
LLNL-TH-407797

Measuring the Interestingness of
Articles in a Limited User
Environment

R. K. Pon

October 14, 2008

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

University of California

Los Angeles

Measuring the Interestingness of Articles in a

Limited User Environment

A dissertation submitted in partial satisfaction

of the requirements for the degree Doctor of Philosophy

in Computer Science

by

Raymond K. Pon

2008

c© Copyright by

Raymond K. Pon

2008

The dissertation of Raymond K. Pon is approved.

David J. Buttler

Jonathan Furner

Junghoo Cho

Wesley W. Chu

Alfonoso F. Cárdenas, Committee Chair

University of California, Los Angeles

2008

ii

To Popo

iii

Table of Contents

1 Introduction . 1

2 Related Works . 7

2.1 Recommendation systems . 7

2.2 Adaptive filtering . 9

2.3 Ensembles . 9

2.4 Topic detection and tracking . 11

2.5 Trust and quality . 12

2.6 Feature selection . 14

2.7 Document classification . 17

3 Modeling Users . 20

3.1 User model . 20

3.2 Datasets . 20

3.2.1 Yahoo! News . 21

3.2.2 Tagger . 22

3.2.3 Digg . 23

3.2.4 TREC Adaptive Filter . 23

3.3 Evaluation metrics . 25

4 The Basic iScore Architecture . 27

4.1 iScore pipeline . 27

iv

4.2 Basic features for classification . 28

4.2.1 Topic relevancy . 28

4.2.2 Uniqueness . 31

4.2.3 Source reputation . 34

4.2.4 Writing style . 35

4.2.5 Freshness . 38

4.2.6 Subjectivity and polarity 39

4.3 Classification . 40

4.3.1 Näıve Bayesian classifier 40

4.3.2 Non-incremental classifiers 41

4.3.3 Tix . 42

4.3.4 Linear correlator . 43

4.4 Adaptive thresholding . 44

4.5 Initial Evaluation . 45

4.5.1 Overall performance . 45

4.5.2 Performance over time periods 49

4.6 Discussion and summary . 52

5 Multiple Topic Tracking . 53

5.1 Algorithm . 55

5.2 Parameter tuning . 57

5.3 Experimental results . 59

5.3.1 Yahoo! News . 60

v

5.3.2 Tagger . 64

5.3.3 Digg . 65

5.3.4 TREC Adaptive Filter . 69

5.4 Discussion and summary . 71

6 Online Parameter Selection . 72

6.1 Rocchio . 73

6.2 eRocchio . 75

6.3 User variations . 78

6.4 Experimental results . 81

6.4.1 Spacing . 81

6.4.2 Yahoo! News . 82

6.4.3 Tagger . 87

6.4.4 Digg . 90

6.4.5 TREC Adaptive Filter . 97

6.5 Discussion and summary . 98

7 Additional iScore Features . 101

7.1 Language models for interestingness and uniqueness 101

7.2 Phrase interestingness . 102

7.3 Cluster movement . 103

7.4 Topic-driven freshness . 104

7.5 Sliding anomaly detection . 105

7.6 Experimental results . 106

vi

7.6.1 Yahoo! News . 106

7.6.2 Tagger . 107

7.6.3 Digg . 110

7.7 Discussion and summary . 112

8 Online Feature Selection for Interestingness 115

8.1 Correlation . 116

8.2 Online feature selection with näıve Bayes 119

8.3 Experimental results . 123

8.3.1 Yahoo! News . 123

8.3.2 Tagger . 126

8.3.3 Digg . 127

8.4 Discussion and summary . 131

9 Recommendation Results Summary 132

9.1 Yahoo! News . 132

9.2 Tagger . 135

9.3 Digg . 137

9.4 Summary . 140

10 Future Work . 142

10.1 Other user models . 142

10.2 Incremental conditional classifiers 147

10.3 Incorporating semantic information 148

vii

10.4 Analysis of changes in sentiment 149

10.5 Future trends . 150

11 Conclusion . 151

A Implementation . 154

A.1 Producers . 154

A.2 Text analysis engines . 155

A.3 Consumers . 156

A.4 Pipelines . 156

A.5 Data collection . 157

B Other Roads of Research Considered 159

B.1 Multi-role users . 159

B.2 Identifying interesting relationships and entities 160

B.3 Latent semantic analysis . 166

B.4 Cluster interestingness . 167

B.5 Cluster popularity . 168

B.6 Entity interestingness . 169

B.7 Significant n-grams . 170

B.8 Tracking new n-grams . 171

B.9 Experimental results . 172

C Reference Tables . 174

viii

D Statistical Significance Test Results 178

References . 183

ix

List of Figures

4.1 Article classification pipeline. 28

4.2 Topic relevancy. 29

4.3 Uniqueness. 33

4.4 Writing style. 36

4.5 Freshness. 39

4.6 Overall performance of classifiers over the small Yahoo! News

dataset. iScore with näıve Bayes outperforms the best baseline

classifier by 20%. 46

4.7 Performance of iScore (using näıve Bayes) in individual categories

along with the number of articles in each category. 47

4.8 Overall performance of classifiers over the TREC articles. The

iScore classifiers are outlined. 48

4.9 Feature correlation with relevancy in the TREC11 Adaptive Filter

Task. Each color represents a different query. 49

4.10 Performance of classifiers over time periods over the small Yahoo!

News dataset. iScore with the näıve Bayes classifier outperforms

the best baseline classifier by 19.7% on average. 50

4.11 Performance of classifiers over time periods over the TREC articles. 51

5.1 Failure of identifying relevant documents for multiple topics. . . . 54

5.2 MTT evaluation pipeline. 57

5.3 tcluster and γ for Most Viewed Stories from Yahoo! News. 58

5.4 Minimum Precision for Most Viewed Stories from Yahoo! News. . 58

x

5.5 Average performance for the Rocchio Variant, LMClassifier, MTT,

and iScore with/without MTT on the Yahoo! News dataset. . . . 60

5.6 Bottom-10, top-10, and complete average FMeasure for the Roc-

chio Variant, LMClassifier, MTT, and iScore with/without MTT

on the Yahoo! News dataset. MTT is 12.3% better than the lan-

guage modeling classifier on the worst 10 performing feeds/users.

When MTT is added to iScore, performance of the worst 10 per-

forming feeds/users increases by 5%. 61

5.7 Cummulative FMeasure at specific periods for the Rocchio Vari-

ant, LMClassifier, MTT, and iScore with/without MTT on the

Yahoo! News dataset. 62

5.8 FMeasure for the 5,000 most recent documents for the Rocchio

Variant, LMClassifier, MTT, and iScore with/without MTT on

the Yahoo! News dataset. After processing 25,000 documents,

iScore with MTT (Featureset B) has the advantage over iScore

with only the original featuresets (Featureset A). 63

5.9 Average performance for the Rocchio Variant, LMClassifier, MTT,

and iScore with/without MTT on the tagger dataset. Performance

marginally improves by 0.2% for FMeasure when MTT is added

to iScore. 64

5.10 Bottom-3, top-3, and complete average FMeasure for the Rocchio

Variant, LMClassifier, MTT, and iScore with/without MTT on

the tagger dataset. 65

xi

5.11 Average performance for the Rocchio Variant, LMClassifier, MTT,

and iScore with/without MTT on the Digg dataset. When MTT

(Featureset B) is added to iScore (Featureset A), the FMeasure

performance of iScore improves by 3.1%. Although this new iS-

core configuration still has a lower FMeasure score as the Rocchio

variant, it has a higher recall score. 66

5.12 Bottom-10, top-10, and complete average FMeasure for the Roc-

chio Variant, LMClassifier, MTT, and iScorewith/without MTT

on the Digg dataset. 67

5.13 Current cumulative FMeasure at specific periods for the Rocchio

Variant, LMClassifier, MTT, and iScore with/without MTT on

the Digg dataset. 68

5.14 FMeasure for the 5,000 most recent documents for the Rocchio

Variant, LMClassifier, MTT, and iScore with/without MTT on

the Digg dataset. iScore has the advantage in the later time periods. 68

5.15 Average performance of the best filters, MTT, and iScore with/without

MTT on the TREC Adaptive Filter task. 70

5.16 Performance for the last month’s documents of the top performing

filters, iScore, MTT, and iScore with MTT on the TREC Adaptive

Filter task. 70

6.1 eRocchio classification pipeline. 76

6.2 Each area curve is the normalized final FMeasure of each instanti-

ation. A curve for each feeds from the Yahoo! News collection are

shown. 78

xii

6.3 Each area curve is the normalized final FMeasure of each instanti-

ation. A curve for each user from the tagger and Digg collections

are shown. 79

6.4 Selected γ-value over time for a select number of feeds from the

Yahoo! News collection. 80

6.5 Average FMeasure of eRocchio on the Yahoo! News dataset for

various spacings between γ-values. 82

6.6 Overall performance of the Rocchio variant, LMClassifier, MTT,

eRocchio, and iScore with different featuresets on the Yahoo! News

dataset. 84

6.7 Bottom-10, top-10, and complete average FMeasure for the Roc-

chio variant, LMClassifier, MTT, eRocchio, iScore on the Yahoo!

News dataset. 85

6.8 Current cumulative FMeasure performance at specific periods for

the Rocchio variant, LMClassifier, MTT, eRocchio, iScore on the

Yahoo! News dataset. 86

6.9 FMeasure for the 5,000 most recent documents for the Rocchio

variant, LMClassifier, MTT, eRocchio, and iScore on the Yahoo!

News dataset. 88

6.10 Overall performance of the Rocchio variant, LMClassifier, MTT,

eRocchio, and iScore with different featuresets on the tagger dataset.

eRocchio performs the Rocchio variant by 0.8%. 89

6.11 Bottom-3, top-3, and complete average FMeasure for the Rocchio

variant, LMClassifier, MTT, eRocchio, iScore on the tagger dataset. 91

xiii

6.12 Average performance for the Rocchio variant, LMClassifier, MTT,

eRocchio, and iScore with different featuresets on the Digg dataset. 93

6.13 Bottom-10, top-10, and complete average FMeasure for the Roc-

chio variant, LMClassifier, MTT, eRocchio, iScore on the Digg

dataset. 94

6.14 Current cumulative FMeasure at specific periods for the Rocchio

variant, LMClassifier, MTT, eRocchio, iScore on the Digg dataset. 95

6.15 FMeasure for the 5,000 most recent documents for the Rocchio

variant, LMClassifier, MTT, eRocchio, iScore on the Digg dataset. 96

6.16 eRocchio pipeline with weights for soft and hard negatively-labeled

articles. 98

6.17 Average performance of the top performing filters and eRocchio on

the TREC Adaptive Filter task. eRocchio outperforms the best

classifier from TREC11, ICTAdaFT11Ub, by 10%. 99

6.18 Performance for the last month’s documents of the top performing

filters, MTT, and eRocchio on the TREC Adaptive Filter task. . . 99

7.1 Average performance for iScore with the old and new featuresets on

the Yahoo! News dataset. Performance improves by 1.7% when

the new features are added to the original features, MTT, and

eRocchio (Featureset D). 107

7.2 Bottom-10, top-10, and complete average FMeasure for iScore with

the old and new featuresets on the Yahoo! News dataset. Most

of the 5% improvement is for improving the performance for the

most difficult feeds/users to recommend for. 108

xiv

7.3 Current cumulative FMeasure performance at specific periods for

iScore with the old and new featuresets on the Yahoo! News

dataset. The improvements caused by the new features are consis-

tent across all time periods. 109

7.4 FMeasure performance for the 5,000 most recent documents for iS-

core with the old and new featuresets on the Yahoo! News dataset.

There is improvement caused by the new features for all time periods.109

7.5 Average performance for iScore with the old and new featuresets

on the tagger dataset. There is 14% improvement in performance

when these new features are added to the featureset of iScore. . . 110

7.6 Bottom-3, top-3, and complete average FMeasure for iScore with

the old and new featuresets on the tagger dataset. 111

7.7 Average performance for iScore with the old and new featuresets

on the Digg dataset. The addition of the new features leads to a

2.9% increase in FMeasure and a 4.8% increase in T11SU. 111

7.8 Bottom-10, top-10, and complete average FMeasure for iScore with

the old and new featuresets on the Digg dataset. Most improve-

ment is for the worst performing users. 112

7.9 Current cumulative FMeasure at specific periods for iScore with

the old and new featuresets on the Digg dataset. 113

7.10 FMeasure for the 5,000 most recent documents for iScore with the

old and new featuresets on the Digg dataset. The majority of the

improvement with the expanded featureset is found in the early

time periods. 113

xv

8.1 Feature correlation with interestingness for Yahoo! News. Each

color represents a different proxy user/RSS feed. 116

8.2 Feature correlation with relevancy in the tagger dataset. Each

color represents a different user. 117

8.3 Feature correlation with relevancy in the Digg dataset. Each color

represents a different user. 117

8.4 Online feature selection with näıve Bayes. 122

8.5 Average performance for iScore with/without feature selection work-

ing on the Yahoo! News dataset. FMeasure improves by 0.9 FMea-

sure points for Featureset A and 0.4 FMeasure points for Feature-

set E. 124

8.6 Bottom-10, top-10, and complete average FMeasure for iScore

with/without feature selection on the Yahoo! News dataset. There

is improvement for the bottom 10 feeds for both featuresets. . . . 125

8.7 Current cumulative FMeasure performance at specific periods for

iScore with/without feature selection on the Yahoo! dataset. . . . 125

8.8 FMeasure performance for the 5,000 most recent documents for

iScore with/without feature selection on the Yahoo! News dataset.

The most improvement is found in the early time periods. 126

8.9 Average performance for iScore with/without feature selection on

the tagger dataset. Online feature selection improves performance

by 18.9% and 11.1% for Featuresets A and B, respectively. 127

8.10 Bottom-3, top-3, and complete average FMeasure for iScore with/without

feature selection on the tagger dataset. 128

xvi

8.11 Average performance for iScore with/without feature selection on

the Digg dataset. Online feature selection improves FMeasure by

3.7% and T11SU by 25.7% for the Featureset A. For Featureset E,

FMeasure improves by 3% and T11SU improves by 7%. 128

8.12 Bottom-10, top-10, and complete average FMeasure for iScore

with/without feature selection on the Digg dataset. 129

8.13 Current cumulative FMeasure at specific periods for iScore with/without

feature selection on the Digg dataset. 130

8.14 FMeasure for the 5,000 most recent documents for iScore with/without

feature selection on the Digg dataset. There is a significant spike

in performance for feature selection näıve Bayes, starting at the

first period . 130

9.1 Average performance for the Yahoo! News dataset. iScore with

feature selection and the expanded featureset is 24% better than

the best baseline classifiers. 133

9.2 Bottom-10, top-10, and complete average FMeasure for the Ya-

hoo! News dataset. iScore with online feature selection and the

expanded featureset can give much better performance for the av-

erage, worst, and best performing feeds/users than all of the other

classifiers. 134

9.3 Current cumulative FMeasure performance at specific periods for

the Yahoo! News dataset. iScore with online feature selection

and the expanded featureset consistently outperforms all the other

classifiers. 135

xvii

9.4 FMeasure performance for the 5,000 most recent documents for

the Yahoo! News dataset. 136

9.5 Average performance for the tagger dataset. Very high FMeasure

can achieved be with iScore with the expanded featureset (Fea-

tureset E) over the baseline classifiers and iScore in its original

configuration (Featureset A). 136

9.6 Bottom-3, top-3, and complete average FMeasure for the tagger

dataset. 137

9.7 Average performance for the Digg dataset. iScore with feature se-

lection and the expanded featureset (FSNB(Featureset E)) has a

much higher T11SU score and precision than all the other classi-

fiers with a high FMeasure score. 138

9.8 Bottom-10, top-10, and complete average FMeasure for the Digg

dataset. 139

9.9 Current cumulative FMeasure at specific periods for the Digg dataset.140

9.10 FMeasure for the 5,000 most recent documents for the Digg dataset.

iScore with feature selection and the expanded featureset performs

significantly better than all the other classifiers with the exception

of the first time period. 141

10.1 Solr configured for the Yahoo! News dataset, using subjectivity,

polarity, named entities and topic clusters as facets. iScore has

been integrated into this Solr application that allows for the re-

ordering of search results. 143

xviii

A.1 The overall iScore architecture partitioned into three separate pipelines

for experimentation. Output from each stage is stored in the

database. The database contents are dumped into a text file before

being fed to a producer. 158

B.1 Knowledge Flow in Weka. 163

B.2 Precision-Recall curve for PageRank featured classifier. 165

B.3 Bottom-10, top-10, and complete average FMeasure for the best

featureset and other featuresets for iScore on the Yahoo! News

dataset. 172

B.4 Bottom-3, top-3, and complete average FMeasure for the best fea-

tureset and other featuresets for iScore on the tagger dataset. . . 173

B.5 Bottom-10, top-10, and complete average FMeasure for the best

featureset and other featuresets for iScore on the Digg dataset. . . 173

xix

List of Tables

3.1 News collections . 24

4.1 Lexical features. 36

4.2 Word-based features. 37

4.3 Syntactic and structural features. 38

A.1 Objects generated by the NewsItemProducerFromFile2 producer. 155

B.1 PageRank-based features, Part 1 163

B.2 PageRank-based features, Part 2 164

C.1 All featureset identifiers and descriptions, Part 1. 174

C.2 All featureset identifiers and descriptions, Part 2. 175

C.3 Usernames of users in the Digg collection. 176

C.4 RSS Feeds used in the Yahoo! News collection. 177

D.1 Statistical significance test results for the Yahoo! News dataset,

Part 1. 178

D.2 Statistical significance test results for the Yahoo! News dataset,

Part 2. 179

D.3 Statistical significance test results for the Yahoo! News dataset,

Part 3. 179

D.4 Statistical significance test results for the tagger dataset, Part 1. . 180

D.5 Statistical significance test results for the tagger dataset, Part 2. . 180

D.6 Statistical significance test results for the tagger dataset, Part 3. . 181

xx

D.7 Statistical significance test results for the Digg dataset, Part 1. . . 181

D.8 Statistical significance test results for the Digg dataset, Part 2. . . 182

D.9 Statistical significance test results for the Digg dataset, Part 3. . . 182

xxi

Acknowledgments

I would like to thank my official and unofficial committee members, Alfonso

Cardenas, Wesley Chu, John Cho, Jonathan Furner, Dave Buttler, and Terence

Critchlow for their patience and guidance in completing my dissertation. Thank

you, Professor Cardenas, for funding me and giving me research projects in my

early days of graduate school and for your continuous encouragement and men-

torship throughout the years. Thank you, Professors Chu and Cho, for inspiring

me with your classes. Thank you, Professor Furner, for serving on my committee.

Thank you, Terence, for giving me my first experience in a large-scale research

environment and giving me a taste of what it means to be a researcher. Although,

you could not serve on my committee in the end, you helped jump-start this whole

research process. And major thanks to Dave, who has been my technical mentor

and friend throughout this process, giving me some really odd-ball ideas (some of

which paid off. . . and some that haven’t) and even giving me a place to crash while

I was in Livermore. I would also like to thank the LLNL staff, particularly Pam

Mears, Linda Becker, Cindy Bottero, Jane MacNamara, Jim McGraw, Joanna

Allen, Maya Gokhale, and the late Marcus Miller. The resources and funding at

LLNL were invaluable in completing my experiments and my conference travels.

The UCLA staff has also been helpful in my career at UCLA, particularly Terry

Valai and Verra Morgan. There are also some other people that have been helpful

in the writing of this dissertation. The figure regarding the iScore implementa-

tion pipeline was drawn by Bassam Islam. The tagger dataset was made possible

by the gracious anonymous volunteers that have tagged articles for me.

I would also like to thank my friends and family for their support. It has

been a rough few years, but all of you were always there. Thank you, Mom and

Dad, for supporting my education and giving me a home throughout my life. I

xxii

have grown to appreciate the sacrifices you have made so that I could have a

better life. Thank you, Sharon, Kelly, and James, for being my spiritual guides

during this critical point in my life. My Sedaqah group has also been there for

my spiritual and moral support. Your prayers have been very much appreciated,

especially when I became homesick during my tours of duty at LLNL. Thank you,

Vince, Jeff, and Rex, for sticking around the UCLA area; otherwise, I wouldn’t

have anyone to hang around with. Thank you, Rod, for being my unofficial PhD

mentor and for helping me navigate the waters at UCLA. And many thanks and

love to my girlfriend, Joyce, who has always believed in me even when I didn’t.

And I would like to finally thank God, from whom all good things come,

particularly this body of work. I am very thankful that He led me to Him during

this crazy period of my life.

This work (LLNL-TH-407797) was performed under the auspices of the U.S.

Department of Energy by Lawrence Livermore National Laboratory under Con-

tract DE-AC52-07NA27344.

xxiii

1998 Valedictorian, San Gabriel High School, California.

2000–2001 Software Engineer Summer Intern, Advance Design System,

Agilent Technologies, Westlake Village, California. Designed

and implemented new layout tools and other user-interfaces.

2001 Undergraduate Student Researcher, Multimedia Information

Stream System Technology Group, UC Los Angeles, Califor-

nia.

2001 B.S. (Computer Science and Engineering), UC Los Angeles,

California.

2002–2005 Graduate Student Researcher, Multimedia Information Stream

System Technology Group, UC Los Angeles, California.

2003 M.S. (Computer Science), UC Los Angeles, California.

2004–2005 Technical Scholar, Computational Directorate, Lawrence Liv-

ermore National Laboratory, California.

2007 Teaching Assistant, Computer Science Department, UC Los

Angeles, California. Taught Computer Science 35L: Software

Construction Laboratory under the direction of Professor Paul

Eggert.

2006–Present Lawrence Scholar, Computational Directorate, Lawrence Liv-

ermore National Laboratory, California.

xxiv

Publications and Presentations

R.K. Pon, A.F. Cárdenas, and D. Buttler, “Online Selection of Parameters in

the Rocchio Algorithm for Identifying Interesting News Articles,” presented at

10th ACM International Workshop on Web Information and Data Management

(WIDM), Napa Valley, CA, October 30, 2008.

R.K. Pon, “Measuring the Interestingness of Articles in a Limited User Environ-

ment,” presented at Yahoo! News, Sunnyvale, CA, September 24, 2008.

R.K. Pon and D. Buttler, “Metadata Registry, ISO/IEC 11179,” Encyclopedia

of Database Systems, 2008, in press.

R.K. Pon, A.F. Cárdenas, and D. Buttler, “Improving Näıve Bayes with Online

Feature Selection for Quick Adaptation to Evolving Feature Usefulness,” pre-

sented at 2008 SIAM SDM Text Mining Workshop, Atlanta, GA, April 26, 2008.

R.K. Pon, A.F. Cárdenas, and D. Buttler, “Measuring the Interestingness of Ar-

ticles,” in J. Wang (ed), Encyclopedia of Data Warehousing and Mining (Second

Edition), IGI Global, 2008, in press.

R.K. Pon, “Measuring the Interestingness of Articles in a Limited User Environ-

ment,” presented at Yahoo! Research, Burbank, CA, February 10, 2008.

R.K. Pon, A.F. Cárdenas, D. Buttler, and T. Critchlow,“Tracking Multiple Topics

xxv

for Finding Interesting Articles,” presented at 2007 SIGKDD, San Jose, CA,

August 12-15, 2007.

R.K. Pon, A.F. Cárdenas, D. Buttler, and T. Critchlow, “iScore: Measuring the

Interestingness of Articles in a Limited User Environment,” presented at IEEE

Symposium on Computational Intelligence and Data Mining 2007, Honolulu, HI,

April 1-5, 2007.

D.A. Aoyama, J.T. Hsiao, A.F. Cárdenas, and R.K. Pon, “Timeline and Visual-

ization of Multiple Datasets and the Visualization Querying Challenge,” Journal

of Visual Language and Computing, vol. 18, no. 1, 2006.

S.E. Chan, R.K. Pon, and A.F. Cárdenas, “Visualization and Clustering of Au-

thor Social Networks,” presented at 2006 International Conference on Distributed

Multimedia Systems (DMS 2006) Workshop on Visual Languages and Comput-

ing, Grand Canyon, AZ, August 30-31, 2006.

Q. Zhou and R.K. Pon, “A Relational Solution to DNA Sequence Matching,”

presented at 15th International Conference on Software Engineering and Data

Engineering (SEDE 2006), Los Angeles, CA, July 6-8, 2006.

A. F. Cárdenas, R. K. Pon, and B. S. Islam, “The Image Stack Stream Model,

Querying, and Architecture,” presented at 2005 International Conference on Dis-

tributed Multimedia Systems (DMS 2005), Banff, Canada, September 5-7, 2005.

R. K. Pon and T. Critchlow, “Performance-Oriented Privacy-Preserving Data

xxvi

Integration,” presented at Data Integration in the Life Sciences 2005, San Diego,

CA, July 20-22, 2005.

R. K. Pon and A. F. Cárdenas, “Data Quality Inference,” presented at Second

International ACM SIGMOD Workshop on Information Quality in Information

Systems (IQIS 2005), Baltimore, MD, June 17, 2005.

A.F. Cárdenas, R.K. Pon, R.B. Cameron, and M.A. Coyle, “The Mobile Patient

and the Mobile Physician Data Access and Transmission,” in the Proceedings of

the 2005 International Conference on Mathematics and Engineering Techniques

in Medicine and Biological Sciences (METMBS ’05), Las Vegas, NV, June 20-23,

2005.

A.F. Cárdenas, R.K. Pon, P.A. Michael, and J.T. Hsiao, “Image Stack Viewing

and Access,” Journal of Visual Language and Computing, vol. 14, no. 5, pp.421-

441, 2003.

A.F. Cárdenas, R.K. Pon, and R.B. Cameron, “Management of Streaming Body

Sensor Data for Medical Information Systems,” in the Proceedings of the 2003 In-

ternational Conference on Mathematics and Engineering Techniques in Medicine

and Biological Sciences (METMBS ’03), Las Vegas, NV, June 23-26, 2003.

xxvii

Abstract of the Dissertation

Measuring the Interestingness of Articles in a

Limited User Environment

by

Raymond K. Pon

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2008

Professor Alfonoso F. Cárdenas, Chair

Search engines, such as Google, assign scores to news articles based on their

relevancy to a query. However, not all relevant articles for the query may be

interesting to a user. For example, if the article is old or yields little new in-

formation, the article would be uninteresting. Relevancy scores do not take into

account what makes an article interesting, which varies from user to user. Al-

though methods such as collaborative filtering have been shown to be effective

in recommendation systems, in a limited user environment, there are not enough

users that would make collaborative filtering effective.

A general framework, called iScore, is presented for defining and measuring

the “interestingness” of articles, incorporating user-feedback. iScore addresses

various aspects of what makes an article interesting, such as topic relevancy,

uniqueness, freshness, source reputation, and writing style. It employs various

methods to measure these features and uses a classifier operating on these fea-

tures to recommend articles. The basic iScore configuration is shown to improve

recommendation results by as much as 20%. In addition to the basic iScore

features, additional features are presented to address the deficiencies of existing

xxviii

feature extractors, such as one that tracks multiple topics, called MTT, and a

version of the Rocchio algorithm that learns its parameters online as it processes

documents, called eRocchio. The inclusion of both MTT and eRocchio into iS-

core is shown to improve iScore recommendation results by as much as 3.1% and

5.6%, respectively. Additionally, in TREC11 Adaptive Filter Task, eRocchio is

shown to be 10% better than the best filter in the last run of the task.

In addition to these two major topic relevancy measures, other features are

also introduced that employ language models, phrases, clustering, and changes in

topics to improve recommendation results. These additional features are shown

to improve recommendation results by iScore by up to 14%. Due to varying

reasons that users hold regarding why an article is interesting, an online feature

selection method in näıve Bayes is also introduced. Online feature selection can

improve recommendation results in iScore by up to 18.9%.

In summary, iScore in its best configuration can outperform traditional IR

techniques by as much as 50.7%. iScore and its components are evaluated in the

news recommendation task using three datasets from Yahoo! News, actual users,

and Digg. iScore and its components are also evaluated in the TREC Adaptive

Filter task using the Reuters RCV1 corpus.

xxix

CHAPTER 1

Introduction

An explosive growth of online news has taken place in the last few years. Users

are inundated with thousands of news articles, only some of which are interesting

to them. A system to filter out uninteresting articles would aid users that need to

read and analyze many news articles daily, such as financial analysts, government

officials, and news reporters. Information overload is a threat to a user’s ability

to function, resulting in “brain-thrashing” [Den06], calling for a VIRT (valued

information at the right time) [Hay06] strategy for information handling.

The most obvious approach for a VIRT strategy is to learn keywords of interest

for a user [CCG04, LLK03, BPC00]. Unfortunately, the issues related to article

recommendation systems are more difficult to address than applying a simple

keyword filter to weed out uninteresting articles. Although filtering articles based

on keywords removes many irrelevant articles, there are still many uninteresting

articles that are highly relevant to keyword searches. For example, searching

for “San Francisco” in Google News will yield about 135,000 articles ordered by

relevance. Unfortunately, a relevant article may not be interesting for various

reasons, such as the article’s age or if it discusses an event that the user has

already read about in other articles.

Although it has been shown that collaborative filtering can aid in personalized

recommendation systems [WVR06] a large number of users is needed. In a limited

user environment, such as a small group of analysts monitoring news events,

1

collaborative filtering would be ineffective. To address this insufficiency to news

filtering, a different approach is taken by undertaking what makes an article

interesting.

The definition of what makes an article interesting – or its “interestingness”

– varies from user to user and is continually evolving, calling for adaptable user

personalization. Furthermore, due to the nature of news articles, most are un-

interesting since many are similar or report events outside the scope of an indi-

vidual’s concerns. There has been much work in news recommendation systems,

but none have yet addressed the question of what makes an article interesting.

In the presented system, iScore [PCB07a], the following contributions are made

to news filtering in a limited user environment including the development of a

prototype system:

1. Filtering based on only topic relevancy is shown to be insufficient for iden-

tifying interesting articles.

2. A variety of features are extracted, ranging from topic relevancy to source

reputation. No single feature can characterize the interestingness of an

article for a user. It is the combination of multiple features that yields 20%

higher quality results. For each user, these features have different degrees

of usefulness for predicting interestingness.

3. Several classifiers are evaluated for combining these features to find an

overall interestingness score. Through user-feedback, the classifiers find

features that are useful for predicting interestingness for the user.

4. Current evaluation corpora, such as TREC, is shown to not capture all

aspects of personalized news filtering systems necessary for system evalua-

tion.

2

Despite incorporating other article features in addition to relevancy to topics

of interest, the initial version of iScore still performs poorly with users that have

broader interests (as opposed to specific interests). iScore addresses relevancy

by using the output of classifiers (e.g., Rocchio) that maintain a single interest

profile. Unfortunately, iScore suffers when a user has a set of interests that are

orthogonal to one another, which cannot be accurately represented by a single

interest profile. The initial version of iScore is extended to address this short-

coming by extending the traditional Rocchio algorithm by using multiple profile

vectors instead of one. This is a similar technique used in topic detection and

tracking (TDT) [NIS04] but applied to an online personalized news recommen-

dation setting. Unlike in a TDT environment, where all new topics are identified

and continually tracked by identifying their related articles, identifying interest-

ing articles for a specific user is different for two reasons: first, not all topics

are of equal interest to a user; second, a user’s interest in a topic continually

changes overtime. A topic that may have been interesting in the past may not

be interesting in the future.

Addressing these two distinctions between TDT and news recommendation

and the shortfall of the existing iScore system, the following additional contribu-

tions through multiple topic tracking (MTT) [PCB07b] are made:

1. Instead of identifying all new topics and tracking all articles for those top-

ics as in TDT, MTT focuses on the specific user’s interests, which are

constantly evolving. Focusing on only evolving user interests instead of all

topics allows for more efficient resource utilization.

2. The use of multiple profile vectors yields better results than traditional

methods, such as the Rocchio algorithm, for identifying interesting articles.

Additionally, multiple topic tracking as a new feature in iScore improves

3

iScore classification performance.

3. For a specific user as a case study, the operating parameters for the MTT

algorithm are analyzed for their classification performance.

However, methods like MTT, require extensive parameter tuning. How pa-

rameters can be learned online for an algorithm, like Rocchio, is also studied. In

this area, the following contributions are made:

1. Users are shown to have different learning/reading behavior when evaluat-

ing the interestingness of news articles.

2. Instead of using static parameters, several different parameter configura-

tions are evaluated simultaneously for a simple IR algorithm so that similar

or better recommendation results can be achieved, compared to more com-

plex information retrieval algorithms (e.g., language modeling classifiers)

and algorithms that require fine-tunining (e.g., MTT and Rocchio).

3. By tailoring an algorithm specifically to an user instead of using an “one-

size-fits-all” algorithm, better recommendation results can be achieved.

Furthermore, the definition of what makes an article interesting varies from

user to user and continually evolves, even for a single user. As a result, for news

recommendation systems, useless document features can not be determined a

priori and all features are usually considered for interestingness classification.

Consequently, the presence of currently useless features degrades classification

performance [For04], particularly over the initial set of news articles being clas-

sified. The initial set of documents is critical for a user when considering which

particular news recommendation system to adopt. To address these problems, an

improved version of the näıve Bayes classifier is introduced with online feature

4

selection [PCB08a]. Correlation is used to determine the utility of each feature

and leverage the conditional independence assumption used by näıve Bayes for

online feature selection and classification. The following contributions are made

in this area:

1. Augmenting näıve Bayes with online feature selection allows for the most

proper features to be used, improving iScore’s performance.

2. The continual learning of statistics about each feature allows for the invo-

cation of any feature at any time if it has been determined to be useful,

addressing the problem of the evolving definition of interestingness.

3. By only considering the top-k useful features, evaluation of all possible sub-

sets of features is avoided, making the presented feature selection approach

tractable in an online setting.

This dissertation is organized as follows. Chapter 2 discusses the works related

to news recommendation based on content analysis. Chapter 3 illustrates the

problem that this dissertation addresses and how it is modeled in experimental

evaluations with the various datasets available. Chapter 4 discusses the basic

iScore framework that is used to address the recommendation problem discussed.

Chapter 5 introduces an additional topic relevancy feature that tracks multiple

topics. Chapter 6 addresses the problem that many topic relevancy features

have in selecting the appropriate parameters and introduces online parameter

selection in the Rocchio algorithm. Chapter 7 introduces additional features that

have shown to improve recommendation performance. Chapter 8 addresses the

problem of users having differing reasons as to why an article is interesting and

introduces online feature selection in näıve Bayes. Chapter 9 summarizes the

findings of this dissertation from experimental results. Chapter 10 explores other

5

roads of research that may be pursued to extend iScore to improve its usability

and effectiveness. The Appendix includes a discussion on the implementation of

iScore in its experimental setup, other roads of research considered that did not

yield fruit, reference tables, and statistical significance test results.

6

CHAPTER 2

Related Works

2.1 Recommendation systems

iScore is a recommendation system in a limited user environment, so the only

available information is the article’s content and its metadata. Because of the

limited user environment, methods that require many multiple users, such as

collaborative filter, are not effective. Work outside collaborative filtering makes

use of this information in a variety of ways. Work by [CGR05] ranks news articles

and new sources based on several properties in an online method. They claim

that important news articles are clustered based on topics. They also claim that

mutual reinforcement between news articles and news sources can be used for

ranking, and that fresh news stories should be considered more important than

old ones. However, mutual reinforcement calculations require multiple passes over

a document collection and are not possible in a single-pass online environment,

such as in iScore. In iScore, news articles are ranked based on various properties

in an online method, but instead of ranking articles using mutual reinforcement

and article freshness, a different variety of features is studied. Additionally, when

training the classifiers in iScore, there is a slightly different definition of freshness.

For [CGR05], the notion of freshness indicates that a recently written article

may be more interesting than older articles. The definition of iScore is slightly

different, where topics that have interesting articles recently published may be

7

more interesting.

Another approach taken by [MP01] measures the interestingness of an article

as the correlation between the article’s content and the events that occur after the

article’s publication. For example, an article about a specific stock is interesting

if there is a significant change in price after the article’s publication. Using these

prospective indicators, they can predict future interesting articles. Unfortunately,

in most cases, these indicators are domain specific and are difficult to collect in

advance for the online processing of new articles as they are published.

Other systems perform clustering or classification based on the article’s con-

tent, computing such values as term-frequency-inverse-document frequency (TF-

IDF) weights for tokens. A near neighbor text classifier [BPC00] uses a document

vector space model. A personalized multi-document summarization and recom-

mendation system by [RFZ01] recommends articles by suggesting articles from

the same clusters in which the past interesting articles are located. In iScore,

a variation of these methods are implemented as one of many feature extrac-

tors in iScore. Another clustering approach, MiTAP [DWK03] monitors infec-

tious disease outbreaks and other global events. Multiple information sources are

captured, filtered, translated, summarized, and categorized by disease, region,

information source, person, and organization. However, users must still browse

through the different categories for interesting articles since this approach bins

but does not recommend articles.

Although it has been shown that collaborative filtering can aid in personalized

recommendation systems [WVR06] a large number of users is needed. In a limited

user environment, such as a small group of analysts monitoring news events, col-

laborative filtering would be ineffective. To address this insufficiency, a different

approach is taken in iScore by identifying what makes an article interesting.

8

2.2 Adaptive filtering

The work in iScore is closely related to the adaptive filtering task in the Text

Retrieval Conference (TREC), which is the online identification of news articles

that are most relevant to a set of topics. The task is different from identifying

interesting articles for a user because an article that is relevant to a topic may

not necessarily be interesting. However, relevancy to a set of topics of interest is

an indicator of for interestingness. The report by [RS02] summarizes the results

of the most recent run of the TREC filtering task. In the task, topic profiles

are continually updated as new articles are processed. The profiles are used to

classify a document’s relevancy to a topic. Like much of the work in the task,

iScore uses adaptive thresholds and incremental profile updates.

In [XYW02], the authors use a variant of the Rocchio algorithm, in which

they represent documents as a vector of TF-IDF values and maintain a profile for

each topic of the same dimension. The profile is adapted by adding the weighted

document vector of relevant documents and by subtracting the weighted vector

of irrelevant documents. Since this approach performed the best in the task, this

method is incorporated into iScore. Other methods explored in TREC11 include

using a second-order perceptron, a support vector machine (SVM), a Winnow

classifier [WHN02], language modeling [MCM02], probabilistic models of terms

and relevancy [Bro02], and the Okapi Basic Search System [RWZ02].

2.3 Ensembles

Other work, like iScore, have leveraged multiple existing techniques to build bet-

ter systems for specific tasks. For example, in [Hen06], the authors combine two

popular webpage duplication identification methods to achieve better results.

9

Another example is by [LK05], which combines the results from multiple outlier

detection algorithms that are applied using different sets of features. Other ex-

amples for combining multiple techniques is in the Netflix Prize contest [Net07],

where the team “When Gravity and Dinosaurs Unite” combine two different rec-

ommendation algorithms to achieve better results.

Other work in bagging and boosting identifies conditions bagging and boosting

will outperform single classifiers and how to maximize the diversity of classifiers

in the ensemble. In [ES04], Monte Carlo analysis is used to characterize the

conditions which the ensemble approach will outperform the single classifiers.

They provided a closed form expression for the distribution of ensemble accuracy,

mean, and variance. In [MM04], the authors also address diversity in ensembles.

Classifiers that are trained on the original data and some artificial data generated

from a random process that follows the training data distribution are added to the

ensemble if it does not increase the ensemble training error. In [TG04], a greedy

algorithm is used for selecting models in ensembles. In the greedy framework,

when a new instance is to be classified, a meta-model invokes the appropriate

predictive model that best corresponds to the instance. They introduce a new

algorithm for learning the base models and the meta-learner for model selection,

which relies on moving small amounts of data between the various datasets that

are used to train the base models. Data is moved according to a simulated

annealing algorithm.

A closely related ensemble work by [YH06] combines multiple ranking func-

tions over the same document collection through probabilistic latent query anal-

ysis, which associates non-identical combination weights with latent classes un-

derlying the query space. The overall ranking function is a linear combination

of the different ranking functions. They extend the overall ranking function to a

10

finite mixture of conditional probabilistic models. In the iScore experiments, two

methods of a linear combination approach are explored, using correlation and

logistic regression. But in contrast to [YH06], functions are combined that can

not necessarily be used for ranking documents for interestingness by themselves.

Each function is a different aspect of interestingness, and the functions need to

be combined together to generate meaningful scores for interestingness.

2.4 Topic detection and tracking

Topic detection and tracking (TDT) identifies new events and groups news articles

that discuss the same event. Formally, TDT consist of five separate tasks: (1)

topic tracking, (2) first story detection, (3) topic detection, (4) topic linkage, and

(5) story segmentation [NIS04].

Many TDT systems, like [APL98], [FWM01], and [All02] are simply a modi-

fication of a single pass clustering algorithm. They compare a news story against

a set of profile vectors stored in memory. If the story does not match any of the

profiles by exceeding a similarity threshold, the story is flagged as a new event

and a new profile is created using the document vector of the news story. Other-

wise, the news story is used to update the existing profiles. Other work, such as

[MAS04], add simple semantics of locations, names, and temporal information to

the traditional term frequency vectors used in previous work.

Although a similar single-pass clustering algorithm is used in the multiple

topic tracking (MTT) component of iScore, there are several subtle differences

between identifying interesting articles and TDT. First, not all topics are of equal

interest to an user. Instead of identifying all new topics and tracking all articles

for those topics as in TDT, MTT focuses on the specific users interests, which are

11

under continuous evolution. Additionally, MTT uses the interestingness of topics

when evaluating the interestingness of news articles that belong to their respective

topics. Furthermore, a user’s interest in a topic continually changes over time.

A topic that may have been interesting in the past may not be interesting in

the future. Consequently, MTT discards old profile vectors that are no longer of

interest to reduce resource consumption, to speed up document evaluation, and

to improve the quality of results.

Another closely related work is in the discovery of evolutionary theme pat-

terns (ETP) from text [MZ05]. In ETP, documents are partitioned into possibly

overlapping subcollections according to their publication time. The most promi-

nent themes (or subtopics) are extracted from each subcollection. For themes in

two different subcollections, an ETP solution decides whether there is an evo-

lutionary transition from one theme to the other. The general ETP problem is

not restricted to operation within an online and continuous environment, so the

solution posed by [MZ05] is an offline data mining solution to discovering and

clustering patterns and so is not directly applicable to discovering interesting

articles as they are published. Additionally, the solution posed by [MZ05] does

not learn which themes or topics are of interest to the user, and so all themes

are maintained and are not useful for classifying the interestingness of an article.

In ETP, the evolutionary relationships among themes at different times are also

explicitly identified, which is not necessary for discovering the most interesting

articles for the user as they are published.

2.5 Trust and quality

Articles known to be credible may be more interesting than articles that are not.

Frequent reporting errors (or subjective disagreement) by a news agency may

12

contribute to a user deeming a future article uninteresting even before he reads

it. To further the understanding of credibility assessment, in [Fog03], the authors

present the prominence-interpretation theory in which two things happen when

people assess credibility online: (1) the user notices something, and (2) the user

makes a judgment about it. In [NSK06], the authors rate the credibility of news

documents on the web with three metrics: commonality, numerical agreement,

and objectivity. They hypothesize that as more news publishes deliver articles

with similar content to the target article being assessed, the higher the credibility

of the target article. Also, if numerical expressions that contradict those in other

articles from different news agencies, credibility is rated lower. The credibility

of the article containing subjective speculation is rated differently from those

containing objective news sources. They use a dictionary approach and other

heuristics to rate objectivity.

In [PC05], it is claimed that the quality of data sources can be estimated by

observing the agreement among data sources and their past history of being cor-

rect. Similarly, [RE06] uses the value of information for evidence detection. They

measure the reliability of data sources, the coherence (the agreement) among

sources, and the independence between sources.

Trust and quality are addressed in iScore by examining the objectivity of

articles and the reputation of the news agency for producing interesting articles.

Objectivity is measured using a language model trained to differentiate between

objective and subjective sentences. Source reputation is measured by simply

looking at the proporition of interesting articles written by a particular author.

However, addressing agreement among text documents is a difficult task and is

an open area of research, which is beyond the scope of this dissertation.

13

2.6 Feature selection

Since the results of iScore’s weak classifiers and the results of other feature ex-

traction methods are used to build a large overall classifier, feature selection is

important. But because the importance of features vary among users, is unknown

a priori, and may change over time, no features can be discarded when construct-

ing the overall classifier. For example, for a period of time, the writing style of

an article may be important, but for a later period, it may not be as important

as another feature, such as topic relevancy.

The work by [GE03] is a survey on feature selection, noting cases where fea-

ture selection would improve the results of classifiers. Noise reduction and better

class separation may be obtained by adding features that are presumably redun-

dant. Features that are independently and identically distributed are not truly

redundant. Perfectly correlated features are truly redundant in the sense that

no additional information is gained by adding them. However, very high feature

correlation does not mean absence of feature complementarity. A feature that is

completely useless by itself can provide a significant performance improvement

when taken with others; consequently, two features that are useless by themselves

can be useful together.

There have been three directions to feature selection: wrappers, filters, and

embedded methods. Wrappers use the learning machine of interest as a black

box to score subsets of features according to their predictive power. An example

of a wrapper approach is [KJ97], which uses a hill-climbing approach to find

a good set of features. Filters select subsets of features as a pre-preprocessing

step, independently of the chosen predictor. Embedded methods perform feature

selection and training, and are usually specific to given learning machines. To

create a few baselines performance values to compare with when selecting features

14

for a new problem, [GE03] recommend a linear predictor (e.g., linear SVM) and

select features in one of two ways: (1) a feature ranking method using correlation

coefficient or mutual information; and (2) with a nested subset selection method

performing forward or backward selection or with multiplicative updates.

There have been several other surveys on feature selection. The paper by

[LY05] calls for the integration of different feature selection algorithms. They

combine the filter and the wrapper approach into a single hybrid approach for

feature selection. The hybrid approach uses the independent measure of the filter

approach to decide the best subsets for a given cardinality and uses the mining

algorithm of the wrapper approach to select the final best subset among the

best subsets across different cardinalities. Another paper by [LDD05] discusses

feature selection applied to real-life problems. The work by [BL97] discusses

feature-weighting methods such as Winnow [Lit88]. The Winnow algorithm is

very similar to that of the perceptron, except instead of additive updates, it uses

multiplicative updates. Furthermore, the inputs and outputs of the Winnow al-

gorithm are all binary. They have shown that the number of mistakes grows only

logorithmically with the number of irrelevant attributes in the examples while

still being computationally efficient in both time and space. [YP97] is a study

on feature selection methods in statistical learning of text categorization. They

evaluated five methods: term selection based on document frequency, informa-

tion gain, mutual information, chi-square test, and term strength. They found

that document frequency, information gain, and the chi-square test were most ef-

fective in their experiments. Their experiments suggest that document frequency

thresholding, the simplest and lowest cost method, can be used reliably instead

of the other two preferred methods.

Since decision trees use information gain to rank features, it can be considered

15

as an embedded feature selection method. Work by [UBC97] discusses an incre-

mental decision tree algorithm that makes use of an efficient tree restructuring

algorithm. However, the drawback is that any numeric data must be stored and

maintained in sorted order by value and the decision tree’s storage requirements

will continually grow.

Other work in online feature selection addresses a different problem. In

[PT03], techniques are studied for selecting features from a set of features that

grow over time. Instead of a fixed set of features and a growing number of train-

ing instances to work from, the set of features continues to grow as the number

of training instances remains fixed. However, in the iScore framework, the set

of features with varying degrees of utility is fixed while the number of training

instances continues to grow.

Another method for feature selection is to reduce the number of redundant

features, which is different from our goal of reducing the number of irrelevant

features. In [NF05], redundant features are identified by performing pair-wise

similarities measurements using the properties of time series data, which may

not be directly applied to news articles. In our experiments, we assume a more

general setup, where documents from different news sources that span multiple

domains are aggregated together into a single document stream and are simply

ordered by publication time. Consequently, an article in the document stream

is not necessarily dependent upon the content of the article that immediately

precedes it in the document stream.

The feature selection method used by [XJK01] employs information gain rank-

ing and Markov blanket filtering. Although, we rank features based on their cor-

relation to the interestingness class similar to how Xing ranks features based on

their information gain, we use correlation rather than information gain due to

16

correlation’s computability in an online environment. Information gain requires

the discretization of feature values which requires examining the entire range of

possible values for a feature which is not possible in an online setting. The Markov

blanket filtering is a more computationally intensive subset selection procedure,

which is not ideal for an online setting either.

This survey on feature selection has shown that existing feature selection

methods, wrappers and filters are not applicable in the online news recommenda-

tion problem. Inspired by the effectiveness of the embedded approach to feature

selection, a new classifier is constructed in iScore that is a linear combination of

features, which is determined dynamically by the correlation of their respective

features and interestingness. Logistic regression is also studied as a method for

embedded feature selection as well. After these initial experiments with feature

selection, a method in the iScore framework is developed to allow online feature

selection within näıve Bayes by examining multiple feature subsets simultane-

ously during classification.

2.7 Document classification

Since news articles are classified as interesting or uninteresting by iScore, it is

important to note work in document classification. However, most document

classification methods have been used to bin documents into particular topics,

which is a different problem from binning documents by their interestingness.

There has been a lot of work in document classification in recent years. In

[WKY96], the authors classify documents, taking into account the term frequen-

cies as well as the local relationships between available classes. They try to

balance specificity, which measures the degree of precision with which the con-

17

tents of a document is represented by the classification result, and exhaustivity,

which measures the degree of coverage by the classification result on the domain

found in a document. In [Lia04], a SVM was used for web-page classification. In

[AU06], distributional clustering and a logic-based learning algorithm are used to

classify documents. In [AW06], the authors combine the graph/network proper-

ties of documents along with traditional content classification methods to classify

documents. Work by [DM06] improves classification of documents by using mul-

tiple large external corpora. This is accomplished through a mixture of relevance

models.

Latent Dirichlet Allocation (LDA), first proposed by [BNJ03] for document

classification, has been popular in document classification. LDA is a generative

probabilistic model for collections of discrete data such as text. It is a three-level

hierarchical Bayesian model, in which each item of a collection is modeled as a

finite mixture over an underlying set of topics. Each topic is modeled as an infinite

mixture over an underlying set of topic probabilities. The topic probabilities

represent a document. Works by [NCS06, GS04, Ste06] extend [BNJ03] using

LDA. They use statistical topic models to classify documents into topics not

known a priori, similar to unsupervised learning methods such as traditional

clustering methods. Unlike most clustering methods, the clusters of documents

may share documents (i.e., overlap). In their topic model, a topic is a multinomial

probability distribution over unique words in the vocabulary of the corpus. Each

document is a mixture of topics and is represented as a multinomial probability

vector, one probability for each topic. Given this model for a set of documents and

topics, Gibbs sampling is used to estimate the topic-word and document-topic

distributions.

There has also been work on boosting the performance of existing document

18

classifiers. In [SA06], the authors evaluate the effectiveness of using similarity

browsing as a tool, like relevance feedback, for improving retrieval performance.

They achieve performance that matched that of a traditional styled iterative

relevance feedback technique.

Work by [YZH03] classifies documents from positive and unlabelled docu-

ments; whereas, most classification schemes assume that the training data are

completely labeled. They extend a support vector machine (SVM) for this task.

They show that when the positive training data is not too under-sampled, their

approach outperforms other methods because it exploits the natural gap between

positive and negative documents in feature space. This situation is a scenario in

which iScore mostly operates in, where most articles are unlabelled with a few

documents that are positively labeled. Unfortunately, an SVM method is not

applicable to iScore’s online operating environment because most SVM methods

are costly to update continuously.

Since the use of logistic regression for iScore is studied, it is important to

note other uses of logistic regression in classification. In [GLM04], the authors

use logistic regression for text categorization to eliminate the need for ad hoc

feature selection. They solve their logistic regression problem using a variation

of the Gauss-Sidel method. In [LHF05], the authors combine tree induction with

logistic regression, where the trees’ leaves contain linear regression functions.

19

CHAPTER 3

Modeling Users

3.1 User model

The news recommendation user model used in this dissertation follows the eval-

uation model in the TREC11 adaptive filter task [RS02]. Classifiers evaluate

the interestingness/relevancy of articles, one at a time, in publication order.

The classifiers are given no prior training data so they must learn as documents

are streamed to the classifier. Only when the classifier makes a determination

regarding the interestingness/relevancy of the article is the actual interesting-

ness/relevancy revealed to the classifier. The classifier then is allowed to update

itself with this new knowledge in preparation for the evaluation of the next article.

3.2 Datasets

An interesting article is an article from a pool of articles that an arbitrary user

finds interesting. The ideal dataset would consist of a large pool of articles where

many individual users have provided their opinions regarding the “interesting-

ness” of articles. Additionally, the documents in this pool would consist solely of

the content of news articles (without advertising and other non-news material).

However, there is currently no experimental dataset that matches the criteria

perfectly so for the interesting article recommendation task, several datasets are

20

used: Yahoo! News, tagger and Digg. In addition to the recommendation task,

the TREC Adaptive Filter task is also used to model a different type of recom-

mendation task for some of the experiments in this dissertation. The datasets

are summarized in Table 3.1.

3.2.1 Yahoo! News

The first dataset is a set of 35,256 and 123,653 news articles from all Yahoo!

News RSS feeds [Yah07], collected over a span of three months and one year,

respectively. The smaller dataset is used in a few of the earlier experiments of

iScore; whereas, the larger dataset is used for the later evaluations of iScore. The

“interestingness” classification task for the Yahoo! News dataset is to identify the

most interesting articles from this entire pool of articles for different communi-

ties of users. A community of users is determined by an interest-driven RSS feed

from the Yahoo! News articles collection. The 43 interest-driven RSS feeds con-

sidered for labeling are feeds of the form: “Top Stories [category],” “Most Viewed

[category],” “Most Emailed [category],” and “Most Highly Rated [category],” in-

cluding category-independent feeds such as the “Top Stories,” “Most Emailed,”

“Most Viewed,” and “Highest Rated” feeds. The list of RSS Feeds considered

as users are detailed in Appendix C in Table C.4. For example, RSS feeds such

as “Most Viewed Technology” is a good proxy of what the most interesting ar-

ticles are for technologists. Other categories, such as “Top Stories Politics, are

a collection of news stories that the Yahoo! political news editors deem to be of

interest to their audience, so the feed also would serve well as a proxy for inter-

estingness. Note that these feeds are interest-driven and not category-driven, so

the classification task is not the classical category classification task, but rather a

more complex classification task. In the “interestingness” classification task, two

21

articles that belong to the same topic may not necessarily be of equal interest to

a user or a community of users.

3.2.2 Tagger

In the Yahoo! News dataset, the user is modeled after a community instead of

as an individual interested in a particular category. Consequently, the second

dataset consists of articles that are anonymously collected from volunteer news

readers that tag articles as they read their daily news on the web. A user can

tag an article using a Firefox plug-in or a Google Reader GreaseMonkey script

add-on for Firefox. The script and plug-in do not record any personal identifiable

information but instead uses a unique randomly generated identifier to uniquely

identify users. When a user tags an article as interesting or uninteresting, the

plug-in or script records the webpage’s URL, the user’s tagging, and the URLs

contained within the referring webpage. Articles that are pointed by links from

the referring webpage that have not been read by the user are considered as

uninteresting for the user since the user deemed the title of the article not to

be interesting enough to click on and tag. The webpages are downloaded every

night. Webpages that are non-articles (e.g., advertisements, table of contents,

videos) are manually removed by this author from the collection. The dataset

consists of only 16 users that have read and tagged at least 50 articles. The entire

document collection consists of 35,656 articles. A classifier is run for each user

over only the documents that have been seen by a user as indicated by a user

tagging or by existing on a referring page of a tagged article.

22

3.2.3 Digg

Due to the difficulties in recruiting to consistently read and tag articles, an al-

ternative method is looked at, which is collected via the web service, Digg, to

complement the user tagging collection. There have been 18,924 pages from the

front page of Digg collected and “dugg” [Dig07] by the top 100 active Digg users

[Fin08]. Of these 100 active Digg users, 63 have “dugg” more than 100 articles

from the front page, which are considered as the set of users for this dataset.

The usernames are listed in Appendix C in Table C.3. With this dataset, the

task is to identify which articles have been “dugg” by a user from the “Popular

Stories” section of Digg. It is assumed that the most active users will be aware of

the majority of the articles on the “Popular Stories” section of Digg. Although

this actual user dataset accurately reflects individual users, the dataset is much

smaller and much noisier due to the heterogeneity of the type of pages being col-

lected. Many of the webpages downloaded may not be news but images, videos,

and other webpages beyond the scope of this dissertation.

3.2.4 TREC Adaptive Filter

Users are also modeled with a relevancy-based dataset. A relevant article is an

article that addresses a specific query. The relevancy classification task is evalu-

ated using the dataset and evaluation framework used in TREC11 [RS02]. The

dataset used for evaluating relevancy performance is the Reuters RCV1 corpus

and a set of assessor manual taggings for 50 topics, such as “Economic Espi-

onage.” The corpus is a collection of 723,432 news articles from 1996 to 1997.

In other words, a user is represented by a query. Although the TREC adaptive

filter work addresses topic relevancy and not necessarily interestingness, the task

is done in a similar online and adaptive fashion as in iScore.

23

Collection Size Advantage/

Disadvantage

Yahoo! News: News arti-

cles collected from 43 feeds

such as Top Stories Politics

or Most Emailed Technol-

ogy.

35,256 (small

version) and

123,653 (large

version)

Advantage: Large cor-

pus, easily collected,

and very clean data.

Disadvantage: Can only

evaluate iScore for users

modeled as a collective

community.

Tagger: Articles tagged by

16 volunteers along with the

articles contained within the

referring page of tagged arti-

cles.

45,656 Advantage: Evaluates iS-

core on individual users.

Disadvantage: Difficult to

collect and very small cor-

pus.

Digg: Articles “dugg” by

63 of the most active Digg

users.

18,924 Advantage: Easily col-

lected, evaluates iScore

on individual users.

Disadvantage: Small

corpus and very noisy data.

TREC11 Adaptive Fil-

ter: Reuters RCV1 Corpus.

723,432 Advantage: Very

large corpus.

Disadvantage: Can

only evaluate iScore on

topic relevancy.

Table 3.1: News collections

24

3.3 Evaluation metrics

Precision, recall, and FMeasure fβ, where β = 0.5, which weighs precision more

than recall, are used for system evaluation:

precision =
|Int Articles Retrieved|
|Articles Retrieved|

(3.1)

recall =
|Int Articles Retrieved|

|Int Articles|
(3.2)

fβ =
1 + β

2
|Articles Retr|

| Articles Retr|+ β
2
|Int Articles|

(3.3)

In this dissertation, FMeasure is the primary metric. FMeasure encompasses

both precision and recall, so a good FMeasure score will be a balance of both of

the basic retrieval metrics. However, metric also favors classifiers that yield high

precision over classifiers that yield high recall. Therefore, classifiers with high

precision with low recall can still yield high FMeasure scores.

FMeasure may also be defined in terms of precision and recall as follows:

fβ =
(1 + β) ∗ precision ∗ recall

β ∗ precision + recall
(3.4)

FMeasure is 0 when the number of articles retrieved is 0.

TREC11’s T11SU is also used for comparing the performance of iScore with

the work done in TREC11:

T11SU = 2∗max(T11NU,−0.5)+0.5
1.5

T11NU = 2∗|Int Articles Retr|−|Unint Articles Retr|
2∗|Interesting Articles|

(3.5)

For systems that retrieve no articles, the system would have a T11SU score of

0.33.

An ideal system would yield high FMeasure and T11SU scores overall and

across time. In the experiments described in this dissertation, the classifiers are

25

evaluated several different ways since no one single test nor one single dataset

can definitively identify the best classifier. The following tests are looked at:

1. The overall performance, averaged over all users in the collection, after the

entire document collection is processed. The statistical significance of the

difference between classifiers in this test is shown in Appendix D.

2. The overall average performance of classifiers, averaged over the bottom-k,

the top-k, and all users in the collection, after the entire document collection

is processed. The bottom-k and the top-k users are defined as the users

for which iScore provided the best and worst recommendations, operating

over Featureset A, as described in Appendix 4. For the Yahoo! News and

Digg datasets, k is 10. For the tagger data set, k is 3. Featureset A is the

original iScore featureset [PCB07a]. This test will show the performance of

the classifiers for the very difficult and the very easy users to recommend

for.

3. The cumulative average performance, averaged over all users in the collec-

tion, as documents are processed. This test will show any consistent overall

performance differences among the classifiers, regardless of the collection

size.

4. The average performance, averaged over all users in the collection, for the

last 5,000 documents. This test will show the current performance of the

classifiers.

Different configurations of iScore are evaluated in the experiments. The fea-

tures are described in Table C.2 in Appendix C. iScore using näıve Bayes is

denoted as NB, and iScore using näıve Bayes with feature selection is denoted as

FSNB.

26

CHAPTER 4

The Basic iScore Architecture

4.1 iScore pipeline

News articles are processed in a streaming fashion, much like the document pro-

cessing done in the adaptive filter task in TREC. The information about an

article available to the system is the title, the name of the authors, the publi-

cation date, and the main content of the article. Articles are introduced to the

system in chronological order of their publication date. Once the system classifies

an article, an interestingness judgment is made available to the system by the

user.

The article classification pipeline consists of four phases, shown in Figure 4.1.

In the first phase, for an article d, a set of feature extractors generate a set of

feature scores F (d) = f1(d), f2(d), . . . , fn(d). Then a classifier C generates an

overall classification score, or an iScore I(d):

I(d) = C(f1(d), f2(d), ..., fn(d)) (4.1)

Next, the adaptive thresholder thresholds the iScore to generate a binary

classification, indicating the interestingness of the article to the user. In the final

phase, the user examines the article and provides his own binary classification of

interestingness (i.e., tagging) I ′(d). This feedback is used to update the feature

extractors, the classifier, and the thresholder. The process continues similarly for

27

Figure 4.1: Article classification pipeline.

the next document in the pipeline.

4.2 Basic features for classification

In this section, an initial set of article features is described that serves as inputs

into the classifier function to estimate or predict the interestingness of the article

to a user. Each individual feature is a weak feature. In other words, each feature

alone cannot determine the interestingness of an article for a user.

4.2.1 Topic relevancy

Although an article that is relevant to a topic of interest may not necessarily

be interesting, relevancy to such topics is a prerequisite for interestingness for a

certain class of users. Five different methods is used to measure topic relevancy.

These methods represent a selection of the best well-known information retrieval

algorithms and are easily implementable.

The first method is the Rocchio adaptive learning method [Roc71]. Further

discussion on the Rocchio algorithm is available in [Joa96], in which the author

compares the Rocchio relevance feedback algorithm with its probabilistic variant

and the standard näıve Bayes classifier.

28

Figure 4.2: Topic relevancy.

A document is represented as a vector ~d. Each dimension i of the vector space

represents a token ti. The value of the vector element is the represented token’s

TF-IDF value. In the experiments, tokens are stems produced by the Porter

algorithm [Por80]. Stems occurring only once in the collection are discarded to

reduce the feature space, which has been shown to improve classification time

and results [YP97].

The Rocchio algorithm maintains a profile vector ~p and updates it as follows:

~p = ~p + ~d if d is interesting (4.2)

The relevancy score for the Rocchio algorithm of a document d is the cosine of

the angle between the profile vector and the document vector:

cos(~p, ~d) =
~p • ~d

|~p||~d|
(4.3)

The second method for measuring topic relevancy is a variant of Rocchio by

29

[XYW02], which updates profiles as follows:

~p =


~p + χ ∗ ~d if d is interesting

~p− γ ∗ ~d if d is not interesting

~p− γ′ ∗ ~d otherwise and cos(~p, ~d) < t

(4.4)

The first two conditions are satisfied by user taggings. The third condition is for

pseudo-negative documents, which have no taggings and its similarity with the

profile is below a threshold. Good values (in TREC11) for χ, γ, γ′, and t are 1,

1.8, 1.3, and 0.6, respectively [XYW02].

The other three methods for measuring topic relevancy use language models.

An n-gram language modeling approach has been used for document classifica-

tion [PSW03], which is a method that is used for finding another set of topic

relevancy scores. Like näıve Bayesian classifiers, language-based modeling classi-

fiers classify documents given the number of occurrences of grams (e.g., words or

characters) in the document. Unlike näıve Bayes, which assumes that grams oc-

cur independently, language modeling classifiers assume that an occurring gram

is dependent upon the last n− 1 grams. In other words:

P (d) = P (g1, g2, ..., gN) =
N∏

i=1

P (gi|gi−n+1, . . . , gi−1) (4.5)

where N is the number of grams in the document and gi is the i-th gram in the

document d. P (gi|g1, . . . , gi−1) can be estimated with Jelinek-Mercer smoothing

[CG96].

In iScore, the language models are updated as new documents are processed.

However, the estimation of the probabilities is time-consuming, which is addressed

by compiling the models into serialized objects. However, the compilation time

is proportional to the size of the models (i.e., the number of articles used to

update the model), so the number of times the model is updated and compiled

30

is minimized while still being able to produce meaningful results. The models

are compiled at regular intervals (i.e., every time there is an update to the model

and on a daily basis). To avoid biasing the models from classifying articles as

uninteresting (since there are an overwhelming number of uninteresting articles

compared to interesting ones) and to reduce compilation time, the models are

updated with all interesting articles, and updated with uninteresting articles if

the number of uninteresting articles already used to update the model is less than

the number of interesting article seen.

Using language models, three topic relevancy measurements are extracted for

each document. The first measurement is P (Int|d), using a 6-gram character

model. Another measurement is P (Int|d), using a uni-gram model where grams

are tokens consisting of two words – equivalent to a näıve Bayesian classifier.

The final measurement is the sample cross-entropy rate between the language

model of interesting past articles and the current article, using a 6-gram character

model. The Lingpipe documenation [Ali06] recommends a 6-gram model for

models based on characters. This is commonly referred to as the binary language

model classifier.

4.2.2 Uniqueness

Articles that yield little new information compared to articles already seen may

not be interesting. In contrast, an article that first reports a news event may

be interesting. Anomalous articles that describe a rare news event may also

be interesting. For example, in [RJ05], interesting articles may be produced by

rare collaborations among authors. Methods for outlier detection include using

mixture models [Esk00], generating solving sets [ABP05] and using k-dimensional

trees [CSM02], to identify outliers. Other more recent work by [PLT05] proposes

31

a new statistic based on a score process for determining the statistical significance

of a putative signal that may be a small perturbation in a noisy experimental

background. Work in network security, such as intrusion detection has already

leveraged work in outlier detection. For example, [LV02] uses a k-nearest-neighbor

search (kNN) for intrusion detection. The occurrence of system calls is used to

characterize program behavior. A system call is treated as a word in a long

document and the set of system calls generated by a process is treated as the

“document.”

The first anomaly measurement used is the dissimilarity of the current article

with clusters of past articles. Each document is represented as a document vector,

as in the Rocchio algorithm. At most maxCluster clusters are maintained, which

are also represented by vectors. A count is maintained of documents that each

cluster contains. The anomaly score is the weighted average dissimilarity score

between the current document d and each cluster p, weighted by each respective

cluster’s size (i.e., number of contained documents):

fCluster−Anomaly(d) = 1.0−
∑

p∈P cos(~d, ~p)size(p)∑
p∈P size(p)

(4.6)

After the article has been evaluated, the clusters are updated. If the similarity

between an article and a cluster is above a threshold, then the article is added

to the cluster. An article may belong to more than one cluster. If there are no

clusters to which the document is similar to, then a new cluster is added to the

list of clusters given the document’s vector. If there are already maxClusters

clusters, the cluster that has been updated least is discarded and a new cluster

is added in its place. The least recently used clusters are tracked by maintaining

an ordered list of clusters where the last cluster in the list has been most recently

updated.

The threshold is also progressively updated. When there have been few docu-

32

Figure 4.3: Uniqueness.

ments seen so far, the threshold is set low to encourage document clustering since

the cluster sizes are small at the start of collection processing. As more docu-

ments are seen, the clusters are large enough such that outliers are accurately

identified, and so the threshold is incremented by growthRate (reaching a maxi-

mum threshold) whenever no new clusters have been added. In the experiments,

the maximum threshold, growthRate, the initial threshold, and maxCluster are

set to 0.5, 0.01, 0.1, and 200, respectively.

Two other methods for anomaly detection use language models. In the first

model, compiled models trained on the documents already seen are maintained,

estimating the following:

fLM−Anomaly(d) = log(P (d|documents seen before)) (4.7)

A 6-gram character model, and a bi-gram model, where grams are word stems,

are experimented with.

The second language model-based anomaly detection method measures the

significance and the presence of new phrases. A background model is maintained

33

of all the documents previously seen and compare it with the language model of

the current document. The sum of the significance of the degree to which phrase

counts in the document model exceed their expected counts in the background

model is computed. Only the top-10 phrases that exceed their expected counts are

considered. A tri-gram model, where grams are word tokens, is used. Significance

of each n-gram is based on the z-score [Ali06]:

z =
numSuccesses− expectedSuccesses

(numTrials ∗ P (success) ∗ P (1− P (success)))1/2
(4.8)

with P (success) defined by the n-gram’s probability estimate in the background

model, the numSuccess variable being the count of the n-gram in the foreground

model, and the numTrials variable being the total count in in the foreground

model.

Because language models are costly to compile, the models are compiled in

increasing intervals. Each time a language model is compiled, the next recompile

is scheduled to occur after seeing the next x+1 documents, where x is the number

of documents seen before the current compile time. This increasing interval

scheduling allows for language models to be updated and compiled frequently

when few documents have been seen. But after seeing many documents, language

models should not change much unless there is a significant change in the contents

of the articles seen, so the recompile intervals are increased as more documents

are seen, capping off at 10,000 documents for the recompile interval.

4.2.3 Source reputation

Source reputation estimates an article’s interestingness given the source’s past

history in producing interesting articles. Articles from a source known to produce

interesting articles tend to be more interesting than articles from less consistently

interesting sources. Moreover, specific sources may specialize in particular topics

34

in which the user is interested. A news article’s source may be its news agency

or its author. In the experiments, the article’s author(s) are used for the Yahoo!

News and the TREC datasets, and the name of the host are used for the Digg and

tagger datasets. the article’s source reputation score is estimated as the average

proportion of documents produced by the authors that were interesting in the

past:

fSource−Rep(d) =

∑
a∈authors(d)

|Int articles written by a|
|Articles written by a|

|authors(d)|
(4.9)

4.2.4 Writing style

Most work using the writing style of articles has mainly been for authorship

attribution of news articles [LZC06] and blogs [KSA06]. Other than authorship

attribution, changes in linguistic features over the course of a document have

been used to segment documents as well [CA06]. Instead of author attribution

and document segmentation, the same writing style features are used to infer

interestingness. For example, the vocabulary richness [TB98] of an article should

suit the user’s understanding of the topic (e.g., a layman versus an expert). Also

writing style features may help with author attribution, which can be used for

classifying interestingness, where such information is unavailable.

A näıve Bayesian classifier is used and trained on a subset of the features

from [CVX06], including syntactic, structural, lexical, word-based, and vocab-

ulary richness features. Like the language models used in the topic relevancy

measurements, the number of positive and negative articles used to update the

classifier is balanced. The writing style score measured is:

fWriting−Style(d) = P (Int|writingStyleFeatures(d)) (4.10)

35

Figure 4.4: Writing style.

Feature

Total number of characters(C)

Total number of alphabetic characters/C

Total number of upper-case characters/C

Total number of digit characters/C

Total number of white-space characters/C

Total number of tab spaces/C

Frequency of letters

Table 4.1: Lexical features.

36

Feature Description

Frequency of special characters ,@,#,$,%,̂,&,*,-, ,=,+,¿,¡,[,],/,\,|

Total number of words (M)

Total number of short words/M Words of less than four characters

Total number of characters/C

Average word length

Average sentence length In terms of characters and words

Total different words/M

Hapax legomena Frequency of once-occurring words

Hapax dislegomena Frequency of twice-occurring words

Yule’s K measure Yule’s vocabulary richness

Simpson’s D measure Simpson’s vocabulary richness

Sichel’s S measure Sichele’s vocabulary richness

Burnet’s W measure Brune’s vocabulary richness

Honore’s R measure Honore’s vocabulary richness

Word length distribution/M Count of words of differing lengths

Table 4.2: Word-based features.

37

Feature

Frequency of punctuations

Frequency of stop-words

Total number of lines

Total number of sentences

Total number of paragraphs

Number of sentences per paragraph

Number of words per paragraph

Includes quoted content

Table 4.3: Syntactic and structural features.

4.2.5 Freshness

Generally, articles about the same event are published around the time the event

has occurred. This may also be the case for interesting events, and consequently

interesting articles, so the temporal distance is measured between the last k

interesting articles and the current article:

fFreshness(d) =
1

k

∑
d′∈last kInt articles

log (Time(d)− Time(d′) + 1) (4.11)

The log of the temporal distance is measured between an interesting article and

the current article since the order of magnitude in time differences is crucial. For

example, an article published one day after the last interesting article should be

significantly more interesting than an article published 100 days after the last

interesting article. On the other hand, two articles published long after the last

interesting article should be approximately equally old, with respect to the last

interesting article, even though they may have been published 1000 and 1500

days ago, respectively, after the last interesting article.

38

Figure 4.5: Freshness.

4.2.6 Subjectivity and polarity

The sentiment of an article may also contribute to an user’s definition of inter-

estingness. For example, “bad news” may be more interesting than “good news”

(i.e., the polarity of the article). Or, subjective articles may be more interesting

than objective articles. Polarity identification has been done with a dictionary

[Mis05] and blog-specific features [Wie00]. Others have looked at subjectivity

tagging, using various natural language processing (NLP) techniques [WWB04].

The density of subjectivity clues in the surrounding context of a word has been

used to infer its subjectivity [Wie02] as well.

Four different features is maintained of this feature class: polarity, subjec-

tivity, objective speech events, and subjective speech events. A speech event

is a statement made by a person, such as a quotation. The Multi-Perspective

Question Answering (MPQA) Opinion corpus [Wie02] is used to train 6-gram

character language model classifiers. Each sentence in a document is classified to

determine its polarity, subjectivity, and the presence of objective or subjective

speech events, using these classifiers. The MPQA corpus is a news article collec-

tion from a variety of news sources annotated for opinions and other states, such

as beliefs, emotions, sentiments, and speculations. For each document and each

feature in this feature set, the following is measured:

fclass(d) =
1

|sentences(d)|
∑

s∈sentences(d)

P (class|s) (4.12)

39

where class is whether the sentence has negative polarity (i.e., bad news), the

sentence contains subjective content (i.e., opinions, speculation), the sentence

contains an objective speech event, or the sentence contains a subjective speech

event.

4.3 Classification

The overall classifier computes the final iScore given all the features’ values gen-

erated by the feature extractors. Because the features are continually refined as

more documents are seen, some of the feature values may be erroneous for early

documents. Also, not all the features may be useful in predicting interesting

articles for a user, depending on the user’s criterions. The addition of useless

features has been shown to degrade the performance of classifiers [For04]. Con-

sequently, an overall classifier must be incrementally updateable, robust against

noisy and potentially useless features, and generate meaningful final scores for in-

terestingness. Four classes of classifiers are evaluated: a näıve Bayesian classifier,

non-incremental classifiers using a sliding window, temporal inductive transfer

classifiers, and a linear combination using correlation for weights.

4.3.1 Näıve Bayesian classifier

A näıve Bayesian classifier is a simple yet popular method for classification. The

classifier assumes that each feature from the set of features F is independent

given the class of the document, or its interestingness. Using Bayes’ rule and the

independence assumption, the following is found:

I(d) = P (Int|F (d)) ≈
P (Int)

∏
f P (f(d)|Int)

P (F (d))
(4.13)

40

The probabilities can be estimated by maintaining statistics over feature values

using kernel estimators [JL95].

4.3.2 Non-incremental classifiers

Three classifiers that are robust against irrelevant features, but are not incre-

mentally updateable, are evaluated. These classifiers are trained on a sliding

window of documents. Unaltered, for the classifiers to be continually trained, all

the documents’ features and their taggings would have to be stored, and each

classifier would have to be rebuilt each time a document is processed, making

this approach infeasible.

Since recent articles are more useful in predicting interestingness than older

ones, windowing classifiers are built such that the classifiers are trained on only

the last M interesting documents and the last N uninteresting documents. And

the classifiers are rebuilt on an increasing interval schedule, like the compilation

schedule for the language models used in anomaly detection. In the experimen-

tal evaluations, the maximum number of documents in between rebuilds of the

classifier is 300 documents, and the maximum numbers of positive and negative

documents in a window are both 500 documents. The interval growth rate is two

documents.

In this windowing approach, the C4.5 decision tree, built by the J48 algorithm

[Qui93], is first evaluated. A tree is generated using the information gain of each

feature, with features with high information gain at the top of the tree and

features with low information gain at the bottom of the tree. The tree is then

pruned to remove branches that have low confidence in their predictive abilities;

making it robust against irrelevant features.

The second classifier uses logistic regression, which models the posterior prob-

41

ability of interestingness as a logistic function on a linear combination of features:

I(d) = P (Int|F (d)) =
1

1 + e−
∑

f∈F
λf f(d)

(4.14)

A similar approach is taken in [CH92] to combine multiple ranking methods. A

quasi-Newton method and ridge estimators are used to search for optimal values

for λf [CH92].

In the experiments, logistic regression is more accurate than C4.5 under the

windowing scheme, so logistic regression with bagging [Bre96] is evaluated as

the third classifier. Bagging mitigates the instability of learning methods by

building an ensemble of classifiers trained on randomly sampled instances from

the training data. In the experiments, 100 ensemble classifiers are built.

4.3.3 Tix

A method used to address concept drift, called Temporal Inductive Transfer, or

Tix [For06], is modified. For every M articles processed, a new classifier is built

using a base induction algorithm. The input feature vector consists of the values

generated by the feature extractors along with P additional binary features. The

P features are generated by predictions that the P previous classifiers would have

made for the current article. To bootstrap the Tix process, the first M articles

(articles in the first interval) are processed by a classifier that is continually rebuilt

as new documents are read. After the first interval, the regular Tix procedure

begins. In the experiments, logistic regression is used as the base induction

algorithm, P = 128 classifiers, and M = 1000 articles.

42

4.3.4 Linear correlator

A linear correlator classifier that uses the correlation between a feature and in-

terestingness is also studied. Intuitively, if a feature is highly correlated with

interestingness, it should be weighted more in classifying the document. Unfor-

tunately, this approach assumes that each feature is independent, ignoring the

possibility that two features that perform poorly alone in predicting interesting-

ness may perform well when combined together [GE03].

As each document is processed, the Pearson’s correlation corrf of each feature

f with interestingness is incrementally computed. The classifier calculates an

iScore as follows, weighting each feature with its interestingness correlation:

I(d) =

∑
f corrfσ(f(d))∑

f corrf

(4.15)

σf (d) =
1

1 + e−af (f(d)−tf)
(4.16)

where σf (d) is the sigmoid function. Because each feature value is a real number,

not necessarily bounded between 0 and 1 and the final iScore value is a real

number between 0 and 1, the sigmoid function is used to squeeze f(d) to such a

value.

The parameter tf is the threshold of the sigmoid function. If f(d) is less than

tf , the sigmoid function approaches 0. For f(d) greater than tf , the sigmoid

function approaches 1. Feature values are assumed belong to two different nor-

mal distributions, one for interesting articles and one for uninteresting articles.

The averages and standard deviations are incrementally maintained for both dis-

tributions. If the feature is directly correlated to interestingness, the average

feature value of interesting articles is greater than that of uninteresting articles.

The predicted true positive and true negative rates are computed, given the cu-

mulative distribution functions of the two distributions, for any threshold for a

43

feature. And so for each threshold (according to some granularity) between the

two averages, a utility measure is computed, and the threshold with the greatest

utility is selected. In the experiments, TREC’s T11SU is used for the utility

measure. In the case where there are ties in utility, the threshold closest to the

mid-point between the averages of feature values of interesting and uninteresting

articles is selected. For features inversely correlated to interestingness, the slope

of the sigmoid function is negated and the computations for the accuracy rates

are adjusted accordingly.

The parameter af is the slope of the sigmoid function, which determines how

step-like the sigmoid function is. If the lone feature is able to predict interest-

ingness by simply thresholding, the sigmoid function should be more step-like

and it should generate 0’s and 1’s with clear certainty. On the other hand, if the

feature is poor at predicting interestingness, the feature should be less step-like,

generating more ambiguous scores. And so the threshold’s utility measure, which

is proportional to the feature’s predictive power, is used for the slope.

4.4 Adaptive thresholding

After the overall classifier has generated an iScore, the iScore is thresholded to

classify the document’s interestingness. Instead of using a static threshold, the

threshold is dynamically adjusted in a similar fashion as the threshold computa-

tion for the linear correlator, with a few modifications. Because iScores are real

numbers bounded between 0 and 1, the efficacy of every threshold between 0 and

1 in increments of 0.01 is evaluated, without assuming that interesting and un-

interesting articles are normally distributed. And in the case of ties between the

utility measures, the threshold that provides the best separation between average

iScores of interesting and uninteresting articles is selected. The utility measures

44

evaluated are T11SU and FMeasure fβ, where β = 0.5.

4.5 Initial Evaluation

In this section, the early evaluation of iScore is discussed. The experiments

demonstrate the improvement of iScore over traditional information retrieval

techniques. The goals of these experiments are to identify a good overall classifier

and evaluate the overall effectiveness of the iScore framework.

4.5.1 Overall performance

In the following set of initial experiments, iScore is evaluated with the 35,265

articles dataset from Yahoo! News. The performance is evaluated of each over-

all classifier against several well known topic relevancy classifiers: Rocchio, the

Rocchio variant, and the 6-gram character language modeling classifier. Each

classifier is coupled with the adaptive thresholding mechanism, using FMeasure

as the utility metric. Figure 4.6 shows the overall performance of the iScore

classifiers compared to the baseline classifiers. The averages across RSS feeds, of

precision, recall, and FMeasure are plotted in the graph. iScore with näıve Bayes

outperforms the best baseline classifier (the language modeling classifier) by 20%

in terms of FMeasure. iScore with the linear correlator, logistic regression, and

logistic regression with bagging also perform as well as most of the baseline clas-

sifiers. iScore classifiers using Tix and the decision tree under the windowing

scheme in iScore perform worse. However, the decision tree yields high recall at

the cost of precision.

Näıve Bayes in iScore outperforms all the other classifiers used in iScore due

to its ability to be incrementally updated quickly. The other classifiers can not

45

Figure 4.6: Overall performance of classifiers over the small Yahoo! News dataset.

iScore with näıve Bayes outperforms the best baseline classifier by 20%.

be updated as every new document is processed due to computational and stor-

age costs. The windowed classifiers have to operate over a sliding window of

data items and are rebuilt at increasing intervals. Consequently, the windowed

classifiers are trained with less data and are not necessarily up-to-date with the

information about the last document processed.

Figure 4.7 shows the performance of iScore using näıve Bayes over each of the

individual feeds along with the number of articles in each feed. The feed with

the worst results is the “Highest Rated Travel” feed due to the low number of

articles in the feed. However, there are feeds that performed poorly despite the

high number of articles in those feeds. Feeds, such as “Highest Rated” contain

a variety of articles from different topics, so the topic relevancy measures, which

are the most highly correlated features with interestingness overall, do not work

46

Figure 4.7: Performance of iScore (using näıve Bayes) in individual categories

along with the number of articles in each category.

well for these feeds.

Since iScore uses some of the methods designed for the TREC task and topic

relevancy is a prerequisite for interestingness, the iScore classifiers (coupled with

the adaptive thresholder optimized for T11SU) are compared with the best filters

from each participating group in TREC11 in Figure 4.8. Although iScore did not

perform as well as the best filter, iScore with the linear correlator did perform

generally well compared with most of the other filters. The next best iScore

classifier is the näıve Bayesian classifier, which is consistent with the Yahoo!

dataset. Logistic regression, logistic regression with bagging, Tix, and C4.5 yield

the worst precision and FMeasure score but high recall.

The poor overall performance of iScore is due to the inclusion of features

that are not useful for predicting relevancy for the TREC Adaptive Filter Task.

47

Figure 4.8: Overall performance of classifiers over the TREC articles. The iScore

classifiers are outlined.

Figure 4.9 shows that the topic relevancy and source reputation scores are the

only features correlated with relevancy in the TREC11 adaptive filter task. As

expected, the Rocchio variant is the most correlated feature since it was the best

performing filter in TREC11. The other iScore features included simply added

noise to the classifier, so the näıve Bayes classifier required additional training

to produce good recommendation results, which is shown in the next section.

Although the figure shows that the adaptive filter task captures topic relevancy

well, topic relevancy is only a prerequisite for interestingness and is not sufficient

for an article to be interesting. The TREC11 taggings and articles do not capture

other aspects of interestingness well. If one were to compare TREC’s correlation

chart with those for the Yahoo!, tagger, and Digg datasets in Chapter 8, there is

a stark contrast, where many more features are useful for those datasets. This

48

Figure 4.9: Feature correlation with relevancy in the TREC11 Adaptive Filter

Task. Each color represents a different query.

further reinforces the proposition that the TREC Adaptive Filter Task does not

fully address the “interestingness” recommendation problem.

4.5.2 Performance over time periods

Figure 4.10 shows the performance of each classifier over different time periods

using the Yahoo! RSS articles. Each time period contains 5,000 articles. The

best classifier used for iScore is the näıve Bayesian classifier, outperforming the

best baseline classifier (the language modeling classifier) by 19.7% on average.

iScore using the näıve Bayesian classifier only performs worse than the baseline

classifiers in the first time period. Because iScore has three layers of learning

that must be done (i.e., the feature extractors, the overall classifier, and the

adaptive thresholding); whereas, the baseline classifiers only have two layers (i.e.,

the classifier itself and the adaptive thresholding), iScore performs poorly at first

49

due to propagation error among the layers. The other iScore classifiers perform

generally better than the baseline classifiers with the exception of the decision

tree, which fails to improve as more documents are processed.

Figure 4.10: Performance of classifiers over time periods over the small Yahoo!

News dataset. iScore with the näıve Bayes classifier outperforms the best baseline

classifier by 19.7% on average.

The dip in performance in the sixth time period by most classifiers is due to

concept drift (i.e., changes in the dataset over time) introduced by a pause in the

collection of new articles. Logistic regression and logistic regression with bagging

are the most affected by the drift. Also, Tix, which is intended to address concept

drift, is interestingly also affected by the pause in data collection.

The T11SU performance of iScore is also compared with the best filters from

TREC11 over time in Figure 4.11. Each time interval is a month’s worth of arti-

cles. As in the overall performance analysis of iScore, logistic regression, logistic

50

Figure 4.11: Performance of classifiers over time periods over the TREC articles.

regression with bagging, Tix, and the decision tree perform poorly; whereas, näıve

Bayes and the linear correlator perform well. In the beginning periods, näıve

Bayes performs poorly compared to the TREC filters and the linear correlator,

but in the latter periods, it outperforms them. The lack of overall improvement

in Figure 4.8 by iScore over the TREC filters and the slow increase in perfor-

mance in Figure 4.11 are attributed to the additional learning layers in iScore.

Also the multitude of useless features for the TREC task is a contributing factor

since iScore must spend more time learning which features are irrelevant. These

problems can be addressed with more training, but because there are few relevant

documents for each TREC topic distributed sparsely across the entire collection

(proportionally much less than in the Yahoo! collection), iScore cannot imme-

diately learn enough to outperform the other classifiers until it has seen more

articles.

51

4.6 Discussion and summary

Unlike other personalized news recommendation systems, iScore tackles what

makes an article interesting, showing that a single feature is not sufficient. Through

the combination of several features, using a näıve Bayesian classifier or a linear

correlator, iScore is able to outperform most popular IR techniques in identify-

ing interesting articles from Yahoo! RSS feeds by 20% overall and by 19.7% on

average over multiple time periods. Although iScore is not specialized for retriev-

ing articles relevant to specific topics, compared against the best filters from the

TREC11 adaptive filter task, iScore performs generally well and can outperform

with sufficient training. Given the results of this evaluation, all further experi-

ments involving iScore will use näıve Bayes as its overall classifier and the features

discussed in this chapter.

52

CHAPTER 5

Multiple Topic Tracking

Many information filtering algorithms are based on the Rocchio algorithm, which

represents topics and documents as vectors. Each value of the vector is a TF-

IDF value for its respective term [Roc71]. A single profile vector ~p is maintained.

For each document, the cosine similarity, or the cosine of the angle between the

document vector ~d and the profile vector is measured.

The document is classified as relevant or interesting if the similarity is greater

than some threshold. The profile vector is updated by adding the vector of

interesting documents to the profile vector. There are variations of the Rocchio

algorithm, such as subtracting irrelevant document vectors from the profile vector.

The Rocchio algorithm tries to find the single ideal query, or vector, that

would find all interesting articles, by using the centroid of the cluster that would

contain all interesting articles. However, because of the diversity in the set of

interests just for a single user, finding a single ideal query is not possible [SSS98].

If a user has a wide range of interests, using one vector to represent his interests

would dilute the sensitivity of the Rocchio algorithm. Figure 5.1 illustrates this

problem. Although the cluster of all the interesting documents would contain

interesting documents, it would also contain many uninteresting articles due to

its size. If the user is interested in many orthogonal topics, then the encompassing

cluster would be much larger and would also contain many more uninteresting

articles as well.

53

Figure 5.1: Failure of identifying relevant documents for multiple topics.

Instead, in Multiple Topic Tracking (MTT) [PCB07b], a set of more narrow

queries or profile vectors that more accurately represent a user’s interests than a

single vector is maintained. For example, in Figure 5.1, MTT maintains smaller

topic clusters instead of the larger encompassing cluster, improving classification

precision. In other words, a set of experts is generated and maintained (one

for each specific interesting topic) instead of referring to a single general expert.

Using specialized profiles instead of a single general profile reduces classification

bias by focusing more on specific topics; at the same time, using multiple vectors

keeps classification variance low.

Also the traditional Rocchio and topic detection and tracking (TDT) algo-

rithms do not take into account the different degrees of interest among different

topics. By focusing on individual topics, MTT can learn the user’s level of in-

terest for a specific topic and relate the topic’s interestingness to related articles;

thereby, improving the quality of news recommendation results. By associating

a level of interest for specific topics, MTT can also learn when a user’s interests

54

have changed. Topics that were of interest in the past may no longer be interest-

ing in the future. Topics that have grown to be uninteresting to the user can be

discarded.

5.1 Algorithm

In MTT, each document and profile vector is represented as a TF-IDF vector,

where each value of the vector is the TF-IDF value of the vector element’s corre-

sponding stemmed term. Terms are stemmed using the Porter algorithm [Por80]

and stop-words are ignored. A set of profiles P is maintained, which is initially

empty. Until an interesting article arrives on the document stream, each article

is scored with a 0. When an interesting article does arrive, a new profile vector

~p1 is created using the article’s TF-IDF vector and added to P . Each subsequent

article on the document stream with a document vector ~d is processed as follows:

1. Find the profile vector with the maximum similarity with ~d. This profile

represents the closest topic of interest to the document and is denoted as

~pmax.

2. The score for a document is the thresholded similarity of the document

vector ~d and ~pmax. In other words:

fMTT (d) =


1 if cos(~pmax, d) > t~pmax

0 otherwise
(5.1)

The precision of ~pmax describes how well ~pmax can accurately identify inter-

esting articles. The precision describes how interesting the user finds the

topic that the profile vector represents. Another variant was looked at the

product of the proportion of articles highly similar to ~pmax that were inter-

55

esting, but was found to be less useful than the scoring method described

here.

3. If the article is interesting and the similarity between ~d and ~pmax is less than

the cluster threshold tcluster, a new profile is generated using ~d. However,

if the similarity is greater than or equal to tcluster, then ~pmax is updated as

follows:

~pmax = ~pmax + ~d (5.2)

Intuitively, a new profile is created because a new topic has been encoun-

tered. Each profile vector is simply the centroid of the cluster of its related

articles.

4. If the article is not interesting and the similarity between ~d and ~pmax is

less than the classification threshold tclassification, then ~pmax is updated as

follows:

~pmax = ~pmax − γ ∗ ~d (5.3)

Because the profile misclassifies the article as interesting, the cluster is

updated to remove the influence of terms that are not useful for predicting

interestingness. This technique is similar to query zoning [SMB97], where

a select set of non-relevant articles that have some relationship to a user’s

interests is used for updating profile vectors. The parameter γ determines

how much weight negative documents in the query zone have on the topic

profile.

As more documents are processed, it is possible that many profiles may be

kept and maintained, making MTT expensive. To reduce resource consumption

and improve the quality of results, a method that discards profiles whose topics

are no longer interesting is evaluated. Each profile vector can have an associated

56

Figure 5.2: MTT evaluation pipeline.

precision for identifying interesting articles, which is defined as:

precision(~p) =
|Interesting articles with cos(~p, ~d) > tclassification|

|Articles with cos(~p, ~d) > tclassification|
(5.4)

In other words, the precision of a profile p is the proportion of articles that

belong to p that are truly interesting. Profiles that have a precision less than the

threshold tprecision, are discarded because the topic that the profile represents is

no longer interesting to the user.

5.2 Parameter tuning

MTT is tuned with a collection of 35,256 news articles from all Yahoo! News

RSS feeds, collected between June and August 2006. To find good values for the

operating parameters: tcluster, tclassification, tprecision, and γ, the quality of results

produced by MTT with various parameters for the “Most Viewed Stories” RSS

feed are evaluated. For simplicity and to evaluate MTT in isolation, the pipeline

shown in Figure 5.2 is used instead of the complete iScore pipeline. The adaptive

thresholder optimizes for FMeasure β = 0.5.

The effect of tcluster and γ on MTT is evaluated by varying tcluster while hold-

ing tprecision and tclassification at 0 and 0.6, respectively. The results are shown

in Figure 5.3. As tcluster increases, articles are discouraged from clustering, re-

sulting in much smaller and inaccurate clusters. Overall, FMeasure performance

57

Figure 5.3: tcluster and γ for Most Viewed Stories from Yahoo! News.

Figure 5.4: Minimum Precision for Most Viewed Stories from Yahoo! News.

58

increases initially as the clustering thresholding increases but drops drastically at

much higher thresholding values greater than 0.3. The figure also shows that as γ

increases, performance drops. However, an extremely low γ is not optimal. The

figure shows that for the “Most Viewed Stories” feed, the best configurations for

tcluster and γ are 0.1 and 0.1, respectively. Another good configration for tcluster

and γare 0.2 and 0.3, respectively, as well.

Next, the effect of tprecision on MTT is evaluated by varying tprecision while

holding tclassification to 0.6 and tcluster and γ to the values found earlier. The

results are shown in Figure 5.4. When the clustering threshold and γ are set

to 0.3 and 0.2, respectively, performance decreases as the minimum precision

increases. In this case, the best performance occurs when the minimum precision

is 0 (i.e., no profiles are discarded). However, when the clustering threshold is

0.1 and γ is 0.1, performance peaks when the minimum precision is between 0.4

and 0.5.

5.3 Experimental results

In these set of experiments, MTT is evaluated using the parameter values (γ =

0.3, tcluster = 0.2, tclassification = 0.6, and tprecision = 0) found previously with the

“Most Viewed” feed from the small Yahoo! News collection. MTT is evaluated

with the large Yahoo! News, tagger, and Digg, and datasets. In addition to the

news recommendation datasets, MTT is evaluated on the TREC Adaptive Filter

task.

59

Figure 5.5: Average performance for the Rocchio Variant, LMClassifier, MTT,

and iScore with/without MTT on the Yahoo! News dataset.

5.3.1 Yahoo! News

The first set of experiments evaluate MTT on the Yahoo! News dataset. Figure

5.5 shows the average FMeasure, T11SU, precision, and recall of various clas-

sifiers, including MTT and iScore with MTT. The figure indicates that MTT

can outperform the Rocchio variant (which is the best performing filter in the

TREC Adaptive Filter task) [XYW02] by 6.5% and performs as well as the lan-

guage modeling classifier after processing the complete Yahoo! News collection.

When MTT is added (Featureset B) to the original iScore featureset discussed in

Chapter 4 (Featureset A), performance improves marginally.

Closer inspection of the results shows that there is performance improve-

ment over the baseline classifiers and iScore by MTT. Figure 5.6 shows the av-

erage FMeasure of all, the bottom 10 performing, and the top 10 performing

feeds/users. The figure indicates that MTT is 12.3% better than the language

modeling classifier on the worst 10 performing feeds/users (when evaluated by iS-

60

Figure 5.6: Bottom-10, top-10, and complete average FMeasure for the Rocchio

Variant, LMClassifier, MTT, and iScore with/without MTT on the Yahoo! News

dataset. MTT is 12.3% better than the language modeling classifier on the worst

10 performing feeds/users. When MTT is added to iScore, performance of the

worst 10 performing feeds/users increases by 5%.

core). The performance of MTT is 9.5% less than that of the language modeling

classifier on the best performing feeds/users. But when MTT is added to iScore,

performance of the worst 10 performing feeds/users increases by 5% while the

performance of the best performing feeds/users stays the same. This indicates

that MTT can improve recommendation results when it is added to the iScore

featureset.

Figure 5.7 shows the current FMeasure performance of the classifiers as doc-

uments are processed. The figure indicates that the advantage that MTT has

is consistent regardless of the number of documents that have been processed.

MTT has the advantage over the language modeling classifier in all time peri-

ods, except for time periods beyond 105, where MTT and the language modeling

61

Figure 5.7: Cummulative FMeasure at specific periods for the Rocchio Variant,

LMClassifier, MTT, and iScore with/without MTT on the Yahoo! News dataset.

classifiers are statistically tied. When MTT is added to iScore, the performance

of iScore begins to improve after 21,000 documents have been processed. This

indicates that it may take some time for MTT and the näıve Bayes classifier used

as the overall classifier to learn enough to result in improved recommendation

results.

Figure 5.8 shows the FMeasure performance of the classifiers over the most

recent 5,000 documents processed. The intent of this evaluation is to show the

current performance of various classifiers over the most recent documents. In

this figure, it is not clear whether the language modeling classifier or MTT has

the advantage in the first two-thirds of the experiment. In the latter third of the

experiment, the language modeling classifier clearly performs better than MTT.

It is also clear that after 25,000 documents have processed, iScore with MTT

(Featureset B) has the advantage over iScore with only the original featuresets

(Featureset A) in this evaluation test.

62

Figure 5.8: FMeasure for the 5,000 most recent documents for the Rocchio Vari-

ant, LMClassifier, MTT, and iScore with/without MTT on the Yahoo! News

dataset. After processing 25,000 documents, iScore with MTT (Featureset B)

has the advantage over iScore with only the original featuresets (Featureset A).

63

Figure 5.9: Average performance for the Rocchio Variant, LMClassifier, MTT,

and iScore with/without MTT on the tagger dataset. Performance marginally

improves by 0.2% for FMeasure when MTT is added to iScore.

5.3.2 Tagger

The second set of experiments evaluate MTT on the tagger dataset. For the tag-

ger dataset, MTT is worse than the Rocchio variant and the language modeling

classifier in terms of FMeasure, as shown in Figure 5.9. On the other hand, in

light of the T11SU metric, MTT performs better than both the Rocchio variant

and the language modeling classifier. Additionally, when MTT is added to iS-

core, performance marginally improves by 0.2% for FMeasure. Performance also

improves for T11SU when MTT is added to iScore.

Figure 5.10 also shows that MTT alone does not perform well for the tagger

dataset. The chart shows that MTT worse than the langauge modeling classifier

and the Rocchio variant for all three categories of users. However, the figure

also shows that the performance of iScore improves when MTT is added to the

featureset, for all three categories of users.

64

Figure 5.10: Bottom-3, top-3, and complete average FMeasure for the Roc-

chio Variant, LMClassifier, MTT, and iScore with/without MTT on the tagger

dataset.

5.3.3 Digg

The third dataset evaluates MTT on the Digg dataset. Figure 5.11 shows the

average FMeasure, T11SU, precision, and recall of the Rocchio variant, the lan-

guage modeling classifier, MTT, iScore with the original featureset, and iScore

with MTT. The figure shows that although MTT does not perform as well as the

Rocchio variant in terms of FMeasure, it has a significantly higher T11SU score

due to its higher precision yet lower recall. When MTT (Featureset B) is added

to iScore (Featureset A), the FMeasure performance of iScore improves by 3.1%.

Although this new iScore configuration still has a lower FMeasure score as the

Rocchio variant, it has a higher recall score.

Figure 5.12 shows the average FMeasure of all, the worst performing, and

the top performing users. In the figure, MTT has approximately the same per-

formance as the Rocchio variant for the worst performing users but significantly

65

Figure 5.11: Average performance for the Rocchio Variant, LMClassifier, MTT,

and iScore with/without MTT on the Digg dataset. When MTT (Featureset B)

is added to iScore (Featureset A), the FMeasure performance of iScore improves

by 3.1%. Although this new iScore configuration still has a lower FMeasure score

as the Rocchio variant, it has a higher recall score.

66

Figure 5.12: Bottom-10, top-10, and complete average FMeasure for the Rocchio

Variant, LMClassifier, MTT, and iScorewith/without MTT on the Digg dataset.

poorer performance for the top performing users. When MTT is added to the

iScore featureset, the FMeasure performance of the worst performing users im-

proves marginally.

Figure 5.13 shows the FMeasure performance of the classifiers as documents

are processed. At one point, MTT actually performs better than both iScore

configurations (Featuresets A and B). But the figure indicates that the Rocchio

variant has a better FMeasure score on average consistently.

However, in Figure 5.14, which shows the FMeasure performance of the classi-

fiers for the 5,000 most recent documents processed, MTT has better performance

for the 5,000 most recent document window than the Rocchio variant after 10,000

documents have been processed. The figure also indicates that the Rocchio vari-

ant gets its advantage in the overall FMeasure average in the early time periods,

but in the later time periods, the iScore configurations, particularly iScore with

MTT, gains the advantage.

67

Figure 5.13: Current cumulative FMeasure at specific periods for the Rocchio

Variant, LMClassifier, MTT, and iScore with/without MTT on the Digg dataset.

Figure 5.14: FMeasure for the 5,000 most recent documents for the Rocchio

Variant, LMClassifier, MTT, and iScore with/without MTT on the Digg dataset.

iScore has the advantage in the later time periods.

68

5.3.4 TREC Adaptive Filter

Although the TREC11 adaptive filter task is to retrieve all articles relevant to a

query, regardless of its interestingness to a user, it is interesting to see how well

MTT and iScore performs against other adaptive filters from TREC11. MTT

and the full iScore feature set are compared with the best filters from each par-

ticipating group in TREC11 against the TREC11’s RCV1 corpus in Figure 5.15.

A majority of the TREC participants optimizedfor T11SU, so T11SU is used

as the optimizing metric for the adaptive threshold. The same operating pa-

rameters found in the case study for the Most Viewed Stories feed are used.

Figure 5.15 shows that MTT does not perform as well as the Rocchio variant

(ICTAdaFT11ub) [XYW02]. However, when MTT is incorporated into iScore,

FMeasure improves by 14%. According to [PCB07a], features other than topic

relevancy features are not useful for identifying interesting articles to the TREC

topics. The addition of irrelevant features causes the difference in performance

between MTT alone and iScore with MTT while only improving iScore slightly

when added as an additional feature.

Figure 5.16 shows the performance of iScore and MTT along with the top

three adaptive filters from Figure 5.15. TREC only reports T11SU performance

over time instead of FMeasure, so T11SU is shown in Figure 5.16. The figure

shows that MTT performs much better over time than any of the other classifiers.

Like Figure 5.15, Figure 5.16 does show improvement introduced by MTT into

iScore over MTT alone and iScore without MTT for documents after time period

6.

69

Figure 5.15: Average performance of the best filters, MTT, and iScore

with/without MTT on the TREC Adaptive Filter task.

Figure 5.16: Performance for the last month’s documents of the top performing

filters, iScore, MTT, and iScore with MTT on the TREC Adaptive Filter task.

70

5.4 Discussion and summary

Multiple Topic Tracking (MTT), inspired by the Rocchio algorithm and single-

pass clustering algorithms used in topic detection and tracking, is shown to be

an effective technique to classifying news articles as interesting or uninteresting

for specific users. By explicitly and distinctly tracking multiple topics of user

interest and their degree of interestingness, MTT addresses the shortcomings of

the Rocchio algorithm’s usage of a single query to find all interesting articles

from across multiple topics and its inability to quickly adapt to changes in user

interests.

Through a case study for a single RSS feed, reasonably good operating param-

eters are found for MTT. Using these parameters, several evaluation experiments

are performed. For the TREC adaptive filter task, iScore with MTT performs rel-

atively well compared to the other filters from TREC11. MTT also outperforms

the best filter over time as more documents are processed in terms of TREC11’s

T11SU metric. The inclusion of MTT in iScore improves its performance by

14%. For the news recommendation tasks, MTT has much higher T11SU scores

than the baseline classifiers but with mixed FMeasure scores. With the exception

of the tagger dataset, the inclusion of MTT improves iScore’s overall FMeasure

performance as well (0.8%, 0.2%, and 3.1% for the Yahoo! News, tagger, and

Digg datasets, respectively).

However, the problem with MTT is that there are a multitude of parameters

that must be tuned prior to running the algorithm. Also, these parameters may

also be user-specific, so it would be impractical to tune for each user if the system

is very large. This problem is addressed in the next chapter.

71

CHAPTER 6

Online Parameter Selection

In iScore, a variety of information retrieval algorithms are used to identify inter-

esting articles. However, in many information retrieval algorithms, such as the

Rocchio algorithm [Roc71] and MTT [PCB07b], parameters often must be fine-

tuned to a particular dataset through extensive experimentation. For example, in

[XYW02], a Rocchio variant of the algorithm’s performance depends extensively

on the weight that is given to negatively labeled articles. In MTT, performance

greatly depended upon γ, tprecision, and tcluster. These parameters are determined

through extensive trial and error experiments. If there are many different datasets

that must be evaluated, this process is often tedious and expensive, leading many

to simply fine-tune the parameters to one dataset and applying the parameters

globally to all other datasets, which is almost certainly not be optimal.

In news recommendation, user reading behavior may vary from user to user,

and would result in different parameters for recommendation algorithms. For

example, with regards to the weight that is applied to negatively labeled articles,

one user may want to “forget” an uninteresting article relatively quickly; whereas,

for another user, he may want to “forget” uninteresting articles slowly. Ideally,

each user would have his own set of parameters for an algorithm like Rocchio,

to identify his own set of interesting articles. This problem is magnified if there

are many users with different reading/learning behaviors. It is not feasible for a

news recommendation engine to fine-tune parameters for every user because it

72

is very rare that validation data is available for fine-tuning until a user begins

reading articles recommended by the system. Even if such a validation data was

available, the task would be too time-consuming for it to be tractable if done

on every user. To address this problem in news recommendation, the following

contributions are made [PCB08b]:

1. Users are shown to have different learning/reading behaviors when evalu-

ating the interestingness of news articles.

2. Instead of using static parameters, several different parameter configura-

tions are evaluated simultaneously in a simple IR algorithm so that similar

or better recommendation results can be achieved compared to more com-

plex information retrieval algorithms (e.g., language modeling classifiers)

and algorithms that require fine-tunining (e.g., MTT and Rocchio).

3. By tailoring parameters specifically to an user instead of using an “one-size-

fits-all” set of parameters, better recommendation results can be achieved.

6.1 Rocchio

The Rocchio algorithm, first introduced in [Roc71], models documents and queries

as TF-IDF vectors. It aims at forming the optimal query so that documents that

are highly similar to the query are marked as relevant. When applied to adaptive

document filtering, the query is continually updated. In general, the query profile

~p is updated as the following:

~pnew = α ∗ ~porig + χ ∗
∑

d∈Rel

~d− γ ∗
∑

d/∈Rel

~d (6.1)

The parameters χ and γ represent the weights when adding positive and

negatively tagged articles to the query profile. The χ parameter represents rate

73

of emphasizing the terms of positively tagged articles. The γ represents the rate of

deemphasizing terms from negatively tagged articles. The vector ~d is the TFIDF

vector of an article. The set REL is the set of all relevant or positively tagged

articles. The vector ~pnew is the TFIDF vector of the query profile. The vector

~porig is the TFIDF vector of some search query string. In a text filtering setting,

there is often no initial user-query so α ∗ ~porig is ignored, simplifying the Rocchio

formulation to the weighted sum of relevant documents and irrelevant documents.

The Rocchio formulation can be incrementally computed as the following:

~pnew =


~pold + χ ∗ ~d if d ∈ Rel

~pold − γ ∗ ~d if d /∈ Rel
(6.2)

All negative components of the resulting profile are assigned a zero weight. A

document is classified by Rocchio as relevant if its cosine similarity with the query

profile is above a threshold. The cosine similarity between a document with a

vector ~d and a query profile ~p as defined in Equation 4.3.

Other variations on Rocchio include the use of query zoning [SSS98] where

only the set of non-relevant documents considered for the profile update are those

that relate well to the user’s interest (i.e., have high similarity to the query pro-

file). Another variation makes the distinction between soft negative articles (i.e.,

unlabeled articles that are not relevant to the query) and hard negative articles

(i.e., labeled articles that are not relevant to the query). For example, [XYW02]

uses different weights for negatively labeled documents and unlabeled documents.

In [PCB07b], Rocchio is further extended using many more parameters, including

the use of multiple query profiles to represent the multiple interests of a single

user. In that algorithm, called MTT, the optimal set of parameters may vary

from user to user, depending on the users’ interests.

The problem with these Rocchio variants is that the weighting schemes for the

74

Rocchio formulation must be predetermined ahead of time. Often, this requires

fine-tuning the parameters for the specific query and for the corpus. By pre-

setting the parameters, it is assumed that the tuned parameters are the optimal

ones for all users, which may not necessarily be the case.

Other works have looked at Rocchio from a theoretical point of view. For

example, in [CZ02], the lower bound of the number of mistakes that Rocchio

will make in different scenarios was studied. In [Joa96], the connection between

Rocchio and probabilistic classifiers, such as nave Bayes, was identified.

6.2 eRocchio

Given the shortcomings of existing information retrieval (IR) algorithms, such

MTT, Rocchio, and its variants, that require fine-tuning parameters before the

algorithms are run on live data, a different approach is taken. Rather than

predetermining the weighting scheme in the Rocchio formulation in Equation

6.2, multiple instances of the Rocchio formulation are evaluated in parallel, each

with a different weighting scheme. In Equation 6.2, there are two unknown

parameters χ and γ, the relative weights for positively labeled articles and for

negatively labeled articles, respectively. However, because γ is a weight relative

to χ, multiple γ-values are evaluated simultaneously while holding χ to 1. This

scheme is called eRocchio.

Each document is evaluated by multiple instantiations of the Rocchio formu-

lation in parallel, each with a different negative article weight γ, as shown in

Figure 6.1. In the experimental evaluation, all possible γ-values between 0 and

2, inclusive, in intervals of 0.01, are evaluated. Because the cosine similarity be-

tween the query profile and the document is a real number bounded between 0

75

Figure 6.1: eRocchio classification pipeline.

and 1, and a binary decision must be made, the similarity is thresholded such

that articles with a high similarity with the profile are labeled as interesting and

articles with low similarity are labeled as uninteresting. Rather than use a static

threshold, the efficacy of every threshold between 0 and 1 in increments of 0.01

is evaluated. Each Rocchio instantiation, has its own adaptive thresholder to op-

timize its corresponding instantiation. Consequently, no particular distribution

of interesting and uninteresting articles is assumed. And in the case of ties be-

tween utility measures, the threshold that yields the largest separation between

interesting and uninteresting articles is used. Each instantiation of Rocchio has

its own unique γ and adaptive thresholder. After each adaptive thresholder has

generated a binary score from its corresponding Rocchio instantiation’s generated

similarity score, the evaluator must generate a final answer. The best Rocchio

instantiation and its corresponding threshold are chosen by selecting the Rocchio

instantiation and the threshold combination that has had the best utility measure

up to that point. In evaluations, FMeasure Fβ is used, where β=0.5, weighting

precision twice as much as recall, which is consistent with the utility measure

76

used in the TREC Adaptive Filter Task [RS02].

In summary, a document is evaluated with the following steps:

1. A TF-IDF vector for the document is generated. Stop words are removed

and the remaining terms are stemmed.

2. For each Rocchio instantiation, the cosine similarity of the document with

the instantiations’ stored profile (also a TF-IDF vector) is evaluated, using

Equation 4.3.

3. For each Rocchio instantiation, the cosine similarity, computed in the pre-

vious step, is thresholded with the instantiation’s currently best threshold,

generating a binary score.

4. The binary score generated by the currently best instantiation is used as

the final output of eRocchio.

After the actual interestingness of the document is revealed, eRocchio is up-

dated as follows:

1. For each Rocchio instantiation, the profiles are updated using Equation 6.2.

2. The FMeasure statistic for each instantiation is updated.

3. The adaptive threshold for each instantiation is updated by updating the

FMeasure statistic of every possible threshold for the instantiation.

It is expected that the computational cost for running eRocchio is propor-

tional to the number of γ-values evaluated and the runtime of Rocchio. Thus,

the runtime performance would be O(V R), where V is the number of γ-values

evaluated and R is the runtime of Rocchio. Although, this runtime may seem

77

Figure 6.2: Each area curve is the normalized final FMeasure of each instantia-

tion. A curve for each feeds from the Yahoo! News collection are shown.

large, with the availability of large-scale cluster computing, the multiple instan-

tiations may be evaluated in parallel.

6.3 User variations

The variations of parameters among users with three datasets are studied. The

first dataset is a set of 123,653 news articles from the Yahoo! News RSS feeds.

The second dataset consists of articles collected from volunteer news readers that

tag articles as they read their daily news on the web. The third dataset is the

Digg collection.

Figures 6.2, 6.3(a), and 6.3(b) show that that the choice of the optimal γ can

be radically different, depending on the target feed/user. Each area curve is the

normalized final FMeasure of each instantiation. The final FMeasure statistic

78

(a) Tagger dataset.

(b) Digg dataset.

Figure 6.3: Each area curve is the normalized final FMeasure of each instantia-

tion. A curve for each user from the tagger and Digg collections are shown.

79

Figure 6.4: Selected γ-value over time for a select number of feeds from the

Yahoo! News collection.

has been normalized so that the graph shows the deviation from the average fi-

nal FMeasure for a given feed/user. Figure 6.2 shows the normalized FMeasure

performance of each interest-driven feed from the Yahoo! News collection. De-

pending on the feed, the rate of deemphasizing uninteresting articles varies. For

a feed such as “Most Emailed Travel,” the best γ weight is near 0, meaning that

uninteresting terms are forgotten very slowly. For “Most Emailed Top Stories”

feed, the best γ weight is between 0.2 and 0.4 For the “Highest Rated Science”

feed, the best γ weight is between 0.4 and 0.8. And for the “Most Emailed

Business” feed, the best γ weight is much higher, between 1.0 and 1.4, mean-

ing uninteresting terms are forgotten more quickly than the rate that interesting

terms are reinforced. Figure 6.4 shows the selected γ-values by eRocchio for the

topic-independent interest-driven feeds from the Yahoo! News collection. For

most of these feeds, eRocchio settles on a γ-value less than 1.0, except for “Top

80

Stories,” in which eRocchio selects a γ-value that seems to continually grow. This

variation of γ-values over time is likely due to the behavior and type of news read

by users represented by the feed. For example, users represented by the “Top

Stories” feed may continually want to deemphasize terms from old uninteresting

news very quickly; whereas for users represented by the “Most Viewed” feed do

not want to deemphasize terms from old news as quickly. Figure 6.3(a) shows

the normalized FMeasure performance of each user from the volunteer tagger

collection. For half of the users, a low γ weight is optimal; whereas, for the other

half of users, a high γ weight is ideal. Figure 6.3(b) shows even more variation

of the optimal γ weight in the Digg dataset.

6.4 Experimental results

In these sets of experiments, eRocchio’s recommendation performance is evalu-

ated with the large Yahoo! News, tagger, and Digg datasets. In addition to the

news recommendation datasets, eRocchio is evaluated on the TREC Adaptive

Filter task.

6.4.1 Spacing

The effect of the spacing between the evaluated γ-values on recommendation per-

formance is first looked at. This experiment is run on the large Yahoo! News

dataset. The FMeasure of eRocchio for various spacings between γ-values is

shown in Figure 6.5. The figure shows that performance peaks when the spacing

is 0.01. The performance drops as the spacing increases. This is the expected

behavior because having smaller spacing between the evaluated γ-values allows

eRocchio to evaluate more data points in identifying the optimal learning behav-

81

Figure 6.5: Average FMeasure of eRocchio on the Yahoo! News dataset for

various spacings between γ-values.

ior.

6.4.2 Yahoo! News

The first set of experiments evaluate eRocchio on the Yahoo! News dataset.

The spacing between γ-values evaluated in this experiment is 0.01. Figure 6.6(a)

shows the average FMeasure, T11SU, precision, and recall of the Rocchio vari-

ant [XYW02] (which was the best performing filter in the last run of the TREC

Adaptive Filter task), a language modeling classifier, MTT, and eRocchio. The

figure shows that eRocchio has very similar performance to MTT and the lan-

guage modeling classifier although it is a much simpler algorithm and requires no

parameter tuning. In Figure 6.6(b), when eRocchio is added to iScore (Feature-

set C), it performs slightly better than the original featureset (Featureset A) and

performs slightly worse than iScore with MTT (Featureset B). iScore with both

MTT and eRocchio (Featureset D) performs 0.4% better than iScore with MTT

82

in terms of FMeasure, and has the best precision over all the classifiers with some

loss in recall.

Figure 6.7(a) shows the average FMeasure of performance of all, the top 10,

and the bottom performing feeds for several classifiers on the Yahoo! News collec-

tion, such as the Rocchio variant, a language modeling classifier, MTT [PCB07b],

and eRocchio. The figure shows that eRocchio performs as well as the top classi-

fiers, LMClassifier and MTT, despite its simpler algorithm, compared to LMClas-

sifier, and the lack of parameter tuning, compared to MTT. It also shows that

eRocchio outperforms the Rocchio variant by a significant 2.1 FMeasure points

(6% improvement), indicating that online parameter selection can outperform a

static a priori parameter selection. Although, eRocchio does not perform as well

as the top classifiers with regards to the top 10 average, eRocchio performs better

than all the other classifiers for the bottom 10 feeds, which are the most difficult

to recommend articles for.

Figure 6.7(b) shows several different iScore configurations evaluating the Ya-

hoo! News collection. The basic iScore configuration (iScore) includes all the

features detailed in Chapter 4, including Rocchio, the Rocchio variant, and the

language modeling classifier. The figure shows that when MTT (Featureset B) or

eRocchio (Featureset C) is added to the original iScore features (Featureset A),

performance improves marginally, with the greatest improvement for the most

difficult feeds. The figure also shows that when MTT is replaced with the much

simpler eRocchio (Featureset C), performance remains relatively the same. And

when both eRocchio and MTT are part of the featuresets (Featureset D), perfor-

mance also stays relatively the same with a slight improvement on the worst 10

feeds.

Figure 6.8(a) shows the FMeasure performance over time as documents are

83

(a) Rocchio variant, LMClassifier, MTT, and eRocchio.

(b) iScore with different featuresets. iScore with both MTT and eRocchio

performs 0.4% better than iScore with MTT in terms of FMeasure, and

has the best precision over all the classifiers with some loss in recall.

Figure 6.6: Overall performance of the Rocchio variant, LMClassifier, MTT,

eRocchio, and iScore with different featuresets on the Yahoo! News dataset.

84

(a) Rocchio variant, LMClassifier, MTT, and eRocchio. eRocchio out-

performs the Rocchio variant by a significant 2.1 FMeasure points (6%

improvement). Also eRocchio performs better than all the other classi-

fiers for the bottom 10 feeds, which are the most difficult to recommend

articles for.

(b) iScore with different featuresets. When MTT is replaced with the

much simpler eRocchio (Featureset C), performance remains relatively

the same.

Figure 6.7: Bottom-10, top-10, and complete average FMeasure for the Rocchio

variant, LMClassifier, MTT, eRocchio, iScore on the Yahoo! News dataset.

85

(a) Rocchio variant, LMClassifier, MTT, and eRocchio.

(b) iScore with different featuresets.

Figure 6.8: Current cumulative FMeasure performance at specific periods for

the Rocchio variant, LMClassifier, MTT, eRocchio, iScore on the Yahoo! News

dataset.

86

processed. Although MTT outperforms eRocchio consistently, eRocchio outper-

forms the language modeling classifier in most time periods and has comparable

performance with MTT despite its simiplicity and lack of parameter tuning. It

is not clear in Figure 6.8(b) which iScore configuration performs the best. Al-

though, the figure indicates that iScore with MTT and eRocchio and iScore with

MTT are generally better than the other configurations.

Figure 6.9(a) shows the average FMeasure performance of the same classifiers

over the last 5,000 documents. The figure shows that eRocchio performs as

well as most of the baseline classifiers, with the best performance in the middle

periods. In the later periods, however, the language modeling classifier has the

advantage. Like the cumulative counterpart of this figure, it is not clear which

iScore configuration is the best performance in Figure 6.9(b).

6.4.3 Tagger

The second round of experiments evaluate eRocchio on the tagger dataset. The

spacing between γ-values evaluated in this experiment is 0.01. Like in the Ya-

hoo! News dataset, eRocchio has better performance than the best baseline

classifier in the tagger dataset. Where MTT dominates as the best baseline clas-

sifier in the Yahoo! News dataset, the Rocchio variant dominates in the tagger

dataset. And eRocchio performs the Rocchio variant by 0.8%. Figure 6.10(a)

shows that eRocchio can outperform the Rocchio variant, the language modeling

classifier and MTT due to its higher precision and recall. Figure 6.10(b) shows

that when eRocchio is added (Featureset C) to iScore, performance improves by

1.7%. However, when both MTT and eRocchio are added to iScore (Featureset

D), performance drops, due to lower precision and recall, but it’s T11SU score is

comparable to that of when only eRocchio is added to iScore (Featureset C).

87

(a) Rocchio variant, LMClassifier, MTT, and eRocchio.

(b) iScore with different featuresets.

Figure 6.9: FMeasure for the 5,000 most recent documents for the Rocchio vari-

ant, LMClassifier, MTT, eRocchio, and iScore on the Yahoo! News dataset.

88

(a) Rocchio variant, LMClassifier, MTT, and eRocchio.

(b) iScore with different featuresets.

Figure 6.10: Overall performance of the Rocchio variant, LMClassifier, MTT,

eRocchio, and iScore with different featuresets on the tagger dataset. eRocchio

performs the Rocchio variant by 0.8%.

89

Figure 6.11(a) shows the average FMeasure performance of the same classifiers

on the tagger dataset. The figure also shows the worst 3 and best 3 performing

users. In this dataset, in contrast to the Yahoo! News dataset, the language

modeling classifier and MTT do not perform as well as the Rocchio variant. The

figure shows that while eRocchio performs better for the top 3 and the bottom

3 users performing users. On average, eRocchio performs as well as the Rocchio

variant (using parameters recommended by [XYW02]), despite eRocchio’s lack of

parameter tuning that is required of the Rocchio variant.

Figure 6.11(b) also shows the same iScore configurations for the volunteer

tagger dataset. The figure shows that the inclusion of eRocchio into iScore (Fea-

tureset C), recommendations for the hardest users improve while dropping only

slightly for the easiest users. When both MTT and eRocchio are added to iscore

(Featureset D), performance for the hardest users is the highest for the classifiers

examined. The figure also shows that by adding MTT to the featureset that

already includes eRocchio (Featureset D), performance improves slightly for the

easiest users as well, compared to the performance of having eRocchio and the

original iScore features alone.

6.4.4 Digg

The third datset evaluates eRocchio on the the Digg dataset. The spacing be-

tween γ-values evaluated in this experiment is 0.01. Figure 6.12(a) shows the

average FMeasure, T11SU, precision, and recall of eRocchio compared to several

other classifiers. The figure shows that eRocchio attains an 8% higher FMeasure

score than the Rocchio variant, one of the baseline classifiers due to its higher

precision and recall. This indicates that online parameter selection is signifi-

cantly better than the static parameter selection for the Digg dataset. In Figure

90

(a) Rocchio variant, LMClassifier, MTT, and eRocchio.

(b) iScore with different featuresets.

Figure 6.11: Bottom-3, top-3, and complete average FMeasure for the Rocchio

variant, LMClassifier, MTT, eRocchio, iScore on the tagger dataset.

91

6.12(b), when eRocchio (Featureset B) is included in the iScore featureset, iS-

core’s FMeasure performance improves by 5.6%, but is still lower than that of

eRocchio alone.

Figure 6.13(a) shows the average FMeasure of all, the bottom 10, and the

top 10 performing users. The figure indicates that eRocchio performs better

for recommendations to both the easiest and most difficult users. In Figure

6.13(b), when eRocchio is added to the iScore featureset (Featureset C), average

FMeasure performance of iScore improves, making the most significant gains

with the easiest users to recommend for. The addition of eRocchio (Featureset

C) even outperforms iScore with MTT (Featureset B). iScore with both MTT and

eRocchio (Featureset D) performs similarly as iScore with eRocchio (Featureset

C).

Figure 6.14 shows the current cumulative FMeasure of the classifiers as docu-

ments are processed. The figure clearly indicates that eRocchio performs better

than all the other classifiers on average, including iScore in its different config-

urations. However, in Figure 6.15, which shows the FMeasure performance of

the classifiers over the 5,000 most recent documents, eRocchio performs better

than any of the baseline classifiers. Also iScore with both eRocchio and MTT

(Featureset D) perform better in the later time periods for the most recent docu-

ments it has seen. Additionally, iScore with eRocchio (Featureset C) outperforms

iScore with MTT (Featureset B) in most of the time periods. The figure indicates

that iScore with eRocchio and MTT is much more stable in its recommendation

performance since there is a much lower drop-off in performance in time periods

3 and 4 than that of the other classifiers, such as eRocchio.

92

(a) Rocchio variant, LMClassifier, MTT, and eRocchio. eRocchio attains

an 8% higher FMeasure score than the Rocchio variant.

(b) eRocchio and iScore with different featuresets. When eRocchio (Fea-

tureset B) is included in the iScore featureset, iScore’s FMeasure perfor-

mance improves by 5.6%, but is still lower than that of eRocchio alone.

Figure 6.12: Average performance for the Rocchio variant, LMClassifier, MTT,

eRocchio, and iScore with different featuresets on the Digg dataset.

93

(a) Rocchio variant, LMClassifier, MTT, and eRocchio.

(b) eRocchio and iScore with different featuresets. The addition of eRoc-

chio (Featureset C) beats iScore with MTT (Featureset B).

Figure 6.13: Bottom-10, top-10, and complete average FMeasure for the Rocchio

variant, LMClassifier, MTT, eRocchio, iScore on the Digg dataset.

94

(a) Rocchio variant, LMClassifier, MTT, and eRocchio.

(b) eRocchio and iScore with different featuresets. iScore with eRocchio

(Featureset C) outperforms iScore with MTT (Featureset B) in most of

the time periods.

Figure 6.14: Current cumulative FMeasure at specific periods for the Rocchio

variant, LMClassifier, MTT, eRocchio, iScore on the Digg dataset.

95

(a) Rocchio variant, LMClassifier, MTT, and eRocchio. eRocchio per-

forms better than any of the baseline classifiers.

(b) eRocchio and iScore with different featuresets. iScore with both eRoc-

chio and MTT (Featureset D) perform better in the later time periods

for the most recent documents it has seen.

Figure 6.15: FMeasure for the 5,000 most recent documents for the Rocchio

variant, LMClassifier, MTT, eRocchio, iScore on the Digg dataset.

96

6.4.5 TREC Adaptive Filter

Although the TREC11 adaptive filter task is to retrieve all articles relevant to a

query, regardless of its interestingness to a user, it would be interestig to see how

well eRocchio performs against other adaptive filters from TREC11. eRocchio is

compared with the best filters from each participating group in TREC11 on the

TREC11’S RCV1 corpus in Figure 6.17. In this set of experiments, eRocchio is

adapted to learn from the initial training articles and the query description in an

identical fashion to ICTAdaFT11Ub [XYW02]. Also eRocchio is augmented to

handle both soft and hard negative articles as shown in Figure 10.1. In the other

three datasets, there is no (or little for the tagger dataset) distinction between

hard and soft negative articles, as most negative labels were considered soft due

to the lack of negative user taggings. Consequently, instead of learning a param-

eter configuration consisting of only one parameter, in this set of experiments,

eRocchio learns a parameter configuration consisting of two parameters, one for

hard negative articles and one for soft negative articles. The soft and hard nega-

tive article weights considered are between 0 and 2.0 in increments of 0.1. Each

possible pair of soft and hard negative article weights are evaluated in parallel as

the articles are processed one at a time.

Figure 6.17 shows eRocchio outperforming the best classifier from TREC11,

ICTAdaFT11Ub, by a significant 4.3 FMeasure points (10% improvement). IC-

TAdaFT11Ub is the same algorithm as the Rocchio variant in the previous ex-

periments. This is a significant improvement in this area of work, where even

small improvements are difficult to achieve. The improvement is due to the large

increase in precision by eRocchio over ICTAdaFT11Ub, despite the slight drop

in recall. eRocchio is similar to ICTAdaFT11Ub except that instead of using

fixed static weights for negative articles across all query topics, eRocchio learns

97

Figure 6.16: eRocchio pipeline with weights for soft and hard negatively-labeled

articles.

dynamically those parameters that are more suited to an individual query topic.

The figure shows that the online learning of parameters specific for a query can

also improve information retrieval results in addition to news article recommen-

dations. Figure 6.18 shows that eRocchio outperforms ICTAdaFT11Ub in almost

every time period and outperforms MTT in every time period.

6.5 Discussion and summary

The optimal learning behavior for a classifier is shown to vary from user to user,

so instead of using a fixed parameter configuration across all users, better rec-

ommendation results can be achieved by tailoring the parameters to a specific

user. By evaluating the efficacy of several parameter configurations as documents

are processed, a good parameter configuration can be determined in an online

fashion, adapting to changes in the dataset and user behavior. Because of the

effectiveness, simplicity, and adaptability of eRocchio, it can replace algorithms

such as Rocchio and MTT in iScore.

98

Figure 6.17: Average performance of the top performing filters and eRocchio on

the TREC Adaptive Filter task. eRocchio outperforms the best classifier from

TREC11, ICTAdaFT11Ub, by 10%.

Figure 6.18: Performance for the last month’s documents of the top performing

filters, MTT, and eRocchio on the TREC Adaptive Filter task.

99

Online learning of parameter configurations can yield better news recommen-

dation results. By itself, eRocchio performs as well as or better than the best

baseline classifiers without any prior parameter tuning, for all datasets. When in-

cluded with iScore along with MTT, eRocchio improves performance by 0.4% and

5.6% in the Yahoo! News and Digg datasets, respectively, while showing a per-

formance decrease only in the tagger dataset. By adapting the online parameter

selection algorithm in eRocchio, it can yield 10% better results in the TREC11

Adaptive Filter Task than best performing filter from that task. By learning

parameters of a simple algorithm online for a specific user, similar recommenda-

tion performance can be achieved as more complex algorithms or algorithms that

require extensive fine-tuning.

100

CHAPTER 7

Additional iScore Features

In addition to the iScore features detailed in the previous chapters, the follow-

ing features are introduced to address some of the shortcomings of the original

features. These features demonstrate improved recommendation performance

compared to the original iScore features.

7.1 Language models for interestingness and uniqueness

In Chapter 4, language modeling classifiers are trained and rebuilt in batches to

reduce the consumption of computational resources but result in training delay.

Language modeling classifiers make use of models that assign a probability to a

sequence of tokens. To address this problem, instead of building a classifier on

the complete body of all articles (interesting or not) that returns a probability

of whether the article is interesting, language models are built on only the title

or first paragraph of interesting articles and measure the probability of the text

being “generated” from the language model using Equation 4.5, or the probability

of the sequence of tokens in the article existing given what has been seen before.

In news articles, the title and the first pargraph of an article are often very

good summaries of the complete article. So by using a much smaller training

text to build the models, the models are more easily updateable. But instead of

computing a very large product, which can approach 0 as the number of factors

101

to be multiplied increase, the log-probability is taken instead, transforming the

product of probabilities to a sum of probabilities:

fLM(d) = log(P (d)) =
N∑

i=1

log(P (gi|gi−n+1, . . . , gi−1)) (7.1)

For the title of the article, a language model built on bigrams, where the

grams are words, is used. For the first paragraph of each interesting article, the

language model built on the 6-grams, where grams are characters, is used. Using

grams that are tokens for the bodies of articles would have resulted in too large

and diverse of a language model to run efficiently so characters are used instead.

In addition to measuring the probability of an opening paragraph (or title)

being “generated” from a language model of interesting first paragraphs (or ti-

tles), the probability of the same text being “generated” from a language model

of all seen first paragraphs (or titles) is measured. This will serve as another

measurement of uniqueness of an article.

7.2 Phrase interestingness

In the techniques used in the previous chapters for measuring topic relevancy,

bags of words are mostly used, such as in Rocchio and MTT. Language models

make some effort to go beyond the bags of words approach but often examines

phrases that do not make sense. For example, in the sentence:

The black dog jumped over the fence.

the following tri-grams would be examined: “The black dog,” “black dog jumped,”

“dog jumped over,” “jumped over the,” and “over the fence.” However, if only

noun phrases are looked at, “The black dog” and ”the fence” would be the only

candidates. Using a noun-phrase extractor provided by [Ope06], noun phrases are

102

extracted and normalized (making all characters in the phrase lowercase, remov-

ing stop-words, and stemming each word in the phrase). The average probability

of the interestingness of noun phrases is measured as:

fPhraseInterestingness(d) =

∑
p∈phrases(d)

| times p occurs in Int articles|
|times p occurs in articles|
|phrases(d)|

(7.2)

7.3 Cluster movement

Previous techniques for measuring uniqueness aim at measuring how different an

article is compared to previously seen articles. Another method for measuring

uniqueness is to measure the impact an article has on its parent topic by mea-

suring how much a cluster of articles has changed when an article is added to it.

Articles can be incrementally clustered by using Algorithm 1. In summary, arti-

cles are added to a cluster when the TF-IDF vector that represents the centroid

of the cluster is highly similar to an article (where t ≥ 0.4 in the experiments).

If there are no highly similar clusters, a new cluster is created using the TF-IDF

vector of the article. The clustering algorithm is bootstrapped with a set of clus-

ters to begin with. Cluto [Kar03] is used to generate the initial set of cluster

vectors from the small set of Yahoo! News articles. Similarity is defined using

the cosine similarity as defined by Equation 4.3.

Given the cluster that an article is closest to (if any), the change in the cluster

after the article is added to the cluster is measured as follows:

~cnew = ~cold + ~d (7.3)

fClusterMovement = cos(~cnew,~cold) (7.4)

103

Input: ~d: Document vector, C: Cluster vectors, t: threshold

for ~c ∈ C do

if cos(~d,~c) ≥ t then

~c = ~c + ~d;

end

else

C = C ∪ ~d;

end

end

Algorithm 1: Clustering.

7.4 Topic-driven freshness

The previous technique for measuring freshness measures the average log of the

temporal distance of the last k interesting articles with the current article. The

proposition that the old freshness measure is based upon assumes that articles

published closely in time with previous interesting articles are more likely to be

interesting than articles published farther away in time from interesting articles.

However, a better refinement of that proposition would be that articles published

closely in time with the latest interesting articles in the same topic are more

likely to be interesting than articles published farther away in time from the

latest interesting articles in the same topic. Intuitively, topics that have not

had a recent interesting article published recently are less likely to be currently

interesting. Conversely, articles about topics that have had a recent interesting

article are more likely to be interesting because they belong to a hot or fresh

topic. Topic-driven freshness is measured as follows, where topic(d) is the topic

104

cluster that article d is closest to:

fTDFreshness(d) =
1

k

∑
d′∈Last karticles in topic(d)

Time(d)− Time(d′) (7.5)

In the experiments, k is 10 articles, which is a reasonable number of articles. Too

large of a number would unfairly weight topics that have existed longer. Too

small of a number would yield inaccurate measurements.

7.5 Sliding anomaly detection

All previous measures of uniqueness examine how different the current article

is with all articles seen previously. However, it may be useful to measure the

uniqueness of the article with the content of news from the last k days. A

summary of the news from the last k days (where k is 30 days in the experiments)

is maintained by summing the TF-IDF vectors of all articles published in the last

k days:

~dsummary =
∑

d∈Articles from last k days

~d (7.6)

The vector ~dsummary can be incrementally maintained by keeping a history of

TF-IDF vectors of the articles published in the last k days and keeping a sum of

the vectors as the ~dsummary vector. The vector ~dsummary can be updated, when

necessary, by subtracting the vectors of articles published k days ago and then

by adding the vector of the new article.

Uniqueness as measured by this measure is defined as follows:

fSlidingAnomaly(d) = cos(~dsummary, ~d) (7.7)

105

7.6 Experimental results

In these set of experiments, the title and body language models, phrase interest-

ingness, cluster movement, topic-driven freshness, and sliding anomaly detection

are evaluated as additional features for iScore with the large Yahoo! News, tagger,

and Digg datasets.

7.6.1 Yahoo! News

The first set of experiments evaluate the additional features on the Yahoo! News

dataset. Figure 7.1 shows that FMeasure performance improves 0.8 FMeasure

points (1.7% improvement) when the features discussed in this chapter (Feature-

set E) are added to the original iScore features, MTT, and eRocchio (Featureset

D). This improvement is mostly due to the 12% increase in recall and a small

increase in precision. Closer inspection of the results show that these features

improve recommendation performance for both the most difficult and the easiest

feeds/users to recommend for. However, most of the improvement is for improv-

ing the recommendation performance by 10.5% for the most difficult feeds/users

to recommend for.

Figure 7.3 show the cumulative FMeasure of iScore with MTT and eRocchio

and iScore with MTT, eRocchio, and the new features as documents are pro-

cessed. In other words, the figure shows the performance of the classifiers for

varying document collection sizes. The figure indicates that the improvement

caused by these new features are consistent regardless of the number of docu-

ments that have been processed.

Figure 7.4 shows the FMeasure performance of the classifiers for the 5,000

most recent documents. There is improvement caused by these new features for

106

Figure 7.1: Average performance for iScore with the old and new featuresets on

the Yahoo! News dataset. Performance improves by 1.7% when the new features

are added to the original features, MTT, and eRocchio (Featureset D).

all time periods.

7.6.2 Tagger

The second set of experiments evaluates the additional features on the tagger

dataset. Figure 7.5 shows the average FMeasure, T11SU, precision, and recall

of iScore with the original featureset, MTT and eRocchio (Featureset D) and

iScore with the original featureset, MTT, eRocchio, and the expanded featureset

(Featureset E). The figure indicates there is a 14% improvement in FMeasure

performance when these new features are added to the featureset of iScore due

to increases in precision and recall.

Like the Yahoo! News dataset, Figure 7.6 shows that there is improvement

for the easiest user to recommend for. But the performance improvement is

107

Figure 7.2: Bottom-10, top-10, and complete average FMeasure for iScore with

the old and new featuresets on the Yahoo! News dataset. Most of the 5%

improvement is for improving the performance for the most difficult feeds/users

to recommend for.

108

Figure 7.3: Current cumulative FMeasure performance at specific periods for

iScore with the old and new featuresets on the Yahoo! News dataset. The

improvements caused by the new features are consistent across all time periods.

Figure 7.4: FMeasure performance for the 5,000 most recent documents for iS-

core with the old and new featuresets on the Yahoo! News dataset. There is

improvement caused by the new features for all time periods.

109

Figure 7.5: Average performance for iScore with the old and new featuresets on

the tagger dataset. There is 14% improvement in performance when these new

features are added to the featureset of iScore.

much dramatic, with an increase of 158%. Performance of the easiest users with

this expanded featureset (Featureset E) are comparable to iScore with MTT,

eRocchio, and the original featureset (Featureset D)

7.6.3 Digg

The final set of experiments evaluate the additional features on the Digg dataset.

Figure 7.7 shows the average FMeasure, T11SU, precision, and recall of iScore

with MTT and eRocchio (Featureset D) and iScore with the MTT, eRocchio,

and the additional features discussed in this chapter (Featureset E). The figure

indicates that there are improvements in precision, leading to a 2.9% increase in

FMeasure and a 4.8% increase in T11SU scores.

Figure 7.8 shows the average FMeasure of all, the worst 10, and the top 10

performing users. The figure indicates that performance improves for all three

110

Figure 7.6: Bottom-3, top-3, and complete average FMeasure for iScore with the

old and new featuresets on the tagger dataset.

Figure 7.7: Average performance for iScore with the old and new featuresets on

the Digg dataset. The addition of the new features leads to a 2.9% increase in

FMeasure and a 4.8% increase in T11SU.

111

Figure 7.8: Bottom-10, top-10, and complete average FMeasure for iScore with

the old and new featuresets on the Digg dataset. Most improvement is for the

worst performing users.

categories of users, with the most improvement for the worst performing users.

Figure 7.9 shows the cumulative FMeasure performance of the two featuresets

as documents are processed. The figure clearly indicates that there is a margin

of improvement with the new additional features.

Figure 7.10 shows the FMeasure performance of the two featuresets over the

5,000 most recent documents processed in each time period. The figure shows

that the majority of iScore’s average improvement with the expanded featureset

is found in the early time periods.

7.7 Discussion and summary

The features discussed in this chapter address some of the deficiencies of some of

the other features introduced earlier. Some of the features are new views on older

112

Figure 7.9: Current cumulative FMeasure at specific periods for iScore with the

old and new featuresets on the Digg dataset.

Figure 7.10: FMeasure for the 5,000 most recent documents for iScore with the

old and new featuresets on the Digg dataset. The majority of the improvement

with the expanded featureset is found in the early time periods.

113

concepts and are better measurements of a feature. Some features introduce new

information not previously used, such as the titles or articles. The addition of

these features has improved iScore performance by 1.7%, 6%, and 2.8% in the

Yahoo! News, tagger, and Digg datasets, respectively

114

CHAPTER 8

Online Feature Selection for Interestingness

As stated earlier before, the definition of interestingness varies from user to

user. For example, the writing style of an article may be important for one

user; whereas, for another user it may be unimportant. As a result, it is not

possible to predict which features are important for a specific user before con-

structing the system and so all features are included for classification. Thus,

classification performance suffers initially and requires a significant amount of

training to adapt to the presence of useless features. iScore in [PCB07a] suffers

from this problem. And the definition of interestingness may even change for a

single user over time. For example, the writing style of an article may not be

important initially but may evolve to become important later on. The traditional

classifiers used by iScore, such as näıve Bayes, can learn to adapt to the changing

utility of features, but only with sufficient training. And because of the required

long initial training period, the usefulness of the recommendation system suffers.

Users of recommendation systems are less inclined to use a system if it requires a

significant amount of training before it begins to give accurate recommendations.

To address these problems, online feature selection for näıve Bayes [PCB08a]

is introduced. Correlation is used to determine the utility of each feature and

take advantage of the conditional independence assumption used by näıve Bayes

for online feature selection and classification. The following contributions are

made in this area:

115

Figure 8.1: Feature correlation with interestingness for Yahoo! News. Each color

represents a different proxy user/RSS feed.

1. Augmenting näıve Bayes with online feature selection allows for the fast

identification of useless features, improving iScore’s initial performance

2. The continual learning of statistics about each feature allows for the invo-

cation of any feature at any time if it has been determined to be useful,

addressing the problem of the evolving definition of interestingness

3. By only considering the top-k useful features, evaluation of all possible sub-

sets of features is avoided, making this feature selection approach tractable

in an online environment.

8.1 Correlation

The usefulness of features for determining the interestingness of articles are eval-

uated in [PCB07a]. The Pearsons correlation is used to evaluate the usefuless of

116

Figure 8.2: Feature correlation with relevancy in the tagger dataset. Each color

represents a different user.

Figure 8.3: Feature correlation with relevancy in the Digg dataset. Each color

represents a different user.

117

features. Correlation is defined as:

correlation =
E((X − µX)(Y − µY))

σXσY

(8.1)

E is the expected value operator. µX and σX are the average and standard

deviaton of the random variable X, respectively.

The features are evaluated using the large collection of news articles from all

the Yahoo! News RSS feeds [Yah07]. Figure 8.1 shows the Pearsons correlation of

the features (from [PCB07a]) with interestingness in each of the RSS feeds. For

most feeds, the topic relevancy and source reputation features are features that

have significant direct correlations. Other features, such as writing style, speech

events, anomaly detection, and subjectivity have varying correlation magnitudes

and directions with interestingness, depending on the RSS feed. A variety of

criterion that users may use when evaluating the interestingness of an article

are shown. Figures 8.2 and 8.3 show diversity in the features’ correlation with

interestingness among users as well in the tagger and Digg datasets, respectively.

It is important to note that correlation is not necessarily the best metric

for measuring the utility of a feature in document classification since the actual

usefulness of a feature can not be determined by studying a single feature in

isolation. There are certainly cases where two features that are useless by them-

selves can be useful when combined together [GE03]. However, correlation is a

useful guide if the features were designed to be directly or indirectly correlated

with interestingness in mind, as they were for the iScore features. And by cou-

pling this independent correlation metric with a classifier that assumes that each

feature is independent, such as näıve Bayes, performance of the classifier should

improve. In [GE03], information gain and correlation are suggested for feature

ranking. Information gain is difficult to compute in an online fashion because the

appropriate discretization is difficult to determine if the entire data is not avail-

118

able during evaluation (as in an online streaming environment). Consequently,

correlation is used instead due to its simple online computability and its lack of

a need for discretization.

8.2 Online feature selection with näıve Bayes

Based on Bayes’ theorem, a näıve Bayes classifier is a simple and fast probabilistic

classifier that assumes that features are conditionally independent [WF05]. In

the context of classifying articles, the probability of an article being interesting

is defined by a näıve Bayes classifier as:

P (Int|f1, . . . , fn) =
1

Z
P (Int)

n∏
i=1

P (fi|Int) (8.2)

where Z is a scaling factor dependent on f1, . . . , fn, and Int is the interesting ar-

ticle class. The probability P (fi|Int) is estimated using kernel estimators [JL95].

During classification, when a feature is unavailable, it is simply ignored, which is

equivalent to marginalizing over them.

A näıve Bayes classifier is ideal for online classification since the statistics

necessary for computing the probabilities are incrementally updateable. Addi-

tionally, a näıve Bayes classifier allows for the exclusion of features during classi-

fication so subsets of features can be used for classification while all features can

be used for training. Any other incremental classifier that allows for the exclusion

of features during classification could be used. But for the purposes of this study,

a näıve Bayes classifier, a classifier that has been known to be highly accurate, is

used to evaluate the online feature selection approach proposed here.

Ideally, an article is classified using only the most useful features for a specific

user. Thus, given a set of n features, the features are ordered by their current

absolute Pearsons correlation to interestingness. The top-k most highly correlated

119

features for classification, where k = 1, . . . , n, are considered as subset candidates.

Thus, for every document, n classification scores (each referred to as a subset

score) are generated; one score for each subset. The overall score is the subset

score associated with the subset of features with the highest FMeasure statistic.

Because of the conditional independence of the features, only a single set of

statistics is needed to be maintained, (in the form of kernel estimators) related

to P (fi|Int) and P (fi) even though n classification scores is generated for each

document. For a subset of features of size less than n, features not in the subset

are essentially ignored when generating a classification score from the näıve Bayes

classifier.

After a document is classified, the classifier’s kernel estimators for each feature

are updated given the actual interestingness of the article. Also, the FMeasure

statistic for each feature subset considered is updated as well as the correlation

with interestingness for each feature.

Because statistics about each feature are continually maintained, a feature

that was deemed useless early on can be invoked for classification later. This

allows for an evolving definition of interestingness for a specific user. Although

irrelevant features are ignored for the overall document classification, statistics

learned about the features are never forgotten.

Since only subsets of features with the highest correlations are considered for

each document, as opposed to all possible subsets, this feature selection solution

is tractable. Sets consisting of only features with low correlation with interest-

ingness would be expected to be very low performing for document classification;

whereas, sets of features with high correlation would be expected to be higher

performing. Because only the top-k most highly correlated features are consid-

ered, subsets consisting of only low correlated features are never considered. And

120

Input: d: Document, f : Features, T : Thresholders, Tagging: Tagging, C:

Classifier, S: Set of feature sets, M : Set of FMeasure statistics

Output: Interestingness of article

if S is empty then

I(d) = Tall(C(f1(d), f2(d), . . . , fn(d)));

end

else

maxF = 0, s = ∅;

Sort all f by its absolute Pearson’s correlation;

for i = 1 to n do

s = s ∪ fi;

if maxF < M(s) then

maxF = M(s) ;

I(d) = Ts(C(s));

end

end

end

Update(d, f , T , Tagging, C, S, M);

return I(d);
Algorithm 2: Online Feature Selection and Classification

from document to document, one would expect to see very similar top-k subsets

and so it may be sufficient to only update the FMeasure statistics for each top-k

subsets considered for that document. The online feature selection and classi-

fication is outlined in Algorithm 2. The details regarding the updates to the

classifier, thresholders, and statistics are detailed in Algorithm 3.

For example in Figure 8.4, let there be three features that are ordered in terms

of correlation with interestingness: f1, f2, and f3. Using this order, the following

subsets are evaluated for their classification effectiveness: {f1}, {f1, f2}, and

121

Input: d: Document, f : Features, T : Thresholders, Tagging: Tagging, C:

Classifier, S: Set of feature sets, M : Set of FMeasure statistics

for i = 1 to n do

s = s ∪ fi;

if s /∈ S then
S = S ∪ s;

end

M(s) = Update the FMeasure of C(s) with Tagging;

Update Ts with Tagging;

Update Pearson’s correlation of fi to interestingness with Tagging;

end

Algorithm 3: Update

Figure 8.4: Online feature selection with näıve Bayes.

122

{f1, f2, f3}. If the subset {f1, f2} has yielded the highest FMeasure performance

so far, then it will be used to classify the next document in the document stream.

After the real interestingness of the article is revealed to the system, then the

classifier is updated along with the correlation of each feature with interestingness

and the FMeasure of each subset. The process repeats with the next article in

the document stream.

8.3 Experimental results

In these set of experiments, feature-selection näıve Bayes (FSNB) is evaluated

with the large Yahoo! News, tagger, and Digg datasets.

8.3.1 Yahoo! News

The first set of experiments evaluate online feature selection on the Yahoo! News

dataset. Figure 8.5 shows the average FMeasure, T11SU, precision, and recall

for iScore with the original featureset (Featureset A) and iScore with the ex-

panded featureset that includes the original featureset, MTT, eRocchio, and the

additional features discussed in Chapter 7 (Featureset E). Also shown are iScore

with näıve Bayes (NB) as its overall classifier and features-selection näıve Bayes

(FSNB) as its overall classifier. The figure indicates that FMeasure improves by

0.9 FMeasure points for Featureset A and 0.4 FMeasure points for Featureset E.

The performance increase is due to dramatic improvements in precision despite

some drops in recall, resulting in a higher FMeasure that weights precision twice

as much as recall.

Figure 8.6 shows the average FMeasure of all, the most difficult, and the

easiest feeds/users to recommend for. For Featureset A, improvement is found

123

Figure 8.5: Average performance for iScore with/without feature selection work-

ing on the Yahoo! News dataset. FMeasure improves by 0.9 FMeasure points for

Featureset A and 0.4 FMeasure points for Featureset E.

for both the bottom 10 and the top 10 feeds. For Featureset B, performance

improves only for the top 10 feeds.

Figure 8.7 shows the FMeasure performance of iScore with näıve Bayes and

feature-selection näıve Bayes as the overall classifier as documents are processed.

The figure indicates that for both featuresets, feature-selection näıve Bayes out-

performs näıve Bayes for all time periods, with better performance improvements

for Featureset A.

Figure 8.8 shows the FMeasure performance of iScore with näıve Bayes and

feature-selection näıve Bayes as the overall classifier over the past 5,000 docu-

ment seen. This figure, like the previous one, shows that online feature selection

improves recommendation performance for both featuresets, with better perfor-

mance improvements for Featureset A. The figure also shows the most improve-

124

Figure 8.6: Bottom-10, top-10, and complete average FMeasure for iScore

with/without feature selection on the Yahoo! News dataset. There is improve-

ment for the bottom 10 feeds for both featuresets.

Figure 8.7: Current cumulative FMeasure performance at specific periods for

iScore with/without feature selection on the Yahoo! dataset.

125

Figure 8.8: FMeasure performance for the 5,000 most recent documents for iS-

core with/without feature selection on the Yahoo! News dataset. The most

improvement is found in the early time periods.

ment in the early time periods.

8.3.2 Tagger

The second set of experiments evaluate online feature selection with the tagger

dataset. Figure 8.9 shows the average FMeasure, T11SU, precision, and recall

of näıve Bayes and feature-selection näıve Bayes. like the Yahoo! News dataset,

feature-selection näıve Bayes performs better than näıve Bayes for both feature-

sets, with an improvement of 18.9% and 11.1% for the Featuresets A and E,

respectively.

Figure 8.10 shows the average FMeasure of all, the most difficult, and the eas-

iest user. Like the previous figure, feature-selection näıve Bayes shows increases

in performance compared to näıve Bayes. For both featuresets, performance im-

126

Figure 8.9: Average performance for iScore with/without feature selection on

the tagger dataset. Online feature selection improves performance by 18.9% and

11.1% for Featuresets A and B, respectively.

proves for all three groups of users.

8.3.3 Digg

The final set of experiments evaluate online feature selection on the Digg dataset.

Figure 8.11 shows the average FMeasure, T11SU, precision, and recall of näıve

Bayes and feature-selection näıve Bayes operating over the original featureset

and the expanded featureset. The figure indicates that online feature selection

improves FMeasure by 3.7% and T11SU by 25.7% for the Featureset A. For

Featureset E, FMeasure improves by 3% and T11SU improves by 7%. Increases

in performance in both features are due to improvements in precision with a

slight decreases in recall. This is consistent with the findings for the Yahoo!

News dataset.

Figure 8.12 shows the average FMeasure of all, the 10 most difficult, and

127

Figure 8.10: Bottom-3, top-3, and complete average FMeasure for iScore

with/without feature selection on the tagger dataset.

Figure 8.11: Average performance for iScore with/without feature selection on the

Digg dataset. Online feature selection improves FMeasure by 3.7% and T11SU

by 25.7% for the Featureset A. For Featureset E, FMeasure improves by 3% and

T11SU improves by 7%.

128

Figure 8.12: Bottom-10, top-10, and complete average FMeasure for iScore

with/without feature selection on the Digg dataset.

the 10 easiest users to recommend for. The figure shows that recommendation

results improve for the easiest users by employing feature selection. Results for

feature selection on the most difficult users are mixed, showing improvement

for the original featureset (Featureset A) and showing performance loss for the

expanded featureset (Featureset E).

Figure 8.13 shows the cumulative FMeasure of the classifiers as documents

are processed. The figure indicates that the performance improvement introduced

by online feature selection is consistent for all documents processed. Figure 8.14

shows the FMeasure of the classifiers on the 5,000 most recent documents. The

figure shows that there is a significant spike in performance for feature selection

näıve Bayes, starting at the first period. Although performance drops for the

subsequent periods, the performance of feature selection näıve Bayes remains at

or above that of näıve Bayes.

129

Figure 8.13: Current cumulative FMeasure at specific periods for iScore

with/without feature selection on the Digg dataset.

Figure 8.14: FMeasure for the 5,000 most recent documents for iScore

with/without feature selection on the Digg dataset. There is a significant spike

in performance for feature selection näıve Bayes, starting at the first period

130

8.4 Discussion and summary

Online feature selection for näıve Bayes significantly improves the accuracy in

recommending news articles. By learning which features are useful and useless

for identifying interesting articles for a specific user in an online setting, the aug-

mented näıve Bayes can adapt quickly to changes in the definition of what makes

an article interesting with little training data. Using correlation, the usefulness

of a feature can be determined quicker than the probability distributions used

by a simple näıve Bayes classifier. By considering only useful subsets of features,

this online feature selection approach is efficient while yielding higher quality re-

sults that are better than the traditional näıve Bayes classifier. Online parameter

selection has improved recommendation results by 2%, 11.1% and 3.7% in the

Yahoo! News, tagger, and Digg datasets, respectively.

131

CHAPTER 9

Recommendation Results Summary

In this chapter, the final recommendation performance results are summarized

for the Yahoo! News, tagger, and Digg datasets, comparing the best performing

classifier with the original iScore configuration, the Rocchio Variant (which per-

formed the best in the last TREC Adaptive Filter task), a language modeling

classifier, MTT, and eRocchio.

9.1 Yahoo! News

For the Yahoo! News collection, the best performing classifier seen is iScore using

feature-selection näıve Bayes as its overall classifier operating on the original

featureset, MTT, eRocchio, and the additional features discussed in Chapter 7

(Featureset E).

Figure 9.1 shows the average FMeasure, T11SU, precision, and recall of the

Rocchio variant (which best performed in the TREC Adaptive Filter task), the

language modeling classfier, MTT, eRocchio, iScore with the original feature-

set (NB(Featureset A)), and iScore with feature-selection näıve Bayes and the

expanded featureset (FSNB(Featureset E)). The figure indicates that 0.47 FMea-

sure can be achieved with the expanded featureset and online feature selection,

due to high precision and high recall. This is 24% better than the best baseline

classifiers. And this is 3% better than iScore in its original configuration.

132

Figure 9.1: Average performance for the Yahoo! News dataset. iScore with

feature selection and the expanded featureset is 24% better than the best baseline

classifiers.

Figure 9.2 shows the average FMeasure of all, the top 10 and bottom 10 per-

forming feeds/users. The figure shows that iScore with online feature selection

and the expanded featureset (i.e., FSNB(Featureset E)) can give much better per-

formance for the worst performing feeds/users than all of the baseline classifiers.

It also shows that it has the best performance of the best performing feeds/users

as well.

Figure 9.3 shows the cumulative FMeasure of the classifiers as documents are

processed. The figure indicates that there is a period of time where iScore must

learn and performance gradually improves. The figure also indicates the iScore

with online feature selection and the expanded featureset consistently outper-

forms all the other classifiers.

A similar result is seen in Figure 9.4, which shows the FMeasure performance

of the classifiers over the 5,000 most recent documents. The figure also shows

133

Figure 9.2: Bottom-10, top-10, and complete average FMeasure for the Yahoo!

News dataset. iScore with online feature selection and the expanded featureset

can give much better performance for the average, worst, and best performing

feeds/users than all of the other classifiers.

134

Figure 9.3: Current cumulative FMeasure performance at specific periods for the

Yahoo! News dataset. iScore with online feature selection and the expanded

featureset consistently outperforms all the other classifiers.

that there is a dramatic drop in performance between periods 6 and 7 for all

classifiers. This is most likely due to a long pause in the data collection for this

time period.

9.2 Tagger

For the tagger dataset, the iScore with the expanded featureset and onlne feature

selection performs the best, much like the Yahoo! News collection. Figure 9.5

shows that very high precision and recall can achieved with iScore with the ex-

panded featureset (Featureset E) with online feature selection over the baseline

classifiers and iScore in its original configuration (Featureset A).

Figure 9.6 shows iScore with the expanded featureset (Featureset E) and

online feature selection performs better due to recommendation improvements for

135

Figure 9.4: FMeasure performance for the 5,000 most recent documents for the

Yahoo! News dataset.

Figure 9.5: Average performance for the tagger dataset. Very high FMeasure

can achieved be with iScore with the expanded featureset (Featureset E) over the

baseline classifiers and iScore in its original configuration (Featureset A).

136

Figure 9.6: Bottom-3, top-3, and complete average FMeasure for the tagger

dataset.

the easiest users and most difficult users and for most users in general. The overall

performance improvement provided by the expanded featureset and online feature

selection over iScore in its original configuration is 23.8%. The improvement over

the best baseline classifier (i.e., the Rocchio variant) is 50.7%.

9.3 Digg

For the Digg dataset, the best classifier seen is iScore with online feature selection

using the original featureset, MTT, eRocchio, and the additional features dis-

cussed in Chapter 7. Figure 9.7 shows the average FMeasure, T11SU, precision,

and recall of the classifiers on the Digg data. Although, the average performance

results show that eRocchio performs better in terms of FMeasure alone, iScore

with feature selection and the expanded featureset (i.e., FSNB(Featureset E))

has a much higher T11SU score and precision than all the other classifiers with

137

Figure 9.7: Average performance for the Digg dataset. iScore with feature se-

lection and the expanded featureset (FSNB(Featureset E)) has a much higher

T11SU score and precision than all the other classifiers with a high FMeasure

score.

a high FMeasure score, as shown in Figure 9.7. iScore with feature selection and

the expanded featureset is 11.8% better than iScore in its original configuration.

Also, it is 5.2% better than the best baseline classifier (i.e., the Rocchio variant).

Figure 9.8 shows the average FMeasure of all, the easiest, and the most dif-

ficult users to recommend for. The figure indicates that iScore with feature se-

lection and the expanded featureset can recommend news articles for the easiest

users the best. Additionally, this figure shows that new iScore configuration clas-

sifier has improved upon the recommendation performance of the original iScore

configuration.

Figure 9.9 shows the cumulative FMeasure performance of the various clas-

sifiers as documents are processed. The figure suggests that eRocchio performs

better than the other classifiers on average. The figure also shows that iScore

138

Figure 9.8: Bottom-10, top-10, and complete average FMeasure for the Digg

dataset.

with feature selection and the expanded featureset begins to perform better than

the Rocchio variant halfway through the experiment. The figure also suggests

that iScore in its original configuration does not perform as well as the Rocchio

variant. However, Figure 9.10, which shows the classifiers’ FMeasure performance

over the 5,000 most recent documents at various time periods, paints a difficult

picture. The figure indicates that iScore with feature selection and the expanded

featureset performs significantly better than all the other classifiers with the ex-

ception of the first time period. The figure also shows that there is less of a

drop-off in performance seen in the latter time periods for iScore than the other

classifiers, indicating better stability against noise and gaps in data collection.

139

Figure 9.9: Current cumulative FMeasure at specific periods for the Digg dataset.

9.4 Summary

In summary, iScore with online feature selection operating on the original iScore

featureset, MTT, and eRocchio works generally well for all datasets. The Ya-

hoo! News and tagger datasets clearly supports this hypothesis in all tests. The

Digg dataset also support this hypothesis when one looks at the FMeasure per-

formances of the classifiers over the the 5,000 most recent documents at various

time periods. Given that all three of the datasets show the value of the expanded

featureset and all three datasets support the value of online feature selection, it

can be concluded that online feature selection and the expanded featureset in

the iScore framework can generally recommend better articles than traditional

information retrieval techniques.

140

Figure 9.10: FMeasure for the 5,000 most recent documents for the Digg dataset.

iScore with feature selection and the expanded featureset performs significantly

better than all the other classifiers with the exception of the first time period.

141

CHAPTER 10

Future Work

In this chapter, several possible roads of research are discussed that will either

extend the news recommendation framework discussed in this dissertation or may

improve the recommendation performance of iScore.

10.1 Other user models

Instead of filtering articles as they are published so that only interesting articles

are presented to the user, articles could be ranked in order of interestingness.

For example, a list of articles can be presented to the user after he enters a

search request either by a query string [Goo08] or by a faceted-search request

[KZL08]. However, this “interestingness” problem is a different problem from

the “interestingness” filtering problem addressed by this dissertation so not all

features will be applicable, the semantics of some features will change, and other

features will be necessary. For example, recent articles are more likely to be

interesting in the search-model since articles from various time periods may be

returned for the same request; whereas, articles in the filter-model are always the

most recent articles since they are analyzed as they are published.

A faceted-search interface can also be extended to include the various features

of interestingness discussed as facets. For example, if a user is looking for only

“subjective” articles, a user can indicate his interest by selecting the “subjective”

142

Figure 10.1: Solr configured for the Yahoo! News dataset, using subjectivity,

polarity, named entities and topic clusters as facets. iScore has been integrated

into this Solr application that allows for the reordering of search results.

facet of the search interface. A good starting point would be to precompute user-

independent features, such as subjectivity. These features may be indexed to

enable fast lookups. Then when a user issues a query, a simple intersection with

the topic-specific facets and the “interestingness”-driven facets would generate

the search results list.

Another extension of iScore is to apply the lessons learned in iScore into

developing an interactive news search, where queries are issued either by a query

string or by facet selections. Results are returned in order of interestingness. A

user may then tag articles with his opinion regarding the interestingness of the

143

article and the ranked-list is dynamically updated. This will necessitate the use

of very fast feature extractors and a fast updateable classifier as the response

time of the query is now more crucial since the user will want results as soon as

he issues his query. Additionally, it will not be possible to reprocess all articles

given a user tagging, so articles that are relevant to his query will be the only

ones to reprocessed. Dynamic pruning and addition of the document-space will

be necessary since a user’s tagging may influence the size and coverage of the

document-space. Identifying this document-space will be a significant challenge

as it will pose several challenges:

1. Too large of a document-space will slow down response time.

2. Identifying articles with user-dependent features (e.g., topic-relevancy) that

are not likely to be significantly influenced by a user’s new tagging may be

necessary so that they are not included in the document-space for repro-

cessing.

3. The cost of calculating the document-space should be relatively low so that

user-response time is kept low.

A demo, using the Solr search server [Sol08], using some of these features

is shown in Figure ?? including subjectivity and polarity ratings, topic clusters

generated by Cluto [Kar03] and named entities generated by the Stanford NER

[FGM05] for the Yahoo! News dataset. A user may indicate his interest in an

article by clicking the “thumbs-up” or “thumbs-down” signs. If a user clicks on

the “thumbs-up” sign, then the article associated with the tagging will be labeled

as interesting and all the article preceding it (without a tagging already) will la-

beled as uninteresting. The reasoning behind this inferred user-model is that a

user will scroll down the search results until he finds an article he is interested

144

in, making all the preceding articles, that have not already been tagged, unin-

teresting. If a user clicks on the “thumbs-down” sign, then the article associated

with the tagging will be labeled as uninteresting and all the articles preceding it

(without a tagging already) will be labeled as interesting. The reasoning behind

this user model is similar to that of the reasoning behind the “thumbs-up” sign.

By inferring user taggings, the classifiers and the feature extractors are trained

quickly without much user-interaction. This demo utilizes a näıve Bayes classifier

as its overall classifier, using the following feature extractors:

1. Interestingness counts for cluster membership

2. Language models operating on the title and the body of the article

3. eRocchio

4. Freshness

5. Interestingness counts for keywords (i.e., the top-5 terms with the highest

TF-IDF values)

6. Interestingness counts for named entities (i.e., locations, organizations, and

persons)

7. Polarity

8. Subjectivity

9. Source Reputation

10. Interestingness counts for RSS Feed membership

An alternative method for returning search results in order of interestingness

is to pre-cluster the articles in the document collection on features that are not

145

user-dependent, such as news sources, term-frequencies, sentiments, uniqueness,

and publication times. When a user issues a query for articles, a search results

list returns, giving him the articles relevant to his search. Each of the articles

returned to him will have a pre-computed cluster of articles associated with it.

When a user indicates his interest in an article, the search results list can be

reordered such that the articles belonging to the interesting article are ranked

higher than they were before. As more articles are marked as interesting, articles

from clusters encompassing the majority of the interesting articles are ranked

higher. This avenue of research will pose several issues:

1. Which clustering algorithm will be appropriate? Will a hierarchical clus-

tering algorithm allow the user to narrow in on the collection of articles he

is interested in?

2. How and by how much should the rank of articles belonging to recommend-

ing clusters be increased?

3. How will the recommending clusters be determined? Will selecting all clus-

ters containing all interesting articles result in too large of a document-

space? Will selecting clusters containing only the majority of interesting

articles result in too small of a document-space?

4. If a hierachical clustering approach is used, it is likely that an interesting

article is contained by multiple clusters of different sizes at multiple levels

which encompass smaller clusters that are lower in the hierarchy. Which

cluster level and/or size is appropriate?

5. How will the clusters be indexed so that they are easily found when the

results list are reordered after a user indicates his interest for an article?

146

6. Will multiple clusterings on different featuresets help?

10.2 Incremental conditional classifiers

In this dissertation, it is assumed that “interestingness” features are conditionally

independent so that an incremental and fast classifier, such as näıve Bayes, can be

used. Although, performance of näıve Bayes has shown to be good, performance

may be improved by employing another classifier that does not assume that

features are conditionally independent. Such classifiers already exist, such as

decision trees, but they are not incrementally updateable. A neural network

[WF05] is a possible candidate as the weights of the input features can change

over time and a multi-layered network can address the conditional dependence

issue. However, the structure of the network is neither trivial to construct nor

updateable. A Bayesian network classifier [WF05] is a generalized version of a

näıve Bayes classifier, but does not assume conditional independence among all

the features. Like that of a neural network, a structure of a Bayesian network is

neither trivial to construct nor updateable.

Current classifiers are not sufficient to fully address the classification problem

in this dissertation. A solution to this classification problem will have to address

the following issues:

1. Be easily updateable, not requiring complete retraining of the classifier.

2. Does not require maintaining a complete history of data items for updating.

3. Be able to identify conditional dependence among features dynamically.

147

10.3 Incorporating semantic information

In general, topic relevancy features are shown to be one of the most important

features for identifying interesting articles. The current approaches used assume

a bag of words approach, which fails to include semantic and background infor-

mation that may be useful to determine the actual meaning of an article. It has

been shown that by incorporating semantic information in document classifica-

tion, that classification performance can improve [GR08].

One method for incorporating semantic information is explicit semantic analy-

sis (ESA) [GM07], which extracts background information from external sources,

such as Wikipedia [Wik08]. A semantic interpreter maps fragments of natural

language text into a weighted sequence of concepts (as defined by Wikipedia)

ordered by their relevance to the input. Consequently, a text fragment is rep-

resented as a weighted vector of concepts. A classifier can be trained on the

content of Wikipedia to determine the weights of concepts for a text fragment.

Therefore, the meaning of a text fragment is interpreted in terms of its relat-

edness with Wikipedia concepts. These concepts may be concatenated with a

TF-IDF document vector along with topics extracted from LSA (see Appendix

B) to create a much larger and rich feature vector so that algorithms, such as

eRocchio or MTT may be performed. This much larger and rich feature vector

will incorporate external information not present in the article that would help

with the understanding of the article. This is a very similar method as discussed

in [GR08]. An alternative method for including this semantic information in the

“interestingness” classification problem may be to push these weighted concepts

up to the overall classifier, each as its own individual feature.

148

10.4 Analysis of changes in sentiment

Sentiment analysis has already been included in the iScore framework by includ-

ing as features, the outputs from the language model classifiers that classify sen-

tences’ objectivity and polarity. Although, users may have a particular preference

for an article’s objectivity or polarity and it is useful for judging the “interest-

ingness” of an article for a user, the change in objectivity and/or polarity from

the expected behavior of a source or topic may be additionally useful. For ex-

ample, if a news source is consistently known to provide objective material in its

news article and if subjective news articles begin appearing, this may indicate

the birth of an interesting news event. To illustrate, if a news writer, who is

known to publish objective news reports on a topic, such as a political campaign,

suddenly begins publishing subjective news reports, possibly condemning a cam-

paign, then some type of interesting news event must have sparked that change

in material, such as a political scandal or a political gaffe. Additionally, changes

in the polarity of a news topic may indicate event changes that would result in

interesting articles being published. For example, if the opinion of articles, from

a specific news agency, on the 1996 Atlanta Olympics has generally been positive

and then suddenly turns negative, then some type of interesting news event must

have happened, such as the bombing incident that occurred during those Olympic

games. In addition to news sources, changes in sentiment may also be tracked

for the opinions of organizations or persons on other organizations or persons or

places. The sentiment surrounding named entities can be tracked over time for

this feature.

149

10.5 Future trends

With the advent of blogs that specialize in niche news markets, readers can expect

to see an explosive growth on the availability of information where only a small

fraction may be of interest to them. In contrast to traditional news sources,

such as CNN, blogs focus on specific topics that may be of interest to only a

handful of users as opposed to the general public. This phenomenon is often

referred to as the long tail market phenomenon [And07]. Instead of building

news filters that cater to the mass public, future research will focus more on

personalized news recommendation. Personalization research is also present in

other media, as evident in the Netflix Prize competition [Net07] and the related

Knowledge Discovery and Data Mining Cup 2007 competition [BEL07], in which

teams compete to improve the accuracy of movie recommendations.

Traditional corpora, such as the ones used in TREC, are ill equipped to ad-

dress the problems in personalized news recommendation. Current corpora ad-

dress the traditional problems of topic relevancy and do not address the problem

of interestingness. Furthermore, such corpora are not user-focused. At best,

such corpora label articles that a general audience would find to be interesting

as opposed to a specific user. Further research in personalized news recommen-

dation will need to be evaluated on a large test data collection that has been

collected using many individual users. Personalized news portal such as those

provided by Yahoo! and Google often track which articles are read and rated by

specific users. It is hypothesized that in time, as user personalization becomes

more prolific, test collections from organizations, such as Yahoo! and Google,

will become more publicly available that it will allow easier comparison among

recommendation algorithms.

150

CHAPTER 11

Conclusion

The online recommendation of interesting articles for a specific user is a complex

problem, having to draw from many areas of machine learning, such as feature

selection, classification, and anomaly detection. There is no single technique that

will be able to address the problem of interestingness by itself. An ensemble of

multiple techniques is one possible solution to addressing this problem.

To address news recommendation in a limited user environment, where meth-

ods such as collaborative filtering would perform poorly, a news recommendation

framework, called iScore, is introduced to analyze the reasons why an article is

interesting. The iScore framework consist of several advances. Näıve Bayes work-

ing over several key features is identified to be a generally good classifier for this

news recommendation problem. A new feature to address the multiple topics that

a user may be interested in is also introduced. However, one of the drawbacks

with the method of tracking multiple topics of interest to a user is that param-

eters often must be decided before the algorithm becomes active. To address

this problem, online parameter selection in Rocchio, simplifying the technique

used in multiple topic tracking, is introduced. It can attain similar or even bet-

ter recommendation results as the best baseline classifiers that require extensive

parameter tuning. Although many different features are available to help with

classification, not all features are equally useful for users. Consequently, online

feature selection in näıve Bayes that would be appropriate to the problem of on-

151

line news recommendation results is studied. By incorporating these features and

online feature selection, iScore can generally give better recommendation results

than standard information retrieval techniques in the three datasets that iScore

has been evaluated with: the Yahoo News!, tagger, and Digg collections.

Although, iScore has been evaluated on several different datasets, the datasets

used are difficult to collect and not freely open for distribution. There is still a

need for a more agreed upon and open rigorous evaluation framework so that

different recommendation systems can be evaluated against one another. This

will aid the research community to make more advances in this area of work.

In summary, the following contributions were made in this dissertation to-

wards an online news recommendation system:

1. Identification of high-level features interestingness, such as topic relevancy,

uniqueness, source reputation, writing style, freshness, subjectivity, and

polarity.

2. Implementations of the high-level features.

3. Ensemble technique using näıve Bayes classifier to incorporate user feed-

back.

4. Multiple topic tracking to address the multiple topics of interest that a user

may find interesting.

5. Online parameter selection for the Rocchio, to aid in user-tailoring of algo-

rithms.

6. Online feature selection näıve Bayes, to address the varying reasons for

interestingness among users.

7. High quality recommendation results.

152

It is the combination of all these techniques that yield as much as 50.7% better

recommendation results than traditional information retrieval techniques. More

specifically, for the Yahoo! News dataset, there is a 24% improvement over the

baseline classifier. For the tagger dataset, there is a 50.7% improvement. And

for the Digg dataset, there is a 5% improvement.

153

APPENDIX A

Implementation

iScore is implemented with an assortment of tools in Java. LingPipe [Ali06] is

used for building language models and related classifiers. OpenNLP [Ope06] is

used for sentence detection and noun phrase extraction. Clustering is accom-

plished with Cluto [Kar03]. The Stanford Named Entity Recognizer [FGM05]

is used for named entity extraction. Other classifiers are from Weka [WF05].

The majority of the iScore experimental setup is developed with the Apache Un-

structured Information Management Architecture (UIMA) framework [UIM08],

which allows for the plug-and-play ability of various text analysis engines and

components together in a single pipeline.

A.1 Producers

The NewsItemProducerFromFile2 producer reads and provides articles and its

associated metadata to the rest of the UIMA pipeline. The producer reads from

local files to generate UIMA objects for each article that are read and consumed

by text analysis engines and consumers, respectively. These objects are defined

in Table A.1.

All UIMA objects, except ParsedContent, are constructed by iterating over

files associated with its type that contain all information for all articles in an

order determined by the file document order. The file document order contains

154

Object Description

NewsItem Title and publication date

ParsedContent Body

Author Author names or Hostname of article

Cluster Parent cluster ID and similarity to cluster

FeatureScore Feature ID and value

ClassifierScore Classifier ID and value

NamedEntity Named entities contained in body and title

NounPhrase Noun phrases contained in body and title

Tagging Interestingness tagging by a user

Table A.1: Objects generated by the NewsItemProducerFromFile2 producer.

document identifiers sorted in the order that the documents will be processed.

A ParsedContent object is created by reading a single file associated with the

document identifier.

Other producers have been developed for the collection of articles, such as

from Digg, Yahoo! News, and tagger datasets.

A.2 Text analysis engines

There are three kinds of text analysis engines (TAE) in the iScore architec-

ture: FeatureScorers, Classifiers, and Thresholders. Each text analysis engine,

during its initialization phase, generates its own unique identifier by querying

the database. The FeatureScorers take as input various raw data objects, such

as NewsItem, ParsedContent, Author, Cluster, NamedEntity, NounPhrase, and

Tagging objects, and generate feature values for a document and produce a Fea-

155

tureScore object. The Classifiers take in FeatureScore, NewsItem, and Tagging

objects as input and generate a ClassifierScore object which contains the prob-

ability that the article is interesting. The Thresholder takes in ClassifierScore,

NewsItem, and Tagging objects as input and generate an Interestingness object

that contains the binary decision regarding the interestingness of the article.

A.3 Consumers

There are three kinds of consumers in the iScore architecture. The FeatureScore

and ClassifierScore consumers record their respective objects’ data in a file and

then import them later in a MySQL database for permanent storage. The Statis-

tics consumer consumes Interestingness objects and Tagging objects and gen-

erates and stores statistics about each run, such as FMeasure, precision, and

recall in the MySQL database. The FeatureScores and ClassifierScores stored in

the MySQL database are exported to files so that they may be entered into a

Classifier or Thresholder pipeline by the NewsItemProducerFromFile2 producer.

A.4 Pipelines

The overall iScore architecture described in Figure 4.1 is broken down into three

kinds of pipelines in the iScore experimental framework to aid in debugging and

experimentation, as shown in Figure A.1. For each user and feature (or user

and classifier, or user and thresholder) pair in the experimental setup, there is

a pipeline generated. Because the runs are embarrassingly parallel, pipelines are

run on a multi-node cluster, to hasten the acquisition of experimental results.

The first type of pipeline is the FeatureScorer pipeline, which contains the

NewsItemFromProducerFile2 producer, a FeatureScorer, and FeatureScore con-

156

sumer. The second type of pipeline is the ClassifierScorer pipeline, which contains

the NewsItemFromProducerFile2 producer, a Classifier, and ClassifierScore con-

sumer. The final type of pipeline is the Thresholder pipeline, which contains the

NewsItemFromProducerFile2 producer, a Thresholder, and Statistics consumer.

It is expected that several FeatureScore pipelines are run first to generate feature

scores, followed by the Classifier pipeline to generate the overall classifier scores,

and followed by the Thresholder pipeline to generate statistics about the final

run.

The source code for all the TAEs, consumers, and producers are located at

http://sourceforge.net/projects/iscore/. The pipelines were executed on

over 50 individual Linux machines and then later on a 80-node Linux cluster

with dual-processors for each node, and a 20-node cluster with quad-processors

for each node. For each dataset, approximately one week of computation time is

necessary to run all the experiments detailed in this dissertation.

A.5 Data collection

The Yahoo! News and the Digg datasets are collected with a UIMA pipeline,

running every three hours on a Linux machine at Lawrence Livermore National

Laboratory (LLNL). The tagger dataset is collected by asking volunteers to

use a Firefox plug-in or a GreaseMonkeyScript for the Google RSS Reader,

both found at http://goliath.cs.ucla.edu/tagger, which records webpages

they have read and not read on a server at UCLA. The webpages pages are

downloaded nightly by the server. A web tool, written in PHP, located at

http://goliath.cs.ucla.edu/clean/cleanDocument.php, is used to discard

non-news webpages.

157

Figure A.1: The overall iScore architecture partitioned into three separate

pipelines for experimentation. Output from each stage is stored in the database.

The database contents are dumped into a text file before being fed to a producer.

158

APPENDIX B

Other Roads of Research Considered

In this appendix, roads of research are discussed that did not improve iScore’s rec-

ommendation performance in the experiments. However, by documenting what

was attempted, future work can avoid repeating what did not work or will at-

tempt to work on similar ideas but with different angles.

B.1 Multi-role users

The work in MTT shows that users are interested in a multitude of news topics

and that not one single model can accurately capture all the interests of the

user. This may also be applicable to other features. Depending on the role

that a user is serving while reading the news, some features may be interpreted

differently depending on the role the user is currently serving. For example, a

user interested in “terrorist activity” would have a higher preference for negative

polarity articles; whereas, when the same user may also be interested in “UCLA

basketball” would have a higher preference positive polarity articles.

Initial experimentation is done with the small Yahoo! News dataset and

only on the “Top Stories Politics” feed but did not yield fruitful results. Two

techniques are experimented with based on this concept, hoping that it would

improve recommendation results: (1) building topic-specific classifiers that are

only trained on documents belonging to its parent-topic, and (2) building topic-

159

specific classifiers that are trained on all documents but with different weights

proportional to a document’s relationship to the classifier’s parent-topic. With

technique 1, the data used for training the classifiers were much too sparse to be

effective. With technique 2, the computational cost for training the number of

classifiers necessary to represent each topic are too costly.

B.2 Identifying interesting relationships and entities

The use of entity networks or ontologies representing a user’s interests may be

useful for differentiating interesting articles from uninteresting ones. [Ang05]

presents a survey of various techniques necessary for ontology acquisition, includ-

ing named entity extraction, the acquisition of concepts, and learning taxonomies.

[Sin04] studies how binary relationships are expressed within single sentences. In

each sentence, pairs of target entity types are considered as candidates and are

classified with a support vector machines with a variety of features. A preliminary

study has been done to evaluate the applicability of using PageRank [PBM98] to

identify important entities in news, such as persons or locations. Using this infor-

mation, the most interesting articles can be identified that discuss these entities.

This task entails the following three subtasks:

1. Construct a meaningful directed graph, where two connected entities are

connected by a directed edge such that the source of the edge is transferring

some of its “importance” to the destination of the edge. The relationship

between the entities should be learned from articles or from an external

knowledge-base.

2. Evaluate PageRank on the network to determine the importance of the

entities in the network.

160

3. Using the entities’ PageRank scores, evaluate any new article’s “interest-

ingness.”

As a preliminary study, the relationship of the PageRank scores of entities

to the interestingness of their containing articles on the small Yahoo! News

dataset for the “Top Stories Politics” feed is studied. A graph of entities is

maintained as documents are processed in chronological order of their publication

date. Using Sundance/AutoSlog [RP04], a shallow parser and pattern extractor

NLP tool, the subjects and direct objects of sentences were extracted from each

article. The subjects and direct objects extracted are added to the graph and a

relationship is also added, connecting the subject to the direct object. Intuitively,

the subject is passing some of its “importance” to its direct object because it is

“doing something” to its direct object. For example, in the sentence, “George

Bush lunched with the Boy Scouts of America,” George Bush is passing some

of his importance to the Boy Scouts of America because the Boy Scouts are

important enough for Bush to have lunch with them. However, it can be argued

that the inverse is also true. But for this preliminary evaluation of PageRank’s

applicability and for simplicity, the subject to direct object relationships is only

considered. Additionally, for each entity, a count is maintained of how many

articles contain the entity and how many interesting articles contain the entity

as well. Using these two counts, a TF-IDF statistic is maintained for each entity

e:

TF − IDFInteresting(e) =
|Int Articles containing e|
|Int Articles Seen So Far|

log(
|Articles Seen So Far|
|Articles containing e|

)

(B.1)

Processing articles in chronological order of their publication date, the PageRank

scores of all entities in the current network is computed every 7 days. However,

instead of the traditional PageRank scores detailed in [PBM98], PageRank with

161

priors [WS03] is used to give more weight to entities that that are known to be

more important to the user. In [WS03], PageRank is formulated as the following,

where din(v) is the set of entities that point to an entity v and p(v) is the prior

bias of v:

PageRank(v) = (1− β) ∗

 ∑
u∈din(v)

p(v|u)PageRank(u)

 + β ∗ p(v) (B.2)

In [WS03], β=0.3 and p(v) = 1
|R| for v ∈ R, where R is the set of known

important entities, p(v)=0 otherwise. The same configuration is used in the

experimental evalutions. Whenever the periodic PageRank scores PageRankt

for time period t are computed, the set of known important entities are the

current top 100 entities with the highest TF-IDF scores of the last 7 days. After

all the documents are processed, the PageRank scores PageRankc of all the

entities are computed on the complete final network using the top 100 entities

with the highest TF-IDF scores overall. For each document, the features detailed

in Tables B.1 and B.2 are extracted, where E is the set of all entities contained

within a document, t is the last time period for which PageRank was computed

and IDF (e) = log(|Articles Seen So Far|
|Articles containinge|

).

To evaluate how well PageRank could be used to infer the “interestingness” of

articles, the features extracted using Weka’s Knowledge Flow tool with the flow

shown in Figure B.1 are studied. A 10-fold cross-validation is run on the dataset

for the interesting articles defined by the “Top Stories Politics” feed and used

AdaBoosting [FS96] on a C4.5 decision tree generated by the J48 algorithm.

The precision-recall curve for the classifier using the extracted features to pre-

dict the interestingness of news articles is shown in Figure B.2. The graph shows

that it is possible to attain 50% precision, with 10% recall. Using two feature se-

lection criteria: information gain and chi-squared rankings, The usefulness of the

162

Feature Description

avg 1
|E|

∑
e∈E PageRankc(e)

min min
e∈E

(PageRankc(e))

max max
e∈E

(PageRankc(e))

sum
∑

e∈E PageRankc(e)

stddev stddev
e∈E

(PageRankc(e))

avgIDF 1
|E|

∑
e∈E PageRankc(e) ∗ IDF (e)

minIDF min
e∈E

(PageRankc(e) ∗ IDF (e))

maxIDF max
e∈E

(PageRankc(e) ∗ IDF (e))

sumIDF
∑

e∈E PageRankc(e) ∗ IDF (e)

stddevIDF stddev
e∈E

(PageRankc(e) ∗ IDF (e))

Table B.1: PageRank-based features, Part 1

Figure B.1: Knowledge Flow in Weka.

163

Feature Description

avgLogIDF 1
|E|

∑
e∈E log(PageRankc(e) ∗ IDF (e))

minLogIDF min
e∈E

(log(PageRankc(e) ∗ IDF (e)))

maxLogIDF max
e∈E

(log(PageRankc(e) ∗ IDF (e)))

sumLogIDF
∑

e∈E log(PageRankc(e) ∗ IDF (e))

stddevLogIDF stddev
e∈E

(log(PageRankc(e) ∗ IDF (e)))

avgLog 1
|E|

∑
e∈E log(PageRankc(e))

minLog min
e∈E

(log(PageRankc(e)))

maxLog max
e∈E

(log(PageRankc(e)))

sumLog
∑

e∈E log(PageRankc(e))

stddevLog stddev
e∈E

(log(PageRankc(e)))

minDelta min
e∈E

(PageRankt(e)− PageRankt−1(e))

maxDelta max
e∈E

(PageRankt(e)− PageRankt−1(e))

sumDelta
∑

e∈E(PageRankt(e)− PageRankt−1(e))

avgDelta 1
|E|

∑
e∈E(PageRankt(e)− PageRankt−1(e))

stddevDelta stddev
e∈E

(PageRankt(e)− PageRankt−1(e))

count |E|

Table B.2: PageRank-based features, Part 2

164

Figure B.2: Precision-Recall curve for PageRank featured classifier.

PageRank features is determined. For the information gain rankings, minDelta,

maxDelta, sumDelta, maxIDF, and maxLogIDF were the top 5 most useful fea-

tures. For the chi-squared rankings, minDelta, maxDelta, sumDelta, avgDelta,

and stddevDelta were the top 5 most discriminating features. These two rankings

indicate that the changes in the importance of entities in news are more useful

than static PageRank scores for determining which articles are interesting.

Although, PageRank features shows some promise for helping determine the

“interestingness” of articles in the initial evaluation, when incorporating these

PageRank features into iScore by experimenting with the “Top Stories Politics”

feed from the small Yahoo! News dataset, several problems are encountered:

1. Despite the promising performance when used in a J48 decision tree, the

PageRank-Change feature when added to the iScore framework as an addi-

tional feature, did not yield any improvement on top of the recommendation

165

performance of iScore with the original feature set.

2. The entities extracted are not easily co-referenced. As a result, the entity

graph is too large to manipulate in an online setting. Methods for pruning

the graph are employed to remove entities that only appeared once in a

time period, but the resulting graph is very sparse.

Advance co-referencing techniques that can be accomplished in an online set-

ing will need to be employed for this area of research to become more fruitful.

B.3 Latent semantic analysis

The current approaches to topic relevancy used assumes a simple bag of words

approach, which fails to include semantic and background information that may

be useful to determine the actual meaning of an article. One method for incor-

porating semantic information is latent semantic analysis (LSA) [Ste06]. One

technique for LSA experimented with is a generative model that uses a Dirichlet

distribution by Steyvers. In this model, a document is treated as a mixture of

topics. For a particular document, let P (z) be the distribution of topics z and

P (w|z) be the distribution of words w given topic z. The generative model used

specifies the following distribution over words within a document:

P (wi) =
T∑

j=1

P (wi|zi = j)P (zi = j) (B.3)

where T is the number of topics, wi is the i-th word, P (zi = j) is the probability

that the topic of the i-th word sampled is the j-th topic, and P (wi|zi = j) is the

probability of word wi under topic j. Gibbs sampling with a Dirichlet prior is

used to estimate the distributions P (z) and P (w|z = j).

In the experimental evaluation, the probability distributions are estimated by

166

processing the small Yahoo! News dataset using the Gibbs sampling approach

for 300 topics. Then for each new article in the the large Yahoo! News dataset,

a vector of topic probabilities are estimated by sampling the probability distri-

butions generated earlier. The vector of topics are then used in a Rocchio-like

scheme, where ~pT is the sum of all topic vectors of interesting articles and ~dT is

the topic vector of the current document:

fLSA(d) = cos(~pT , ~dT) (B.4)

Unfortunately, the FMeasure performance of this feature alone is less than

that of Rocchio operating on the bag of words alone. This lower performance

may be due to several issues. One possible reason for the lower performance is

that the number of topics generated from the pre-processing step is too small.

Also, the number of samples used to estimate the new topic distributions of each

new article is not large enough. A small number of samples is used so that the

experiments could be accomplished in a timely manner. Another possible issue

is that in reality, topics do not stay static. New topics may be born or may

continually evolve. Unfortunately, the method used does not allow for new topics

to be added or for existing topics to change efficiently without reprocessing all

articles seen.

B.4 Cluster interestingness

Another topic relevancy measure experimented with is based on measuring the in-

terestingness of clusters. Clusters generated with Algorithm 1 and bootstrapped

with clusters generated by Cluto [Kar03] over the small Yahoo! News articles

dataset. Cluster interestingness for an article d is defined as the weighted sum

of the interestingness of clusters that d has a cosine similarity greater than 0.4

167

with:

fClusterInterestingness(d) =

∑
c∈Clusters(d) cos(~c, ~d) ∗ Interestingness(c)∑

c∈Clusters(d) cos(~c, ~d)
(B.5)

where the interestingness of a cluster is the proportion of articles belonging to

the cluster that have been marked as interesting:

Interestingness(c) =
|Int articles in c|
|Articles in c|

(B.6)

However, when the Cluster Interestingness feature is added to the iScore

framework, FMeasure performance drops. This is most likely due to the fact

that Cluster Interestingness is measured very similarly and more accurately by

other features such as MTT. Consequently, the addition of Cluster Interestingness

to iScore is simply noise to the overall classifier.

B.5 Cluster popularity

In addition to measuring the interestingness of clusters, the popularity of clusters

wasis also experimented with. Intuitively, topics written often by authors are

more likely to be interesting than topics that are infrequently written about. The

popularity of a cluster is the proportion of articles published since the creation of

the cluster that belong to the cluster. Thus, the Cluster Popularity feature value

for an article d is the popularity of the cluster that d has the maximum cosine

similarity to:

fClusterPopularity(d) =
|Articles belonging to cmax|

|Articles belonging published since birth(cmax)|
(B.7)

However, when the Cluster Popularity feature is added to the iScore frame-

work, FMeasure performance drops. This is most likely due to the fact that

Cluster Popularity, in general, does not identify additional interesting articles

168

that have not already been identified by the existing features in iScore, but in-

stead adds additional noise to the overall classifier.

B.6 Entity interestingness

Like, the Phrase Interestingness feature discussed in Chapter 7, the Entity In-

terestingness feature aims at addressing the shortcoming of the bag of words

approach. Named entities are extracted using the Stanford Named Entity Rec-

ognizer (NER) [FGM05]. Named entities are looked at instead of general noun

phrases because it is hypothesized that named entities extracted by the Stanford

NER are generally more accurate than a noun phrase extractor and are more

representative of the most important noun phrases in a body of text. The feature

measures the average probability of the interestingness of named entities as:

fEntityInterestingness(d) =

∑
p∈entities(d)

| times p occurs in Int articles|
|times p occurs in articles|
|phrases(d)|

(B.8)

However, when the Entity Interestingness feature is added to the iScore frame-

work, FMeasure performance drops. This is most likely due to the fact that Entity

Interestingness, in general, is addressed by Phrase Interestingness since named

entities are a type of noun phrase, which are already examined by Phrase Inter-

estingness. Due to this result, it can be concluded that the original hypothesis

about named entities being the best noun phrases to represent a body of text is

false. There are other noun phrases that are not named entities that may be re-

quired to fully understand a body of text. For example, in the following sentence,

there are no named entities:

The brown dog jumped over the fence.

The noun phrases “the brown dog” and “the fence” are necessary to understand

169

the meaning of the sentence, but are not named entities.

B.7 Significant n-grams

To address the poor performance of iScore over the initial set of articles due to the

learning that must be accomplished before accurate results are given, information

regarding universally interesting articles is bootstrapped. More specifically, the

n-grams that appear more often in the topic-independent and interest-driven

feeds from the small Yahoo! News collection than in other feeds are looked at.

Intuitively, there should be some articles that most users would find universally

interesting, such as the first articles about the 9/11 attacks. Significant n-grams

from topic-independent feeds are determined in a similar fashion to how language

models are used for identifying new n-grams for anomaly detection as described

in Chapter 4. A background model is built on all articles in the small Yahoo!

News collection. The foreground model is built on all articles from the topic-

independent feeds from the small Yahoo! News collection. The foreground and

background models are compared with one another and the significant n-grams

of sizes one to five (where the grams are words) are extracted.

Given this list of significant n-grams and their significance (based on the z-

score as discussed in Chapter 4), the overall user-independent interest of an article

is measured as:

fSignificantNgrams(d) =
∑

g∈sigNgrams(d)

significance(g) (B.9)

where signNgrams(d) is the set of significant n-grams generated by the compar-

ision of the foreground/background language models discussed earlier contained

within the article d. The significance of an n-gram g is denoted by signficance(d).

Like the Cluster Popularity feature, the Significant N-grams feature did not

170

improve the FMeasure performance of iScore when added to the framework be-

cause it did not identify any articles that have not already been identified by

existing features; thereby, adding noise to the overall classifier.

B.8 Tracking new n-grams

Another n-gram-based feature experimented with looks at tracking the new and

hot n-grams, which is another form of uniqueness. As articles are analyzed for

classification, a foreground model built upon the previous week’s articles is com-

pared to the background model built upon the news published in the week prior

to the publication date of the articles in the foreground model. The top-k n-

grams (where k is 100 n-grams and the size of the n-grams that are considered

ranged from one to three in the evaluations) that appear more often in the fore-

ground model are identified. Intuitively, articles that contain these new n-grams

are more likely to be interesting because these n-grams are related to hot and

new topics. Therefore, the Tracking New N-grams feature is defined similarly

as the Significant N-Grams feature as defined by Equation B.9, except with a

different sigNgrams set. In addition to looking at all articles when generating

the sigNgrams set, another variation of this feature looks at interesting articles

only, instead of all articles.

However, both variants of the Tracking New N-grams feature fail to improve

iScore’s recommendation performance. The user-independent variant shows poor

correlation to interestingness. The user-dependent variant did not identify any

articles that have not already been identified by existing features, particular the

topic-relevancy feature; thereby, adding noise to the overall classifier.

171

Figure B.3: Bottom-10, top-10, and complete average FMeasure for the best

featureset and other featuresets for iScore on the Yahoo! News dataset.

B.9 Experimental results

Cluster interestingness, cluster popularity, entity interestingness, significant n-

grams, and tracking new n-grams are experimented with the Yahoo! News, tag-

ger, and Digg datasets. The results are shown in Figures B.3, B.4, and B.5.

Results of other roads of research considered are not available because they were

deleted after their initial evaluation. Table C.2 in Appendix C describes the

featuresets in the figures.

172

Figure B.4: Bottom-3, top-3, and complete average FMeasure for the best fea-

tureset and other featuresets for iScore on the tagger dataset.

Figure B.5: Bottom-10, top-10, and complete average FMeasure for the best

featureset and other featuresets for iScore on the Digg dataset.

173

APPENDIX C

Reference Tables

ID Description

A AuthorStyle, BinaryLMClassifier, Rocchio Variant, Rocchio,

DirectSubjectiveLMClassifier, Freshness, IncrementalClus-

terAnomalyDetection, LMAnomalyDetection, LMClassifier,

NäıveBayesLMClassifier, NewNGrams, ObjectiveSpeechEventLM-

Classifier, PolarityLMClassifier, SourceReputation, Subjectiv-

ityLMClassifier

B Featureset A, MTT

C Featureset A, eRocchio

D Featureset B, eRocchio

E Featureset D, PhraseInterestingness, TitleLanguageModel, Body-

LanguageModel, TitleAnomalyLanguageModel, BodyAnoma-

lyLanguageModel, TopicDrivenFreshness, ClusterMovement,

SlidingAnomalyDetection

Table C.1: All featureset identifiers and descriptions, Part 1.

174

ID Description

F Featureset E, TrackNewGrams, SignificantNGrams

G Featureset F, EntityInterestingness

H Featureset G, ClusterInterestingness

I Featureset E, EntityInterestingness

J Featureset E, ClusterPopularity

Table C.2: All featureset identifiers and descriptions, Part 2.

175

Usernames

aaaz Aidenag antdude

BoneyB bonlebon Brajeshwar

cambrown99 capn caveman chad78

charbarred chrisek CLIFFosakaJAPAN

curtissthompson DiggityDugged DigiDave

digitalgopher dirtyfratboy drum bum

EAMUS1CATULI elebrio fudgebrown

Gregd gwjc IvanB

jasnmb jefflundberg johndi

jrepin kevinrose koregaonpark

mklopez motang MrBabyMan

MrCalifornia msaleem ndm007

OBKenobi Ostermayer ozguralaz

p9s50W5k4GUD2c6 parislemon radicaldementia

rodtrent ryland2 sahaskatta

scoreboard27 seanthebond sicc

skored snipehack starexplorer

supernova17 TheAttacks TheWalkingDude

titlesaysitall tomboy501 tommytrc

UCBearcats webtech webtickle

zaibatsu ZaNkY zepequeno

Table C.3: Usernames of users in the Digg collection.

176

RSS Feeds

Politics Top Stories Business Top Stories

Technology Top Stories Sports Top Stories

Entertainment Top Stories Science Top Stories

Most Emailed Most Emailed Top Stories

Most Emailed U.S. Most Emailed World

Most Emailed Business Most Emailed Technology

Most Emailed Oddly Enough Most Emailed Sports

Most Emailed Health Most Emailed Science

Most Emailed Op/Ed Most Emailed Travel

Most Viewed Most Viewed Top Stories

Most Viewed U.S. Most Viewed World

Most Viewed Business Most Viewed Technology

Most Viewed Oddly Enough Most Viewed Sports

Most Viewed Health Most Viewed Science

Most Viewed Op/Ed Most Viewed Travel

Highest Rated Highest Rated Top Stories

Highest Rated U.S. Highest Rated World

Highest Rated Business Highest Rated Technology

Highest Rated Oddly Enough Highest Rated Sports

Highest Rated Health Highest Rated Science

Highest Rated Op/Ed Highest Rated Travel

Top Stories

Table C.4: RSS Feeds used in the Yahoo! News collection.

177

APPENDIX D

Statistical Significance Test Results

The following tables show the probability of the actual FMeasure of Classifier

X being less than or equal to the actual FMeasure of Classifier Y, after the

complete document collection is processed, as determined by the t-distribution.

The probabilities for cases, where the observed average FMeasure of Classifier X

is less than or equal to the performance of Classifier Y, are omitted.

P (F̄X ≤ F̄Y) Classifier Y

Classifier X Rocchio Variant LMClassifier MTT eRocchio

eRocchio 6.5E-05

LMClassifier 1.8E-02 4.4E-01 4.2E-01

MTT 2.1E-04 3.7E-01

NB(A) 3.5E-12 6.0E-18 1.6E-12 1.2E-09

FSNB(A) 1.2E-12 2.6E-19 1.9E-13 1.1E-10

NB(B) 9.5E-13 2.3E-18 2.6E-14 2.0E-10

NB(C) 9.2E-13 2.4E-18 7.5E-14 2.1E-10

NB(D) 4.6E-13 2.5E-18 6.4E-15 8.6E-11

NB(E) 9.5E-14 1.2E-16 9.2E-17 7.3E-12

FSNB(E) 7.1E-14 1.1E-17 3.1E-16 7.6E-12

Table D.1: Statistical significance test results for the Yahoo! News dataset,

Part 1.

178

P (F̄X ≤ F̄Y) Classifier Y

Classifier X NB(A) FSNB(A) NB(B)

FSNB(A) 2.7E-06 4.1E-03

NB(B) 3.7E-03

NB(C) 1.2E-01

NB(D) 1.0E-01

NB(E) 9.9E-04 4.2E-01 2.4E-03

FSNB(E) 2.5E-06 2.8E-02 9.2E-07

Table D.2: Statistical significance test results for the Yahoo! News dataset,

Part 2.

P (F̄X ≤ F̄Y) Classifier Y

Classifier X NB(C) NB(D) NB(E)

FSNB(A) 2.6E-05 1.8E-03

NB(B) 2.2E-02 8.7E-02

NB(D) 2.0E-01

NB(E) 2.9E-04 4.4E-05

FSNB(E) 2.1E-08 1.9E-08 1.3E-02

Table D.3: Statistical significance test results for the Yahoo! News dataset,

Part 3.

179

P (F̄X ≤ F̄Y) Classifier Y

Classifier X Rocchio Variant LMClassifier MTT eRocchio

Rocchio Variant 1.8E-01 3.1E-02

LMClassifier 2.8E-01

eRocchio 2.8E-01 1.4E-01 3.4E-03

NB(A) 8.0E-02 6.0E-02 3.8E-02 1.1E-01

FSNB(A) 1.3E-02 9.2E-03 7.2E-03 2.0E-02

NB(B) 8.0E-02 6.3E-02 3.4E-02 1.1E-01

NB(C) 5.9E-02 4.2E-02 2.6E-02 8.1E-02

NB(D) 1.2E-01 9.3E-02 4.9E-02 1.4E-01

NB(E) 9.0E-03 9.3E-03 3.4E-03 1.4E-02

FSNB(E) 4.3E-03 3.5E-03 1.9E-03 5.2E-03

Table D.4: Statistical significance test results for the tagger dataset, Part 1.

P (F̄X ≤ F̄Y) Classifier Y

Classifier X NB(A) FSNB(A) NB(B)

FSNB(A) 2.3E-02 2.7E-02

NB(B) 4.9E-01

NB(C) 1.3E-01 2.4E-01

NB(E) 5.4E-02 3.7E-02

FSNB(E) 1.3E-02 1.8E-01 1.1E-02

Table D.5: Statistical significance test results for the tagger dataset, Part 2.

180

P (F̄X ≤ F̄Y) Classifier Y

Classifier X NB(C) NB(D) NB(E)

NB(A) 2.9E-01

FSNB(A) 3.3E-02 1.8E-02 2.1E-01

NB(B) 2.0E-01

NB(C) 1.7E-01

NB(E) 7.6E-02 1.1E-02

FSNB(E) 1.7E-02 4.3E-03 5.4E-02

Table D.6: Statistical significance test results for the tagger dataset, Part 3.

P (F̄X ≤ F̄Y) Classifier Y

Classifier X Rocchio Variant LMClassifier MTT

Rocchio Variant 4.1E-12 1.3E-02

MTT 3.5E-07

eRocchio 6.9E-08 1.4E-15 7.1E-06

NB(A) 3.0E-11 2.8E-01

FSNB(A) 1.5E-12 3.8E-02

NB(B) 4.9E-12 6.1E-02

NB(C) 1.4E-11 2.0E-02

NB(D) 3.7E-12 1.5E-02

NB(E) 2.2E-01 7.5E-14 3.4E-03

FSNB(E) 2.3E-02 8.4E-16 5.0E-05

Table D.7: Statistical significance test results for the Digg dataset, Part 1.

181

P (F̄X ≤ F̄Y) Classifier Y

Classifier X NB(A) FSNB(A) NB(B)

Rocchio Variant 5.2E-03 1.6E-01 9.0E-02

eRocchio 1.4E-08 4.8E-07 5.3E-07

FSNB(A) 6.8E-03 2.0E-01

NB(B) 2.2E-02

NB(C) 1.7E-05 1.3E-01 1.7E-02

NB(D) 3.4E-03 2.0E-01 2.2E-02

NB(E) 1.3E-04 2.2E-02 9.8E-04

FSNB(E) 3.3E-06 6.0E-05 3.7E-06

Table D.8: Statistical significance test results for the Digg dataset, Part 2.

P (F̄X ≤ F̄Y) Classifier Y

Classifier X NB(C) NB(D) NB(E) FSNB(E)

Rocchio Variant 4.4E-01 4.0E-01

eRocchio 3.9E-05 1.8E-05 8.2E-03 8.7E-02

NB(C) 4.3E-01

NB(E) 1.0E-01 6.5E-02

FSNB(E) 3.1E-03 4.7E-04 2.4E-02

Table D.9: Statistical significance test results for the Digg dataset, Part 3.

182

References

[ABP05] Fabrizio Angiulli, Stefano Basta, and Clara Pizzuti. “Detection and
prediction of distance-based outliers.” In SAC ’05: Proceedings of the
2005 ACM symposium on Applied computing, pp. 537–542, New York,
New York, USA, 2005. ACM Press.

[Ali06] Alias-I. “LingPipe.” http://www.alias-i.com/lingpipe/index.

html, 9 2006.

[All02] James Allan. “Detection As Multi-Topic Tracking.” Information Re-
trieval, 5(2-3):139–157, 2002.

[And07] Chris Anderson. “Calculating latent demand in the long tail.” In
KDD ’07: Proceedings of the 13th ACM SIGKDD international con-
ference on knowledge discovery and data mining, pp. 1–1, New York,
New York, USA, 2007. ACM Press.

[Ang05] Galia Angelova. Lecture Notes in Computer Science, chapter Lan-
guage Technologies Meet Ontology Acquisition, pp. 367–380. Springer
Berlin / Heidelberg, 2005.

[APL98] James Allan, Ron Papka, and Victor Lavrenko. “On-line new event
detection and tracking.” In SIGIR ’98: Proceedings of the 21st annual
international ACM SIGIR conference on research and development in
information retrieval, pp. 37–45, New York, New York, USA, 1998.
ACM Press.

[AU06] Hisham Al-Mubaid and Syed A. Umair. “A New Text Categorization
Technique Using Distributional Clustering and Learning Logic.” IEEE
Transactions on Knowledge and Data Engineering, 18(9):1156–1165,
2006.

[AW06] Ralitsa Angelova and Gerhard Weikum. “Graph-based text classifi-
cation: learn from your neighbors.” In SIGIR ’06: Proceedings of the
29th annual international ACM SIGIR conference on research and de-
velopment in information retrieval, pp. 485–492, New York, New York,
USA, 2006. ACM Press.

[BEL07] James Bennett, Charles Elkan, Bing Liu, Padhraic Smyth, and
Domonkos Tikk, editors. Proceedings of KDD Cup and Workshop
2007. ACM SIGKDD, August 2007.

183

[BL97] Avrim L. Blum and Pat Langley. “Selection of relevant features and
examples in machine learning.” Artificial Intelligence, 97(1-2):245–
271, 1997.

[BNJ03] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. “Latent dirich-
let allocation.” Journal Machine Learning Res., 3:993–1022, 2003.

[BPC00] Daniel Billsus, Michael J. Pazzani, and James Chen. “A learning
agent for wireless news access.” In IUI ’00: Proceedings of the 5th
international conference on intelligent user interfaces, pp. 33–36, New
York, New York, USA, 2000. ACM Press.

[Bre96] Leo Breiman. “Bagging predictors.” Machine Learning, 24(2):123–
140, 1996.

[Bro02] Christophe Brouard. “CLIPS at TREC-11: Experiments in Filtering.”
In TREC11, 2002.

[CA06] Paul J. Chase and Shlomo Argamon. “Stylistic text segmentation.” In
SIGIR ’06: Proceedings of the 29th annual international ACM SIGIR
conference on research and development in information retrieval, pp.
633–634, New York, New York, USA, 2006. ACM Press.

[CCG04] Ricardo Carreira, Jaime M. Crato, Daniel Goncalves, and Joaquim A.
Jorge. “Evaluating adaptive user profiles for news classification.” In
IUI ’04: Proceedings of the 9th international conference on intelligent
user interface, pp. 206–212, New York, New York, USA, 2004. ACM
Press.

[CG96] Stanley F. Chen and Joshua Goodman. “An empirical study of
smoothing techniques for language modeling.” In Proceedings of the
34th annual meeting on Association for Computational Linguistics,
pp. 310–318, Morristown, NJ, USA, 1996. Association for Computa-
tional Linguistics.

[CGR05] Gianna M. Del Corso, Antonio Gulli, and Francesco Romani. “Rank-
ing a stream of news.” In WWW ’05: Proceedings of the 14th inter-
national conference on the World Wide Web, pp. 97–106, New York,
New York, USA, 2005. ACM Press.

[CH92] S. le Cessie and J.C. van Houwelingen. “Ridge Estimators in Logistic
Regression.” Applied Statistics, 41(1):191–201, 1992.

184

[CSM02] Amitabh Chaudhary, Alexander S. Szalay, and Andrew W. Moore.
“Very Fast Outlier Detection in Large Multidimensional Data Sets.”
In Data Mining and Knowledge Discovery, 2002.

[CVX06] Paul Chesley, Bruce Vincent, Li Xu, and Rohini K. Srihari. “Using
Verbs and Adjectives to Automatically Classify Blog Sentiment.” In
Proceedings of the AAAI-2006 Spring Symposium on Computational
Approaches to Analyzing Weblogs, 2006.

[CZ02] Zhixiang Chen and Binhai Zhu. “Some Formal Analysis of Rocchio’s
Similarity-Based Relevance Feedback Algorithm.” Information Re-
trieval, 5(1):61–86, 2002.

[Den06] Peter J. Denning. “Infoglut.” Communcations of the ACM, 49(7):15–
19, 2006.

[Dig07] Digg. “Digg.” http://www.digg.com, September 2007.

[DM06] Fernando Diaz and Donald Metzler. “Improving the estimation of
relevance models using large external corpora.” In SIGIR ’06: Pro-
ceedings of the 29th annual international ACM SIGIR conference on
research and development in information retrieval, pp. 154–161, New
York, New York, USA, 2006. ACM Press.

[DWK03] Laurie Damianos, Steve Wohlever, Robyn Kozierok, and Jay Ponte.
“MiTAP: A Case Study of Integrated Knowledge Discovery Tools.”
hicss, 03:69c, 2003.

[ES04] Roberto Esposito and Lorenza Saitta. “A Monte Carlo analysis of
ensemble classification.” In ICML ’04: Proceedings of the 21st inter-
national conference on machine learning, p. 34, New York, New York,
USA, 2004. ACM Press.

[Esk00] Eleazar Eskin. “Detecting errors within a corpus using anomaly de-
tection.” In Proceedings of the first conference on North American
chapter of the Association for Computational Linguistics, pp. 148–153,
San Francisco, California, USA, 2000. Morgan Kaufmann Publishers
Inc.

[FGM05] Jenny Rose Finkel, Trond Grenager, and Christopher Manning. “In-
corporating non-local information into information extraction systems
by Gibbs sampling.” In ACL ’05: Proceedings of the 43rd Annual
Meeting on Association for Computational Linguistics, pp. 363–370,
Morristown, NJ, USA, 2005.

185

[Fin08] Chris Finke. “Diggs Top 100 User.” http://www.efinke.com/digg/

topusers.html, July 2008.

[Fog03] B. J. Fogg. “Prominence-interpretation theory: explaining how people
assess credibility online.” In CHI ’03: CHI ’03 extended abstracts on
Human factors in computing systems, pp. 722–723, New York, New
York, USA, 2003. ACM Press.

[For04] George Forman. “A Pitfall and Solution in Multi-Class Feature Selec-
tion for Text Classification.” In Proceedings of the 21st International
Conference on machine learning, p. 38, 2004.

[For06] George Forman. “Tackling concept drift by temporal inductive trans-
fer.” In SIGIR ’06: Proceedings of the 29th annual international
ACM SIGIR conference on research and development in information
retrieval, pp. 252–259, New York, New York, USA, 2006. ACM Press.

[FS96] Yoav Freund and Robert E. Schapire. “Experiments with a New
Boosting Algorithm.” In International Conference on machine learn-
ing, pp. 148–156, 1996.

[FWM01] Martin Franz, Todd Ward, J. Scott McCarley, and Wei-Jing Zhu.
“Unsupervised and supervised clustering for topic tracking.” In SI-
GIR ’01: Proceedings of the 24th annual international ACM SIGIR
conference on research and development in information retrieval, pp.
310–317, New York, New York, USA, 2001. ACM Press.

[GE03] Isabelle Guyon and Andre Elisseeff. “An introduction to variable and
feature selection.” Journal of Machine Learning Research, 3:1157–
1182, 2003.

[GLM04] Alexander Genkin, David D. Lewis, and David Madigan. “Large-
Scale Bayesian Logistic Regression for Text Categorization.” Journal
of Machine Learning Research, 2004.

[GM07] Evegniy Gabrilovich and Shaul Markovitch. “Computing Semantic
Relatedness using Wikipedia-based Explicit Semantic Analysis.” In
Proceedings of the 20th International Joint Conference on Artificial
Intelligence, pp. 1606–1611, 2007.

[Goo08] Google. “Google News.” http://news.google.com/, 2008.

[GR08] Rakesh Gupta and Lev Ratinov. “Text Categorization with Knowl-
edge Transfer from Heterogeneous Data Sources.” In Proceedings of

186

the 23rd AAAI Conference on Artificial Intelligence, Chicago, Illinois,
July 2008.

[GS04] T. L. Griffiths and M. Steyvers. “Finding scientific topics.” Proceed-
ings of tha National Academy of Science, 101 Supplement 1:5228–
5235, April 2004.

[Hay06] Rick Hayes-Roth. “Two theories of process design for information su-
periority: Smart pull vs. smart push.” In Proceedings of the command
and control research and technology symposium: The state of the art
and the state of the practice, San Diego, California, 2006.

[Hen06] Monika Henzinger. “Finding near-duplicate web pages: a large-scale
evaluation of algorithms.” In SIGIR ’06: Proceedings of the 29th
annual international ACM SIGIR conference on research and devel-
opment in information retrieval, pp. 284–291, New York, New York,
USA, 2006. ACM Press.

[JL95] George H. John and Pat Langley. “Estimating Continuous Distribu-
tions in Bayesian Classifiers.” In Proceedings of the 11th Conference
on Uncertainty in Artificial Intelligence, pp. 338–345, 1995.

[Joa96] Thorsten Joachims. “A Probablistic Analysis of the Rocchio Algo-
rithm with TFIDF for Text Categorization.” Technical Report CMU-
CS-96-118, Carnegie Mellon University, 1996.

[Kar03] George Karypis. “CLUTO: a software package for clustering high-
dimensional datasets.” http://www-users.cs.umn.edu/∼karypis/

cluto/index.html, 2003.

[KJ97] Ron Kohavi and George H. John. “Wrappers for feature subset selec-
tion.” Artificial Intelligence, 97(1-2):273–324, 1997.

[KSA06] Moshe Koppel, Jonathan Schler, Shlomo Argamon, and Eran Messeri.
“Authorship attribution with thousands of candidate authors.” In
SIGIR ’06: Proceedings of the 29th annual international ACM SIGIR
conference on research and development in information retrieval, pp.
659–660, New York, New York, USA, 2006. ACM Press.

[KZL08] Jonathan Koren, Yi Zhang, and Xue Liu. “Personalized interactive
faceted search.” In WWW ’08: Proceeding of the 17th international
conference on the World Wide Web, pp. 477–486, New York, New
York, USA, 2008. ACM.

187

[LDD05] H. Liu, E.R. Dougherty, J.G. Dy, K. Torkkola, E. Tuv, H. Peng,
C. Ding, F. Long, M. Berens, L. Parsons, Z. Zhao, L. Yu, and
G. Forman. “Evolving feature selection.” IEEE Intelligent Systems,
20(6):64–76, November - December 2005.

[LHF05] Niels Landwehr, Mark Hall, and Eibe Frank. “Logistic Model Trees.”
Machine Learning, 59(1-2):161–205, 2005.

[Lia04] Jiu-Zhen Liang. “SVM multi-classifier and Web document classifi-
cation.” In Machine Learning and Cybernetics, 2004. Proceedings of
2004 International Conference on, volume 3, pp. 1347–1351, 2004.

[Lit88] Nick Littlestone. “Learning Quickly When Irrelevant Attributes
Abound: A New Linear-Threshold Algorithm.” Machine Learning,
2(4):285–318, 1988.

[LK05] Aleksandar Lazarevic and Vipin Kumar. “Feature bagging for out-
lier detection.” In KDD ’05: Proceeding of the 11th ACM SIGKDD
international conference on knowledge discovery in data mining, pp.
157–166, New York, New York, USA, 2005. ACM Press.

[LLK03] Hung-Jen Lai, Ting-Peng Liang, and Y. C. Ku. “Customized Internet
news services based on customer profiles.” In ICEC ’03: Proceedings
of the 5th international conference on Electronic commerce, pp. 225–
229, New York, New York, USA, 2003. ACM Press.

[LV02] Yihua Liao and V. Rao Vemuri. “Using Text Categorization Tech-
niques for Intrusion Detection.” In Proceedings of the 11th USENIX
Security Symposium, pp. 51–59, Berkeley, California, USA, 2002.
USENIX Association.

[LY05] Huan Liu and Lei Yu. “Toward Integrating Feature Selection Al-
gorithms for Classification and Clustering.” IEEE Transactions
on Knowledge and Data Engineering, 17(4):491–502, 2005. Senior
Member-Huan Liu and Student Member-Lei Yu.

[LZC06] Jiexun Li, Rong Zheng, and Hsinchun Chen. “From fingerprint to
writeprint.” Communcations of the ACM, 49(4):76–82, 2006.

[MAS04] Juha Makkonen, Helena Ahonen-Myka, and Marko Salmenkivi. “Sim-
ple Semantics in Topic Detection and Tracking.” Information Re-
trieval, 7(3-4):347–368, 2004.

188

[MCM02] Liang Ma, Qunxiu Chen, Shaping Ma, Min Zhang, and Lianhong Cai.
“Incremental Learning for Profile Training in Adaptive Document Fil-
tering.” In TREC11, 2002.

[Mis05] G. Mishne. “Experiments with Mood Classification in Blog Posts.”
In Style2005 - the 1st Workshop on Stylistic Analysis Of Text For
Information Access, at SIGIR, 2005.

[MM04] Prem Melville and Raymond J. Mooney. “Diverse ensembles for ac-
tive learning.” In ICML ’04: Proceedings of the 21st international
conference on machine learning, p. 74, New York, New York, USA,
2004. ACM Press.

[MP01] Sofus A. Macskassy and Foster Provost. “Intelligent information
triage.” In SIGIR ’01: Proceedings of the 24th annual international
ACM SIGIR conference on research and development in information
retrieval, pp. 318–326, New York, New York, USA, 2001. ACM Press.

[MZ05] Qiaozhu Mei and ChengXiang Zhai. “Discovering evolutionary theme
patterns from text: an exploration of temporal text mining.” In KDD
’05: Proceeding of the 11th ACM SIGKDD international conference
on knowledge discovery in data mining, pp. 198–207, New York, New
York, USA, 2005. ACM Press.

[NCS06] David Newman, Chaitanya Chemudugunta, Padhraic Smyth, and
Mark Steyvers. “Analyzing entities and topics in news articles us-
ing statistical topic models.” In IEEE International Conference on
Intelligence and Security Informatics, 2006.

[Net07] Netflix. “Netflix Prize.” http://www.netflixprize.com/, Septem-
ber 2007.

[NF05] Petteri Nurmi and Patrik Floreen. “Online feature selection for con-
textual time series data.” In PASCaliforniaL Subspace, Latent Struc-
ture and Feature Selection Workshop, Bohinj, Slovenia, February 2005.

[NIS04] NIST. “The Topic Detection and Tracking 2004 (TDT-2004) Evalua-
tion Project.” http://www.nist.gov/speech/tests/tdt/tdt2004/

index.htm, December 2004.

[NSK06] Ryosuke Nagura, Yohei Seki, Noriko Kando, and Masaki Aono. “A
method of rating the credibility of news documents on the web.” In
SIGIR ’06: Proceedings of the 29th annual international ACM SIGIR
conference on research and development in information retrieval, pp.
683–684, New York, New York, USA, 2006. ACM Press.

189

[Ope06] OpenNLP. “openNLP.” http://opennlp.sourceforge.net/, 9
2006.

[PBM98] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd.
“The PageRank Citation Ranking: Bringing Order to the Web.” Tech-
nical report, Stanford Digital Library Technologies Project, 1998.

[PC05] Raymond K. Pon and Alfonso F. Cárdenas. “Data quality inference.”
In IQIS ’05: Proceedings of the 2nd international workshop on infor-
mation quality in information systems, pp. 105–111, New York, New
York, USA, 2005. ACM Press.

[PCB07a] Raymond K. Pon, Alfonso F. Cárdenas, David Buttler, and Terence
Critchlow. “iScore: Measuring the Interestingness of Articles in a
Limited User Environment.” In IEEE Symposium on Computational
Intelligence and Data Mining 2007, Honolulu, HI, April 2007.

[PCB07b] Raymond K. Pon, Alfonso F. Cárdenas, David Buttler, and Terence
Critchlow. “Tracking multiple topics for finding interesting articles.”
In KDD ’07: Proceedings of the 13th ACM SIGKDD international
conference on knowledge discovery and data mining, pp. 560–569, New
York, New York, USA, 2007. ACM Press.

[PCB08a] Raymond K. Pon, Alfonso F. Cárdenas, and David J. Buttler. “Im-
proving Naive Bayes with Online Feature Selection for Quick Adap-
tation to Evolving Feature Usefulness.” In 2008 SIAM SDM Text
Mining Workshop, Atlanta, Georgia, April 2008.

[PCB08b] Raymond K. Pon, Alfonso F. Cárdenas, and David J. Buttler. “On-
line Selection of Parameters in the Rocchio Algorithm for Identifying
Interesting News Articles.” In 10th ACM International Workshop on
Web Information and Data Management (WIDM), Napa Valley, Cal-
ifornia, October 2008.

[PLT05] Ramani S. Pilla, Catherine Loader, and Cyrus C. Taylor. “New Tech-
nique for Finding Needles in Haystacks: Geometric Approach to Dis-
tinguishing between a New Source and Random Fluctuations.” Phys-
ical Review Letters, 95(23):230202, 2005.

[Por80] M. F. Porter. “An algorithm for suffix stripping.” Program,
14(3):130–137, 1980.

[PSW03] Fuchun Peng, Dale Schuurmans, and Shaojun Wang. “Language and
task independent text categorization with simple language models.”

190

In NAACL ’03: Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computational Linguistics
on Human Language Technology, pp. 110–117, Morristown, NJ, USA,
2003. Association for Computational Linguistics.

[PT03] Simon Perkins and James Theiler. “Online Feature Selection using
Grafting.” In ICML, pp. 592–599, 2003.

[Qui93] Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kauf-
mann Publishers, San Mateo, California, 1993.

[RE06] David L. Roberts and Tina Eliassi-Rad. “A Position Paper: Value
of Information for Evidence Detection.” In AAAI Fall Symposium on
Capturing and Using Patterns for Evidence Detection, Arlington, VA
2006.

[RFZ01] Dragomir Radev, Weiguo Fan, and Zhu Zhang. “WebInEssence: A
personalised web-based multi-document summarisation and recom-
mendation system.” In Proceedings of the NAACL-01, pp. 79–88,
2001.

[RJ05] Matthew J. Rattigan and David Jensen. “The case for anomalous
link detection.” In 4th Multi-Relational Data Mining Workshop, 11th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2005.

[Roc71] J. Rocchio. Relevance Feedback in Information Retrieval, chapter 14,
pp. 313–323. Prentice-Hall, 1971.

[RP04] Ellen Riloff and William Phillips. “An Introduction to the Sundance
and AutoSlog Systems.” Technical Report UUCS-04-015, University
of Utah School of Computing, 2004.

[RS02] Stephen Robertson and Ian Soboroff. “The TREC 2002 Filtering
Track Report.” In TREC 2002, 2002.

[RWZ02] S.E. Robertson, S. Walker, H. Zaragoza, and R. Herbrich. “Microsoft
Cambridge at TREC 2002: Filtering Track.” In TREC11, 2002.

[SA06] Mark D. Smucker and James Allan. “Find-similar: similarity brows-
ing as a search tool.” In SIGIR ’06: Proceedings of the 29th annual
international ACM SIGIR conference on research and development in
information retrieval, pp. 461–468, New York, New York, USA, 2006.
ACM Press.

191

[Sin04] Natasha Singh. “The Use of Syntactic Structure in Relationship
Structure.”. Master’s thesis, Massachusetts Institute of Technology,
2004.

[SMB97] Amit Singhal, Mandar Mitra, and Chris Buckley. “Learning routing
queries in a query zone.” In Proceedings of the 20th Annual Internal
ACM SIGIR Conference on research and Development in Information
Retrieval, pp. 25–32, July 1997.

[Sol08] Solr. “Welcome to Solr.” http://lucene.apache.org/solr/, 2008.

[SSS98] Robert E. Schapire, Yoram Singer, and Amit Singhal. “Boosting and
Rocchio applied to text filtering.” In Proceedings of SIGIR-98, 21st
ACM International Conference on Research and Development in In-
formation Retrieval, pp. 215–223, Melbourne, AU, 1998. ACM Press,
New York, US.

[Ste06] Mark Steyvers. Latent Semantic Analysis: A Road to Meaning, chap-
ter Probabilistic Topic Models. Laurence Erlbaum, 2006.

[TB98] Fiona J. Tweedie and R. Harald Baayen. “How variable may a con-
stant be? Measures of lexical richness in perspective.” Computers and
the Humanities, 32:323–352, 1998.

[TG04] A.L. Turinsky and R.L. Grossman. “A greedy algorithm for selecting
models in ensembles.” In ICDM ’04: Proceedings of the Fourth IEEE
International Conference on Data Mining (ICDM’04), pp. 547–550,
November 2004.

[UBC97] Paul E. Utgoff, Neil C. Berkman, and Jeffrey A. Clouse. “Deci-
sion Tree Induction Based on Efficient Tree Restructuring.” Machine
Learning, 29(1), October 1997.

[UIM08] Apache UIMA. “Unstructured Information Management Architecture
SDK.” http://incubator.apache.org/uima/, 9 2008.

[WF05] Ian H. Witten and Eibe Frank. Data Mining: Practical machine learn-
ing tools and techniques. Morgan Kaufmann, 2005.

[WHN02] Lide Wu, Xuanjing Huang, Junyu Niu, Yingju Xia, Zhe Feng, and
Yaqian Zhou. “FDU at TREC2002: Filtering, Q&A, Web and video
tasks.” In TREC11, 2002.

192

[Wie00] Janyce Wiebe. “Learning Subjective Adjectives from Corpora.” In
Proceedings of the 17th National Conference on Artificial Intelligence
and 12th Conference on Innovative Applications of Artificial Intelli-
gence, pp. 735–740. AAAI Press / The MIT Press, 2000.

[Wie02] Janyce Wiebe. “Instructions for Annotating Opinions in Newspaper
Articles.” Tr-02-101, Department of Computer Science, University of
Pittsburgh, 2002.

[Wik08] Wikipedia. “Wikipedia, the free encyclopedia.” http://en.

wikipedia.org/, 2008.

[WKY96] Jacqueline W. T. Wong, W. K. Kan, and Gilbert Young. “AC-
TION: Automatic classification for full-text documents.” SIGIR Fo-
rum, 30(1):26–41, 1996.

[WS03] Scott White and Padhraic Smyth. “Algorithms for estimating relative
importance in networks.” In KDD ’03: Proceedings of the 9th ACM
SIGKDD international conference on knowledge discovery and data
mining, pp. 266–275, New York, New York, USA, 2003. ACM Press.

[WVR06] Jun Wang, Arjen P. de Vries, and Marcel J. T. Reinders. “Unify-
ing user-based and item-based collaborative filtering approaches by
similarity fusion.” In SIGIR ’06: Proceedings of the 29th annual in-
ternational ACM SIGIR conference on research and development in
information retrieval, pp. 501–508, New York, New York, USA, 2006.
ACM Press.

[WWB04] Janyce Wiebe, Theresa Wilson, Rebecca Bruce, Matthew Bell, and
Melanie Martin. “Learning Subjective Language.” Computational
Linguistics, 30(3):277–308, 2004.

[XJK01] E.P. Xing, M.I. Jordan, and R.M. Karp. “Feature selection for high-
dimensional genomic microarray data.” In Proceedings of the Eigh-
teenth International Conference on machine Learning, 2001.

[XYW02] Hongbo Xu, Zhifeng Yang, Bin Wang, Bin Liu, Jun Cheng, Yue Liu,
Zhe Yang, Xueqi Cheng, and Shuo Bai. “TREC-11 Experiments at
CaliforniaS-ICT: Filtering and Web.” In TREC11, 2002.

[Yah07] Yahoo! “Yahoo! News RSS Feeds.” http://news.yahoo.com/rss,
2007.

193

[YH06] Rong Yan and Alexander G. Hauptmann. “Probabilistic latent query
analysis for combining multiple retrieval sources.” In SIGIR ’06: Pro-
ceedings of the 29th annual international ACM SIGIR conference on
research and development in information retrieval, pp. 324–331, New
York, New York, USA, 2006. ACM Press.

[YP97] Yiming Yang and Jan O. Pedersen. “A Comparative Study on Feature
Selection in Text Categorization.” In ICML ’97: Proceedings of the
14th International Conference on machine learning, pp. 412–420, San
Francisco, California, USA, 1997. Morgan Kaufmann Publishers Inc.

[YZH03] Hwanjo Yu, ChengXiang Zhai, and Jiawei Han. “Text classification
from positive and unlabeled documents.” In CIKM ’03: Proceedings
of the 12th international conference on Information and knowledge
management, pp. 232–239, New York, New York, USA, 2003. ACM
Press.

194

