skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of Cross-Field Drifts and Core Rotation on Flows in the Main Scrape-Off Layer of DIII-D L-mode Plasmas

Conference ·
OSTI ID:945675

The flow velocities of deuterons and low charge-state carbon ions have been measured simultaneously for the first time at the crown of the main SOL for low-density plasmas in DIII-D. The dependences of the flow fields on the direction of the cross-field drifts (E x B and B x {del}B) and core plasma rotation were investigated. The measurements indicate that the carbon ion flow direction and magnitude along the magnetic field lines are not necessarily determined by the deuteron flow field, but other physics must also play a role. The deuteron velocities at the plasma crown are high (20-30 km/s) in configurations with the ion B x {del}B drift toward the divertor X-point, while nearly zero in configurations with the opposite B x {del}B drift direction. The flow velocities of doubly charged carbon ions are independent of the ion B x {del}B drift direction, and the measurements suggest a stagnation point in the flow field at the crown of the plasma. Both deuteron and carbon ion flow velocities in the SOL were found to be independent of the direction of core plasma rotation. Simulations with the UEDGE code have been carried out to better understand the underlying physics processes. Including the cross-field drifts in the simulations produced divertor solutions that are in significantly closer agreement with the measurements. They do not, however, reproduce the measured flow fields at the crown for the configuration with the ion B x {del}B drift toward the divertor X-point.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
945675
Report Number(s):
LLNL-CONF-407832; TRN: US0901058
Resource Relation:
Conference: Presented at: 22nd IAEA-FEC, Geneva, Switzerland, Oct 13 - Oct 18, 2008
Country of Publication:
United States
Language:
English