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Abstract 

The human gut contains a dense, complex, and diverse microbial community, comprising 

the gut microbiome. Metagenomics has recently revealed the composition of genes in the 

gut microbiome, but provides no direct information about which genes are expressed or 

functioning. Therefore, our goal was to develop a novel approach to directly identify 

microbial proteins in fecal samples to gain information about what genes were expressed 

and about key microbial functions in the human gut. We used a non-targeted, shotgun 

mass spectrometry-based whole community proteomics, or metaproteomics, approach for 

the first deep proteome measurements of thousands of proteins in human fecal samples, 

thus demonstrating this approach on the most complex sample type to date. The resulting 

metaproteomes had a skewed distribution relative to the metagenome, with more proteins 

for translation, energy production, and carbohydrate metabolism compared to what was 

earlier predicted from metagenomics. Human proteins, including antimicrobial peptides, 

were also identified, providing a non-targeted glimpse of the host response to the 

microbiota. Several unknown proteins represented previously undescribed microbial 

pathways or host immune responses, revealing a novel complex interplay between the 

human host and its associated microbes.  
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Introduction 

The human gastrointestinal (GI) tract is host for myriads of microorganisms 

(approximately 1011/gram feces) that carry out vital processes for normal digestive 

functions of the host and play an important, although not yet not fully understood, role in 

maturation of human immunity and defense against pathogens. Recent findings suggest 

that each human has a unique and relatively stable gut microbiota, unless disrupted by 

external factors such as antibiotic treatment (Jernberg et al., 2007). Increasing evidence 

suggests that the composition of the GI microbiota is linked to inflammatory bowel 

diseases (Peterson et al., 2008), such as Crohn’s disease (Dicksved et al., 2008), and can 

even influence the propensity for obesity (Ley et al., 2006). Current estimates based on 

sequencing of 16S rRNA genes in DNA extracted from feces, are that 800-1000 different 

microbial species and >7000 different strains inhabit the GI tract (Bäckhead et al., 2005) 

and that the majority of these (> 80%) have not yet been isolated or characterized 

(Eckburg et al., 2005). Therefore, there is a vast microbial diversity with largely 

unknown function that is waiting to be explored.  

Recently, metagenomic sequencing has revealed information about the complement 

of genes in the gut microbiota of two healthy individuals (Gill et al., 2006). Although this 

data set did not represent the entire GI microbiota, analysis of identified genes revealed 

that the GI microbiome has significantly enriched capacities for glycan, amino acid, and 

xenobiotic metabolism, methanogenesis, and synthesis of vitamins and isoprenoids. This 

indirect evidence suggested that there are unique microbial functions carried out in the 

gut environment. 
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A major limitation of DNA based approaches is that they predict potential functions, 

but it is not known if the predicted genes are expressed at all or if so, under what 

conditions and to what extent. In addition, it is not possible to determine whether the 

DNA is from active viable cells, dormant inactive cells, or even dead cells. These 

limitations can be overcome by directly assessing proteins, because the genes must have 

been transcribed and translated to produce a protein product. However, to date only a 

couple of microbial proteins have been identified from the human gut and these were 

obtained by 2 dimensional polyacrylamide gel electrophoresis (2D PAGE) (Klaassens et 

al., 2007), followed by excision and de novo sequencing of targeted spots on the gel.  

Here, our aim was to develop a novel high throughput, non-targeted mass 

spectrometry (MS) approach to determine the identities of thousands of microbial 

proteins in the most complex sample type to date (i.e. feces) and to test the feasibility of 

using a non-matched metagenome data set for protein identification. This MS-based 

shotgun proteomics approach relies on detection and identification of all proteins in a 

lysed cell mixture without the need for gel based separation or de novo sequencing. 

Instead, the resulting peptides from an enzymatic digest of the entire proteome are 

separated by liquid chromatography and infused directly into rapidly scanning tandem 

mass spectrometers (2D-LC-MS/MS) via electrospray ionization. The resulting peptide 

mass information and tandem mass spectra are used to search against protein databases 

generated from genome sequences. To date, the shotgun metaproteomics approach has 

only been demonstrated in a limited number of studies and only for microbial 

communities with low diversity, such as acid mine drainage systems (Ram et al., 2005; 

Lo et al., 2007), endosymbionts (Markert et al., 2007), and sewage sludge water (Wilmes 
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et al., 2008).  It remains a technical challenge to apply this shotgun approach to more 

complex microbial communities, such as those inhabiting the human gut.  

For this study, it was first necessary to develop the shotgun proteomics approach to 

work with fecal samples containing large amounts of particulate matter and undigested 

food and a large diversity of microbial cells. Figure 1 provides an overview of the 

experimental approach developed. Fecal samples were chosen because sampling is non-

invasive and feces have been shown to provide material that is representative of an 

individual’s colonic microbiota (Eckburg et al., 2005). Our goal was the qualitative 

identification of the range and types of proteins that can be confidently and reproducibly 

measured (i.e. with high specificity and low false positive rates; 1-5% maximum) from 

gut microorganisms by comparing to available metagenome databases (Gill et al., 2006) 

and available gut isolate genomes and to determine if unmatched data sets could suffice 

for accurate protein identifications.  An additional goal was to apply a novel 

bioinformatics approach to assign putative functions to unknown proteins not covered by 

standard analysis of clusters of orthologous groups (COGs). Ultimately, our aim was to 

use the protein data to provide direct evidence of dominant and key microbial functions 

in the human gut for the first time, some of which could serve as indicators of a healthy 

or diseased state. In addition, this non-targeted approach enables identification of human 

proteins associated with the gut microbiota, thus illustrating potential interactions 

between the human microbiome and host. 
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Materials and methods 

Fecal sample collection 

A female healthy monozygotic twin pair born in 1951 was invited to take part in a larger 

double blinded study, and details of these individuals with respect to diet, antibiotic 

usage, etc. are previously described: individuals numbered 6a and 6b (Dicksved et al., 

2008), that provided Samples 7 and 8, respectively, thus were the focus of this study. The 

only differences between the individuals according to the submitted questionnaire data 

were that Individual 6a had gastroenteritis and Individual 6b had taken NSAIDs the last 

12 months. Fecal samples were collected in 20 ml colonic tubes by the twins and 

immediately sent to Örebro University Hospital on the day of collection, where they were 

placed at –70°C and stored. The Uppsala County Ethics Committee and the ORNL 

human study review panel approved the study.  

 

Microbial cell extraction from fecal samples 

Fecal samples were thawed at +4°C and microbial cells were extracted from the bulk 

fecal material by differential centrifugation, as previously described (Apajalahti et al., 

1998). This cell extraction method has previously been found to result in a highly 

enriched bacterial fraction from complex samples, such as soil and chicken feces, with 

negligible bacterial cell loss and a good representation of fecal microbiota (Apajalahti et 

al., 1998). The resulting bacterial cell pellets were immediately frozen at –70°C and 

stored until use. 
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Cell lysis and protein extraction from cell pellets 

The microbial cell pellets (~100 mg) were processed via single tube cell lysis and protein 

digestion. Briefly, the cell pellet was resuspended in 6M Guanidine/10mM DTT to lyse 

cells and denature proteins. The guanidine concentration was diluted to 1M with 50 mM 

Tris buffer/10mM CaCl2 and sequencing grade trypsin (Promega, Madison, WI) was 

added to digest proteins to peptides. The complex peptide solution was desalted via C18 

solid phase extraction, concentrated and filtered (0.45um filter). For each LC-MS/MS 

analyses below, ~1/4 of the total sample was used. 

 

2D-LC-MS/MS 

Both samples were analyzed in technical duplicates via two-dimensional (2D) nano-LC 

MS/MS system with a split-phase column (RP-SCX-RP) (McDonald et al., 2002) on a 

LTQ Orbitrap (Thermo Fisher Scientific) with 22 h runs per sample (LC as previously 

described (Ram et al., 2005; Lo et al., 2007). The Orbitrap settings were as follows: 30K 

resolution on full scans in Orbitrap, all data-dependent MS/MS in LTQ (top five), 2 

microscans for both Full and MS/MS scans, centroid data for all scans and 2 microscans 

averaged for each spectra, dynamic exclusion set at 1.   

 

Proteome informatics 

All MS/MS spectra were searched with the SEQUEST algorithm (Eng et al., 1994) and 

filtered with DTASelect/Contrast (Tabb et al., 2002) at the peptide level [Xcorrs of at 

least 1.8 (+1), 2.5 (+2), 3.5 (+3)]. Only proteins identified with two fully tryptic peptides 

from a 22 h run were considered for further biological study. Tandem MS/MS spectra 
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were searched against four databases, the first database (db1) contained two human 

subject metagenomes (Gill et al., 2006), a human database, and common contaminants.  

The existing metagenome databases (Gill et al., 2006) were deficient in Bacteroides 

sequences and since Bacteroides are known to be common and abundant in the human 

intestine (Eckburg et al., 2005) were also included Bacteroides genome sequences in a 

second database (metadb), plus other sequences from representatives of the normal gut 

microbiota deposited and available at the Joint Genome Institute (JGI) IMG database 

(http//img.jgi.doe.gov/). In addition, we included distracters that one would not 

commonly expect in the healthy gut.  The third and fourth database were made by 

reversing or randomizing the DB1 and appending it on the end of DB1; these databases 

were used primarily for determining false positive rates, as previously described (Lo et 

al., 2007; Peng et al., 2003).  Further descriptions of the databases, searching methods, 

and false positive rates can be found in supplementary information.  All databases, 

peptide and protein results, MS/MS spectra and supplementary tables for all database 

searches are archived and made available as open access via the following link: 

http://compbio.ornl.gov/human_gut_microbial_metaproteome/ 

All MS .raw files or other extracted formats are available upon request. 

 

Hypothetical Protein Prediction 

Hypothetical proteins were submitted to the distant homology recognition server FFAS03 

(Jaroszewski et al., 2005). The list of hypothetical proteins and predicted functions can be 

found in Supplementary Table S11. For 80% of the hypothetical proteins, a statistically 

significant match (Z-score below 9.5) to one of the proteins in the reference databases 
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was obtained. Functions of the matching proteins were used to assign a provisional 

function for the hypothetical proteins identified in this study. All the FFAS03 results are 

available from the FFAS03 server at http://ffas.burnham.org/ffascgi/ cgi/login.pl (Login: 

Janet_new, password: Janet_new). Links provided on the site can be followed to obtain 

detailed alignments, three dimensional models and other information.  

 

Results 

Metaproteomics of fecal samples 

Our results present the first large-scale investigation of the human gut microbial 

metaproteome. The metaproteomes were obtained from two fecal samples (Samples 7 

and 8) collected from two healthy female identical twins (Subjects 6a and 6b, 

respectively, see Dicksved et al. (2008) for a description of the individuals). The shotgun 

approach used enabled us to identify thousands of proteins by matching peptide mass 

data to available isolate genome and metagenome sequence databases (Supplementary 

Table S1). The total number of proteins identified from searching the first database (db1) 

that contained all predicted human proteins and the gut metagenomes, were 1822 

redundant and 1534 non-redundant proteins, with approximately 600 to 900 proteins 

identified per sample and replicate (Table 1).  From the entire non-redundant dataset, 446 

proteins (~1/3) matched human proteins while 1368 (~2/3) matched predicted proteins 

from the microbial metagenome sequence data (Supplementary Table S2 for a complete 

list).  

The second database (metadb) contained all of the sequences in the db1 database 

above, in addition to sequences from representatives of the normal gut microbiota, 
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including strains of Bacteroides, Bifidobacteria, Clostridia, and Lactobacilli, plus human 

pathogens and distracters that one would not commonly expect in the healthy gut, such as 

environmental isolates.  The rice (Oryza Sativa) genome was included to help identify 

plant (food) related proteins. From the metadb, the total number of proteins identified 

were 2911 redundant and 2214 non-redundant; between 970 and 1340 proteins were 

identified per sample and replicate (Table 1). The categorical breakdown of identified 

proteins from each major database type and the complete list is shown in Supplementary 

Table S3.  In three out of four runs, the highest percentage of protein identifications 

corresponded to the bacterial genome sequences that were screened.  In the fourth run 

(i.e. run 2, Sample 8), most protein identifications matched to one of the metagenomes. 

By contrast, 30-35% of spectra matched to the human protein database, most likely due to 

a few highly abundant human proteins in the samples with a large number of spectral 

counts.  The proteins matching to both rice and environmental isolate distracters were 

low, between 2-9%, indicating that the majority of the sequences matched to bacterial 

types and human sequences that one would expect in the human gut environment.  

Among the microbial genomes screened, the highest protein matches were to 

expected sequences from gut isolates. Of the ~10,000-13,000 total spectra observed from 

each run, ~2,000 matched Bacteriodes or Bifidobacterium species, with the Bacteriodes 

species always having slightly more spectra, emphasizing the dominance of these groups 

and their functional significance in the human distal intestine.  This data correlates well 

with our previously published microbial fingerprint data showing an abundance of 

Bacteroides spp. in both of the individuals studied here (Dicksved et al., 2008). 
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By using established methods of reverse database searching (Lo et al., 2007; Peng et 

al., 2003); we estimated a false positive rate at the peptide level of 1-5% for all identified 

peptides depending on the method.  If only those peptides with corresponding high mass 

accuracy measurements (<10 ppm) were considered (80-85% of all identified peptides 

per run), then the rate dropped to 0.05-0.23% (See supplementary material for a complete 

description of false positive rate determinations and associated tables: Supplementary 

tables S4-8, Supplementary Figures S1-2) 

 

COG categories in the gut metaproteome 

The proteins identified from the db1 search were classified into COG categories and 

when compared between the two samples and the two technical runs, the data were 

highly reproducible and consistent (Figure 2).  By comparison to the average 

metagenomes previously published from other individuals (Gill et al., 2006), we found 

that several COG categories were more highly represented in the average microbial 

metaproteomes of the individuals in the present study (Figure 3). The metaproteomes 

were significantly skewed, with a more uneven distribution of COG categories than those 

represented in the average metagenomes. The majority of detected proteins were involved 

in translation, carbohydrate metabolism, or energy production; together representing 

more than 50% of the total proteins in the metaproteome.  In addition, more proteins in 

the metaproteomes were representative of COG categories for post-translational 

modifications, protein folding, and turnover. By contrast, other COG categories were 

under represented in the metaproteomes compared to the metagenomes, including 
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proteins involved in inorganic ion metabolism, cell wall and membrane biogenesis, cell 

division and secondary metabolite biosynthesis.  

 

Label free estimation of relative protein abundance by NSAF 

We estimated the relative abundances of the thousands of proteins that were detected in 

each sample by calculating normalized spectral abundance factors (NSAF) (Florens et al., 

2006; Zybailov et al., 2006). The entire list of proteins sorted by averaged NSAF across 

all samples and technical runs is shown in Supplementary Tables S2-3. By comparing the 

NSAF data from each sample and technical run to each other, it was clear that the 

technical runs were highly reproducible for a given sample; R2 values of 0.77 and 0.85 

for Samples 7 and 8 respectively (Supplementary Figs. S3-4).     

The most abundant proteins based on this prediction were common abundant human 

derived digestive proteins such as elastase, chymotrypsin C, and salivary amylases.  The 

most abundant microbial proteins included those for expected processes, such as enzymes 

involved in glycolysis (e.g. Glyceraldehyde-3-phosphate dehydrogenase). Ribosomal 

proteins (in particular for Bifidobacterium) were also relatively abundant, as were DNA 

binding proteins, electron transfer flavoproteins, and Chaperonin GroEL/GroES (HP60 

family).  

The gut microbiomes previously published (Gill et al., 2006) were enriched for many 

COGs representing key genes in the methanogenic pathway, consistent with H2 removal 

from the distal gut ecosystem via methanogenesis. By contrast, we found very few 

proteins represented by methanogens. One example is a hypothetical protein from 

Methanobrevibacterium found in Sample 8. Instead, analysis of the list of proteins based 
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on the NSAF ranking in our study revealed a high relative abundance of 

formyltetrahydrofolate synthetase (FTHFS), a key enzyme in the acetyl-CoA pathway of 

acetogens (Drake et al., 2008). Acetogenic bacteria utilize H2 to reduce CO2 and form 

acetate. Although methanogenesis is an important H2 disposal route in about 30-50% of 

people in Western countries, in the remainder H2 is consumed by sulfate reduction or 

reductive acetogenesis, and this seems to be the situation for the samples we have studied 

here.  

Similar to the published metagenomes that reported several COGs responsible for 

host-derived fucose utilization that were enriched in the human gut microbiome relative 

to all microbial genomes (Gill et al., 2006), we also found several proteins involved in 

fucose metabolism, including fucose isomerase and propanediol fermentation (later steps 

in the pathway). In particular, we detected proteins corresponding to polyhedral bodies 

that are assumed to protect the cell by sequestering the toxic propionaldehyde 

intermediate of this pathway (Havemann and Bobik, 2003). 

Butyrate kinase was the most highly enriched COG (odds ratio of 9.30) in the 

previous metagenomic study by Gill et al. (2006). This enzyme is the final step in 

butyrate fermentation. Although we did not identify butyrate kinase, we did find that 

butyryl-CoA dehydrogenase had a relatively high abundance based on the NSAF 

analyses.  This enzyme catalyzes one of the previous steps in the same pathway; 

interestingly this protein was strongly expressed in Sample 8 but was not detected in 

Sample 7.  Additional proteins of interest that were relatively abundant included NifU-

like homologs and rubrerythrin. The role of NifU has been proposed as a scaffold protein 

for Fe-S cluster assembly (Ayala-Castro et al., 2008). Rubrerythrin is found in anaerobic 



 14 

sulfate reducing bacteria and is a fusion protein containing an N-terminal iron binding 

domain and a C-terminal domain homologous to rubredoxin. The physiological role of 

rubrerythrin has not been identified, but it has been shown to protect against oxidative 

stress in D. vulgaris and other anaerobic microorganisms (Mukhopadhyay et al., 2007). 

Average NSAF values were compared to determine unique and shared proteins in 

Samples 7 and 8 (Figure 4, metadb database; Supplementary Figure S5, db1 database). 

The scatter plot reveals five distinct areas: proteins found in similar abundances in both 

samples along the diagonal (listed in Supplementary Tables S9-10, 1st tabs), proteins 

found in only one sample on the respective axis, and two distinct lobes that are 

overexpressed in one sample or the other but present in both (Figure 4; data for proteins 

showing significant deviation from central line found in Supplementary Tables S9-10, 2nd 

tabs). We suggest that the group of approximately equally abundant proteins (747 total) 

represent core gut populations and functions, supported by the finding that a high 

proportion of these proteins were from common gut bacteria (i.e. Bacteroides, 

Bifidobacterium and Clostridium) and represented housekeeping functions: translation 

(19%), energy production (14%), post-translational modification and protein turnover 

(12%) and carbohydrate metabolism (16%) (Supplementary Table S10, 1st tab). By 

contrast, the proteins found in only one sample contained proportionately fewer in COG 

categories for housekeeping functions and from common gut species, but a higher 

proportion with unknown functions (28% compared to 11% found in both). These results 

suggest that the proteins present or over represented in only one sample could represent 

bacterial populations and functions that change according to environmental influences, 

such as immediate diet.  For example, 33% of the unique proteins only found in Sample 

https://external-portal.ornl.gov/exchweb/bin/redir.asp?URL=http://metallo.scripps.edu/PROMISE/RUBREDOXIN.html
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7, are prolamin proteins, i.e. plant storage proteins having a high proline content found in 

seeds of cereals, suggesting recent ingestion of cereal grains by that individual. Although 

these individuals did not specify any particular dietary habits in the questionnaire data 

that accompanied the samples (Dicksved et al., 2008), we do not have any detailed 

information about their specific dietary intake immediately prior to sampling that would 

enable us to verify this finding. 

  

Analysis of unknown-hypothetical proteins 

We performed detailed analyses of the unknown proteins (116 from the published 

metagenomes (Gill et al., 2006) and 89 from bacterial isolate genomes) that could not be 

classified into COG families. The majority of these proteins belong to novel protein 

families that are overrepresented in genomes of gut microbes (Figure 5a). Five of the ten 

most abundant hypothetical proteins in the metaproteome belong to the novel protein 

family represented by hypothetical protein CAC2564 that was previously identified in 

human metagenomes (Gill et al., 2006), while four out of top ten belong to another novel 

protein family represented by a hypothetical protein BF3045 from Bacteroides fragilis.  

Members of both families are present in several Bacteroides, Clostridium, and Vibrio 

species, where they are always associated with each other (see the red and green arrows 

in Figure 5b) and various metabolic enzymes and transport systems. The neighborhood of 

these two proteins resembles a typical amino acid metabolic pathway, and we 

hypothesize that they are involved in amino acid metabolism, most likely cysteine or 

methionine. 
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Another interesting example is the CPE0573 family of hypothetical proteins, 

originally identified in the human gut metagenome (Gill et al., 2006). A distant homolog 

from this family was recently shown to belong to a novel Lacto/galacto-N-biose 

metabolic pathway, identified in Bifidobacterium bifidum (Derensy-Dron et al. 1999) and 

Bifidobacterium longum (Nishimoto and Kitaoka, 2007). Other proteins from this 

pathway were also found in the metaproteome samples, suggesting that it was active in 

our subjects who apparently ingested lactose in their diet.  Additionally, an operon 

formed by a hypothetical protein BT2437 from Bacteroides thetaiotaomicron VPI-5482 

was found which codes for a putative lipoprotein (Cheng et al., 1999). Proteins from this 

family are always associated with channel forming 8-stranded beta-barrel proteins from 

the OprF family (Saint et al., 2000) (Figure 4c).  The list of hypothetical proteins and 

predicted functions can be found in Supplementary Table S11. 

 

Identification of human proteins 

Almost 30% of all identified proteins were human. The two largest groups of human 

proteins identified in our study were digestive enzymes and structural cell adhesion and 

cell-cell interaction proteins. However, the third largest category was comprised of 

human innate immunity proteins, including antimicrobial peptides, scavenger receptor 

cysteine-rich (SRCR) proteins (represented by the DMBT1 (deleted in malignant brain 

tumors) protein), and many other proteins linked to innate immunity and inflammation 

response (intellectin, resistin, and others).   Most of the abundant human proteins were 

similar in the two individuals, but some differences were found in less abundant proteins 

(Supplementary Table S9, DB1_differential tab). 
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We were particularly interested in further investigation of DMBT1 (also called 

salivary agglutinin and glycoprotein-340) that is predominantly expressed in epithelial 

cells and secreted to the lumen. This protein has several proposed beneficial functions 

including tumor suppression, bacterial binding, and anti-inflammatory effects (Ligtenberg 

et al., 2007; Rosensteil et al., 2007). Detailed analysis of the distribution of DBMT1 

peptides shows that they had fairly uniform distribution along the protein, including hits 

from all 17 domains present in the DBMT1 protein (Fig 6), suggesting that the DBMT1 

protein was present in our samples as a complete, intact protein, that we postulate is 

indicative of a healthy gut environment.  

 

Discussion 

This is the first demonstration of an overall method for obtaining metaproteomics 

datasets from complex material, in this case human feces, and successful demonstration 

of the deepest coverage of a complex metaproteome to date. By comparison to previous 

work on natural environmental samples with only a few dominant species (Ram et al., 

2005; Lo et al., 2005; Wilmes et al., 2008), the gut microbiota represents a highly diverse 

community with thousands of species and strain variants. Therefore, we are testing the 

technical limit of the use of a shotgun proteomics approach in this study. We were 

encouraged that the sample extraction and preparation methods worked well for fecal 

samples. Although there remain experimental and computational challenges, the results 

presented here indicate that this general approach will be applicable to other complex 

environments, such as marine and soil microbial communities.  
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We also successfully demonstrated for the first time that it was feasible to use an 

unmatched metagenome dataset to obtain valid protein identifications. It is currently 

more rapid and less expensive to obtain metaproteome data, as we have demonstrated 

here, than metagenome data. Therefore, this finding is promising for future 

metaproteomics studies of other environments that do not have matched metagenomics 

sequence data available. 

One of the challenges we addressed was that of estimating protein abundances in 

these complex samples.  Here we used label free methods based on spectral counting and 

normalized spectral abundance factors (NSAF) (Florens et al., 2006; Zybailov et al., 

2006). NSAF is based on spectral counts but also takes into account protein size and the 

total number of spectra from a run, thus normalizing the relative protein abundance 

between samples. Efforts are still underway to develop better tools and statistics for label 

free methods, such as the absolute protein expression (APEX) method recently developed 

by Lu et al. (2007) that may allow for better statistical comparisons of two data sets. 

However, the APEX method was derived specifically for isolate data and is not 

applicable to complex microbial communities because it requires an estimate of the 

number of expressed proteins in the system and this is not known, for example, in our 

case.  

Although our results present the largest coverage of the human gut microbial 

metaproteome to date, increasing the dynamic range beyond this initial study will be 

necessary in the future to more fully understand the function of the human gut microbiota 

and its interactions with the human host.  Based on results from previous studies (Ram et 

al., 2005) and (VerBerkmoes, unpublished results with artificial mixtures) we are 
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confident that proteins can be detected from populations that represent at least 1% of a 

mixed community. However, the number of proteins detected (dynamic range) 

dramatically decreases from 1000s to 100s of proteins for those populations that are 

present at lower abundances.   One possibility to increase the dynamic range of detection 

would be to enhance the protein separation steps prior to analysis. The trade off for 

increasing the number of separation steps would be the requirement for a greater amount 

of starting material and instrument time.  Enrichment or depletion techniques could also 

be attempted to increase the coverage of community members present at low levels, but 

care must be taken to not effect the proteome during any manipulations.  Increasing 

dynamic range is a clear challenge for all proteomic applications, but particularly so for 

complex microbial communities such as that found in the human gut, and this will be a 

pressing area for research and method development in the future.    

We made several comparisons of our metaproteome data to the existing metagenome 

data (Gill et al., 2006). Some matches could be made between pathways predicted to be 

functioning based on abundant genes detected in the metagenome data to abundant 

proteins we found, such as those involved in fucose and butyrate fermentation. There 

were also some interesting discrepancies, such as the implication of methanogenesis in 

the former study and the apparent lack of methanogenesis in the samples we analyzed. 

Instead, our data suggest that acetogenesis was occurring in our samples, implicating 

different hydrogen scavenging routes in the subjects in the two studies.  

Although about the same percentage of proteins with “unknown function” was found 

in both the metagenomes and the metaproteomes, the metaproteome data provide direct 

proof that such proteins are actually expressed. Overall, 67% of hypothetical proteins 
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identified in this study could be recognized as distant homologs of already characterized 

families, allowing putative function assignments, with most of them further enriching the 

amino acid and carbohydrate metabolism categories, but also including proteins involved 

in cell-cell signaling and active transport of nutrients across bacterial membranes.  Also, 

fold recognition level structure predictions are possible for 55% of them, opening doors 

for modeling and more detailed function analysis.  

There were additional discrepancies between some proteins predicted in the 

metagenomes that were not detected in the metaproteomes and reasons for this include all 

or some of the following: 1) the microbial community compositions and proteins 

produced were different in the different individuals, 2) the proteins were produced, but 

below the dynamic range of detection, 3) they might not have been expressed at 

significant levels at the time of sampling, or 4) the proteins may have mutated to a point 

that they are no longer detected by screening an unmatched metagenome (Denef et al., 

2007). Therefore, although we successfully identified thousands of proteins using an 

unmatched dataset, it would still be very valuable to have matching metagenome and 

metaproteome data from the same samples and this will certainly be achieved via 

ongoing and future initiatives, such as the NIH Human Microbiome Project 

(http://nihroadmap. nih.gov/hmp/) and the European Union Meta-HIT project 

(http://www.international.inra.fr/ press/metahit). Recently, 13 additional human 

metagenome sequences were published from Japan (Kurokawa et al., 2007) and more 

representative genome sequences from commensal gut isolates are currently being 

sequenced (Peterson et al., 2008). Together these represent valuable resources that should 

eventually aid in identification of more proteins from the human gut. 

http://nihroadmap.nih.gov/hmp/)
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 A large proportion of the proteins detected in the samples (approximately 30%) were 

human proteins. This finding can be explained by the method we used to obtain a 

bacterial cell fraction. Differential centrifugation does not result in a pure bacterial 

fraction, but instead one that is highly enriched in bacterial cells compared to human cells 

and particulate matter in the original fecal sample. Any human proteins that adhered to 

the microbial cells would have been collected in the bacterial pellet. Also there are many 

more proteins in human cells than in bacterial cells. Therefore, even a minor 

contamination of the bacterial fraction with human cells could represent a significant 

number of human proteins. In hindsight this was advantageous because it enabled us to 

detect and identify human proteins, such as antimicrobial peptides, that reflect interaction 

between the host and the microbiota.  Furthermore, this highlights the power of this 

technology to distinctly identify both microbial and human proteins in a combined 

mixture.    

In summary, while it is evident that this massive dataset would require substantial 

effort to completely define and characterize, our goal was to develop an approach to 

obtain a first large-scale glimpse of the functional activities of the microbial community 

residing in the human gut. A wealth of information about functional pathways and 

microbial activities could be gleaned from this data, thereby providing one of the first 

views into the complex interplay of human and microbial species in the human gut 

microenvironment. It is clear that proteomics allows us to directly see potential host-

commensal bacterial interactions. While the human immune response is usually described 

in terms of response to infection, it is clear that innate immunity proteins are part of a 

normal gut environment, shaping the gut microflora to the desired shape.  
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Finally, we would also like to point out that all data is freely accessible to the 

scientific community for future analyses and some proteins that we identified can have 

implications as potential biomarkers for human health. 
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Table 1  

Number of protein, peptide, and spectra identifications for Samples 7 and 8 (2 technical 

runs each) using the db1 and metadb databases (see supplementary material). 

db1 database  

Sample ID 
Protein 

identifications* 
Peptide 

identifications 
MS/MS 
Spectra 

Peptides between 
10 and -10 

ppm** 
Sample 7, Run 1 634 1886 4069 81.70 
Sample 7, Run 2 722 2253 4440 80.42 
Sample 8, Run 1 974 3021 5829 83.41 
Sample 8, Run 2 983 2948 6131 81.47 
 
metadb database 
Sample 7, Run 1 970 2441 4829 84.47 
Sample 7, Run 2 1098 2977 5364 81.67 
Sample 8, Run 1 1341 3586 6509 84.71 
Sample 8, Run 2 1275 3374 6635 82.92 

*Numbers given are non-redundant identifications 

** Mass accuracy  
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Figure Legends:  

Figure 1. Shotgun metaproteomics approach used to identify microbial proteins in human 

fecal samples. 

Figure 2. Microbial proteins identified from fecal Samples 7 (blue bars) and 8 (yellow 

bars) according to COG functions. Bars represent technical proteome runs 1 and 2. 

Figure 3. Comparison of average COG categories for available human metagenomes and 

metaproteomes. (A) Average COG categories of the two metagenomes from the gut 

microbiota of two individuals from a previous study (Gill et al., 2006) (B) compared to 

average COG categories of the metaproteomes from the gut microbiota of two individuals 

in the present study. 

 

Figure 4. Comparison of relative abundances (NSAF values) of proteins detected in 

Samples 7 and 8. NSAF values for Samples 7 and 8 were averaged amongst their 

individual technical runs and plotted on a log scale.  The dark blue squares represent all 

of the proteins identified in each sample from screening the metadb database.  The 

straight diagonal line represents the location of all proteins that had approximately equal 

expression in both samples.  

 

Figure 5. Detailed analysis of hypothetical proteins identified in human gut 

metaproteome. (A) Protein representation in the genomes of human gut associated 

microbes; scale changes from 1 (only found in human gut microbes) to -1 (never found 

there), 0 represents even distribution. Conserved genomic neighborhoods of the 
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CAC2564 (B) and BT2437 (C) families. Detailed functions of other proteins, identified 

by numbers in the figure, are provided in the supplementary material.  

 

Figure 6. Positions of DMBT1 peptide fragments along the length of the DMBT1 protein 

are shown as blue boxes (figure is not to scale). DBMT1 has a length of 1785 amino 

acids. PFAM domain names: SRCR (Scavenger receptor cysteine-rich domain); CUB 

(from complement C1r/C1s, Uegf, Bmp1) is a domain found in many in extracellular and 

plasma membrane-associated proteins; Zona pellucida, a large, cysteine rich domain 

distantly related to integrins, found in a variety of mosaic eukaryotic glycoproteins, 

usually acting as receptors. 
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Figure 1. 
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Figure 2  
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Figure 4   
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Figure 5 
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Figure 6 

 
 
 

 

 



 

 

Shotgun Metaproteomics of the Human Distal Gut Microbiota 

VerBerkmoes et al.  Supplementary Online Information 

 
All datasets, databases and supplementary data files (spreadsheets in .xls format) can be 

found at http://compbio.ornl.gov/human_gut_microbial_metaproteome 
 

 
 
Proteome informatics 
All MS/MS spectra were searched with the SEQUEST algorithm (Eng et al., 1994 
[(enzyme type, trypsin; Parent Mass Tolerance, 3.0; Fragment Ion Tolerance, 0.5; up to 4 
missed cleavages allowed (internal lysine and arginine residues), and fully tryptic 
peptides only (both ends of the peptide must have arisen from a trypsin specific cut, 
except N and C-termini of proteins)] and filtered with DTASelect/Contrast (Tabb et al., 
2002) at the peptide level [Xcorrs of at least 1.8 (+1), 2.5 (+2) 3.5 (+3)].  Only proteins 
identified with two fully tryptic peptides from a 22 h run were considered for further 
biological study.  Monoisotopic theoretical masses for all peptides identified by 
SEQUEST were generated and compared to observed masses.  Observed high resolution 
masses were extracted from .raw files from the full scan preceding best identified spectra; 
parts per million (ppm) calculations were made comparing each identified peptides 
observed and theoretical mass.  When quality MS/MS spectra didn’t have an observed 
mass (low intensity) a mass of 0 was reported and ppm was calculated as infinity.  
 

Four database searches were performed with the above settings.  The databases are 
outlined in Supplemental Table S1.  The first database (db1) contained two human 
subject’s metagenomes (Gill et al., 2006) a human database, and common contaminants 
such as trypsin, human keratins, etc.  The existing metagenome databases were deficient 
in Bacteroides sequences and since Bacteroides are known to be common and abundant 
in the human intestine (Eckburg et al., 2005) we also included Bacteroides genome 
sequences in a second database (metadb), plus other sequences from representatives of 
the normal gut microbiota deposited and available at the Joint Genome Institute (JGI) 
IMG database (http//img.jgi.doe.gov/), including representatives of Bacteroides, 
Bifidobacteria, Clostridia and Lactobacilli. In addition, we included representative 
human pathogens and included distracters that one would not commonly expect in the 
gut; i.e. environmental bacterial isolates, plus the rice (Oryza Sativa) genome (to help 
identify food-related proteins).  Distracters were uniquely numbered so they could be 
easily extracted and compared with identifications from proteins thought to be associated 
with the human microbiome.  While this is not actually a false positive rate or false 
discovery rate as properly defined it gives an indication of how well the method uniquely 
identifies gut related proteins vs. other protein databases.  See discussion below on false 
discovery rates. 
 

The third and fourth databases were used for estimating false discovery rates on the 
db1 search as previously described (Lo et al., 2007; Peng et al., 2003).  For the third 



 

 

database (db3), we took the db1 database and precisely reversed each protein entry (i.e., 
n-terminus became c-terminus in each case) and then appended these reversed sequences 
onto the original database.  The same was done for the fourth database (db4), but in this 
case proteins were not reversed but were randomized (Elias et al., 2007).  Proteins with 
the reversed or randomized orientations were given a unique identifier for easy 
extraction.  All databases, peptide and protein results, MS/MS spectra and supplementary 
tables for all database searches are archived and made available as open access via the 
following link: http://compbio.ornl.gov/human_gut_microbial_metaproteome/ 
Raw files are available on request. 
 
False positives  
Currently, there are many ways of estimating error associated with peptide 
identifications.  Until the field of proteomics comes to a conclusion on the proper way of 
reporting proteomic data, different versions will exist (Tabb et al., 2008).  Even the 
semantics of calling it false discovery rates or false positive rates are under debate.  
Below we refer to them as false positive rates based on the publications the formulas 
were derived from.  For this large scale study, false-positive rates were used in order to 
differentiate between true and false peptide identifications rather than false discovery 
rates (FDR).  The overall false-positive rate (FPR) was estimated using the formula: 
false-positive rate = 2[nrev/(nrev + nreal)]*100 where nrev is the number of peptides 
identified from the reverse database and nreal is the number of peptides identified from the 
real database (Peng et al., 2003). A false-positive rate (FPR) was calculated using three 
different database searches.  First, a composite target-decoy database was created with 
the db1 database.  Data analysis consisted of only the forward peptide identification 
except in the calculation of the FPR where both forward (correct) and reverse (false) 
identifications were required (Peng et al., 2003) (Elias et al., 2007).  The data was 
separated based on ppm values that were between +10 and -10 ppm (<±10ppm), values 
that were able to define a charge state for the peptide but were not between + 10 and -10 
ppm (>±10ppm), and values that were unable to properly identify the charge state of the 
full scan peptide mass spectra (unresolved values).  This +10 and -10 ppm division is 
based on earlier research (Lefsrud et al., 2007), with this metaproteome data summarized 
in Supplementary Figures S1 and S2.  The majority of identified peptides have <±10 ppm 
values, accounting for an average of 83.0% of the total peptides (Table S4).  Peptides 
with >±10 ppm accounted for an average of 8.8% over the data set with 8.2% resulting in 
unresolved values (Table S4).   
 

The average ppm for the total identified peptides from the human microbial 
metaproteome data was 33.7 ppm, however when the data was filtered for <±10 ppm this 
value dropped to -4.1 ppm (Table S5). Also, the average delta amu (atomic mass units) 
for the total identified peptides for the human microbial metaproteome data was 0.054 
amu, but this value dropped to -0.006 amu when filtered for <±10 ppm (Table S5).  The 
FPR for the total identified peptides from the human microbial metaproteome data set 
was between 3.17% and 1.18% for both samples and duplicate runs (Table S6) when all 
peptides were considered.  However, when the data was filtered for only those peptides 
with <±10 ppm these values dropped significantly, the highest FPR for filtered data <±10 
ppm was 0.21% and the lowest was 0.05%.   

http://compbio.ornl.gov/human_gut_microbial_metaproteome/


 

 

 
A second approach to estimate the error associated with peptide identifications also 

involved using a composite target-decoy database with db1, except in this case each 
protein sequences was randomly shuffled creating a “decoy” database.  The purpose of 
this decoy database was to create a more randomized database by shuffling the amino 
acids of each protein rather than simply reversing the n-terminus and c-terminus.  A 
shuffled database creates more nonsense, thus, reducing the overall chances of making 
false identifications.  Any proteins that are identified with the decoy database indicate 
that the forward peptide is in fact illegitimate.  A FPR can be estimated using a similar 
formula as previously described.  The number of peptides identified from the shuffled 
database is multiplied by 2 and divided by the sum of all shuffled peptides plus forward 
peptides identified from the target database.  A FPR was estimated for both samples and 
runs (Table S7) and as described (Elias et al., 2007) was similar to the rate determined by 
the reverse database method. 

 
We also estimated the false discovery rate in the metadb database search by different 

method.  Here we were interested in seeing the number of unique and total peptides 
identified to known gut isolates, metagenomes, human proteins and rice proteins vs.  
distracter sequences including the genomes of Leptospirillum ferrooxidans, Shewanella 
oneidensis MR-1, Rhodopseudomonas palustris and others.  For the entire list of database 
entries, please visit the website url: 
http://compbio.ornl.gov/human_gut_microbial_metaproteome/databases/ . 

 
The majority of peptides that matched to the distracter database were in fact non-

unique peptides.  These shouldn’t be counted as false peptides since they overlap with 
peptides and proteins from isolates, metagenomes etc that could be in the gut.  Thus we 
only counted unique peptides matching the distracter sequences.  A FPR was estimated 
for both samples per run by comparing the number of total unique peptides from the 
distracter database to both the total unique peptides from the rest of the database and the 
total peptides from the rest of the database by the same equation given above for the other 
two methods of determining FPR.  When only unique peptides were considered a false 
positive rate of 3-5% was found.  When all peptides were considered then a false positive 
rate of ~1% was found.  These results are very similar to the false positive rates 
determined for db1 with the reverse and shuffled methods. 
 
Assigning proteins to COG groups 
To create Figure 2 in the manuscript the JGI IMG/M database was used 
(http://imgweb.jgi-psf.org/cgi-bin/m/main.cgi). This database contains COG information 
for all proteins which we used for COG assignment for bacterial isolates and the human 
gut metagenome sequences.  We found that 37.9% of the proteins could not be assigned 
to COGs when screening the metagenome databases, similar to 34% estimated for the 
existing metagenome data deposited at JGI. Most of these proteins were hypothetical or 
conserved hypotheticals, therefore, they were assigned "S" which is function unknown.  
On the other hand, several known proteins, such as DNA-directed RNA polymerase, did 
not have an assigned COG function.  In these cases, we assigned them based on our own 
knowledge to a COG category and if we did not know, we assigned them to "R" which is 

http://compbio.ornl.gov/human_gut_microbial_metaproteome/databases/
http://imgweb.jgi-psf.org/cgi-bin/m/main.cgi


 

 

general function prediction only.  For example, we assigned the DNA-directed RNA 
polymerase protein to "K", for transcription.  Supplemental Table S2 and S3 have COG 
entries for all detected microbial proteins. 
 
Proteins found in all replicates and runs 
We extracted the list of all proteins found in each technical replicate and in both 
biological samples, i.e. the “conserved proteins”.  The list for db1 and associated NSAF 
values for each run can be found in supplemental table 9 first tab (474 proteins total), the 
list for metadb and associated NSAF values for each run can be found in supplemental 
table 10 first tab (749 proteins total).   
 
Label free Quantitation methods. 
The label free methods rely on intrinsic values obtained in the course of the experiment 
such as peak intensities or areas of peptides (Old et al., 2005), spectral counts (Liu et al., 
2004) and normalized spectral abundance factors (Florens et al., 2006; Zybailov et al., 
2006) to quantify peptides and thus proteins.  They have grown in popularity due to 
simplicity, cost considerations and the fact they can be used on any sample assuming 
proper experimental design is implemented.  There is strong effort in the proteome 
informatics community to develop better tools and statistics for label free methods 
(Zhang et al., 2006), (Lu et al., 2007).  The absolute protein expression (APEX) method 
recently developed by Lu et al. (2007) may allow for a better statistical comparison of 
two data sets but was derived specifically for isolate data such as E. coli and yeast.  The 
APEX method will not be applicable to complex microbial communities because it 
requires an estimate on the number of proteins being expressed in the system.  This is not 
possible with a complex microbial community from the gut where it’s impossible to 
estimate the number of different cell types, species or total proteins.  Thus, we applied 
simpler methods for protein quantitation based on spectral counts and normalized spectral 
abundance factors (NSAFs).  Unlike spectral counting, NSAF is based on spectral counts 
but takes into account protein size and the total number of spectra from a run, thus 
normalizing the relative protein abundance between samples.  A spectral abundance 
factor (SAF) is first calculated by dividing the number total number of spectral counts for 
each protein by its mass or length.  The NSAFs are then calculated by normalizing each 
SAF to one by dividing by the sum of all SAFs for all protein (Florens et al., 2006; 
Zybailov et al., 2006).  We first compared the NSAF results from all proteins found in 
Samples 7 and 8 using db1 and metadb, but limited ourselves to those that were only 
found in both technical replicates.  As can be seen in Figures S3 and S4 the 
reproducibility of technical runs, based on NSAFs is high with an R2 of 0.77 for Sample 7 
and 0.85 for Sample 8 with the metadb (similar results with db1 not shown).  We then 
averaged the NSAF values for Samples 7 and 8, but left all proteins in the graph to 
determine what was found uniquely in one sample and not the other.  The results from 
this comparison are found in Figure S5 and suggest some proteins that differed 
significantly in expression between the two samples.  The figure indicates four major 
clusters; two clusters are located on each extreme where proteins were found only in one 
individual but not the other.  The other two intermediate clusters were found where 
proteins were present, but expressed in different amounts in comparison with the other 
individual.  We found the cutoff of these clusters to be around a log ratio difference 



 

 

between 1.1 and 2.4.  Thus, we created a sub-table of those proteins showing large 
differences in expression between the two samples in db1 via those boundaries.  We 
further manually curated the data to only include only those proteins represented by 
identification in the both runs were they were considered “higher protein abundance” as 
well as 2x increase in average spectral counts over the other sample (Supplementary 
Table S9, second tab). In total 225 proteins were found differentially expressed between 
Sample 7 and Sample 8.  This same process was repeated for the metadb dataset.  Again 
there was similar reproducibility in the technical replicates for the two samples (data not 
shown) and a similar trend in the comparison of Samples 7 and 8 (Figure 4 manuscript).  
In total, 308 proteins were found differentially expressed between Sample 7 and Sample 
8 (for metadb Supplementary Table S10, second tab).    

 
Hypothetical Protein Prediction 
Sequences of all hypothetical proteins identified above (116 from the Gill metagenomes 
and 89 from bacterial isolate genomes), were submitted to the distant homology 
recognition server FFAS03 (Jaroszewski et al., 2005).  This server automatically builds a 
sequence profile for the submitted sequences and compares it against a curated library of 
sequence profiles, encompassing several sets of annotated proteins (COG, PDB, PFAM 
and structure determination targets from the JCSG structural genomics center).  In 
independent tests, FFAS03 was shown to consistently outperform PSI-BLAST and other 
distant recognition algorithms.  In Supplementary Table S11 we have summarized results 
of the analysis.  For 80% of the hypothetical proteins a statistically significant match (Z-
score below 9.5) to one of the proteins in the reference databases can be obtained.  
Functions of the matching proteins were used to assign a provisional function for the 
hypothetical proteins identified in this study.  It is important to such analysis can narrow 
down the possible function of the analyzed protein but, because of the distant homology, 
detailed function may have diverged from that of the homolog identified in this analysis.  
More detailed analysis of active site residue conservation and other features is necessary 
for more detailed function assignment.  All the FFAS03 results are available from the 
FFAS03 server at http://ffas.burnham.org/ffas-cgi/cgi/login.pl (Login: Janet_new, 
password: Janet_new).  Links provided on the site can be followed to obtain detailed 
alignments, three dimensional models and other information. 
 
 
 
 
 



 

 

Figure S4 (manuscript). Supplementary information: 
 

Genome neighborhood analysis was performed and figures were prepared using the 
SEED environment for genome annotations as implemented at the National Microbial 
Pathogen Data Resource project website 
(http://www.nmpdr.org/cur/FIG/wiki/view.cgi/Main/WebHome). Sequences of BF3046 
and BT2437 genes, representing the two families discussed in the text, were compared 
against the Bacteroides fragilis ATCC genome (NCBI Taxonomy Id: 272559).  
 
B) BF3046 conserved genomic neighborhood 
 (1) red  CAC2564 family, as discussed in the text 
 (2) green  new family of hypothetical proteins, as discussed in the text 
 (3) light brown LysR family transcriptional regulator 
 (4) blue  N-succinyltransferase 
 (5) yellow  DNA damage inducible protein 
 (6) aquamarine new family of hypothetical proteins 
 (7) violet  telluride resistance protein 
 (8) dark green multiple antibiotic resistance protein 
 (9) dark brown new family of hypothetical proteins 
 (10) light blue Glycerophosphoryl phosphodiesterase 
 
C) BT2437 conserved genomic neighborhood 
 (1) red  BT2437 family, as discussed in the text 
 (2) green  new family of hypothetical proteins, as discussed in the text 
 (3) brown  tripeptidyl aminopeptidase 
 (4) blue  MarR family transcriptional regulator 
 (5) yellow  Aspartate decarboxylase 
 (6) aquamarine Coenzyme A disulphate reductase 
 



 

 

Supplementary Tables 
 
Supplementary Table S1. Description of databases that were screened, see website for 
complete breakdown. 
 
Database Sequences included  References 

db1 Metagenome, Individual 7 
Metagenome, Individual 8 
Human proteins 

Gill et al. 2006 
Gill et al. 2006 
 

metadb db1 
Human commensals and pathogens 
Bacteroides 
Bifidobacterium 
Etc. 
Environmental isolates 
Leptospirillum 
Etc. 
Rice (Oryza Sativa) 

 
JGI/IMG 

db3 and db4 db1 in reverse (db3) or random (db4) 
orientation and appended to db1 

 

 
 
 
 
Supplementary Table S2. Protein Identification with NSAF counting from all runs from 
db1. The results from each individual run can be found on the website. 
 
 
Supplementary Table S3. Tab 1: Categorical breakdown of identifications to each 
database type. Tab 2: Protein Identification with NSAF counting from all runs from 
Metadb.  The results from each individual run can be found on the website.   
 



 

 

 
 
Supplementary Figure S1. PPM Variability Verse XCorr on Forward Peptide Distribution 
from Human Microbial Metaproteome Data (db1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure S2. Delta Atomic Mass Units Verse PPM on Forward Peptide 
Distribution from Human Microbial Metaproteome Data. 
 

 



 

 

 
 
Supplementary Table S4. Identified Forward Peptides from db1 database search. 
 

 Forward Identified Peptides % of Forward Identified Peptides 

Sample ID 
Values 

<±10ppm 
Values 

>±10ppm 
Unresolved 

values 
Values 

<±10ppm 
Values 

>±10ppm 
Unresolved 

values 
Sample 7  

Run1 2316 279 195 83.0% 10.0% 7.0% 

Sample 7  

Run2 2592 275 330 81.1% 8.6% 10.3% 

Sample 8  

Run1 3664 357 309 84.6% 8.2% 7.1% 

Sample 8  

Run2 3397 355 350 82.8% 8.7% 8.5% 

 



 

 

 

Supplementary Table S5. Average Delta AMU and Average ppm. 

 Average Delta AMU Average ppm 

Sample ID 

Values 
excluding 

unresolved 
values 

Values 
<±10ppm 

Values 
excluding 

unresolved 
values 

Values 
<±10ppm 

Sample 7  

Run1 
0.065 -0.007 46.9 -4.4 

Sample 7  

Run2 
0.041 -0.003 20.5 -2.2 

Sample 8  

Run1 
0.068 -0.008 43.6 -5.2 

Sample 8  

Run2 
0.040 -0.006 24.2 -4.2 

 



 

 

Supplementary Table S6. Total Identified Peptides, Identified Reverse Peptides and False 

Positive Rate from db1 determined by reverse database method (db3). 

Identified Reverse Peptides False Positive Rate 
Sample 

ID 

Total 
Identified 
Forward 
Peptides 

Values 
<±10ppm 

Values 
>±10ppm 

Unresolved 
values 

Total False 
Positive 

False 
Positive 

<±10ppm 
Sample 7 

Run1 
2790 3 40 2 3.17% 0.21% 

Sample 7 

Run2 
3197 1 14 4 1.18% 0.06% 

Sample 8 

Run1 
4330 4 37 11 2.37% 0.18% 

Sample 8 

Run2 
4102 1 32 7 1.93% 0.05% 

 



 

 

Supplementary Table S7. Total Identified Peptides, Identified Shuffled Peptides and 

False Positive Rate from Human Microbial Metaproteome Data (db1) determined by 

random database method (db4) 

 

Identified Shuffled Peptides False Positive Rate 
Sample 

ID 

Total 
Identified 
Forward 
Peptides 

Values 
<±10ppm 

Values 
>±10ppm 

Unresolved 
values 

Total False 
Positive 

False 
Positive 

<±10ppm 

Sample 7 

Run1 2789 3 31 1 2.48% 0.21% 

Sample 7 

Run2 3279 3 51 3 3.42% 0.18% 

Sample 8  

Run1 4324 0 42 6 2.20% 0.00% 

Sample 8  

Run2 4230 5 40 3 2.24% 0.23% 

 



 

 

Supplementary Table S8. Total Identified Distracter Peptides, Identified Gut Peptides and 
False Positive Rate from Human Microbial Metaproteome Data (metadb) 
 

Sample ID 
Unique 

Distracter 
Peptides 

Non-
Unique 

Distracter 
Peptides 

 Unique 
Gut 

Peptides 

Total Gut 
Peptides 

FPR (%) 
unique 

distracter & 
unique gut 
peptides 

FPR (%) 
unique 

distracter & 
total gut 
peptides 

Sample 7 

Run 1 
30 272 1135 5080 5.15 1.17 

Sample 7 

Run 2 
31 184 1436 6036 4.23 1.02 

Sample 8 

Run 1 
31 205 1899 7115 3.21 0.87 

Sample 8 

Run 2 
33 151 1808 6511 3.59 1.01 

 



 

 

Supplementary Figure S3. Comparison of NSAF values.  Sample 7, run 1 and run 2 
NSAF values are plotted on a log scale.  The dark blue squares represent all of the 
proteins that were identified in both runs from metadb. 
 

 
 
Supplementary Figure S4. Comparison of NSAF values.  Sample 8, run 1 and run 2 
NSAF values are plotted on a log scale.  The dark blue squares represent all of the 
proteins that were identified in both runs from metadb. 

 
 
 
 



 

 

Supplementary Figure S5. Comparison of NSAF values for Samples 7 and 8. NSAF 
values were averaged amongst two individual technical runs pre sample and plotted on a 
log scale.  The dark blue squares represent all of the proteins identified in each sample 
from db1.  The straight diagonal line is for visualizing the location of all proteins that had 
approximately equal expression in both samples 
 

 
 
 



 

 

Supplementary Table S9. Tab one Proteins found in both samples and replicates with db1.  Tab 
two proteins showing abundance differences based on NSAF calculations Samples 7 and 8 with 
db1. 
 
Supplementary Table S10. Tab one Proteins found in both samples and replicates with metadb.  
Tab two proteins showing abundance differences based on NSAF calculations Samples 7 and 8 
with metadb. 
 
Supplementary Table S11. All identified hypothetical proteins and predicted functions.  Column 
B is original predicted function, column C is the new computational predicted function.  More 
detailed listing can be found on website. 
 

Supplementary References 
 
Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-
scale protein identifications by mass spectrometry. Nature Methods 4:207-214. 
 
Lefsrud MG, et al., (2007) Proteogenomics reveals Key Insight into the Microbial 
Activities of Enhanced Biological Phosphorus removal in Activated Sludge. ASMS 
Conference Proceedings, Indianapolis, IN. June 3-7, 2007. 
 
Liu H, Sadygov RG, Yates III JR, (2004) A model for random sampling and estimation 
of relative protein abundance in shotgun proteomics.  Anal Chem 76:4193-4201. 
 
Old WM, et al. (2005) Comparison of label-free methods for quantifying human proteins 
by shotgun proteomics. Mol Cell Proteomics 4:1487-1502. 
 
Tabb DL (2008) What’s driving false discovery rates? J Proteome Res 7:45-46. 
 
Zhang B. et al., (2006) Detecting differential and correlated protein expression in label-
free shotgun proteomics. J Proteome Res 5: 2909-2918. 
 
 
 
 


