skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Deformable Mirror Materials Issue Assessment

Technical Report ·
DOI:https://doi.org/10.2172/945726· OSTI ID:945726

It was a pleasure to speak with you and Dr. Olivier Guyon about your project to develop a coronagraph and in particular about materials science considerations in the development of the deformable mirror (DM) for the coronagraph. The coronagraph application will demand more of a DM than previous applications with regard to precision, and since the characterization and modeling tools are currently under development, you asked me to comment on materials issues that might impact the DM design and testing. I have not conducted research on this question, and my own research on modeling MEMS has not included DM systems. I am only in a position to discuss some general considerations that may help in developing a research plan for the DM system. As I understand it, the relevant points about the DM system are as follows. The DM surface needs to be positioned to less than 1 {angstrom} RMS of the desired shape, and be stable to 0.3 {angstrom} RMS for an hour. In the ultimate application in space the stability requirements may be greater. For example, the DM shape can be set using a bright star and then allow the coronagraph to be turned to a dim star to collect data for several hours, counting on the mirror shape to be stable. The DM is made of a polysilicon membrane coated with one or more metal layers for the reflective surface and actuated by 32x32 or 64x64 electrostatic actuators on the back side. The uncertainty in the position of any one actuator should be at the few-picometer level or less averaged over the 300-{micro}m region of the actuator. Currently, experiments are conducted that can characterize the surface shape to the 1 nm level, and it is anticipated that the experiments will be able to characterize the shape at the sub-Angstrom level but not in the immediate future. Regarding stability, under relatively large deformations (10's of nm), the DM mirror surface shows no hysteresis at the measurable nm level. Let me begin by saying that I am not aware of any article in the literature that directly assesses surface position stability at the sub-Angstrom level across 100's of microns of surface. Interferometry is typically used for precise metrology over areas this large, but not typically at the sub-Angstrom level. For the purpose of these comments, I assume that it will be possible to measure the precision of the mirror shape and stability at the requisite sub-Angstrom level at some point during the coronagraph development using interferometers or some other high-precision metrology technique. The hope is that the comments at this point may identify some potential issues that can be resolved early in the development to avoid costly surprises in the later stages.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
945726
Report Number(s):
LLNL-TR-404321; TRN: US200904%%130
Country of Publication:
United States
Language:
English