, respectively. A plane wave is incident in the positive z direction, while

the observation of the scattered wave is a function of 0 and r.

e —— R = S ————— s, s
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which is traveling in the background medium in a positive direction along the z-axis. Uy denotes the
Fourier transform of the incident wave. However, at the end of this section, we will provide a factor
that accounts for an incident spherical wave generated by a point pressure source.

In the frequency domain, the total solution to the scattering problem can be written as a sum of

the incident and the scattered fields

U =Ue™ = (Uy + U, + Uye'™ V)
U, and U; denote the scattered P and S waves, respectively.

For the case of a plane P wave impinging upon a sphere, the total scattered fields can be

represented as

U, =0, + U

-ilt— & hy (ke $0) .
DIECE l){a, H(lﬂ) et —h,-l(k,,r)] Picose)  — 2D) SPeerD g }

= k,r k,r b 3]
hy(kyr) . i hk,r)| OP;(cos®)
+ b [l(l+1) r Pi(cosB) £ + [h[_](/\sl’) - or ] % 0 ]} 3

where &, (x) are spherical Hankel functions of the second kind and P; are the Legendre functions. The
coefficients a;, and by, depend upon the properties of the sphere as well as the background medium.
They also depend on the wavenumber of the scattered fields. For a detailed discussion of the derivation

we refer to Komeev and Johnson (1993a).

For the development of the low frequency approximation, we only use those terms of the exact
solution that are of lowest degree in frequency. These terms (®% are of third order and appear only in

the first three coefficients (/=0,1,2) of the exact solution.

3

£3 5(7&1—7&2) + 11— Ha

l'? l
2
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Thus, we obtain a low frequency approximation with no restrictions upon the elastic parameters as:

with
U, = [U,,(e)]r P+ [U,,(e)]e ]
, %(7»1-7\0)'*111"}»12 p 2(p 2
=A{|-= WE(Z,) + | == - 1|W2.(Z,) cosd + =| = - 1| L We.(Z,) (1-3cos20)| £
2 1,3 s P2 ’ 3| D Lt
5‘('2-7»1"'}11)‘*'}12
i L W{(Z)sine+2ﬁ-1-ﬁwq(2)sinze ] (62)
P2 o B DR
U, = [Us(e)]r o+ [U,.(e)]6 8

B {[2[ﬂ— 1] 5 (Z,) cos® + 2[3-‘-— ]%wg(zx) (3cos0 - 1)] £

2 Ha
3! . 2! Y . ~
-— - 16 (Z,) sin® — 1= W5 (2,
+ [ lp2 ] 16 (Z;) sin® + [!»lz D Wie (Z,) sm26j‘ 9} (6b)
The new functions are defined as follows

—ik r ~ik r

_ 2V e?* _ 2V e ”
A=k ¢ r B =k & r @

where V is the volume of the inclusion, and




Wg(Z,) = 1- —

5Z,) = Z

1+ iZ, 9i—4iz2-9Z,
wE(z,) = 1-2—5+ , WE(Z,) = 1+ —5—F
ZP ZP
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W) = 1- zz , W) = 1+ 3———-—23—
1+ iZ 3i-iz2-3
W{g(Z‘,) = 211 ’ W‘.;.G(Zp) = p3 ZI’
ZP ZP
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b@) = ¥@) = 55— ®
with
®

Z, =k,r= “Z’ . Zy=kr= V: ©)

The above approximation has used the lowest degree in frequency only, and is based on the assumption

that

< 1 10)

where Vi, denotes the minimum velocity and k., represents the corresponding wavenumber. This
result, generally known as the Rayleigh approximation, does not depend upon the shape of the inclusion

but only upon its volume.

The W functions in equation (8) contain the distance dependence of the observation point from
the center of the sphere and are valid for all values of r 2 R. Thus, the expression in equation (6) is a
complete solution containing near and far field contributions. From this solution it is evident that the P
wave of the scattered field contains a contribution in the 8-direction, while the S wave contains a factor
in the f-direction. Thus, the P and § waves are not decoupled and their polarization is complicated in
the near field. However, as the distance of observation increases, the relative contributions of the W

functions change in such a way that the solution takes on the form of the far field approximation.
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To obtain the far field approximation, we have to satisfy the following conditions for the W func-
tions in their limits:

Wi (Z) =1 (A1)

| Wz | =1, [ma =1, |[m@ | =1, [we@ | =1,

=0 (12)

| Wh@) |=0. |wa@) |=0, | w@|=0, |m@)

In this limit, the scattered field can be divided into an #- and a 6-component, both revealing a %

dependence for scattered waves in the far field:

3
ik rJ A=A+, 2
U =g 22 - + [—p—‘— l]cose+ %[ﬂ— 1] L (1-3cos0) 7(132)
T [ S(SAtpH, P2 Ho
22
v & o uy Y A
Us = k,." E ; —'[‘E - ] sing + E‘ - I]B' sze} 0 (13b)

The natural polarization in the - and f-direction for the P and S wave, respectively, is evident.

The effect on the amplitude of the scattered field of the ratio between R and the wavelength 4,

of the incident P wave can easily be addressed by putting the solution (6) in the form

U

3 r
, +U, = [k,,R] F(Z,.0) = |2n:—| F(Z,.0) (14)

A,

(using Z, =y Z;) where the function F(Z,,0) also depends upon the parameter perturbations, but does

not depend on the radius R of the inclusion. Thus, when R — A, the amplitudes increase until a max-

imum is reached for the Rayleigh limit (kl,R] i

In the near field where Z, < 1.0, Z, < 1.0 the P and S components of the scattered field may be

. . . . " ~ . ~ik —ikr .
combined to form an asymptotic solution depending on both £ and 6, by expanding ¢ " and e in

equation (7) and keeping only the lowest degree in Z,.

U, = VJ

2(7“-%)*”1-11—“2

4nr3 ';— 21 3 Z, + %{ﬂl— - 1]c059 zp’-’ +i(l - %)[ﬂ -1 %—(3cos29—1) ;
w l S GMH)H, T P2 Ha

Ay o il P el e S ™ |y ar e & ey T —" — i, SIS — sy e g e rd -t ; gy e« e =
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27 | p2 Ha

< Z n
- [M [—p—‘ - 1] sin Z? + iy?[-‘fl - 1] Fpsin%] 9} as)
With the definitions for Z, and Z, in equation (9), it becomes apparent that the amplitude for the near

field approximation contains components which are proportional to % and Lz The sum of the £ and
r

é-componem indicates the complicated polarization, as the P and S-wave are not decoupled yet.

So far, we have treated the scattering problem considering an incident plane P wave with a source
located at infinity. However, the problem can as well be addressed for the case of an inhomogeneity in
the near or far field of a point pressure source exciting a spherical P wave

- ikpro

U0=—V

(16)

To

where r is the distance between the point source and the center of the inclusion.

The consideration of a spherical incident wave, introduces additional functions for the distance depen-

dence of the scattered field of the forin

Co=y¢
-1
Cl = ZpO
Z,0
2 .
o0 —3iZ,,-3
c, = ZoT3E 3 an
szo
with
4 @rg
(1=r—0, Zyo = ko = v,

The C; have to be multiplied onto those W; functions in equation (8) that have the same degree inlto
provide the correct distance dependent functions for the case of a single point pressure source at an
arbitrary distance from the inhomogeneity. However, in this study we address the problem of an
incident plane P wave only. This restriction permits all of the displacement fields to be represented in

terms of unitless values for the purpose of simplicity in presenting numerical results.
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3. Comparison between low frequency total solution and the approximations in the near and far

field

For the comparison of the various approximations listed above, we compute the scattered ampli-
tude for a given spherical inclusion with radius R along a profile of observation extending from r = R
(near field) to r = R (far field). The profiles are computed for various scattering angles between 6 = (°
and 0 = 180° (symmetry exists along the 0°—180° axis of incidence) to present a qualitative view of
the angular dependence. The results are computed for an inhomogeneity with a 10% increase in V, and
V. velocity as well as density with respect to the background. The structure (eq. 14) of the scattered
field makes it possible to investighte the unitless function F independently of the radius R of the inclu-
sion, thus producing results with more universal application. In Figure 2 (a,b,c) absolute values of the
r-component of F(Z,,6) are plotted as functions of Z, = k,r of the incident wave for three different
angles 0 = 0%a), 90°(b), 180%c). In order to compare results of a different geometry with these
curves, the minimum value of the parameter &, R has to be determined for the new geometry, and sub-

sequently the normalized amplitudes to the right of the new limit on the abscissa will be comparable

3
after multiplication by the comesponding value of [kl,R] . This minimum should be equal to or less

than the Rayleigh limit [k,,R] - which depends upon the parameter perturbations. A detailed discus-
1
sion on the validity range of the Rayleigh limit is presented in section 5.

For each value of 0 in Figure 2 (a,b,c) three curves are shown, representing the f-component of
the total field (solid line, eq. 6), the near field (dashed line, eq. 15), and the far field (dotted line, eq.

13) of the Rayleigh approximation. The graphs are plotted using a logarithmic scale for both axis. Thus,

the far field solution with a distance dependence of % appears as a straight line with a slope of -1,
whereas the near field solution revealing both a % and L., dependence produces two constant slopes. In
3
the very near field the i,, term is dominant, creating a slope of -2, while for larger distances the domi-
r2

1 . . - .
nance of the — term is apparent by a change in slope to -1. The transition between these two slopes is
r

defined by contributions from both factors. However, the application of the approximations at various
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Figure 2 Normalized modulus of amplitude factor F(Z,,8) (eq. 14). Radial component of the low-

frequency scattered fields for a high velocity and high density inclusion of +10%.
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distz'mces of observation requires a careful investigation of their validity range. All curves are com-
puted between k,r = 107 (r = 1R) and k,r = 10° (r = 10°R), although only the total field is valid for
the whole range, as we found from comparison with the exact solution for the sphere. The near field
solution is applicable in the vicinity of the inhomogeneity, whereas the far field yields correct values at
a greater distance from the inhomogeneity only. This is supported by Figure 2a). The total field solution
coincides very well with the near field solution for small values of k,r, whereas the discrepancy
becomes larger for greater distances of observation. Similarly, it differs from the far field solution in
the near field, while asymptotically, the two solutions merge in the far field. The oscillatory nature of
the total solution in the F- and the é-component is based on the near field contribution of the S wave
(ks vector in the F-component) and P wave (k, veclor in the 6-component), respectively. The interfer-

ence between both components is present in the near field only and decreases in the far field.

The most intriguing result is the large amplitude difference between the total and the far field
solution of magnitude (~300) for the very near field &, r = 1072 (r = R). This difference decays con-
tinuously until good agreement is reached at a distance of approximately k,r = 4n (r = 2X). Between
k,r = 1072 and k,r =4n/10 (r = 0.22), the near field provides a better approximation than the far field
solution. In between these distance; (0.2A < r < 2)), a range that we refer to as the mid field, both
solutions present an alternating fit to the total field because of its oscillatory behavior. Figure 2a)
presents pure forward scattering (0 = 0°), while Figures 2b) and 2c) show the results for a scattering
angle of 8 =90 and O = 180" (backscattering), respectively. It is evident that the main features
described above still apply in these cases, although the amplitude difference between total and far field
for r =R decrease by one order of magnitude for 6 = 90°, before it regains the initial value for
6 = 180°. For the scattering angle of 8 = 90°, a drop in amplitude of the near field solution below the
values of the far field solution is noticeable yet without bearing as the solution is not valid in this
range.

The 8-components of the same fields are presented in Figures 3a) - 3c). Because the amplitude of
the O-component is zero for 6 =0° and 6 = 180°, we show the results for 6 = 45°, 8 =90° and

6 = 135°. Again, the total field coincides well with the near and the far field solution in the near and
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far field range, respectively. However, it is evident that the amplitude difference in the near field
decreases to a factor of 15 for 6 = 45° and 6 = 135°, and shows no significant difference for 6 = 90°,
while the amplitudes are slightly larger for the far field solution. The mid field region is characterized
by a misfit for both near field and far field solutions, although the total field solution reveals less oscil-

lations.

The oscillatory nature of the total field solution causes similar oscillations of the relative error
between the total field and the far or near field solutions. Because of this it is useful to define the mean
value of the error as the smooth trend through the residuals which minimizes the effect of the rapidly
fluctuating values. For the relative error.in the £-component, we found such a mean value to be 15% at
a distance of 2A. However, the oscillations around this value can be as high as 35% and as low as 2%.
At a distance of 102, for example, the mean error has decreased to 5% with variations between 8% and
2%. The values for the é—componem reveal a smaller error over the entire distance of observation. At
2A, the mean value of the relative error is 2%, with fluctuations between 4% and 0%, and this decreases

<

gradually with increasing distance of observation.

The comparison between the total and far field solution indicates the advantage of near field com-
ponents in the total field solution. The high amplitudes of the scattered waves in the near field suggest
an improvement for the determination of the elastic properlies, under the assumption that corrections for
the incident field can be applied. Thus the deployment of recording instrumentation in the vicinity of
inhomogeneities together with the observation of the incident field could improve the résults for invert-
ing scattered energy. In addition the limit for the validity of the far field solution indicates that for an
observation distance less than 2, this solution produces wrong results, while it can be applied to dis-

tances greater than 2A.

The presented results are computed for an inhomogeneity with a 10% increase in V, and V, velo-
cities as well as in its density with respect to the background. Because we compute the modulus of the
amplitudes, investigations of a negative perturbation produce the same shape and relations of the ampli-
tude curves for equal magnitude of perturbation. To determine the sign of the perturbation, the separate

use of real and imaginary part is more appropriate. However, the investigation of scattering diagrams as
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a function of combinations of parameter perturbations is beyond the purpose of this paper, and we refer

to works by Sato (1984), Wu and Aki (1985), and Tarantola (1986).

4. Extension and evaluation of the Rayleigh-Born approximation

Thus far, we treated scattering solutions for arbitrary contrast in the elastic parameters only. In
equation (4) the coefficients are nonlinear in terms of the elastic parameters A and p. This can be prob-
lematic, if a solution for the inversion of the scattering problem in terms of the elastic parameters is
sought. A common practice, therefore, is to solve the linearized inversion problem. This linearization is
often referred to as the Born approximation. The actual conditions for the validity of the Born approxi-
mation include the size of the inclusion, the perturbation of its elastic parameters with respect to the
background, and the phase shift between different scattered phases (Hudson and Heritage, 1991). In the
Rayleigh scattering regime, the wavelength is large compared to the scatterer size, and for the case of a
weak inhomogeneity, the consideration of a possible phase shift can be neglected. Thus, for this case,
the Bomn approximation is valid, and is often referred to as the Rayleigh-Born approximation. To linear-
ize the problem, the coefficients are expressed in a converging binomial series expansion assuming the
perturbations in the parameters are smaller than the background values. The approximate solution is
found by keeping the linear term of the series expansion while disregarding higher orders. This step is

valid only for small perturbations.

1A=l Iy =1 | lp;~psl
18Al _ MAs <1, ol _ it <1, 18! _ P1—P2
A s Mo Ma P2 P2

<« 1 (18)

Expanding the coefficients in equation (4) in terms of the elastic parameters and keeping the first terms

only yields a linearized solution to the scattering problem which has the form

u® = o + U@

with
1 %8“8” 5 28
Ud = A4 |- 1 WE(Z,) + 2B WE,(Z,) cosd + —3——“72 W8.(Z,) (1-3cos?0)|
5(77»2+H2)+H2 P2 Ha
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- [%P— Wy (Z,) sin® + 2%«? W4,(Z,) sin28 J é} (19a)

U = B{[ 222wt 2) cose + 2i—yw @) (3cos29—1)}

+ [ i" 50(Z,) sin® + i—“y Woe(Z)stB:l } (19b)
2

In order to evaluate the error made by applying the linearized solution, we go a step further and
use the linear and the quadratic term of the expansion for the coefficients in equation (4) and derive a
more exact approximation to the nonlinear solution which we will refer to as the quadratic approxima-

tion. This gives
2

where

2

3 iSMSp}

" ] ) A+ ] [2 &

U = A -3 -3 T | WE(Z,) + o W5,.(Z,) cosb
113 113

> [2 7&2‘*'!»12] +ibo [2 [2 A-?.'*'le] +l12}

+ 2[_5& - l[—E] (3+2T)]T W5.(Z,) (1—3cor9)]

3 1E) 15
30 we, 2,) siné + 2 au_2 (&) G+2P)|Y W8y(Z,) sin20 | 8 (202)
P2 Ha 15 Ha
U® = 8422 wi () coso + 2| -2 (3+2T) Y W5.(Z.) (3cos® - 1)| £
P2 B, 15 H
+ [_ép_me ) sing + |H_2Z [E&]-(3+273)]7 Wio (Z,) sinZS} é} (20b)
P2 Mo 15{ps

Equations (6), (19) and (20) are the basis for the evaluation of the error in approximating the non-
linear solution. The evaluations are undertaken in the far field of the inhomogeneity, allowing the appli-

cation of the commonly used far field approximation. First, we evaluate the error in terms of the
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scattering angle to investigate the possible effects of the scattering direction. Therefore, we determine
the amplitude of the scattered field for all angles between 0° and 360° using the three equations men-
tioned above. The result is given in Figure 4. For both components, the amplitude values of the linear
approximation exceeds the nonlinear solution, while the quadratic approximation underestimates it. This
is caused by the alternating sign in the series expansion with increasing order.

A problem for the estimation of the relative error between the approximations and the nonlinear
solution for every scattering angle arises from the vanishing amplitude values at 6 = 0°, 75°, 180°,
285°, 360°. These singularities produce unphysically high values for the relative error. Therefore, we
will relate the error in the £- and 6-component to the mean square amplitude

T

U2 = -;— jlusc(e)lf sin@ d6 @n

Here, ¢ = r,0 denotes the components of the scattered wave. Hence the relative error becomes

L) — : l/
[ve@ - u.®) |72 @)

Ael® = —

Wiede

where € = 1,2 represents the linear and quadratic Rayleigh-Bomn approximation, while UP(8) and
U..(6) denote the scattered field of equations (19, 20) and (6), respectively. Thus, we normalize the
error for each component by the average scattered amplitude of the same component. Figure 5 reveals
the results. For the £-component, a relatively smooth distribution of the error can be seen. The scatter-
ing problem is symmetric along the 0°-180° axis. One evident feature is the decrease of the error
between the forward and the 90° scattering direction by a factor of ~ 3. Further, it can be seen that for
this particular example of a velocity and density perturbation of +10%, the introduction of the quadratic
term in the series expansion reduces the error compared to the linear approximation by a factor of more
than 5. The same improvement is found for the 8-component. Distinct lobes at angles of approximately
45° to both sides of the axis of wave incidence are visible. For both components no particular
difference between forward and backscattering is evident. This representation of the error reveals the

strong dependence on the scattering angle and provides some insight in the improvement to be gained
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Figure 4 Amplitudes of scattered fields as a function of scattering angle.
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by taking into account the quadratic term in the series expansion.

Next, in order to estimate the error as a function of perturbation in the elastic parameters, we
integrate the difference between the Rayleigh-Born and the nonlinear approximation over all scattering
angles 0

T

ue=u,) = % IIU,ﬂ:’(e) - U, (0 sinB d8 23)

and relate it to the nonlinear approximate solution integrated over all scattering angles 6.

T

U.2= % 1 U, I? sin d6 24)

This allows us to compare the total average scattered amplitude for the nonlinear and the approximate
solution and investigate it as a function of parameter perturbation. Hence the error becomes

TO-U. |2

rr2
Usc

Ae® = @5)

where the notation is equivalent to equations (21) and (22). The result is shown in Figure 6 for positive
and negative parameter perturbations in A, pt and p. The quadratic approximation reveals a smaller error
compared to the linear approximation over the entire range for both cases of a positive and negative
perturbation. However, the best improvement is achieved for perturbations less than 20%. While -100%
constitutes a lower limit for the error, it was found that above a perturbation of +200%, the error for the
linear approximation becomes less than for the quadratic approximation (although physically this is an
acceptable statement, mathematically the extension beyond +100% is incorrect, since the assumption for
the series expansion of the elastic parameters (eq. 18) was that the absolute value of the relative param-

eter perturbation remains smaller than one).

It should be noted that the solution in equation (6) depends linearly on the perturbation in density.
Therefore, the scattering problem for an inhomogeneity with a change in density only, can be exactly

described by the linear approximation in equation (19).
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The difference in the errors between the linear and quadratic Rayleigh-Born approximation can be
used in the inversion of a linearized problem. After the first iteration of the inversion, the quadratic
Rayleigh-Born approximation is computed and the difference from the linear approximation can be
applied to adjust the first preliminary result. The corrected result will be the input for the second itera-
tion. This scheme, which should ensure a faster converging solution to the problem of inverting for the

parameters of a scatterer, is the topic of current investigation.

In the following, we present a quantitative estimation of the relative error of the linear approxi-
mation based purely on the relative perturbations in the elastic parameters from the background values.
This provides an important estimate for the error due to linearization of an experiment where no abso-
lute values are available, except for assumed perturbations of the inhomogeneity from the background.
The error is based on the equation (25)

1 1
TO-U.7 |2 _ |wo-uvor |V

2 - Uss:l 32

Us.”

Ae® = 26)

This has the advantage that only perturbation terms of the elastic parameters remain in the resulting

equation. Assuming equal perturbation for -i—i—"- and iu
-§7i=c ﬂl-:c 8—p=nc and y=VS='\/-£ @7
M T TP ’ v, 3
we find
Ae) = __IC—I__ 28)
2V3n?7 + 1

Thus for the case of similar perturbations in the density and the elastic parameters (n=1) this yields %

whereas no density contrast (n=0) produces an error of % The dependence of this error on the pertur-

bation in elastic parameters is shown in Figure 6 (dashed line). A good agreement between the linear
approximation and the estimated error is found up to a parameter perturbation of 20%. The derived
equation provides a means to estimate the minimum error in the total averaged scattered amplitude due

to the linearization of the problem. It should be mentioned that for the case of an inversion, additional
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errors associate with ill conditioning of the experiment and poor signal to noise ratios, for example, will

increase the total error for the estimated parameters of the inclusion.

5. Investigation and evaluation of the Rayleigh limit

The Rayleigh approximation generally is based on the assumption that the parameter k, R is small

compared to 1,

LR = 2 <1, 29)
Vl’

although the actual magnitude of the limit is not known. The value of k,R depends not only on the
wavelength, the velocity of the background, and the dimensions of the scatterer, but also on the pertur-
bations in the elastic parameters from the background values. Therefore, we investigate the Rayleigh
limit of k,R as a function of perturbation in the elastic parameters. For a given perturbation, we com-
pute, for a given value of k, R, the average square amplitude over all scattering angles for the exact
solution for the sphere (eq. 3) and for the Rayleigh approximation in the far field (eq. 13). The two
solutions tend to deviate with increasing k,R for a fixed perturbation value. We determine the Rayleigh
limit from the the value of k, R that is reached for a predefined maximum deviation of these two solu-
tions. The result is shown in Figure 7. We set the maximum deviation between the two solutions to 5%,
10% and 20%. The parameter perturbation was chosen to vary, when possible, between -100% and
+300%. Three different relations between the perturbations of elastic moduli and density were selected.
In addition, the velocity and density ratios are indicated to demonstrate the effect of the parameter per-
turbations. In the presented examples, we keep the sign and increase in perturbation equal for A and |,
while the associated change in p varies in sign and magnitude. Figure 7a) denotes the situation of a
50% reduced density increase in relation to the other parameters. The curves for the Rayleigh limit
show a parallel trend for the different errors, with a smooth flat Jevel between -75% and +100%. For
higher perturbations a slow decrease in the Rayleigh limit is observable. However, towards -100% the
limit drops steeply, indicating a small value for the Rayleigh limit of a very low-velocity inclusion.

This result has a natural explanation in the fact that k, R inside the inclusion becomes large and violates
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the Rayleigh limit condition. Changing the relation between the parameter perturbations will affect the
shape of the curves as seen in the next examples. In Figure 7b), we kept the density at a constant level
which produced a maximum in the Rayleigh limit for perturbations between -25% and -50%. Tﬁis
maximum is caused by the mutual influence of an underestimation of the behavior of the Rayleigh solq-
tion for low-velocity obstacles in the Mie diffraction region (k,R = 1) and a general overestimation of
the trend of the solution at high frequencies. At some point these two processes compensate each other.
Numerical examples illustrating this phenomena and a discussion may be found in Korneev and Johnson
(1993b). For a third relation between the elastic parameters (Fig. 7¢)), the maximum is reached for a
lower negative perturbation with a different amplitude. In both cases the trend of the curves for positive
perturbations remains the same, indicating a continuously increasing deviation between the Rayleigh

approximation and the exact solution.

The results clearly suggest that the Rayleigh limit has a more flexible interpretation than indicated
by condition (29). Depending on the acceptable error between the Rayleigh approximation and the exact
solution, we find values for the Rayleigh limit between 0.3 and 0.8 for a positive increase in parameter
perturbation, and limits of up to 0.9 for negative perturbations. The constant shift between the graphs

for the three errors over the entire range of perturbation indicates a relation between the error and the

Rayleigh limit [k,, RJ i which can be found from the equation
i

se = d [4R]7 30

lim

where A e is the allowed error, and d a constant, defined by the perturbation in the elastic parameters
from the background. In order to approximate the magnitude of d, we go back to the exact solution for
the sphere (eq. 3), and derive a low frequency approximation based on frequency terms up to fifth order
(@°), thus using the first four coefficients (1=0,1,2,3) of the exact solution. By comparing the parameter
k,R of this improved approximation and the Rayleigh approximation based on third order terms (eq. 6),
we are able to evaluate d. Using the notation and assumptions from equation (27) we get in the vicinity
of zero perturbation

2 1
J = 04 |lnit5n 2 /2
64n-+ 1.6
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Thus, for the low frequency Rayleigh approximation (eq. 6), equation (30) provides a means to estimate

the error of the Rayleigh limit with a minimum knowledge of the parameters involved.

6. Conclusions

The intention of this paper was to investigate the accuracy of several asymptotic solutions to the
problem of low frequency elastic wave scattering and to provide means to evaluate scattering experi-
ments in their planing stage. The results were kept in universal format, allowing for a convenient appli-
cation to various scattering problems in seismology, varying from local over crustal to mantle scale

lengths.

We investigated a low frequency total field solution to the problem of elastic Rayleigh scattering
which produced, within the Rayleigh limits, exact results over the entire distance range of observation,
and compared it to pure near and far field solutions. The generally used far field solution cannot be
applied to the case of an inhomogeneily situated within a distance less than two wavelengths from the
point of observation. Within this distance, the near field terms dominate the amplitude of the scattered
wave, and P and S waves cannot be separated. This case, dependent on the wavelength of the incident
wave, may arise in cross hole experiments when the inhomogeneity is located close to the observation
well and in experiments where the scattering object is sited in the uppermost crust beneath the detecting
system. The inversion for the perturbation in the elastic parameters will fail if a Green function is
applied that does not contain the appropriate near field terms. However, at a distance farther than 22,
the near field terms have decayed sufficiendy and the far field solution can be applied. At this distance,
the mean value of the relative error between total and far field solution is 15% and 2% for the £ and 0-
components, respectively. The generalized amplitude distance relations (Figs. 2, 3) can be used to
determine the scattered amplitudes for any case of low frequency elastic wave scattering as long as the
results are normalized by the actual experiment parameter &, R.

The availability of an exact solution enabled vs to compute errors for the application of the Ray-

leigh approximation and associated solutions and investigate them as a function of various parameters.

The representation of the nonlinear Rayleigh approximation as a linear and quadratic Rayleigh-Born
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approximation revealed, for the relative error, a strong dependence on the scattering angle for both the
f- and é-componenL For a fixed parameter perturbation, it was found that the F-component incurs a
larger error for forward scattering than for scattering perpendicular to the direction of incidence. Four
distinct lobes about 45° off the axis of wave incidence developed for the error in the é-componem. In
both cases the application of the quadratic Rayleigh-Born approximation reduced this error by a factor
of 5. These results suggest that if the orientation of primary source, scatterer and receiver are known,

then it is possible to estimate the accuracy of the approximation due to linearization of the problem.

The increase in magnitude of parameter perturbation caused increasing magnitudes in the relative
error for linear and quadratic approximations, although the exact amount depends on the sign of the
perturbation. For a positive increase of 100%, the maximum error amounts to 9% and 17% for the qua-
dratic and linear Rayleigh-Born approximation, respectively. A decrease in elastic parameters caused a
larger error. For the case of a void (-100%), the deviation was determined to be 19% for the quadratic
and 37% for the linear approximation. As a consequence, a more flexible interpretation of the magni-
tude of parameter perturbation is justified. As could be seen, the inequality (eq. 18) represents a very
conservative limit, whereas a linearization in the case of perturbations below ~20% should produce reli-
able results. In the case of inversion for the parameter perturbations, the difference between the linear
and quadratic Rayleigh-Born approximation can be applied to correct the result after every iteration in

the inversion procedure. A faster and more stable algorithm should be the result.

In order to facilitate the estimation of the relative error due to linearization of the problem, we
derived an approximation of the error, entirely based on the deviations in the elastic parameters from
the background. This enables one to estimate the error prior to an experiment based on a minimum of
information and may help to improve the planing of the investigations. We found our equation to pro-
vide an adequate representation of the relative error in the linear Rayleigh-Born approximation for a

parameter perturbation of up to £20%.

One of the assumptions of the Rayleigh approximation is that the value of k,R is small compared
to 1. However, thus far no exact evaluation of this limit has been performed. We investigated the Ray-

leigh limit for k,R as a tunction of perturbation in the elastic parameters. Allowing for various errors
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between the exact solution and Rayleigh approximation, we found surprisingly high values for the limit
over almost the entire range of perturbation between -100% and +300%. Maximum values of more than
0.9 were reached. A relation between the Rayleigh limit and the accepted error as a function of parame-
ter perturbation was found. The high values for the Rayleigh limit allow the validity of Rayleigh
scattering (eq. 29) to be extended further toward the range of Mie scattéring (R — A), and thus open a

broader range for the application of elastic wave Rayleigh scattering.
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