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Abstract

The human gut contains a dense, complex, and diverse microbial commamipyjsing
the gut microbiome. Metagenomics has recently revealed the corapasitjenes in the
gut microbiome, but provides no direct information about which genesxaressed or
functioning. Therefore, our goal was to develop a novel approach tolyirentify
microbial proteins in fecal samples to gain information about wérég were expressed
and about key microbial functions in the human gut. We used a non-thrgktegun
mass spectrometry-based whole community proteomics, or metaproseapproach for
the first deep proteome measurements of thousands of proteins in fegalsamples,
thus demonstrating this approach on the most complex sample type.td laatresulting
metaproteomes had a skewed distribution relative to the metagewdmenore proteins
for translation, energy production, and carbohydrate metabolism cethframwhat was
earlier predicted from metagenomics. Human proteins, includingriandbial peptides,
were also identified, providing a non-targeted glimpse of the hegionse to the
microbiota. Several unknown proteins represented previously undescriloedbiadi
pathways or host immune responses, revealing a novel complex agtbgtiveen the

human host and its associated microbes.



Introduction

The human gastrointestinal (GI) tract is host for myriads dtraarganisms
(approximately 18/gram feces) that carry out vital processes for normal digest
functions of the host and play an important, although not yet not fullgratwbd, role in
maturation of human immunity and defense against pathogens. Recemgdisdiggest
that each human has a unique and relatively stable gut microbidéss disrupted by
external factors such as antibiotic treatment (Jernéteaty, 2007). Increasing evidence
suggests that the composition of the GI microbiota is linked fannmhatory bowel
diseases (Petersehal., 2008), such as Crohn’s disease (Dickssteal., 2008), and can
even influence the propensity for obesity (Letyal., 2006). Current estimates based on
sequencing of 16S rRNA genes in DNA extracted from feceshat&00-1000 different
microbial species and >7000 different strains inhabit the Gl (Bistkheadkt al., 2005)
and that the majority of these (> 80%) have not yet been isolatethavacterized
(Eckburg et al., 2005). Therefore, there is a vast microbial diversity witlyelyr
unknown function that is waiting to be explored.

Recently, metagenomic sequencing has revealed information #igoabmplement
of genes in the gut microbiota of two healthy individuals (&i#l., 2006). Although this
data set did not represent the entire GI microbiota, analysitenfified genes revealed
that the GI microbiome has significantly enriched capacibegliycan, amino acid, and
xenobiotic metabolism, methanogenesis, and synthesis of vitamins areh@dpr This
indirect evidence suggested that there are unique microbial funcaoned out in the

gut environment.



A major limitation of DNA based approaches is that they prezbtgntial functions,
but it is not known if the predicted genes are expressed at dll s, iunder what
conditions and to what extent. In addition, it is not possible to detenvhe¢her the
DNA is from active viable cells, dormant inactive cells, or edead cells. These
limitations can be overcome by directly assessing proteins, letaigenes must have
been transcribed and translated to produce a protein product. Howevere mnbjat
couple of microbial proteins have been identified from the human rgltlese were
obtained by 2 dimensional polyacrylamide gel electrophoresis (2DEpAtaassenst
al., 2007), followed by excision art novo sequencing of targeted spots on the gel.

Here, our aim was to develop a novel high throughput, non-targeted mass
spectrometry (MS) approach to determine the identities of thosisahdnicrobial
proteins in the most complex sample type to date (i.e. fecespdast the feasibility of
using a non-matched metagenome data set for protein idendificathis MS-based
shotgun proteomics approach relies on detection and identificatiolh @oteins in a
lysed cell mixture without the need for gel based separatiote aovo sequencing.
Instead, the resulting peptides from an enzymatic digest of ritiee @oroteome are
separated by liquid chromatography and infused directly into rapcyning tandem
mass spectrometers (2D-LC-MS/MS) via electrospray ionizafibe. resulting peptide
mass information and tandem mass spectra are used to seardt pgaein databases
generated from genome sequences. To date, the shotgun metaprotgmroeshahas
only been demonstrated in a limited number of studies and only for naktrobi
communities with low diversity, such as acid mine drainage sgs{®amet al., 2005;

Lo et al., 2007), endosymbionts (Markettal., 2007), and sewage sludge water (Wilmes



et al., 2008). It remains a technical challenge to apply this shotgun appimacore
complex microbial communities, such as those inhabiting the human gut.

For this study, it was first necessary to develop the shotgunoprmte approach to
work with fecal samples containing large amounts of particutetter and undigested
food and a large diversity of microbial cells. Figure 1 providesowrview of the
experimental approach developed. Fecal samples were chosen lszrapsag is non-
invasive and feces have been shown to provide material that sseepative of an
individual’'s colonic microbiota (Eckburgt al., 2005). Our goal was the qualitative
identification of the range and types of proteins that can be confidsamdl reproducibly
measured (i.e. with high specificity and low false positives;all-5% maximum) from
gut microorganisms by comparing to available metagenome desaf@sl et al., 2006)
and available gut isolate genomes and to determine if unmatcreedadatcould suffice
for accurate protein identifications. An additional goal was to yampl novel
bioinformatics approach to assign putative functions to unknown proteitcevered by
standard analysis of clusters of orthologous groups (COGs). Witynaur aim was to
use the protein data to provide direct evidence of dominant and key raldwotgtions
in the human gut for the first time, some of which could serve asaitwis of a healthy
or diseased state. In addition, this non-targeted approach enablgfscateon of human
proteins associated with the gut microbiota, thus illustrating patemtteractions

between the human microbiome and host.



Materials and methods

Fecal sample collection

A female healthy monozygotic twin pair born in 1951 was invited to pakein a larger
double blinded study, and details of these individuals with respect to adigbiotic
usage, etc. are previously described: individuals numbered 6a gickbvedet al.,
2008), that provided Samples 7 and 8, respectively, thus were the fabissitidy. The
only differences between the individuals according to the submittestigqueaire data
were that Individual 6a had gastroenteritis and Individual 6b had tak&tDN$he last
12 months. Fecal samples were collected in 20 ml colonic tubefiebywins and
immediately sent to Orebro University Hospital on the day déctibn, where they were
placed at —7@C and stored. The Uppsala County Ethics Committee and the ORNL

human study review panel approved the study.

Microbial cell extraction from fecal samples

Fecal samples were thawed at +4°C and microbial cells @dracted from the bulk
fecal material by differential centrifugation, as previoudscribed/Apajalahtiet al.,
1998). This cell extraction method has previously been found to resulthighdy
enriched bacterial fraction from complex samples, such as rabitlicken feces, with
negligible bacterial cell loss and a good representation off fi@icaobiota(Apajalahtiet
al., 1998). The resulting bacterial cell pellets were immedidtelzen at —70°C and

stored until use.



Cdll lysisand protein extraction from cell pellets

The microbial cell pellets (~100 mg) were processed via stagke cell lysis and protein
digestion. Briefly, the cell pellet was resuspended in 6M Gua@ithmM DTT to lyse
cells and denature proteins. The guanidine concentration was dilutdtivatdi 50 mM

Tris buffer/10mM CaCl and sequencing grade trypsin (Promega, Madison, WI) was
added to digest proteins to peptides. The complex peptide solution satedesia C18
solid phase extraction, concentrated and filtered (0.45um filter)e&cn LC-MS/MS

analyses below, ~1/4 of the total sample was used.

2D-LC-MSMS

Both samples were analyzed in technical duplicates via two-diomahg2D) nano-LC
MS/MS system with a split-phase column (RP-SCX-RP) (McDoethl., 2002) on a
LTQ Orbitrap (Thermo Fisher Scientific) with 22 h runs pengle (LC as previously
described (Ramat al., 2005; Loet al., 2007). The Orbitrap settings were as follows: 30K
resolution on full scans in Orbitrap, all data-dependent MS/MS in (foQ five), 2
microscans for both Full and MS/MS scans, centroid data foralssand 2 microscans

averaged for each spectra, dynamic exclusion set at 1.

Proteome informatics

All MS/MS spectra were searched with the SEQUEST algor{img et al., 1994) and
filtered with DTASelect/Contrast (Tabé al., 2002)at the peptide level [Xcorrs of at
least 1.8 (+1), 2.5 (+2), 3.5 (+3)]. Only proteins identified with fulty tryptic peptides

from a 22 h run were considered for further biological study. Tand&iMS spectra



were searched against four databases, the first database ¢(ibdined two human
subject metagenom&&ill et al., 2006), a human database, and common contaminants.
The existing metagenome databases (&illl., 2006)were deficient inBacteroides
sequences and sin8acteroides are known to be common and abundant in the human
intestine(Eckburget al., 2005) were also includdBacteroides genome sequences in a
second database (metadb), plus other sequences from representdinesaimal gut
microbiota deposited and available at the Joint Genome Institute IMG database
(http//img.jgi.doe.gov/). In addition, we included distracters that orwuldv not
commonly expect in the healthy gut. The third and fourth databases wade by
reversing or randomizing the DB1 and appending it on the end of DBk tstabases
were used primarily for determining false positive rategprasiously describe(lo et

al., 2007; Pengt al., 2003). Further descriptions of the databases, searching methods,
and false positive rates can be found in supplementary information.dafdbases,
peptide and protein results, MS/MS spectra and supplementarg fablall database
searches are archived and made available as open access \alaweng link:
http://compbio.ornl.gov/human_gut_microbial _metaproteome/

All MS .raw files or other extracted formats are available upon request.

Hypothetical Protein Prediction

Hypothetical proteins were submitted to the distant homology retcmyserver FFAS03
(Jaroszewsket al., 2005). The list of hypothetical proteins and predicted functions can be
found in Supplementary Table S11. For 80% of the hypothetical protestatistically

significant match (Z-score below 9.5) to one of the proteinhiénréference databases



was obtained. Functions of the matching proteins were used ign asgrovisional
function for the hypothetical proteins identified in this study.tAd# FFASO3 results are
available from the FFASO3 server at http://ffas.burnham.org/ffasgglogin.pl (Login:
Janet_new, password: Janet_new). Links provided on the site can be foloolein

detailed alignments, three dimensional models and other information.

Results
Metaproteomics of fecal samples
Our results present the first large-scale investigation ef hman gut microbial
metaproteome. The metaproteomes were obtained from two fecalesa(®gimples 7
and 8) collected from two healthy female identical twins (Subjega and 6b,
respectively, see Dicksveatlal. (2008) for a description of the individuals). The shotgun
approach used enabled us to identify thousands of proteins by matchinde pep8s
data to available isolate genome and metagenome sequence da{&ugg@ementary
Table S1). The total number of proteins identified from searchinfirthelatabase (db1)
that contained all predicted human proteins and the gut metagenomes,1822
redundant and 1534 non-redundant proteins, with approximately 600 to 900 proteins
identified per sample and replicate (Table 1). From the emtimeredundant dataset, 446
proteins (~1/3) matched human proteins while 1368 (~2/3) matched pdeprcteins
from the microbial metagenome sequence data (SupplementarySalde a complete
list).

The second database (metadb) contained all of the sequences in tHetalidse

above, in addition to sequences from representatives of the normaliguobiota,



including strains oBacteroides, Bifidobacteria, Clostridia, andLactobacilli, plus human
pathogens and distracters that one would not commonly expect in they lyedtbuch as
environmental isolates. The ric®rfjza Sativa) genome was included to help identify
plant (food) related proteins. From the metadb, the total number of nzrotkEntified
were 2911 redundant and 2214 non-redundant; between 970 and 1340 proteins were
identified per sample and replicate (Table 1). The categdmieskdown of identified
proteins from each major database type and the completedisbwa in Supplementary
Table S3. In three out of four runs, the highest percentage of prdemntifications
corresponded to the bacterial genome sequences that were scréenled.fourth run
(i.e. run 2, Sample 8), most protein identifications matched to one ohd¢tegenomes.
By contrast, 30-35% of spectra matched to the human protein database, most likely due to
a few highly abundant human proteins in the samples with a large nwhbpectral
counts. The proteins matching to both rice and environmental isoiitactiers were
low, between 2-9%, indicating that the majority of the sequen@ashed to bacterial
types and human sequences that one would expect in the human gut environment.
Among the microbial genomes screened, the highest protein matares to
expected sequences from gut isolates. Of the ~10,000-13,000 totah sjieserved from
each run, ~2,000 match&acteriodes or Bifidobacterium species, with th8acteriodes
species always having slightly more spectra, emphasizindatitmenance of these groups
and their functional significance in the human distal intestines @&ia correlates well
with our previously published microbial fingerprint data showing an abundahce

Bacteroides spp. in both of the individuals studied here (Dicksstesl., 2008).
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By using established methods of reverse database seafichiagal., 2007; Penget
al., 2003); we estimated a false positive rate at the peptidedeteb% for all identified
peptides depending on the method. If only those peptides with corresporghingdss
accuracy measurements (<10 ppm) were considered (80-85% of rdifiedepeptides
per run), then the rate dropped to 0.05-0.23% (See supplementaryahiateaicomplete
description of false positive rate determinations and associdisb:tsSupplementary

tables S4-8, Supplementary Figures S1-2)

COG categoriesin the gut metaproteome

The proteins identified from the dbl search were classified Q& Categories and
when compared between the two samples and the two technical handath were
highly reproducible and consistent (Figure 2). By comparison to theageve
metagenomes previously published from other individuals €Gdl., 2006), we found
that several COG categories were more highly represented iavdrage microbial
metaproteomes of the individuals in the present study (Figure 3)mEt@proteomes
were significantly skewed, with a more uneven distribution of CQ€goaies than those
represented in the average metagenomes. The majority of detected proteims/aleed
in translation, carbohydrate metabolism, or energy production; &ge#presenting
more than 50% of the total proteins in the metaproteome. In addiian proteins in
the metaproteomes were representative of COG categoriegpdstrtranslational
modifications, protein folding, and turnover. By contrast, other COG catsgarere

under represented in the metaproteomes compared to the metagenwheing
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proteins involved in inorganic ion metabolism, cell wall and membbeogenesis, cell

division and secondary metabolite biosynthesis.

Label free estimation of relative protein abundance by NSAF

We estimated the relative abundances of the thousands of protéimsethadetected in
each sample by calculating normalized spectral abundance factors \F3étEnset al.,

2006; Zybailovet al., 2006). The entire list of proteins sorted by averaged NSAF across
all samples and technical runs is shown in Supplementary Tabi@sEy comparing the
NSAF data from each sample and technical run to each othegsitclgar that the
technical runs were highly reproducible for a given sampfeyaRies of 0.77 and 0.85

for Samples 7 and 8 respectively (Supplementary Figs. S3-4).

The most abundant proteins based on this prediction were common abundant human
derived digestive proteins such as elastase, chymotrypsin C, laragdysamylases. The
most abundant microbial proteins included those for expected proces$eas mnzymes
involved in glycolysis (e.g. Glyceraldehyde-3-phosphate dehydrogen@g&)somal
proteins (in particular foBifidobacterium) were also relatively abundant, as were DNA
binding proteins, electron transfer flavoproteins, and Chaperonin Gro&fE85(HP60
family).

The gut microbiomes previously publishi&illl et al., 2006) were enriched for many
COGs representinkey genes in the methanogenic pathway, consistiémtH, removal
from the distal gut ecosystema methanogenesis. By contrast, we found very few
proteins represented by methanogens. One example is a hypotipettaih from

Methanobrevibacterium found in Sample 8. Instead, analysis of the list of proteins based
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on the NSAF ranking in our study revealed a high relative abundance of
formyltetrahydrofolate synthetase (FTHFS), a key enzyntharacetyl-CoA pathway of
acetogengDrake et al., 2008). Acetogenic bacteria utilize, kb reduce C@and form
acetate. Although methanogenesis is an importardi$posal route in about 30-50% of
people in Western countries, in the remainderidHconsumed by sulfate reduction or
reductive acetogenesis, and this seems to be the situation $antipes we have studied
here.

Similar to the published metagenomes that reported several @€3@Bsnsibldor
host-derived fucose utilization that were enriched in the human gubbromerelative
to all microbial genomes (Gilit al., 2006), we also found several proteins involved in
fucose metabolism, including fucose isomerase and propanediol fatioerftater steps
in the pathway). In particular, we detected proteins correspondipglyhedral bodies
that are assumed to protect the cell by sequestering the pwrpionaldehyde
intermediate of this pathwdliavemann and Bobik, 2003).

Butyrate kinase was the most highly enriched COG (odds ratio.3®) 9n the
previous metagenomic study by Gét al. (2006). This enzyme is the final step in
butyrate fermentation. Although we did not identify butyrate kinasedmefind that
butyryl-CoA dehydrogenase had a relatively high abundance baseitheotNSAF
analyses. This enzyme catalyzes one of the previous steps isaitie pathway;
interestingly this protein was strongly expressed in Sample &vastnot detected in
Sample 7. Additional proteins of interest that were relatiadlyndant included NifU-
like homologs and rubrerythrin. The role of NifU has been proposadeaffold protein

for Fe-S cluster assembly (Ayala-Castt@l., 2008). Rubrerythrin is found in anaerobic
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sulfate reducing bacteria and is a fusion protein containing amnNrid iron binding
domain and a C-terminal domain homologous to rubredoxin. The physiologieabf
rubrerythrin has not been identified, but it has been shown to proteostgaidative
stress irD. vulgaris and other anaerobic microorganigiisikhopadhyayet al., 2007).
Average NSAF values were compared to determine unique and sharedspmotei
Samples 7 and 8 (Figure 4, metadb database; Supplementary FagutielSdatabase).
The scatter plot reveals five distinct areas: proteins foundrmiasiabundances in both
samples along the diagonal (listed in Supplementary Tables S9t18bs), proteins
found in only one sample on the respective axis, and two distinct lobesaréha
overexpressed in one sample or the other but present in both (Figuta fyrdaroteins
showing significant deviation from central line found in Supplementables S9-10,rd
tabs). We suggest that the group of approximately equally abundanhgr@t47 total)
represent core gut populations and functions, supported by the finding thgh a
proportion of these proteins were from common gut bacteria Baeteroides,
Bifidobacterium and Clostridium) and represented housekeeping functions: translation
(19%), energy production (14%), post-translational modification and pratenover
(12%) and carbohydrate metabolism (16%) (Supplementary Table S1t@p)l By
contrast, the proteins found in only one sample contained proportionately ife COG
categories for housekeeping functions and from common gut species, higher
proportion with unknown functions (28% compared to 11% found in both). These results
suggest that the proteins present or over represented in only one samlpl represent
bacterial populations and functions that change according to environnréhtahces,

such as immediate diet. For example, 33% of the unique proteins anly iio Sample

14


https://external-portal.ornl.gov/exchweb/bin/redir.asp?URL=http://metallo.scripps.edu/PROMISE/RUBREDOXIN.html

7, are prolamin proteins, i.e. plant storage proteins having a high proltent found in
seeds of cereals, suggesting recent ingestion of cereal gyaihat individual. Although
these individuals did not specify any particular dietary habithé questionnaire data
that accompanied the samples (Dickswtdl., 2008), we do not have any detailed
information about their specific dietary intake immediately ptiosampling that would

enable us to verify this finding.

Analysis of unknown-hypothetical proteins

We performed detailed analyses of the unknown proteins (116 from thishaabl
metagenome&Gill et al., 2006) and 89 from bacterial isolate genomes) that could not be
classified into COG families. The majority of these protein®rige to novel protein
families that are overrepresented in genomes of gut microbesgFgyurFive of the ten
most abundant hypothetical proteins in the metaproteome belong to thepnotesh
family represented by hypothetical protein CAC2564 that wagiqusgly identified in
human metagenoméSill et al., 2006), while four out of top ten belong to another novel
protein family represented by a hypothetical protein BF3045 Banteroides fragilis.
Members of both families are present in sev@adteroides, Clostridium, and Vibrio
species, where they are always associated with each otleethésred and green arrows
in Figure 5b) and various metabolic enzymes and transport systemseighborhood of
these two proteins resembles a typical amino acid metabolitwagt and we
hypothesize that they are involved in amino acid metabolism, mo$t blsteine or

methionine.
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Another interesting example is the CPE0573 family of hypotHeticateins,
originally identified in the human gut metagenof@4l et al., 2006). A distant homolog
from this family was recently shown to belong to a novel LaclaétaN-biose
metabolic pathway, identified iBifidobacterium bifidum (Derensy-Droret al. 1999) and
Bifidobacterium longum (Nishimoto and Kitaoka, 2007). Other proteins from this
pathway were also found in the metaproteome samples, suggbstingwas active in
our subjects who apparently ingested lactose in their diet. Addily, an operon
formed by a hypothetical protein BT2437 frddacteroides thetaiotaomicron VPI-5482
was found which codes for a putative lipoprotein (Chetreg., 1999). Proteins from this
family are always associated with channel forming 8-strameea-barrel proteins from
the OprF family (Saingt al., 2000) (Figure 4c). The list of hypothetical proteins and

predicted functions can be found in Supplementary Table S11.

| dentification of human proteins

Almost 30% of all identified proteins were human. The two largestps of human
proteins identified in our study were digestive enzymes and stalictell adhesion and
cell-cell interaction proteins. However, the third largestegaty was comprised of
human innate immunity proteins, including antimicrobial peptides, scaveageptor
cysteine-rich (SRCR) proteins (represented by the DMBTIet@h in malignant brain
tumors) protein), and many other proteins linked to innate immundyirgfammation
response (intellectin, resistin, and others). Most of the abundant lprotams were
similar in the two individuals, but some differences were foundss Abundant proteins

(Supplementary Table S9, DB1_differential tab).
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We were particularly interested in further investigation of DNMB(also called
salivary agglutinin and glycoprotein-340) that is predominantly exgdess epithelial
cells and secreted to the lumen. This protein has several propossctibe functions
including tumor suppression, bacterial binding, and anti-inflammatéegtefLigtenberg
et al.,, 2007; Rosensteit al., 2007). Detailed analysis of the distribution of DBMT1
peptides shows that they had fairly uniform distribution along theiproteluding hits
from all 17 domains present in the DBMT1 protein (Fig 6), suggeshiaigthe DBMT1
protein was present in our samples as a complete, intact protdinyehgostulate is

indicative of a healthy gut environment.

Discussion

This is the first demonstration of an overall method for obtainingapneteomics
datasets from complex material, in this case human fecesuaoéssful demonstration
of the deepest coverage of a complex metaproteome to date. Prrison to previous
work on natural environmental samples with only a few dominant ep@amet al.,
2005; Loet al., 2005; Wilme=t al., 2008), the gut microbiota represents a highly diverse
community with thousands of species and strain variants. Thereforatewtesting the
technical limit of the use of a shotgun proteomics approach instbidy. We were
encouraged that the sample extraction and preparation methods workeddrvietal
samples. Although there remain experimental and computational clesljethg results
presented here indicate that this general approach will be apelitalgther complex

environments, such as marine and soil microbial communities.
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We also successfully demonstrated for the first time thatag feasible to use an
unmatched metagenome dataset to obtain valid protein identificattorss.clirrently
more rapid and less expensive to obtain metaproteome data, as wdehawestrated
here, than metagenome data. Therefore, this finding is promising faore fut
metaproteomics studies of other environments that do not have matclagbmosics
sequence data available.

One of the challenges we addressed was that of estimatingnpabtendances in
these complex samples. Here we used label free methods bagetival €ounting and
normalized spectral abundance factors (NS&HQprenset al., 2006; Zybailovet al.,
2006). NSAF is based on spectral counts but also takes into accoum pim¢eand the
total number of spectra from a run, thus normalizing the relativeeipretbundance
between samples. Efforts are still underway to develop better dodl statistics for label
free methods, such as the absolute protein expression (APEX) metieody developed
by Lu et al. (2007) that may allow for better statistical comparisons of two dats.
However, the APEX method was derived specifically for isolat&a dand is not
applicable to complex microbial communities because it requiressamate of the
number of expressed proteins in the system and this is not knowrxafopke, in our
case.

Although our results present the largest coverage of the humammigubbial
metaproteome to date, increasing the dynamic range beyond thaé stidy will be
necessary in the future to more fully understand the function d¢fuiman gut microbiota
and its interactions with the human host. Based on results from preuialiss (Ranet

al., 2005) and (VerBerkmoes, unpublished results with artificial mixtuves)are
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confident that proteins can be detected from populations that représeastal% of a
mixed community. However, the number of proteins detected (dgnaamge)
dramatically decreases from 1000s to 100s of proteins for those popsilétat are
present at lower abundances. One possibility to increase theidyiaauge of detection
would be to enhance the protein separation steps prior to analysistadibeoftf for
increasing the number of separation steps would be the requireamengfeater amount
of starting material and instrument time. Enrichment or deplégchniques could also
be attempted to increase the coverage of community membeestpatdow levels, but
care must be taken to not effect the proteome during any manipulatiecr®asing
dynamic range is a clear challenge for all proteomic apgpits, but particularly so for
complex microbial communities such as that found in the human gut, anaihbe a
pressing area for research and method development in the future.

We made several comparisons of our metaproteome data to thegexistagenome
data(Gill et al., 2006). Some matches could be made between pathways predicted to be
functioning based on abundant genes detected in the metagenome datandant
proteins we found, such as those involved in fucose and butyrate fatimeniThere
were also some interesting discrepancies, such as the ingliaditimethanogenesis in
the former study and the apparent lack of methanogenesis innipdesave analyzed.
Instead, our data suggest that acetogenesis was occurring innguiesaimplicating
different hydrogen scavenging routes in the subjects in the two studies.

Although about the same percentage of proteins with “unknown functionfouad
in both the metagenomes and the metaproteomes, the metaproteopeddia direct

proof that such proteins are actually expressed. Overall, 67%potthetical proteins
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identified in this study could be recognized as distant homologsezdsyi characterized
families, allowing putative function assignments, with most of thather enriching the
amino acid and carbohydrate metabolism categories, but also incprdtegs involved
in cell-cell signaling and active transport of nutrients achesgerial membranes. Also,
fold recognition level structure predictions are possible for 55%earht opening doors
for modeling and more detailed function analysis.

There were additional discrepancies between some proteins ededitt the
metagenomes that were not detected in the metaproteomes and feagossnclude all
or some of the following: 1) the microbial community compositions aratejms
produced were different in the different individuals, 2) the proteing wevduced, but
below the dynamic range of detection, 3) they might not have b&pressed at
significant levels at the time of sampling, or 4) the proteing haave mutated to a point
that they are no longer detected by screening an unmatched metag&wmatet al.,
2007). Therefore, although we successfully identified thousands of pratging an
unmatched dataset, it would still be very valuable to have matchatggenome and
metaproteome data from the same samples and this willintgrtze achieved via
ongoing and future initiatives, such as the NIH Human Microbiome eé&troj

(http://nihroadmap. nih.gov/hmp/)and the European Union Meta-HIT project

(http://www.international.inra.fr/ press/metahit)Recently, 13 additional human

metagenome sequences were published from Japan (Kurakaahka 2007) and more
representative genome sequences from commensal gut isolatesiriametlyc being
sequenced (Petersenal., 2008). Together these represent valuable resources that should

eventually aid in identification of more proteins from the human gut.
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A large proportion of the proteins detected in the samples (apprtely 30%) were
human proteins. This finding can be explained by the method we used to abta
bacterial cell fraction. Differential centrifugation does nasuie in a pure bacterial
fraction, but instead one that is highly enriched in bacteriad celihpared to human cells
and particulate matter in the original fecal sample. Any humateips that adhered to
the microbial cells would have been collected in the bacteriilgtpllso there are many
more proteins in human cells than in bacterial cells. Thereforen e minor
contamination of the bacterial fraction with human cells could septea significant
number of human proteins. In hindsight this was advantageous becaudadt ersato
detect and identify human proteins, such as antimicrobial peptidesefikat interaction
between the host and the microbiota. Furthermore, this highlightpativer of this
technology to distinctly identify both microbial and human proteins inombined
mixture.

In summary, while it is evident that this massive dataset wagdire substantial
effort to completely define and characterize, our goal wagetelop an approach to
obtain a first large-scale glimpse of the functional actisitéthe microbial community
residing in the human gut. A wealth of information about functional pathveag
microbial activities could be gleaned from this data, thereby prayidne of the first
views into the complex interplay of human and microbial species irhdinean gut
microenvironment. It is clear that proteomics allows us to dyesdke potential host-
commensal bacterial interactions. While the human immune response is usuallyedes
in terms of response to infection, it is clear that innate immuypitteins are part of a

normal gut environment, shaping the gut microflora to the desired shape.
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Finally, we would also like to point out that all data is freetgessible to the
scientific community for future analyses and some proteins teatlantified can have

implications as potential biomarkers for human health.
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Table 1
Number of protein, peptide, and spectra identifications for Sampdesl B (2 technical

runs each) using the db1l and metadb databases (see supplementary material).

dbl database
Protein Peptide MS/MS Peptides between
Sample ID . R I S 10 and -10
identifications*| identifications Spectra Dpm**

Sample 7, Run 1 634 1886 4069 81.70
Sample 7, Run 2 722 2253 4440 80.42
Sample 8, Run 1 974 3021 5829 83.41
Sample 8, Run 2 983 2948 6131 81.47
metadb database
Sample 7, Run 1 970 2441 4829 84.47
Sample 7, Run 2 1098 2977 5364 81.67
Sample 8, Run 1 1341 3586 6509 84.71
Sample 8, Run 2 1275 3374 6635 82.92

*Numbers given are non-redundant identifications

** Mass accuracy
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Figure Legends:

Figure 1. Shotgun metaproteomics approach used to identify micpwbtains in human

fecal samples.

Figure 2. Microbial proteins identified from fecal Samples 7 (ldaes) and 8 (yellow

bars) according to COG functions. Bars represent technical proteome runs 1 and 2.

Figure 3. Comparison of average COG categories for avahaiphean metagenomes and
metaproteomes. (A) Average COG categories of the rnwimgenomes from the gut
microbiota of two individuals from a previous study (&ilal., 2006) (B) compared to
average COG categories of timetaproteomes from the gut microbiota of two individuals

in the present study.

Figure 4. Comparison of relative abundances (NSAF values) of proteins detecte
Samples 7 and 8. NSAF values for Samples 7 and 8 were averaged amongst their
individual technical runs and plotted on a log scale. The dark blue squares reptesent al
of the proteins identified in each sample from screening the metadb database. The
straight diagonal line represents the location of all proteins that had apatelyimqual

expression in both samples.

Figure 5. Detailed analysis of hypothetical proteins idedifiin human gut
metaproteome. (A) Protein representation in the genomes of human sguiated
microbes; scale changes from 1 (only found in human gut micrédes)(never found

there), O represents even distribution. Conserved genomic neighborhoods of the
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CAC2564 (B) and BT2437 (C) families. Detailed functions of otherepmnst identified

by numbers in the figure, are provided in the supplementary material.

Figure 6. Positions of DMBT1 peptide fragments along the length of the DMBT1 protein
are shown as blue boxes (figure is not to scale). DBMTL1 has a length of 1785 amino
acids. PFAM domain names: SRCR (Scavenger receptor cysteine-ricmiicoiiB

(from complement C1r/C1s, Uegf, Bmp1l) is a domain found in many in extracehdlar a
plasma membrane-associated proteins; Zona pellucida, a large, cyistesh@main

distantly related to integrins, found in a variety of mosaic eukaryotic glgtaps,

usually acting as receptors.
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Figure 2
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Figure 4

Sample 8 (Replicates Averaged)

55

4.5

-3.5

25

05

045

25 -35
Sample 7 (Replicates Averaged)

34

4.5

55



Figure 5
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Figure 6
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Shotgun Metaproteomics of the Human Distal Gut Microbiota

VerBerkmoes et al. Supplementary Online Information

All datasets, databases and supplementary data files (spreadshest®ommai) can be
found at http://compbio.ornl.gov/human_gut_microbial _metaproteome

Proteome informatics

All MS/MS spectra were searched with the SEQUEST algori{lmg et al., 1994
[(enzyme type, trypsin; Parent Mass Tolerance, 3.0; Fragmentdlerance, 0.5; up to 4
missed cleavages allowed (internal lysine and arginine re$jdaad fully tryptic
peptides only (both ends of the peptide must have arisen from antigfpscific cut,
except N and C-termini of proteins)] and filtered with DTAS®&lEontrast (Tablet al.,
2002) at the peptide level [Xcorrs of at least 1.8 (+1), 2.5 (+2) 3.5.(€3)]y proteins
identified with two fully tryptic peptides from a 22 h run were cdaeed for further
biological study. Monoisotopic theoretical masses for all gdeptiidentified by
SEQUEST were generated and compared to observed masses. ©bhggrvesolution
masses were extracted from .raw files from the full graneding best identified spectra;
parts per million (ppm) calculations were made comparing edehtified peptides
observed and theoretical mass. When quality MS/MS spectra tiavet an observed
mass (low intensity) a mass of 0 was reported and ppm was calculated as infinit

Four database searches were performed with the above seflihgsdatabases are
outlined in Supplemental Table S1. The first database (dbl) contaumedhuman
subject’s metagenomes (Gdi al., 2006) a human database, and common contaminants
such as trypsin, human keratins, etc. The existing metagenoatmsked were deficient
in Bacteroides sequences and sinBacteroides are known to be common and abundant
in the human intestine (Eckburg al., 2005) we also includeBacteroides genome
sequences in a second database (metadb), plus other sequencespfes@ntatives of
the normal gut microbiota deposited and available at the Joint Gehrmtitute (JGI)
IMG database (http//img.jgi.doe.gov/), including representatives Batteroides,
Bifidobacteria, Clostridia and Lactobacilli. In addition, we included representative
human pathogens and included distracters that one would not commonly iexgez
gut; i.e. environmental bacterial isolates, plus the ri@e/za Sativa) genome (to help
identify food-related proteins). Distracters were uniquely nuethao they could be
easily extracted and compared with identifications from prothimsght to be associated
with the human microbiome. While this is not actually a falsetipesrate or false
discovery rate as properly defined it gives an indication of howtlheimethod uniquely
identifies gut related proteins vs. other protein databases. Sresslon below on false
discovery rates.

The third and fourth databases were used for estimatingdaisevery rates on the
dbl search as previously described @ial., 2007; Pengt al., 2003). For the third



database (db3), we took the dbl database and precisely reversqutatain entry (i.e.,
n-terminus became c-terminus in each case) and then appended\bessdreequences
onto the original database. The same was done for the fourth da@ird)lseout in this
case proteins were not reversed but were randomized €Ebhs 2007). Proteins with
the reversed or randomized orientations were given a unique i€lerftir easy
extraction. All databases, peptide and protein results, MS/M&a@ew supplementary
tables for all database searches are archived and made avadaigppen access via the
following link: http://compbio.ornl.gov/human_gut_microbial _metaproteome/

Raw files are available on request.

False positives

Currently, there are many ways of estimating error aatati with peptide
identifications. Until the field of proteomics comes to a conclusiothe proper way of
reporting proteomic data, different versions will exist (Tabkal., 2008). Even the
semantics of calling it false discovery rates or falsetpesrates are under debate.
Below we refer to them as false positive rates based on thecgtidolis the formulas
were derived from. For this large scale study, false-pogisites were used in order to
differentiate between true and false peptide identificatiotiserahan false discovery
rates (FDR). The overall false-positive rate (FPR) wasnated using the formula:
false-positive rate = 2[g/(nev + Nea)]*100 where R, is the number of peptides
identified from the reverse database apg i the number of peptides identified from the
real database (Perpal., 2003). A false-positive rate (FPR) was calculated using three
different database searches. First, a composite targey-diatabase was created with
the dbl database. Data analysis consisted of only the forward pejgiddication
except in the calculation of the FPR where both forward (coreswl reverse (false)
identifications were required (Perej al., 2003) (Eliaset al., 2007). The data was
separated based on ppm values that were between +10 and -10 ppm (<+10pmw), val
that were able to define a charge state for the peptide butwebetween + 10 and -10
ppm (>+10ppm), and values that were unable to properly identify thgecktate of the
full scan peptide mass spectra (unresolved values). This +10 angrrildiyision is
based on earlier research (Lefsati@dl., 2007), with this metaproteome data summarized
in Supplementary Figures S1 and S2. The majority of identifieddespgtave <+10 ppm
values, accounting for an average of 83.0% of the total peptides($dhl Peptides
with >+10 ppm accounted for an average of 8.8% over the data set viithré&sRlting in
unresolved values (Table S4).

The average ppm for the total identified peptides from the humanobratr
metaproteome data was 33.7 ppm, however when the data was fitlterad 0 ppm this
value dropped to -4.1 ppm (Table S5). Also, the average delta amu (atasscumits)
for the total identified peptides for the human microbial metaprotedetee was 0.054
amu, but this value dropped to -0.006 amu when filtered for <10 ppm ($&hleThe
FPR for the total identified peptides from the human microbiabpreteome data set
was between 3.17% and 1.18% for both samples and duplicate runs (Tablee8&)Iw
peptides were considered. However, when the data was fil@reshliy those peptides
with <10 ppm these values dropped significantly, the highest FPRtéoed data <+10
ppm was 0.21% and the lowest was 0.05%.


http://compbio.ornl.gov/human_gut_microbial_metaproteome/

A second approach to estimate the error associated with pejiatéications also
involved using a composite target-decoy database with dbl, excelpisicase each
protein sequences was randomly shuffled creating a “decoy” at&abThe purpose of
this decoy database was to create a more randomized daltgbsiseffling the amino
acids of each protein rather than simply reversing the n-ternaindsc-terminus. A
shuffled database creates more nonsense, thus, reducing the cdvanaks of making
false identifications. Any proteins that are identified with tdeeoy database indicate
that the forward peptide is in fact illegitimate. A FPR banestimated using a similar
formula as previously described. The number of peptides identified thienshuffled
database is multiplied by 2 and divided by the sum of all shufflptdes plus forward
peptides identified from the target database. A FPR wanadstl for both samples and
runs (Table S7) and as described (Ediaal., 2007) was similar to the rate determined by
the reverse database method.

We also estimated the false discovery rate in the metadb databarch by different
method. Here we were interested in seeing the number of uniquetahgdptides
identified to known gut isolates, metagenomes, human proteins and oiegngrvs.
distracter sequences including the genomekepfospirillum ferrooxidans, Shewanella
oneidensis MR-1, Rhodopseudomonas palustris and others. For the entire list of database
entries, please visit the website url:
http://compbio.ornl.gov/human_gut_microbial_metaproteome/databhases/

The majority of peptides that matched to the distracter databexsein fact non-
unique peptides. These shouldn’t be counted as false peptides since ttay with
peptides and proteins from isolates, metagenomes etc that couldhgegut. Thus we
only counted unique peptides matching the distracter sequencesR av&Pestimated
for both samples per run by comparing the number of total unique peftae the
distracter database to both the total unique peptides from thef tbst database and the
total peptides from the rest of the database by the same equation given ablwwetioert
two methods of determining FPR. When only unique peptides were cats@dalse
positive rate of 3-5% was found. When all peptides were considerredtfalse positive
rate of ~1% was found. These results are very similar tofdlse positive rates
determined for db1 with the reverse and shuffled methods.

Assigning proteins to COG groups

To create Figure 2 in the manuscript the JGI IMG/M databases used
(http://imgweb.jgi-psf.org/cgi-bin/m/main.cgiThis database contains COG information
for all proteins which we used for COG assignment for badtsolates and the human
gut metagenome sequences. We found that 37.9% of the proteins could regtedas
to COGs when screening the metagenome databases, similar tesiBfdated for the
existing metagenome data deposited at JGI. Most of these pratmiasypothetical or
conserved hypotheticals, therefore, they were assigned "S" wghfanction unknown.
On the other hand, several known proteins, such as DNA-directedpRNerase, did
not have an assigned COG function. In these cases, we assigndshsieeihon our own
knowledge to a COG category and if we did not know, we assignedtth#i which is



http://compbio.ornl.gov/human_gut_microbial_metaproteome/databases/
http://imgweb.jgi-psf.org/cgi-bin/m/main.cgi

general function prediction only. For example, we assigned the-@ii¢ated RNA
polymerase protein to "K", for transcription. Supplemental TaBler®l S3 have COG
entries for all detected microbial proteins.

Proteins found in all replicates and runs

We extracted the list of all proteins found in each technieplicate and in both
biological samples, i.e. the “conserved proteins”. The list for diollagsociated NSAF
values for each run can be found in supplemental table 9 first talpid{éins total), the
list for metadb and associated NSAF values for each run céwubd in supplemental
table 10 first tab (749 proteins total).

Label free Quantitation methods.

The label free methods rely on intrinsic values obtained in the colitbe experiment
such as peak intensities or areas of peptidesdiCGid, 2005), spectral counts (Lef al.,
2004)and normalized spectral abundance factors (Floeeak, 2006; Zybailovet al.,
2006) to quantify peptides and thus proteins. They have grown in popularitp due
simplicity, cost considerations and the fact they can be usedhyoisaanple assuming
proper experimental design is implemented. There is stromgt eff the proteome
informatics community to develop better tools and statistics foel [free methods
(Zhanget al., 2006), (Luet al., 2007). The absolute protein expression (APEX) method
recently developed by L&t al. (2007) may allow for a better statistical comparison of
two data sets but was derived specifically for isolate datha asE. coli and yeast. The
APEX method will not be applicable to complex microbial communibesause it
requires an estimate on the number of proteins being expressedystém®. This is not
possible with a complex microbial community from the gut wheéereimpossible to
estimate the number of different cell types, species or tabékips. Thus, we applied
simpler methods for protein quantitation based on spectral counts and normalizead spectr
abundance factors (NSAFs). Unlike spectral counting, NSAF edbas spectral counts
but takes into account protein size and the total number of speatmaaf run, thus
normalizing the relative protein abundance between samples. Aradpaictindance
factor (SAF) is first calculated by dividing the number total hanof spectral counts for
each protein by its mass or length. The NSAFs are then ai@duby normalizing each
SAF to one by dividing by the sum of all SAFs for all protein (Ehsret al., 2006;
Zybailov et al., 2006). We first compared the NSAF results from all proteins found i
Samples 7 and 8 using dbl and metadb, but limited ourselves to those nainiyer
found in both technical replicates. As can be seen in Figurean83 S4 the
reproducibility of technical runs, based on NSAFs is high with%ofR.77 for Sample 7
and 0.85 for Sample 8 with the metadb (similar results with dbl notrghowe then
averaged the NSAF values for Samples 7 and 8, but left all proteitie graph to
determine what was found uniquely in one sample and not the other.edties ifrom
this comparison are found in Figure S5 and suggest some proteingiffieacd
significantly in expression between the two samples. The figieates four major
clusters; two clusters are located on each extreme wherénprotere found only in one
individual but not the other. The other two intermediate clusterg ¥eemd where
proteins were present, but expressed in different amounts in deowpavith the other
individual. We found the cutoff of these clusters to be around a tay didference



between 1.1 and 2.4. Thus, we created a sub-table of those proteins slaogeng
differences in expression between the two samples in dbl via blooselaries. We
further manually curated the data to only include only those protepresented by
identification in the both runs were they were considered “higheeiprabundance” as
well as 2x increase in average spectral counts over the otheles@@upplementary
Table S9, second tab). In total 225 proteins were found differentighessed between
Sample 7 and Sample 8. This same process was repeated fmtéadd dataset. Again
there was similar reproducibility in the technical replicdteghe two samples (data not
shown) and a similar trend in the comparison of Samples 7 and 8 (Biguaauscript).
In total, 308 proteins were found differentially expressed betweempl8atrand Sample
8 (for metadb Supplementary Table S10, second tab).

Hypothetical Protein Prediction

Sequences of all hypothetical proteins identified above (116 from then€@agenomes
and 89 from bacterial isolate genomes), were submitted to thentdistemology
recognition server FFAS03 (Jaroszewatkal., 2005). This server automatically builds a
sequence profile for the submitted sequences and compares it agaumated library of
sequence profiles, encompassing several sets of annotated prétefas DB, PFAM
and structure determination targets from the JCSG structural genaenter). In
independent tests, FFAS03 was shown to consistently outperform PSIBaAd other
distant recognition algorithms. In Supplementary Table S11 we avaarized results
of the analysis. For 80% of the hypothetical proteins a staligtsignificant match (Z-
score below 9.5) to one of the proteins in the reference databaselsecobtained.
Functions of the matching proteins were used to assign a provisionéibfufar the
hypothetical proteins identified in this study. It is importansuch analysis can narrow
down the possible function of the analyzed protein but, because of tet distnology,
detailed function may have diverged from that of the homolog identrfitliis analysis.
More detailed analysis of active site residue conservatiorotred features is necessary
for more detailed function assignment. All the FFASO3 resuéisagailable from the
FFASO3 server at http://ffas.burnham.org/ffas-cgi/cgi/login.pl {hogJanet _new,
password: Janet_new). Links provided on the site can be followed dmm atailed
alignments, three dimensional models and other information.



Figure S4 (manuscript). Supplementary information:

Genome neighborhood analysis was performed and figures were prepagdheasi
SEED environment for genome annotations as implemented at the Nafimnabial
Data
(http://www.nmpdr.org/cur/FIG/wiki/view.cgi/Main/WebHome). SequencesB&3046
and BT2437 genes, representing the two families discussed in thevée&tcompared
against the Bacteroides fragilis ATCC genome (NCBI Taxonomy Id: 272559).

Pathogen

Resource project

B) BF3046 conserved genomic neighborhood

CAC2564 family, as discussed in the text
new family of hypothetical proteinsdéscussed in the text
LysR family transcriptional regtda
N-succinyltransferase
DNA damage inducible protein
new family of hypothetical proteins
telluride resistance protein
multiple antibiotic resistance piot
new family of hypothetical proteins
Glycerophosphoryl phosphodiesteras

BT2437 family, as discussed in the text

new family of hypothetical proteinsdéscussed in the text
tripeptidyl aminopeptidase

MarR family transcriptional regulator

Aspartate decarboxylase

(1) red

(2) green

) light brown

4) blue

(5) yellow

(6) aguamarine

@) violet

(8) dark green

(9) dark brown

(20) light blue
C) BT2437 conserved genomic neighborhood

(1) red

(2) green

3) brown

4) blue

(5) yellow

(6) aguamarine

Coenzyme A disulphate reductase



Supplementary Tables

Supplementary Table S1. Description of databases that were extressre website for
complete breakdown.

Database Sequences included References

dbl Metagenome, Individual 7 Gill et al. 2006
Metagenome, Individual 8 Gill et al. 2006
Human proteins

metadb dbl
Human commensals and pathogens JGI/IMG
Bacteroides
Bifidobacterium

Etc.

Environmental isolates
Leptospirillum

Etc.

Rice Oryza Sativa)

db3 and db4 | dbl in reverse (db3) or random (db4)
orientation and appended to db1

Supplementary Table S2. Protein Identification with NSAF courftimgy all runs from
dbl. The results from each individual run can be found on the website.

Supplementary Table S3. Tab 1: Categorical breakdown of idenbficatio each
database type. Tab 2: Protein Identification with NSAF countiog fall runs from
Metadb. The results from each individual run can be found on the website.



Supplementary Figure S1. PPM Variability Verse XCorr on Forwaatide Distribution
from Human Microbial Metaproteome Data (db1l).
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Supplementary Figure S2. Delta Atomic Mass Units Verse PPNfasward Peptide
Distribution from Human Microbial Metaproteome Data.
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Supplementary Table S4. Identified Forward Peptides from dbl databade sear

Forward ldentified Peptides

% of Forward Identified Peptides

Values Values | Unresolved| Values Values Unresolved
Sample ID <+10ppm | >+10ppm values <+10ppm | >x10ppm values
Sample 7
Runl 2316 279 195 83.0% 10.0% 7.0%
Sample 7
Run2 2592 275 330 81.1% 8.6% 10.3%
Sample 8
Runl 3664 357 309 84.6% 8.2% 7.1%
Sample 8
Run2 3397 355 350 82.8% 8.7% 8.5%




Supplementary Table S5. Average Delta AMU and Average ppm.

Average Delta AMU

Average ppm

Run2

Values Values
Sample ID excluding Values excluding Values
unresolved <+10ppm unresolved <+10ppm
values values
Sample 7
0.065 -0.007 46.9 -4.4
Runl
Sample 7
0.041 -0.003 20.5 -2.2
Run2
Sample 8
0.068 -0.008 43.6 -5.2
Runl
Sample 8
0.040 -0.006 24.2 -4.2




Supplementary Table S6. Total Identified Peptides, Identified Revepel®s and False

Positive Rate from db1l determined by reverse database method (db3).

Total Identified Reverse Peptides False Positive Rate
Sample | Identified False
ID Forward | Values | Values | Unresolved | Total False Positive
Peptides | <*10ppm | >+10ppm values Positive <+10ppm
Sample 7
2790 3 40 2 3.17% 0.21%
Runl
Sample 7
3197 1 14 4 1.18% 0.06%
Run2
Sample 8
4330 4 37 11 2.37% 0.18%
Runl
Sample 8
4102 1 32 7 1.93% 0.05%

Run2




Supplementary Table S7. Total Identified Peptides, Identified Shuffletides and

False Positive Rate from Human Microbial Metaproteome Data (dbl) deéerimy

random database method (db4)

False Positive Rate

Total ldentified Shuffled Peptides
Sample | Identified False
ID Forward Values Values | Unresolved | Total False o
i <+10ppm | >+10ppm values Positive Positive
Peptides | <*1Upp =1Upp <+10ppm
Sample 7
Runl 2789 3 31 1 2.48% 0.21%
Sample 7
Run2 3279 3 51 3 3.42% 0.18%
Sample 8
Runl 4324 0 42 6 2.20% 0.00%
Sample 8
Run2 4230 5 40 3 2.24% 0.23%




Supplementary Table S8. Total Identified Distracter Peptidestifiéel Gut Peptides and
False Positive Rate from Human Microbial Metaproteome Data (metadb)

Non- FPR (%) FPR (%)
Unique . Unique unigue unigue
Sample ID | Distracter F’”'q“e Gut Total .GUt distracter & | distracter &
. Distracter . Peptides .
Peptides Penti Peptides unigue gut total gut
eptides . .
peptides peptides
Sample 7
30 272 1135 5080 5.15 1.17
Run 1
Sample 7
31 184 1436 6036 4.23 1.02
Run 2
Sample 8
31 205 1899 7115 3.21 0.87
Run 1
Sample 8
33 151 1808 6511 3.59 1.01

Run 2




Supplementary Figure S3. Comparison of NSAF values.
NSAF values are plotted on a log scale.
proteins that were identified in both runs from metadb
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Supplementary Figure S4. Comparison of NSAF values.
NSAF values are plotted on a log scale.

proteins that were identified in both runs from metadb.
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Supplementary Figure S5. Comparison of NSAF values for Samples 7 and 8. NSAF
values were averaged amongst two individual technical runs pre sample and plotted on a
log scale. The dark blue squares represent all of the proteins identified inreptdh sa

from dbl The straight diagonal line is for visualizing the location of all proteins tloat ha
approximately equal expression in both samples

-5.5

-3.5

25

Sample 8 (Replicates averaged)

-0.5

P 68 & b S4B & -—s &
T + o g

-05 -15 -25 35 -4 .5 55
Sample 7 (Replicates averaged)




Supplementary Table S9. Tab one Proteins found in both samples andtesplith dbl. Tab
two proteins showing abundance differences based on NSAF calnsl&amples 7 and 8 with
db1l.

Supplementary Table S10. Tab one Proteins found in both samplespdicdtes with metadb.
Tab two proteins showing abundance differences based on NSAF cafwil@amples 7 and 8
with metadb.

Supplementary Table S11. All identified hypothetical proteins aedigied functions. Column

B is original predicted function, column C is the new computatipredicted function. More
detailed listing can be found on website.
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