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Summary

As random shotgun metagenomic projects proliferate and become the dominant
source of publicly available sequence data, procedures for best practices in their
execution and analysis become increasingly important. Based on our experience at the
Joint Genome Institute, we describe step-by-step the chain of decisions accompanying a
metagenomic project from the viewpoint of a bioinformatician. We guide the reader
through a standard workflow for a metagenomic project beginning with pre-sequencing
considerations such as community composition and sequence data type that will greatly
influence downstream analyses. We proceed with recommendations for sampling and
data generation including sample and metadata collection, community profiling,
construction of shotgun libraries and sequencing strategies. We then discuss the
application of generic sequence processing steps (read preprocessing, assembly, and gene
prediction and annotation) to metagenomic datasets by contrast to genome projects.
Different types of data analyses particular to metagenomes are then presented including
binning, dominant population analysis and gene-centric analysis. Finally data
management systems and issues are presented and discussed. We hope that this review
will assist bioinformaticians and biologists in making better-informed decisions on their

journey during a metagenomic project.

Introduction

For the purposes of this review, we define metagenomics as the application of
random shotgun sequencing to DNA obtained directly from an environment sample or
series of related samples. This is to distinguish it from functional metagenomics,
reviewed elsewhere (54), whereby environmental DNA is cloned and screened for
specific functional activities of interest. Metagenomics is a derivation of conventional
microbial genomics, with the key difference that it bypasses the requirement for obtaining
pure cultures for sequencing. Therefore metagenomics holds the promise of revealing the
genomes of the majority of microorganisms that cannot be readily obtained in pure
culture (58). In addition, since the samples are obtained from communities rather than

isolated populations, the structure of and interactions in the communities can potentially
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be elucidated. In this review we address the bioinformatic aspects of analyzing
metagenomic datasets, stressing the differences with standard genomic analyses.
Although our focus is on bioinformatics, we will begin by considering experimental
planning and implementation of metagenomic projects as these can have major impacts
on the subsequent bioinformatic analyses.

Throughout the review we will follow the workflow of a typical metagenomic
project, summarized in Fig. 1. This process begins with sample and metadata collection,
proceeds with DNA extraction, library construction, sequencing, read preprocessing and
assembly. Genes are then called on either reads or contigs, or both, and binning is
applied. Community composition analysis is employed at several stages of this workflow,
and databases are used to facilitate the analysis. All of these stages will be discussed in

detail below.
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Fig. 1. A typical workflow for metagenomic projects at the JGI. The process begins
with sample and metadata collection, proceeds with DNA extraction, library construction,
sequencing, basecalling, vector and quality trimming, assembly, gene prediction and
binning. Community composition analysis is applied in several forms, both prior and
during a metagenomic project. See text for discussion.



110

115

120

125

130

135

Guide to metagenomics Kunin et al

Pre-sequencing considerations

Community composition

Metagenomic bioinformatics should begin before a single nucleotide of DNA has
been sequenced. When a community is selected for metagenomic analysis, its species
composition (number and relative abundance and if possible genome sizes) should be
assessed with respect to the amount of allocated sequence. The community composition
has a deciding influence on the types of analyses that can be performed on the sequence
dataset. A complex microbial community usually includes bacteria, archaea, microbial
eukaryotes and viruses. Historically however, microbiologists are trained to think of
themselves as either bacteriologists or virologists or protistologists and ecological studies
investigating more than one of these taxonomic groups are still remarkably uncommon
(70). To be frank, the authors are no exception, therefore when we talk about community
composition in the following sections, we are primarily referring to bacterial and archaeal
species that have been the focus of most of our metagenomic studies.

At current sequencing capacity, metagenomic sequencing of communities
containing eukaryotes, in particular protists, is mostly cost-prohibitive because of their
enormous genome sizes and low gene-coding densities (127). Therefore selecting a
community that does not contain eukaryotes, or from which eukaryotes or their DNA can
be excluded, is an important consideration prior to embarking on a metagenomic analysis.
For example, one of the main reasons that the hindgut of a higher, rather than lower
termite was sequenced (138) is because the former lacks protist symbionts. When
sequencing microbial communities that are found in tight symbiotic relationships with
eukaryotic hosts, removal of host cells or extracted host DNA is important to avoid
eukaryotic contamination. For example, in the analysis of a gutless worm microbial
symbiont community, host cells were physically separated from bacterial endosymbiont
populations using a nycodenz gradient (142).

Simply excluding eukaryotes from a metagenomic analysis is not ideal from an
ecological perspective as it compromises our ability to assess a microbial community in
its entirety. An alternative or complementary strategy could be to obtain molecular data at

the RNA (metatranscriptomics) or protein (metaproteomics) level, thus bypassing the
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problem of large amounts of non-coding eukaryotic sequence data. Emerging sequencing
technologies such as pyrosequencing (84) may ultimately allow metagenomic sequencing
of communities comprising eukaryotes, but the data is likely to present numerous
challenges for many downstream bioinformatic analyses (see Selecting the sequencing
technology).

Within the sequence-tractable bacterial, archaeal and viral components of a
community, a key variable is species abundance distribution, in particular the presence or
absence of dominant populations. Dominant populations that comprise more than a few
percent of the total number of cells or virions in a community will have higher
representation in a metagenomic dataset resulting in a greater likelihood of assembly and
recovery of contigs (contiguous genomic stretches comprised of overlapping reads). Note
that we define assembled contigs arising from a population as composite genomic
fragments because each component read likely comes from a different individual within
the population in which individuals are usually not clonal.

We will distinguish between two basic types of community composition throughout
this review; “complex” and “simple”. Communities of the first type lack populations
abundant enough to result in assembled contigs >10 kbp (Fig. 2). Such communities also
tend to be species rich, for example soil (129). Communities of the second type have one
or more dominant populations producing contigs >10 kbp up to several 100 kbp.
Examples include simple communities that are mostly comprised of a few dominant
species, such as acid mine drainage (132) or a gutless worm symbiont community (142).
Some communities have hallmarks of both types, in which dominant populations are
flanked by a long tail of low abundance species, such as Enhanced Biological Phosphorus
Removing (EBPR) sludge (43).

Sequencing of a community with dominant species is likely to reproduce a
significant part of the genomes of the dominant organisms, and in some cases near
complete genomes (43, 132). Therefore, analysis of large genomic fragments is similar to
conventional comparative genomics. In contrast, sequences obtained from a complex
system without dominating species will not contain large genomic fragments of any

component population using current technologies (129, 133). The analysis therefore will
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normally be focused on averaged properties of the community, such as gene content and

abundance, since information on any given component species will be sparse.
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Fig. 2. Contig size distribution of assembled metagenomic datasets from seven
microbial communities. The grey area denotes small contigs with a higher likelihood of
chimeric assemblies (see Assembly). Communities with contigs found mostly in this zone
(termite hindgut (138), soil and whalefall (129)) lack dominant populations whereas
communities with larger contigs outside this zone have dominant populations; gutless
worm (142), phosphorus-removing sludges from lab-scale bioreactors (43) and an acid
mine drainage (AMD) biofilm (132).

Selecting the sequencing technology

The number of sequencing technologies is currently expanding, drawn by demand
to bring down the cost of sequencing. While Sanger sequencing (112, 113) so far remains
the major source of metagenomic sequence data, alternative strategies have also been
used, namely pyrosequencing (84) which has been applied to viral (8) and bacterial (32)
communities. Advantages of pyrosequencing over Sanger sequencing include much
lower per base cost and no requirement for cloning (108). The latter is useful for both
bacterial and virion communities because of demonstrated cloning bias of bacterial genes

(121) and promoters (44) in E. coli and difficulties with cloning viral nucleic acids (13).
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However, the major disadvantage of pyrosequencing is the average read length, initially
~100 bp on the GS20 platform and currently ~200 bp on the GS FLX platform. Reads of
this length present additional challenges for assembly and gene calling. Indeed, most
studies that have used pyrosequencing for metagenomic analysis did not attempt
assembly or gene calling, instead relying on similarity searches of the short reads against
a reference database as the basis of the analysis (8, 32) (see also Table 1). Therefore, the
bioinformatics processing sections below mostly refer to Sanger data. Notably however,
454 Life Sciences 1is currently evaluating 400-500 bp (XLR) pyroreads
(http://www.454.com/) and if technical problems associated with longer reads, such as
reagent dilution and maintaining nucleotide extension synchronization (108), can be
adequately addressed to produce read quality comparable to Sanger data, then
pyrosequencing will be able to supplant Sanger sequencing as the preferred data type for
metagenomic analysis.

Combinations of different sequencing technologies have been evaluated for
producing high quality draft assemblies of microbial isolates (47) that could be applied to
metagenomes containing one or more dominant populations. The Illumina
(http://www.illumina.com) and ABI SOLiD (http://www.appliedbiosystems.com)
sequencing technologies have not yet been applied to environmental samples, but their
application is likely to be limited to resequencing of dominant populations since reads are
currently too short (25-35 bp) to be used for de novo assembly or gene calling. One next
generation sequencing technology worth keeping an eye on is real time single molecule
sequence determination that aims to produce multi-kilobase length reads at throughputs
comparable to the short read technologies (67) and (http://visigenbio.com). If such an
ambitious goal can be achieved with acceptable sequence quality and cost, then this
platform will become the choice for metagenomic studies, since even single reads will
contain contextual data of one or more neighboring genes and assembly will be

simplified.

How much sequence data?

A common question asked by researchers embarking on their first metagenomic

analysis is how much sequence data should they request or allocate for their project.
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Unlike genome projects, metagenomes have no fixed end point, i.e. a completed genome.
Therefore, decisions on how much sequence data to generate for an environmental
sample have been based on pragmatic reasons, chiefly sequencing budget. For example,
100 Mbp is a typical Sanger sequencing request for a metagenomic project through the
JGIs community sequencing program (http://www.jgi.doe.gov/CSP/index.html).
However, with the per base cost of sequencing continuing to drop, other more objective
criteria can be brought to the fore, such as estimates of sequence coverage (number of
reads covering each base in a contig) of the community. Since species do not have
uniform abundance in a community, it is simpler to address coverage of individual
populations for which an approximate average genome size is known. For example if a
dominant population represents 10% of the total community and 100 Mbp are obtained,
then this population is expected to be represented by 10 Mbp, assuming completely
random sampling of the community. If the average genome size of individuals in this
population is 2 Mbp, then an average of 5X coverage of the composite population
genome will be expected. To place this in perspective, 6-8X coverage of microbial
isolates is a common target to obtain a draft genome suitable for finishing. Ultimately, the
objectives of the study should guide sequence allocation. For example, if the aim is to
determine the SNP frequency profile of a dominant population as part of a population
genetic analysis (63), then, ideally, a coverage of 20X or higher will be needed for the
dominant population. If the aim is to identify over-represented gene functions in the
community as a whole (see gene-centric analysis), then much less sequence data will be
needed. Indeed, we recently found that extremely low coverage of a highly complex and
stratified hypersaline mat community (estimated dominant population coverage of
<0.01X) was still sufficient to detect genetic gradients in the mat community using 10

Mbp per layer (Kunin et al., unpublished data).

Sampling and data generation

Sample collection for metagenomes and other molecular analyses

Metagenomes are sequence inventories of genomic DNAs from environmental

samples. Extracting and purifying high quality DNA is still one of the main bottlenecks in

10



250

255

260

265

270

275

Guide to metagenomics Kunin et al

metagenomics, compounded by the fact that there is not a “one size fits all” extraction
method for all environmental samples. Low biomass samples yield small quantities of
DNA that may be insufficient for library construction. In general microgram quantities of
genomic DNA are required for cloning (see clone libraries) and pyrosequencing. Whole
genome amplification has been used on small yields of environmental DNAs to provide
microgram quantities for sequencing (8), but relative representation of genomic DNAs
may be compromised by this process (105). This is important for downstream
comparative analyses, particularly between samples that used whole genome
amplification and those that did not.

In many cases it may be beneficial to collect additional sample material for
complementary analyses. Examples of additional molecular analyses that will leverage
and enhance metagenomic data include metatranscriptomics (50, 70), metaproteomics
(76) and viral metagenomics (33). While it is sometimes possible to resample many
habitats, two temporally separated samples may not be directly comparable. For example,
habitats that have seasonal patterns such as the marine water column (28) can not be
considered equivalent at different times of the year. Even in habitats that do not show
seasonal variation such as controlled lab-scale bioreactors, community composition may
be influenced by predators, parasites or other variables that confound comparisons of
metagenomic data. For example, from an initial metagenomic analysis of two lab-scale
sequencing batch reactors, we implicated bacteriophage as important determinants in
driving bacterial community composition (50). Unfortunately, we did not have
appropriately stored material from the original sampling and characterized the virion
community in a reactor sample taken 7 months after the initial metagenomic sampling.
During this time, both the bacterial and viral communities had changed complicating the
comparative analysis. It is of course impossible to store sample material in the
appropriate manner for every conceivable downstream molecular analysis, but as a
number of techniques become more routine, such as metatranscriptomics,
metaproteomics, metabolomics and viral metagenomics, subsamples can be
inexpensively stored in standardized ways to provide researchers with the potential to

perform these analyses if needed.

11
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Sample metadata collection

Collecting collateral, non-sequence data associated with an environmental sample
greatly enhances the ability to interpret the sequence data, particularly for comparative
analysis of temporal or spatial series (29, 133). Such “metadata” include biochemical
data, such as pH, temperature, salinity; geographical data such as GPS (global positioning
system) coordinates, depth, height and sample processing data, such as collection date,
DNA extraction method and clone library details. The type of metadata can vary
considerably depending on the sample type, for instance environmental and clinical
samples historically have very different metadata. Databases housing metagenomic data
already include varying degrees of metadata (86, 117), but cross-referencing such data is
problematic due to a lack of consistency and standards. Initiatives are underway to
standardize metadata collection, e.g. by use of a controlled vocabulary where possible
(38). Such data are expected to prove invaluable once enough data is generated to

compare communities along environmental, spatial or longitudinal gradients (133).

Pre-metagenome community composition profiling

To facilitate decisions on sequence allocation and processing, the community
composition of the environmental sample under study should be assessed prior or at least
in parallel to the metagenomic analysis using a conserved marker gene survey, ideally
conducted on the same sample. Indeed, several samples could be prescreened using
marker genes to aid in selection of a subset for metagenomic analysis. The small subunit
ribosomal RNA (16S rRNA) gene is usually the marker gene of choice owing to its
widespread use and consequent large reference database (21, 30). One drawback of the
16S rRNA gene is that copy number can vary by an order of magnitude between bacterial
species that, along with PCR induced biases (124, 136), can skew estimates of
community composition. PCR products are normally cloned and sequenced to provide a
semi-quantitative phylogenetic profile of a community. At the JGI, we typically sequence
one 384 well plate containing 16S clones (called a ribosomal panel) to provide a baseline
estimate of community structure.

For most microbial communities however, 384 clones is a gross undersampling of

diversity and highlights only relatively dominant taxa. Other approaches that have higher

12
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resolution include microarrays to which fluorescently labeled 16S PCR amplicons or
rRNAs are applied (15, 100, 103). For example, the Phylochip comprises 500,000 probes
redundantly targeting ~9000 phylogenetic groups (operational taxonomic units) and has
one to two orders of magnitude higher sensitivity than a PCR clone library sequenced to
~107 (15). On the downside, species that are not represented by probes on the microarray
will be missed and relative abundance of sequence types cannot be easily estimated. This
means that dominant populations are currently difficult to detect from Phylochip data
alone.

Pyrosequencing has recently been applied to PCR-amplified 16S rRNA genes,
providing 100 or 200 bp 16S “pyrotags” to evaluate community composition (57, 59,
120). This approach has the benefits of high resolution (due to the large number of
pyrotags; ~500,000 per bulk 454-FLX run) comparable to a 16S microarray, while
retaining relative amplicon abundance like a clone library. The main limitation of this
approach is the reduced phylogenetic resolution afforded by 100-200 bp, so the method is
dependent on a high quality reference 16S database for accurate classification of
pyrotags.

Fluorescence in situ hybridization (FISH) using group-specific 16S rRNA-targeted
oligonucleotide probes (7, 58) also can be used to profile community composition.
Fluorescently labeled cells can be quantified by microscopy either manually or with the
aid of image analysis software (24), or in combination with flow cytometry (115). In
principle, FISH-based counting is the most accurate method for determining relative and
absolute abundance of populations since it is not affected by 16S copy number variation.
In practice, only a few phylogenetic groups can be targeted per sample due to logistical
considerations (e.g. number of fluorochromes that can be visualized simultaneously,
availability and cost of suitable probes) and for gross community composition estimates,
these tend to target broader groups, such as domains or phyla. Therefore, complete or
even widespread population-level characterization of communities using FISH has not

been feasible to date.

13
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Shotgun library preparation

Shotgun clone libraries for genome sequencing are typically prepared using three
different average sizes of cloned DNA; 3, 8 and 40 kbp (fosmids). This primarily
facilitates assembly and finishing since longer clones will have a greater likelihood of
spanning gaps in the genome assembly. The JGI uses a ratio of 4:4:1 for 3, 8 and 40 kbp
end sequence data to economically produce high quality draft assemblies (largest,
correctly assembled contigs). We have more or less adopted the same insert size libraries
and sequencing ratios for metagenomic projects, even though the end product may be
vastly different from a genomic project. In the case of microbial communities with one or
more dominant populations, the ratio of insert size sequencing will serve the same
function of improving assembly (and occasionally finishing) of composite population
genomes. For microbial communities lacking dominant populations, the main purpose of
the larger size inserts is to provide gene neighborhood context, usually through complete
sequencing of selected fosmids (36, 138). Bacterial artificial chromosomes (BACs) allow
access to even larger pieces of contiguous genomic DNA from environmental samples
(11), however they are technically more demanding to prepare than fosmids and small
insert libraries.

Occasionally, the environmental sample will dictate which libraries can be created.
For example, despite repeated attempts, DNA extracted from acid mine drainage biofilm
samples could not be obtained in high enough purity and molecular weight to create an 8
kbp or fosmid clone library limiting the study to data from a 3 kbp library only (132).
Preparation of clone libraries requires between 5 pg (for 3 kb library) and 20 pg (for a
fosmid library) of DNA which often cannot be obtained directly from low biomass
communities. Whole genome amplification via multiple displacement amplification can
circumvent this problem, but the average size of the amplified DNA, ~15 kbp, is too short
to allow fosmid library construction, although fosmid libraries have been reported from

amplified environmental DNA (94).

Sequencing

At the JGI, metagenomic projects are sequenced in at least two stages for quality

control (QC). The first stage is a 20 plate QC of a 3 kbp insert (pUC) library generating

14
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approximately 10 Mbp of Sanger sequence data followed by a preliminary informatic
analysis to guide allocation of the remainder (majority) of the sequence allotment. First
and foremost the QC sequencing confirms that the shotgun clone libraries produce
sequence data of sufficient quality to warrant further sequencing. For genome projects
sufficient quality typically means that 95% of clones produce reads with at least 650 Q20
bases (see Sequence read preprocessing), i.e. a 95% pass rate. For metagenomic projects
this bar is dropped sometimes to as low as an 85% pass rate because of the greater
difficulty in making high quality libraries from environmental DNAs, and often precious
nature of difficult to collect environmental samples. The preliminary analysis usually
involves assembly but not gene prediction primarily to confirm initial community
composition estimates but also to determine if populations can be easily discriminated in
the data. For example, similarity searches against public nucleotide and protein databases
will identify populations via conserved marker genes and provide some indication of
relative abundance according to the size and read depth of the contig that the marker
genes were found on. A histogram of contig read depth will alert the researcher to the
presence of one or more dominant populations, since 10 Mbp is sufficient to result in
assembly of genomic fragments from dominant populations. Plotting contig depth against
another variable, such as GC content, often helps to discriminate populations. If a
dominant population was expected based on community composition profiling and not
noted by contig read depth then this could indicate greater than expected
microheterogeneity in the population hindering assembly (see Finishing) or a technical
error in the experimental work-up. For example, QC sequencing of enhanced biological
phosphorus removing (EBPR) sludge from a lab-scale bioreactor revealed that the
primary target organism, Candidatus Accumulibacter phosphatis Type I, was grossly
under-represented relative to the initial community composition estimate (4% vs 60%).
The discrepancy arose because this organism was poorly lysed in the DNA extraction, a
fact that was missed because the community was profiled using a Type I specific FISH
probe (Shaomei He and Katherine McMahon, personal communication). At this point, it

was not too late to re-extract DNA from the EBPR sludge using a different method.
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Sequence processing

Processing sequence data from metagenomic and genomic samples share many
features in common namely read preprocessing, assembly including selected instances of
finishing (dominant populations) and gene prediction and annotation. As mentioned
earlier, the key difference between genomes and metagenomes is that the latter, with the
exception of finishable dominant populations, do not have a fixed end point, i.e. one or
more completed chromosomes as for microbial isolate genomes. This means that
metagenomes rarely progress beyond draft assemblies and lack many of the quality
assurance procedures associated with producing finished genomes. Therefore, greater
care needs to be taken when processing sequences of metagenomic datasets than genomic

datasets.

Sequence read preprocessing

Preprocessing of sequence reads prior to assembly, gene prediction and annotation
is a critical and largely overlooked aspect of metagenomic analysis. Preprocessing
comprises base calling of raw data coming off the sequencing machines, vector screening
to remove cloning vector sequence, quality trimming to remove low quality bases (as
determined by base calling) and contaminant screening to remove verifiable sequence
contaminants. Errors in each of these steps can have greater downstream consequences in
metagenomes than genomes and will be discussed in turn.

Basecalling is the procedure of identifying DNA bases from the readout of a
sequencing machine. There are surprisingly few choices for basecallers and the
differences between them for the purposes of metagenomics are small, therefore we have
no specific recommendation from the ones described below. By far the dominant
basecaller used today is phred (37). Phred initiated the widespread use of probabilistic-
based quality scores, which all later basecallers adopted. Phred quality scores are
estimates of per base error probabilities. The quality score ¢ assigned to a base is related

to the estimated probability p of erroneously calling the base by the following formula:

g = -10 * logl0(p)

16
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Thus, a phred quality score of 20 corresponds to an error probability of 1%. Other
frequently used basecallers are Paracel’s TraceTuner (www.paracel.com) and ABI’s KB
(www.appliedbiosystems.com), which behave very similarly to phred converting raw
data into accuracy probability base calls. In general however, metagenomic assemblies
have lower coverage than genomes and therefore errors are more likely to propagate to
the consensus. For complex communities, the majority of reads will not assemble into
contigs, and base calling errors in these unassembled reads will appear directly in the
final dataset.

Vector screening is the process of removing cloning vector sequences from
basecalled sequence reads. Complete and accurate removal of cloning vector sequence is
especially important in metagenomic datasets since these datasets often have large
regions of very low coverage in which each read uniquely represents a part of a genome.
Assembly of these data without vector trimming can produce chimeric contigs in which
the vector sequence, being common to most reads, acts to draw together unrelated
sequences (Fig. 3). Also, genes may be predicted on the vector sequence introducing
phantom gene families into downstream analyses (see gene-centric analysis).

A number of different tools are available for vector screening including
cross_match (www.phrap.org), LUCY (18) and vector clip (122). Also, some assemblers
include vector trimming as part of a preprocessing pipeline including PGA
(http://www.paracel.com) and Arachne (10, 61). The most commonly used tool is
cross_match, which uses a modified Smith-Waterman algorithm to identify matches to
vector that are extended to produce optimal alignments. However, cross match requires
exact matches to vector sequences, and has no expectation for the location of vector
sequence in a read. In our experience, this program frequently fails to remove vector
sequence because of frequent basecalling errors on the edges of reads where vector
sequence is found. Another vector trimming tool, LUCY, avoids this problem by
specifying error rates as a function of sequence position. In every case that we have tested
to date LUCY results are substantially better than those achieved with cross_match. The
downstream effects of improved vector screening are fewer spurious protein predictions
and fewer errors in prediction of real protein coding sequences, particularly open reading

frames at the ends of reads (see gene prediction).
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Fig. 3. Assembly screenshots from the Consed (49) program. The consensus
sequence is shown at the top of the display and is derived from aligned reads shown
below the consensus. Read identifiers and orientation (arrow heads) are shown on the left
of the display. A. An example of a good quality assembly with high read depth. Note the
consistent alignment of all residues. B. An example of a misassembled contig drawn
together by a common repeat sequence (at left). Note the misaligned residues colored in
red, and meaningless ‘consensus’ sequence that does not correspond to any single read
below it. C. A chimeric contig produced by co-assembly of closely related strains
(haplotypes) in a metagenomic dataset. Note that the consensus sequence is a chimera of
the two haplotypes, and likely does not represent an extant organism.

Most post-processing pipelines appear to ignore base quality scores associated with
reads and contigs and few take positional sequence depth into account as a weighting
factor for consensus reliability. Therefore, low quality data will be indistinguishable to
the average user from the rest of the dataset and should be removed. An extreme example
of a poor quality read that inadvertently passed through to gene prediction is shown in
Fig. 4. We recommend quality trimming to be performed after vector screening,
described above. The reason is that trimming low quality bases might truncate vector
sequence and impede the ability of vector-screening programs to recognize the remainder
of the vector. In such cases significant parts of vector might still remain for the next

stages of the pipeline. LUCY combines vector and quality trimming in one tool.
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Fig. 4. Part of the chromatogram of a low quality read without quality trimming on
which multiple non-existent genes were predicted (bottom panel). Visualized with the
TreV program (122).
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Recognizing sequence contamination of metagenomic datasets, other than vector
sequence, is non-trivial. Sanger datasets from clonal organisms are routinely screened for
E. coli genomic sequence because E. coli is the cloning vector host, and small amounts of
its genome may get through plasmid purification. Pyrosequencing which does not rely on
cloning DNA into E. coli, will not have this problem, however other types of
contamination cannot be excluded. For metagenomic datasets, host contamination
screening should be considered carefully because the environment under study may have
E. coli or close relatives as bona fide members of the community and screening would
therefore bias representation of these species in the dataset. Occasionally mislabeling of
sequence plates occurs in production pipelines. These types of cross contamination
between two datasets can usually be detected if one of the datasets is from an isolate by
differences in GC content or BLAST. If plates from two metagenomic projects are mixed
up, the contamination may be harder to detect since neither dataset is likely to be
homogeneous. It is quite common that reads and even contigs are not incorporated into
finished microbial genomes and these are usually dismissed as either low quality or
contaminant sequences. In contrast, metagenomic projects will keep high quality
contaminating reads and contigs as they will probably not be easily distinguishable from
the rest of the dataset, and may therefore skew downstream analyses such as gene centric
analysis depending on the degree of contamination. Presently, there is no solution to this
quandary and suspected contaminant sequences would need to be investigated on a case-

by-case basis.

Assembly

Assembly is the process of combining sequence reads into contiguous stretches of
DNA called contigs, based on sequence similarity between reads. Contigs contain
multiple reads linked together by overlapping sequence based on a minimum length of
identical bases. The consensus sequence for a contig is either based on the highest quality
nucleotide in any given read at each position or based on majority rule, i.e. the most
frequently encountered nucleotide at each position. The number of reads underlying each

consensus base is called depth or coverage. Sequencing is typically performed from both
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sides of an insert in a vector plasmid, and such pairs are called paired reads or mate pairs.
Knowledge of the approximate insert size of the library facilitates producing a more
accurate assembly since mate pairs provide an external constraint to guide assembly. The
presence of paired reads in two different contigs allows those contigs to be linked into
larger non-contiguous DNA sequence called a scaffold whose inter-contig gap size can be
estimated based on the insert size of the read pairs. For this reason, large insert clones
such as fosmids are particularly useful for improving assemblies.

The major cause of misassembly in genomic projects is repetitive regions that can
be resolved in the finishing process (74). Assembly of metagenomic projects will also be
confounded by repeats, but pose additional assembly challenges in the form of non-
uniform read depth due to non-uniform species abundance distribution and the potential
for co-assembly of reads originating from different species. Therefore, not only can
misassembled reads be retained in the final published dataset due to the absence of
finishing, but reads from more than one species can be assembled together producing
chimeric contigs. Co-assembly is more likely to happen with reads from closely related
genomes where the sequence similarity is higher (we routinely observe homologous
regions of two or more strains with up to 4% nucleotide sequence divergence co-
assembling) but has been found between reads originating from phylogenetically distant
taxa with conserved genes serving as the focal point for misassembly. For example, a
contig from a surface seawater metagenome comprised reads originating from bacteria
and archaea as evidenced by gene calls, with the 16S rRNA gene serving as the focal
point in this instance (28). A recent simulation study found that chimeras are particularly
prevalent among contigs sized below 10 kbp (89). High complexity microbial
communities lacking dominant populations rarely produced contigs larger than 10 kbp
(Fig. 2), prompting the recommendation that such datasets should not be assembled at all
(89).

A variety of assembly programs are publicly available, including Phrap
(www.phrap.org), Arachne (10, 61), the Celera Assembler (92), PGA
(http://www.paracel.com/), and cap3 (56). For a description and history of these
assemblers we refer the reader to (74). Most currently available assemblers were designed

to assemble individual genomes, or in some cases genomes of polyploid eukaryotes,
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however they were not designed to assemble metagenomes comprising multiple species
with non-uniform sequence coverage, and therefore their performance with metagenomic
datasets varies significantly (89). For example, the Celera assembler does not assemble
contigs with atypically high read depth (based on an expected Poisson distribution)
because it interprets them as potential assembly artifacts due to co-assembly of repeats,
whereas in metagenomic data, they may be bona fide contigs arising from dominant
populations (133). A second example; Phrap is optimized for making maximal use of its
input data using a “greedy” algorithm, and will extend contigs as far as possible. This is a
good approach for assembling low-coverage non-repetitive regions from low quality
reads as it makes the most of the available data, particularly if the assembly will be
verified by finishing, but is not desirable for metagenomes since it is more likely to
produce chimeras when data includes reads from multiple strains and species. More
conservative assembly programs, such as Arachne have been shown to produce smaller
but more reliable contigs than Phrap (89).

A useful auxiliary approach to de novo assembly is comparative assembly, that is,
aligning reads and/or contigs to a reference genome of a closely related organism. The
AMOS Comparative assembler has been developed specifically for this purpose (106).
For metagenomic datasets, this can improve assembly of dominant populations since it
provides a mechanism to span hypervariable regions in a composite population genome
and is computationally much less expensive than de novo assembly (3). A major caveat of
the approach however is that it will only be useful for a small subset of the average
metagenomic dataset since reference genomes cover only a fraction, and a highly biased
fraction at that, of microbial diversity (see Post-sequencing community composition
estimates).

One thing is clear, there is no magic bullet for assembling metagenomic datasets
and all assemblers will make numerous errors. Ideally, therefore, every metagenomic
assembly should be manually inspected for errors before public release. Assembly errors
can be easily identified with visualization tools such as Consed (Fig. 3) (49) which are
used to facilitate genome finishing, however the sheer scale of most metagenomic
datasets precludes manual inspection let alone correction of all identified assembly errors.

One approach we have taken to address this limitation is to make two or more assemblies
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of the same data using different assemblers (43) to facilitate identification of
misassemblies during the downstream analysis phase following gene calling. It is
however, feasible and worthwhile to resolve misassemblies of the largest contigs in a
metagenomic assembly, especially contigs greater or equal in length to fosmids, using
standard initial steps in the finishing process (74).

The final products of assembly, contigs and scaffolds, are submitted to public
databases as flat text files, meaning that all information about the underlying reads is lost
including sequencing depth and quality scores of each base, length and overlaps between
reads, and quality of vector trimming. This is not ideal for two reasons. Firstly, quality of
the contigs cannot be assessed and is also not taken into consideration by tools such as
BLAST. Secondly, meaningful polymorphisms in the data due to co-assembled strains
(haplotypes, see Analyzing dominant populations) are lost because a single consensus
sequence is submitted. Methods for weighting consensus accuracy and preserving
polymorphism information for subsequent analyses are needed. A first step in this
direction has been taken by the public databases with the establishment of the Trace and
Assembly Archives which archive raw read files and assemblies associated with
submitted genomic and metagenomic datasets respectively (139). In practice however,
most users will only work with the flat text consensus data and ignore read and consensus
quality unless it is presented to them in a more convenient user interface. Such interfaces
are beginning to be provided by dedicated comparative genome and metagenome

platforms (see Data Analysis and Management).

Finishing

Genome closure and finishing is commonplace for microbial isolate projects, and
part of the standard processing pipeline at sequence facilities such as JGI. For most
metagenomes, finishing is not possible. However, for dominant populations within
metagenome datasets that have draft level coverage, finishing may be an option. This is
largely dependent on the degree of microheterogeneity within the population. Genome
rearrangements such as insertions, deletions and inversions, will break assemblies,
whereas point mutations usually will not. Even in instances where chromosomal walking

along large insert clones is used instead of shotgun sequencing, microheterogeneity can
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still complicate assembly (52). However, there are now several examples in the literature
of complete or near-complete composite population genomes of uncultivated organisms
derived from environmental sources including Cenarchaeaum symbiosum, the sole
archaeal symbiont of a marine sponge (52), Kuenenia stuttgartiensis, an anaerobic
ammonia-oxidizing planctomycete sequenced from a lab-scale bioreactor sludge (123), a
Rice Cluster 1 methanogen from an enrichment culture (36), Candidatus Cloacamonas
acidaminovorans, the first sequenced representative of candidate phylum WWEI, from
an anaerobic digestor (102) and Ferroplasma acidarmanus, one of a handful of dominant
populations in an acid mine drainage biofilm (4). In the last case, the assembly was
facilitated by the availability of an isolate genome (ferl) obtained from the same habitat.
The Kuenenia, Rice Cluster 1 methanogen and Candidatus Cloacamonas genomes,
however, could be assembled without reference to an isolate genome because the
populations were near clonal. We make the general observation that sequence
microheterogeneity within populations often seems to reflect spatial heterogeneity within
the ecosystem from which the populations were derived. Homogenized systems, such as
bioreactors or enrichment cultures, have produced composite population genomes with
very low levels of polymorphism (36, 102, 123) perhaps due to the higher likelihood of
selective sweeps through the population curtailing genomic divergence (20). Therefore, if
the goal is to assemble a complete population genome from an environmental sample, we
recommend use of ecosystems with low spatial heterogeneity if at all possible, or by

finer-scale sampling to reduce the effect of spatial heterogeneity.

Gene prediction and annotation

Gene prediction (or gene calling) is the procedure of identifying protein and RNA
sequences coded on the sample DNA. Depending on the applicability and success of the
assembly, gene prediction can be done on post-assembly contigs, on reads from the
unassembled metagenome, and finally for a mixture of contigs and individual
unassembled reads.

There are two main approaches for gene prediction. The ‘evidence-based’ gene
calling methods use homology searches to identify genes similar to those observed

previously. Simple BLAST comparisons against protein databases, as well as tools like
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Critica (9) and Orpheus (42) use such an approach. Conversely, the second approach, ‘ab
initio’ gene calling, relies on intrinsic features of the DNA sequence to discriminate
between coding and non-coding regions allowing the identification of genes without
homologs in the available databases. The use of gene training sets, i.e. sets of parameters
derived from known genes of the same or related organisms can enhance the quality of
the predicted genes for some of those programs (e.g.  fgenesB
(http://www.softberry.com)), while others are self trained on the target sequence
(Genemark (12), GLIMMER (27), metagene (95)).

Pipelines that use a combination of evidence-based and ‘ab initio’ gene calling are
frequently used for complete genomes. In the first step, genes are identified based on
homology searches of sequence of interest versus public databases. Hits to genes in
databases are considered to be real genes, and can be used as a training set for the ab
initio gene calling programs. Subsequently an ‘ab initio’ method fine-tuned for a
particular genome is used to identify more genes that were missed in the previous step.

One such pipeline called mORFind uses a combination of Orpheus, Critica and Glimmer.
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Table 1. Gene prediction methods used in metagenomic projects.

Gene
Project Institution Reference | prediction
method
Acid Mine Drainage biofilm communities from Univ of California, Berkeley (132) Foenesb
Richmond mine Joint Genome Institute genes
Aquatic microbial communities from Drinking- Univ of Goettingen (114) Blast
water networks
Aquatic microbial (.:omﬂlmmtlesfrom Soudan Mine SDSU (32) Blast
in Minnesota
Fossil microbial community from Whale Fall . .
at Santa Cruz Basin of the Pacific Ocean Joint Genome Institute (129) Fgenesb
J. Craig Venter Institute
Gut microbiome of Human healthy adults Washington Univ (46) Blast
Stanford univ
Gut mzcrobzon.w;? of Human healthy Japanese Univ of Tokvo (72) Metagene
infants and adults ~NIV.0L LY
Gut microbiome of Mouse lean and obese Washington Univ (130) Blast
Gut viriome of Human healthy adults Genome Institute of Singapore (144) Blast
Marine archaeal anaerobic methane oxidation Joint Genome Institute (53) f B
(AOM) communities from Eel River sediments MBARI genes
Marine mleI’Oblal commumtllesfrom B{’as del Port Univ Miguel Hernandez (75) Glimmer
saltern in Santa Pola Spain crystallizer pond
Similarity
Marine microbial communities from Global Ocean . . searches and
Sampling (GOS) J. Craig Venter Institute (109) filtering of
ORFs
Marine microbial communities from Sargasso Sea J. Craig Venter Institute (133) Blast
Marine Plankton communities from deep . .
Mediterranean sea lonian station Km3 Univ Miguel Hernandez (88) Blast
Marine planktonic communities from Hawaii . .
Ocean Times Series Station (HOT/ALOHA) loint Genome Institute (29) Blast
Marine RNA viral communities from coastal http://www.sfu.ca/ (23) Blast
samples Univ of British Columbia s
Marine viral co;lnmumtlesfrom ocean SDSU ®) Blast
environments —
Olavius algarvensis (gutless worm) microbiome Max Planck Institute .
from Mediterranean sea Joint Genome Institute (142) mORFind
Oral TM7 microbial communities of Human Joint Genome Institute (83) foenesh
healthy adults Stanford Univ genes
Soil microbial communities from Minnesota Farm Joint Genome Institute (128) fgenesb
Wastewater EBPR microbial communities from Joint Genome Institute (43) fgenesb

Bioreactor
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In metagenomic sequences, genes can originate from many, frequently diverse
organisms. When dominant populations exist, their sequences can be separated from the
rest of the dataset (see binning) and the pipeline generally used for complete genomes
applied to this subset of the data. For communities or their parts that defy assembly or
assemble poorly, no training is possible. In these cases “generic” gene prediction models
can be used, or models fine-tuned to the closest phylogenetic group. For example,
MetaGene (95), a gene prediction program developed specifically for metagenomic
datasets, using two generic models, one for archaea and one for bacteria. Due to the
fragmented nature of such datasets and the quality of the sequencing, gene prediction is
further complicated by the fact that many genes are represented only by fragments,
contain frameshifts or are chimeras due to errors in the assembly. Recently a tool that
allows gene prediction despite these problems, even on short 454 reads, has been
published (69) although its performance has yet to be evaluated in real applications. The
method is based on similarity comparisons of the metagenomic nucleotide sequences
either to the same metagenome or to other external sequences and subsequent
discrimination of conserved coding sequences from conserved non-coding sequences by
synonymous substitution rates. BLAST searches are conducted on the amino acid level to
provide higher resolution than nucleotide searches.

Both evidence based and ‘ab initio’ methods have been used for the prediction and
analysis of metagenomic datasets (Table 1). Evidence-based gene calling has been used
as the sole method of gene calling in at least one metagenomic study using Sanger reads
(133) and all metagenomic studies using unassembled pyrosequence data due to the short
read lengths (Table 1). Since this approach relies entirely on comparisons to existing
databases it has two major drawbacks. Low similarity values to known sequences either
due to evolutionary distance or due to the short length of metagenomic coding sequences
and the presence of sequence errors prevent the identification of homologs. Moreover,
novel genes without similarities are completely ignored. Despite these drawbacks this
approach has been used in several studies, and can be useful for gene-centric comparisons
of metagenomes, especially in cases where the size of the sequence fragments is not
adequate for the ab initio gene prediction, such as high complexity metagenomes and

metagenomes sequenced by high throughput parallel pyrosequencing.
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Treating all open reading frames (ORFs) as putative genes usually produces
prohibitive amounts of data, contains too much noise and therefore is very hard to use.
Methods, based on features of the sequences, the size of the predicted ORFs, and the
similarity to known sequences, have been used to lower the total number of candidate
coding sequences from a population of ORFs (143).

At the JGI we are using two ‘ab initio’ gene prediction pipelines for the analysis of
metagenomic datasets. The first uses fgenesB with specific training models for sequences
that can be assigned to phylogenetic groups and generic models for the unassigned
sequences (Table 1). The second uses Genemark, which allows gene prediction without
the need for training sets and classification of sequences. Both pipelines have proved to
be quite accurate when used on simulated datasets (http://fames.jgi-psf.org). Other studies
have employed Glimmer, metagene and the mORFind pipeline (Table 1).

RNA genes (tRNA, rRNA) are predicted using tools such as tRNAscan (77) for
tRNAs, and similarity searches for ribosomal RNAs. Other types of non coding RNA
genes (ncRNA) can be detected by comparison to covariance models (51) and sequence-
structure motifs (79). However, searching covariance models and motifs is
computationally expensive and it is prohibitively long for large metagenomic datasets.
Overall the identification of other ncRNA genes is difficult, since their sequence is not
conserved and reliable ‘ab initio’ methods are lacking even for isolate genomes.

There are several types of errors that can be made by a gene-calling pipeline. A
gene can be missed completely, or called on the wrong strand. A less severe mistake
would call part of the gene correctly, but fail in estimating gene boundaries or call genes
that are partly correct and partly wrong, due to chimeric assemblies or frameshifts (89).
The quality of the gene prediction relies on the quality of read preprocessing and
assembly. Gene calling methods used on accurately assembled sequences predict
correctly more than 90% of the genes that are included in the dataset, as evidenced from
studies on simulated datasets (http://fames.jgi-psf.org). This high number was achieved
with training on generic models or self-trained algorithms. Gene prediction on
unassembled reads exhibits lower accuracy than on contigs (~70% vs >80% respectively,
(89), a result attributed to the small size and higher chance of sequencing errors for

individual reads.
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Often, even in low complexity communities, a large number of reads, belonging to
less abundant organisms, remain unassembled. Although the genes predicted on the
assembled sequences allow the metabolic reconstruction of the abundant organisms, a
better representation of the metabolic capacity of the community is gained when genes
from both contigs and reads are included in the subsequent analyses as a majority of the
functionality may in fact be encoded in the unassembled reads (89). Therefore, it is
advisable to perform gene calling both on reads and contigs. For high complexity
communities, where assembly is minimal, gene calling on unassembled reads is the only
possibility.

Gene prediction is usually followed by functional annotation. Functional annotation
of metagenomic datasets is very similar to genomic annotation and relies on comparisons
of predicted genes to existing, previously annotated sequences. The goal is to propagate
accurate annotations to correctly identified othologs. However, there are additional
complications in metagenomic data where predicted proteins are often fragmented and
lack neighborhood context. Annotation of metagenomic data created by short-read
methods, such as 454, is even more complicated since most reads contain only fractions
of proteins.

At the JGI we use profile-to-sequence searches to identify functions. Protein
sequences are compared to profiles from TIGRFAM (116), PFAM (39) and COGs (125),
using RPS-BLAST (86). PFAMs allow the identification and annotation of protein
domains. TIGRfams include models both for domain and full length proteins. COGs also
allow annotation of the full length proteins. Unfortunately, although PFAMs and
TIGRfams are updated regularly allowing annotation of new protein families COGs are
still lacking such updates. As a rule, assignment of protein function solely based on Blast
results should be avoided, mainly because of the potential for error propagation through
databases (45, 71, 73).

In addition to annotation by homology, several methods are available for context
annotation. These include genomic neighborhood (26, 98), gene fusion (34, 81),
phylogenetic profiles (101) and co-expression (82). We are aware of one study that
performed adapted neighborhood analysis on metagenomic data, which combined with

homology searches inferred specific functions for 76% of the metagenomic datasets (83%
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when nonspecific functions are considered) (55). It is possible that more context
information will be used to predict protein function in metagenomic data in the future.

It is common practice that all gene predictions and annotations for microbial
genomes are manually checked as part of informatic quality control pipelines. Such
manual curation is not feasible for metagenomic projects, although, as for the assembly,
we recommend manual curation of larger contigs. Therefore, the quality of gene calling
and annotation for the majority of metagenomic data rests solely on automated
procedures. A recent benchmarking study using simulated metagenomic datasets suggests
that there is significant room for improvement in existing gene prediction and annotation
tools (89). One final note of caution; some vector screening and trimming programs only
mask out rather than remove vector and low quality sequences, resulting in runs of Ns at
the ends of reads and contigs. When sequences are submitted to the public databases,
terminal runs of Ns are removed as part of the submission process which can introduce
systematic errors in the start-stop coordinates of any genes predicted on the untrimmed
reads and contigs. Therefore all reads and contigs should be trimmed of terminal N runs

prior to gene prediction and annotation.

Data analysis

Gene prediction and annotation completes the list of procedures that are routinely
applied to both genomic and metagenomic data. While there is still great room for
improvement in applying a number of these steps to metagenomic data, they constitute
part of the standard data processing pipeline at sequencing centers such as the JGI.

Beyond this point, the data analysis methods apply specifically to metagenomes.

Post-sequencing community composition estimates

One of the first analyses that can be performed on metagenomic data following
standard processing steps is a re-evaluation of the community composition estimate, this
time directly from the metagenomic data itself. This is important for interpretation of the
data since biases in the initial estimates, such as PCR skewing (124, 136), are different

from biases introduced during metagenomic data generation (described below). Mapping
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conserved phylogenetically-informative marker genes, such as 16S and 23S rRNA
(ribosomal RNAs), recA (DNA repair protein), EF-Tu, EF-G (elongation factors), HSP70
(heat shock protein) and rpoB (RNA polymerase subunit), onto their reference trees has
been used to assess both organism identity and relative abundance (133). Single-copy,
mostly ribosomal, genes have been applied for the same purpose (19, 43, 134).
Ubiquitous single copy genes have the advantage of being present once in all microbial
genomes and therefore are thought to provide more accurate estimates of community
composition than markers such as 16S rRNA with variable copy number (134).

Marker gene analyses are performed as follows. An alignment of each gene is
prepared from a reference dataset, usually from all available complete genomes. The
marker genes are identified in the metagenomic dataset of interest, and included in the
reference alignment. For quantification of populations, the depth of contigs containing the
marker genes should be taken into account (129, 135). Trees are calculated, and the
relative positions of metagenomic genes are identified in the tree. There are several
limitations to community composition estimates based on phylogenetic inference of
single copy genes identified in metagenomic datasets:

1) the reference genome database is currently incomplete and highly biased towards
just three bacterial phyla (Proteobacteria, Firmicutes and Actinobacteria) out of at least
50 phyla (58). This means that accurate placement of metagenomic genes is compromised
if they originate from organisms not belonging to the three well-represented phyla, with
the exception of the 16S rRNA gene which is broadly used to define taxonomic groups
(30). Initiatives to improve genome sequence representation of the tree of life should help
to rectify this problem, such as the Genomic Encyclopedia of Bacteria and Archaea

(GEBA) pilot project at the JGI (http://www.jgi.doe.gov/programs/GEBA/). Even so, the

majority of microbial lineages still lack cultured representatives (58) complicating our
ability to obtain representative genome sequences.

i1) genes derived from metagenomic datasets, particularly those with minimal
assembly, are often fragmented and produce incomplete alignments. Indeed it is often the
case that metagenomic gene fragments from the same protein family are entirely non-
overlapping. This precludes the use of evolutionary distance methods as infinite distances

are created in the pairwise distance matrix severely compromising the resulting tree (14).
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Discrete character inference methods, particularly maximum likelihood, can tolerate
incomplete alignments to a certain extent. Alternative approaches to address the problem
include making separate trees for each metagenomic gene only in the context of the
reference dataset, subdividing the alignment into smaller parts to produce more complete
subalignments that can still contain multiple metagenome-derived genes, or inserting
partial sequences into a reference tree of full-length sequences using for example
probabilistic maximum likelihood placement (135) or the ARB parsimony insertion tool
(78).

ii1) erroneous gene calls, in particular ribosomal proteins are sometimes missed by
automatic gene callers because of their small size (89).

iv) finally, and perhaps most importantly, conserved phylogenetically-informative
genes represent only a small fraction of the total metagenomic dataset. For example, 100
Mbp of Sanger sequence will typically yield about a dozen mostly partial length
sequences of any given marker gene. In addition, it has recently come to light that single
copy genes are particularly prone to under-representation in shotgun libraries due to their
toxicity to the E.coli host (121). Furthermore, since the toxicity is due to expression of
the introduced gene, it varies between organisms depending on the ability of E.coli to
transcribe and translate the introduced gene (121). Therefore low numbers of
incompletely overlapping marker sequences, together with the toxicity effect compromise
the ability to reliably infer community composition from single copy genes.

Sequence similarity tools such as BLAST (6) can be used to identify homologs in
reference sequences (60). Such an analysis results in a much higher fraction of the dataset
being involved in the composition estimate, but suffers from other effects. Potentially,
bigger genomes are expected to generate more matches than smaller genomes (119), and
therefore the assessment is of gene rather than organism abundance. The closest BLAST
hit is not necessarily the nearest phylogenetic neighbor (68), and therefore classifying by
BLAST hits can be misleading particularly if only distantly related homologs are
available in the reference database. Additionally, the potential for horizontal gene transfer
between sympatric populations can cause the recipient organism to be identified as the
donor organism. Presently the biggest problem for BLAST-based composition estimation

is the poor representation of microbial diversity by sequenced isolates (58, 62) often
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resulting in remote matches to phylogenetically distant organisms or absence of any hits.
In our experience, BLAST-based methods overestimate the abundance of highly covered
taxa such as Proteobacteria and Firmicutes, especially if only the top hit is taken into
consideration. One recent implementation of BLAST-based community composition
profiling, MEGAN (60), addresses this problem by assigning sequence fragments to the
lowest common ancestor of the set of taxa that it hit in the comparison, thereby reducing
false matches. Unfortunately this often results in the bulk of a dataset being assigned to
very high level groupings, such as Bacteria, or being unclassified altogether. Again the
problem lies with the reference genome database rather than the tool, and can be expected
to improve as the bias in the database is addressed.

Finally, given that fundamental upstream processes such as DNA extraction can
produce an equal or greater skewing of community representation as any bioinformatic
analysis, researchers should if possible calibrate their data against the original intact

community using methods such as 16S rRNA-targeted fluorescence in situ hybridization.

Binning

A metagenomic sequence pipeline produces a collection of reads, contigs and
genes. Associating these data with the organisms from which they were derived is highly
desirable for interpretation of the ecosystem. This process of association between
sequence data and contributing species (or higher level taxonomic groups) is called
binning or classification. The most reliable binning is assembly, that is, in a good
assembly all reads in a contig are derived from the same species with the optimal binning
being a closed chromosome. As described above, this is often not the case and some level
of co-assembly is usually encountered in metagenomic datasets, particularly between
strains (see Assembly). However, binning methods rarely have the resolution to
discriminate between strains of the same species, so strain co-assembly is not a practical
concern when it comes to binning. In fact much coarser level assignment of sequences
can be useful for interpreting microbial communities, such as the classification of
fragments from a termite hindgut analysis into two dominant class-level groups, the
treponeme spirochetes and fibrobacter-like bacteria, each group comprising numerous but

functionally related species (138). In this regard, less stringent “extreme” assemblies
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(109), which certainly produce chimeric and misassembled contigs, may be a useful
binning approach.

In many ways binning and community composition estimates share a common goal;
classification of sequence data into taxonomic groups, and so there is overlap in the
methods to achieve this goal. Phylogenetic marker genes can be used to bin sequence
fragments but this approach suffers from the same problems as for community profiling,
namely an incomplete and biased reference database, difficulties with tree building and
low overall incidence of marker genes (~1%) in the metagenomic dataset. Similarly,
sequence comparison and visualization tools such as BLAST and MEGAN (60) can also
be used to bin a larger cross section of sequence fragments to phylogenetic groups, with
the associated problems described above.

An entirely different binning approach is based on genome sequence composition.
Cellular processes such as codon usage, restriction-modification systems and DNA repair
mechanisms produce sequence composition signatures, primarily oligonucleotide (word)
frequencies, that are distinct in different genomes (31, 65, 66). This property of genomes
has been exploited by a variety of methods to identify groups of sequences with similar
composition features and to determine their phylogenetic origin (2, 25, 93, 111, 126)
which can not only be used to bin metagenomic data, but also to identify atypical regions
within genomes, such as laterally transferred genes. The words can be of any length —
usually from 1 (GC content) to 4 and usually no higher than 8. Typically longer words
give better resolution but also require longer sequences and are more computationally
expensive, with the best results provided by words between 3 and 6 nucleotides long.

Composition-based methods can be divided into supervised and unsupervised
(clustering) procedures. Unsupervised procedures cluster metagenomic fragments in
composition signature space without the need to train models on reference sequences, and
include Self-Organizing Maps (1) and the program TETRA (126). An advantage of
unsupervised classification is that phylogenetically novel populations lacking close or
even distantly related sequenced taxa can potentially be binned by shared sequence
composition features, although identification of the clustered fragments still relies on
sequence similarity to reference organisms. Such populations, even when well

represented in metagenomes, cannot be binned directly by homology-based methods. A
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drawback of unsupervised methods is that they tend to focus on major classes in a dataset
and will not perform well on low abundance populations. Supervised methods classify
metagenomic fragments against models trained on classified reference sequences and in
principle can assign fragments from low abundance populations if there is a model
learned from reference data. Examples of supervised approaches include Bayesian
classifiers (25) and the support vector machine-based phylogenetic classifier Phylopythia
(90). As they are able to learn the relevant features that distinguish a particular population
from others using the labeled reference sequences, supervised methods usually achieve
higher classification accuracy (sensitivity and specificity) than unsupervised methods,
and therefore are preferable if training data are available. Further details on the
underlying principles and relevant merits of different binning methods can be found in a
recent opinion article on metagenomic binning (91).

At the JGI, we have had most experience with the supervised classifier, Phylopythia
(90). This program uses generic or sample-specific models, the former usually derived
from reference genomes and the latter usually derived from the metagenomic dataset
itself. Perhaps not surprisingly, sample-specific models based on training data from the
metagenome under study produced the most specific and sensitive binning of the
available approaches as determined by simulated datasets (89) or subsequent assembly of
the targeted population (90), often increasing the amount of classified sample data by an
order of magnitude over the training set. Ideally, at least 100 kbp of training data is
required to make a sample-specific model (91). For dominant populations this amount of
target population data can often be found using a single phylogenetic marker gene
identified on a large contig that can be extended to other contigs by mate pair
information. For low abundance populations, identifying 100 kbp of training data may
not be possible based on marker genes, particularly if the population is not closely related
to sequenced reference genomes. However, higher-level taxonomic models may still be
feasible in which multiple species contribute to the training set. This approach was used
successfully for sample-specific binning of treponeme spirochete species that were
collectively the dominant group in a termite hindgut symbiont community (138).

Finally, sequence length is a critical parameter for all composition-based classifiers,

with no method convincingly classifying sequences less than 1 kb long due to the limited
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number of words that are contained in short sequences (91). This precludes the
classification of individual Sanger and pyrosequence reads meaning that largely or
completely unassembled complex communities cannot be binned at all by composition-

based methods.

Analyzing dominant populations

In several aspects, the analysis of low-complexity communities resembles the
analysis of isolate genomes. As with isolate genomes, draft-level composite genomes of
dominant populations have sufficient coverage and gene context to allow a reasonably
comprehensive metabolic reconstruction in which most major pathways can be
elucidated. If more than one dominant population is sequenced then potential metabolic
interplay of those populations may also become apparent. For example, a metagenomic
study of an acid mine drainage biofilm revealed that while all dominant bacterial and
archaeal populations were potentially capable of iron oxidation (the main energy
generating reaction in this habitat), only Leptospirillum group III had genes for nitrogen
fixation, suggesting a keystone function for this species since the habitat is limited in
externally derived fixed nitrogen (132). Similarly, a metabolic reconstruction of the
dominant bacterial symbiont populations in a gutless worm suggested a model for how
these organisms together satisfy the nutritional requirements of their host (142). As with
draft genomes of isolates, caution needs to be exercised in inferring the absence of
metabolic traits since the relevant genes may be present in sequencing gaps, particularly
if the trait is encoded by only one or two genes. For example, respiratory nitrate reductase
necessary for denitrification was not found in the draft composite population genome of
Candidatus Accumulibacter phosphatis Type II despite circumstantial experimental
evidence suggesting that this organism is capable of denitrification (43).

The major difference between isolate genomes and composite dominant population
genomes is that the latter are usually not clonal due to genetic variation inherent in
natural populations (140). Genomic differences between individuals and strains within a
population can take the form of single nucleotide polymorphisms (SNPs) and
rearrangements (insertions, deletions, inversions, transitions, duplications). Co-assembly

of genetically distinct strains (haplotypes) will produce high quality discrepancies (SNPs)
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in the consensus, that finishing would normally try to resolve. However, in metagenomic
datasets, SNPs can be mined in a number of ways to provide insights into population
structure and evolution. For example, total SNP frequency provides a quantitative
estimate of the degree of genetic variation within a species population which has been
found to range from virtually clonal in enrichment cultures (123) and activated sludges
(102, 123)to highly polymorphic in acid mine drainage archaeal populations (132). The
ratio of non-synonymous to synonymous SNPs in protein-coding genes within a
population provides an estimate of the fraction of genes under selective pressure.
Furthermore, the ratio of haplotypes for individual SNPs (site-frequency spectra) can be
used to estimate important parameters in population genetics, such as the scaled mutation
rate and scaled exponential growth rate (64). SNPs also highlight junctions of
homologous recombination between strains allowing the degree of sexuality within a
population to be estimated (140). In all cases, the clear advantage of using environmental
shotgun sequence data for these analyses over isolate sequence data is a broader and less
biased sampling of genetic variation within a population (3, 140).

A complication associated with interpreting these data is sequencing error. Setting
base quality thresholds too low will introduce noise into the analysis, while setting it too
high will discard potentially useful information. The latter may be an important
consideration when read depth is low. A conservative approach to avoid mistaking errors
as polymorphisms is to only score SNPs with haplotypes represented by at least two
different reads requiring a minimum read depth of four. A second complication is the
inability to easily distinguish between orthologous from paralogous regions. Unless
repeats occur on the same (manually verified) contig or scaffold, such as in the case of a
neighboring gene duplication, it is difficult to distinguish repeats from orthologous
regions in different organisms. This problem is alleviated if the composite population is
finished.

Several tools are available for visualization and analysis of polymorphisms in
composite population assemblies. Consed developed to assist in the finishing process, is a
generically useful graphical tool for viewing assemblies at the nucleotide level (49). A
note of caution however, Consed sometimes masks stretches of nucleotide sequence with

Xs, and when SNP analysis is performed it identifies these X characters as SNPs.
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Therefore manual post-processing is required for Consed results. SNP-VISTA (118) is an
adaptation of the comparative genomics tool VISTA (40) developed specifically to
visualize SNPs in alignments. Input for this program is BLASTn output for user-
friendliness. Reads are ordered by haplotype using a clustering algorithm calculated for
sliding windows. Putative recombination sites are detected by sudden changes in cluster
composition between adjacent windows (Fig. 5). Strainer is also dedicated software for
the analysis of genetic variation in populations (35). As the name suggests, it facilitates
the reconstruction of individual strains from co-assembled sequences, clusters reads by
haplotype from which it predicts gene and protein variants, identifies conserved
regulatory sequences and quantifies and displays homologous recombination sites along

contigs.
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Fig. 5. Screenshot of SNP-VISTA, showing SNPs in individual reads relative (and
aligned) to a reference contig belonging to Candidatus Accumulibacter phosphatis (50)
(labeled query in the lower panel and highlighted in pale green). The upper panel shows
the alignment condensed to show only polymorphic columns color-coded by base (see
left panel for color-coding), while the expanded alignment is presented in the lower
panel. Note that reads are ordered dynamically by similarity for the window under
investigation to facilitate SNP pattern recognition.

As for fine-scale genetic variation, methods for visualizing and analyzing gross

within-population variation caused by rearrangements are beginning to emerge. For

example, recruitment plots display alignments of environmental reads against a reference
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sequence such as an isolate genome with one axis showing read location along the
reference and the other axis showing sequence identity to the reference. The depth of
alignment at each point is a measure of frequency of occurrence of the particular genomic
region. Genomic regions that are present in all members of the species will be covered by
multiple reads, while strain-specific regions will have shallow or no coverage (Fig. 6)
effectively highlighting hypervariable regions in a population. A number of important
biological insights have been made using this type of analysis including the discovery of
genomic islands encoding ecologically-important genes (22) and that phage-defence
mechanisms, notably CRISPRs are amongst the fastest evolving elements in the genome
(131).

Recruitment plots can be enhanced by displaying data from multiple metagenomes
against a reference sequence distinguished by color-coding. This is particularly effective
for spatial series where differences between allopatric populations can be highlighted and
correlated with metadata (109). Rearrangements such as inversions or indels can be
specifically visualized using a variant of recruitment plotting. Instead of plotting all
reads, only reads with inconsistently distanced end pairs are shown which draws attention
to rearrangements (109). Similarly, individual reads that do not map 1:1 onto the
reference genome can be plotted to highlight inversion, insertion or deletion boundaries.
As has been discussed in the context of several other analyses, recruitment plots can be
limited by the availability of reference genomes unless reference sequences are

forthcoming from the metagenomic dataset itself.
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Fig. 6. Screenshot of the CAMERA fragment recruitment viewer taken from the
explanatory notes (http://camera.calit2.net/about-camera/frv_help.php). A reference
contig or genome, in this case Prochlorococcus marinus str. MIT 9312 is shown on the
X-axis against which metagenomic reads are aligned and arrayed by similarity to the
reference sequence on the Y-axis. Reads have been color-coded according to sampling
site to highlight site-to-site variations in Prochlorococcus populations. Genomic islands
peculiar to strain MIT 9312 are easily identified as gaps in the read coverage (arrows).
This viewer also allows users to zoom into regions of interest for higher resolution.

Gene-centric analysis

Metagenomic sequencing of high-complexity microbial communities result in little
or no assembly of reads (129), which precludes the use of microheterogeneity analyses
described above for dominant populations. The high coding density of bacterial and
archaeal genomes and average gene size does, however, mean that most reads will
capture coding sequence. This allows a gene-centric analysis of the data that treats the
community as an aggregate largely ignoring the contribution of individual species. Genes
and gene fragments from a given metagenomic dataset are mapped to gene families
providing an estimate of relative representation (Fig. 7). The power of the method lies in

comparing relative gene family or subsystem abundances between metagenomes to
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highlight functional differences. Since determining relative gene family frequencies

within and between metagenomic datasets is a key aspect of the method, it is important
1060 that the frequencies are not masked by assembly. Either the analysis should be conducted

on unassembled reads, or read depth of contigs should be taken into account (89). The

approach was first described by Tringe et al. (128, 129) in which they coined the term

environmental gene tags (EGTs) because of the fragmentary nature of the data akin to

expressed sequence tags (ESTs). Other groups published similar but distinct approaches
1065  in quick succession (46, 107) (29).
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1080 Fig. 7. A screenshot (at left of figure) from the IMG/M database (86) showing one

implementation of gene-centric analysis available through this system. Four PFAM
families involved in cellulose hydrolysis are shown in columns, color-coded to match the
pathway schematic to the right of the figure. The relative representation of these families
in twelve metagenomic datasets (rows) is shown as fractions normalized for dataset size.

1085  Over-represented families are further highlighted by color; bisque (moderately over-
represented) and yellow (highly over-represented). This figure shows that termite hindgut
followed by human gut samples have the greatest over-representation of genes involved
in cellulose hydrolysis and indeed are the only communities that appear to have the
enzymatic potential to breakdown cellulose, of the compared datasets. It also shows that

1090  one whale fall sample, a soil sample from the drainage path of a silage storage bunker,
and one lab-scale phosphorus-removing sludge are moderately over-represented in genes
for processing the dimer, cellobiose.
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The implicit assumption of gene-centric analysis is that high relative abundance
equates to metabolic and ecological significance. Knowledge of the ecosystem is required
for simple sanity checks. For example, one of the most over-represented gene families in
ocean surface waters relative to soil and whale fall (deep ocean) samples is the
proteorhodopsin family that function as light-driven proton pumps (128), a function that
is receiving great attention as a major missed energy flux in surface waters (110). A
recent RNA-based study of a pikoplankton community in the photic zone confirmed that
proteorhodopsins are indeed highly expressed, however other over-represented gene
families, such as DNA repair photolyase, were not highly expressed bringing into
question the metabolic or ecological significance of their high copy number in the
community (41). Conversely other gene families that were poorly represented in the
metagenomic data, such as pufB encoding a subunit of a light harvesting protein, were
highly expressed (41) indicating that potentially important functions will be overlooked
or underestimated by DNA-based gene-centric analysis.

In addition to violations of the implicit assumption, the method has a number of
technical limitations. Chen and Pachter estimated that 6 Gbp of sequence data would be
required to sample half the genes in a simulated soil community (17), whereas a typical
metagenome project is on the order of 100 Mbp. Therefore, only genes present in high
copy number in higher abundance organisms will be sampled meaning that the method is
actually very low resolution. EGT data is also noisy due to uneven cloning efficiency of
different genes (121), differences in gene length (longer genes will be detected more
often on reads than short genes) and gene calling and annotation errors. A more pervasive
problem may be the inability to normalize gene prediction between datasets. For
example, read length will affect the ability to call genes, the shorter the read the lower the
gene prediction resolution. Therefore, Sanger (~750 bp reads) and pyrosequence (100-
200 bp reads) datasets cannot be directly compared using gene-centric analysis because
of the differences in gene calling sensitivity between the two data types (141). A final
word of caution on technical considerations; whole genome amplification of
environmental DNAs is becoming a more common method, particularly for low biomass

microbial communities (8, 32). The degree to which the amplification may skew relative
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gene frequencies is presently unknown, but should be kept in mind when interpreting
gene-centric analyses particularly between amplified and non-amplified datasets.

To differentiate between signal and noise, statistical tests to estimate the confidence
of over- and under-representation of gene families have been reported (46, 107). Despite
these statistical reassurances, simulated metagenomic datasets show that up to 20% of
COGs may have incorrect frequency calls and should be interpreted with caution (89).
However, the error rate reduces when gene family frequencies are grouped by metabolic
pathway, because error in any given gene family will be averaged out in a multi-gene
pathway. One important potential source of error when mapping gene family frequencies
onto pathways is uneven coverage of the pathway. For example, broad gene families such
as oxidoreductases can be non-specifically mapped to a pathway via incomplete EC
numbers and give the false appearance that the pathway is over-represented. In the
extreme case, the pathway may be entirely absent from the community and only the non-
specific gene family is mapped to the pathway. This type of error can be overcome by
weighting pathways for gene coverage or excluding incomplete EC numbers from the
analysis. In addition, to avoid spurious prediction there is no substitution for manual

inspection by experts of all results obtained by automatic data mining.

Data management

Shotgun sequencing of environmental samples produces massive amounts of data,
that already dwarf the existing genomic sequences in public databases. This trend will not
only continue, but will accelerate as the cost of sequencing continues to fall and more
researchers enter into the field drawn by the promise of metagenomics and greater access
to high throughput sequencing via new sequencing technologies. For the average
researcher to make sense of this mountain of data, dedicated data management resources
are required. There is a variety of web-based and standalone computational resources
available for comparative genomic analysis, including ACT (16), MicrobesOnLine (5),
CMR (104), ERGO (99), PUMA2 (80), COGENT++ (48) and IMG (87) but only recently
have data management systems been developed specifically for metagenomic analysis,

notably CAMERA (117), IMG/M (86) and SEED (97).
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These systems allow comparison of a metagenome of interest to other genomes and
metagenomes on multiple levels, including gene, protein family, pathway, scaffold, or
complete genome and all include variants of the metagenome-specific tools described in
the preceding sections (85). Most systems also allow some degree of curation by users to
improve annotation. Although the same type of analyses can be performed without the
aid of such systems, pre-packaged tools with transparent user interfaces can save
considerable amounts of time even for expert users. Custom analyses need to be
performed externally and the main use of dedicated metagenomic databases in these cases
is improved curation over generic databases.

It is fair to say that all developers of metagenomic data management and analysis
systems are struggling to keep pace with new data. This acute problem is manifest at two
levels.

1) Data volume. Genomic data is more compressed than metagenomic data by virtue
of assembly and underlying read data is typically not incorporated into comparative
genome systems. By contrast, metagenomic systems not only keep read information, but
quality data associated with reads for population analysis and quality control. The
problem is expected to accelerate in the future as new sequencing technologies produce
much larger volumes of data than traditional Sanger sequencing. For example, a single
[llumina run produces ~ 1 Gb of sequence data compared to 700 kb for a Sanger run.
While trace quality information may be important for quality assessment, their storage
together with the sequence, and incorporation of quality information into sequence search
methods might not be feasible.

i1) Pairwise comparisons. The cornerstone of comparative analysis is all-against-all
comparisons. Ideally these should be pre-computed to prevent lengthy on-the-fly
calculations for wusers. Unfortunately all-against-all comparisons scale poorly
(quadratically) and for metagenomic data can become extremely computationally
expensive. For example, 28.6 million protein sequences were compared using all-against-
all BLAST searches in the Global Ocean Survey (GOS) study, which required more than
I million CPU hours (143). The sheer size of the computational effort needed for this
metagenomic dataset was unprecedented in sequence analysis. A parallelized

implementation of BLAST, ScalaBLAST (96) is used to pre-compute all pairwise gene
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similarities at the amino acid level for IMG/M reducing the computation time by ~30 fold
(85). ScalaBLAST uses a combination of database sharing and task scheduling to achieve
high computational performance (96). Computationally intensive tasks can also be
bypassed by profile scans, using profile databases such as TIGRFAM, PFAM, COGS,
and InterProScan. Because the number of profiles is constant, computational complexity
scales linearly with the growth of the data, as opposed to quadratically in the case of all-
against-all comparisons. One drawback of profile searches is that new families will not be
identified, but such novel families will have unknown functions (hypothetical families)
and in the first instance will not contribute to metabolic reconstruction efforts.

It remains to be seen if any data management system will be capable of
incorporating all metagenomic data, and present the data in a pre-computed format for
comparative analyses. More likely is that subsets of the data united by common
phylogenetic or functional themes will be made into separate databases for analyses.

The final stage of any sequencing project is submission of the data to public
repositories such as GenBank. Metagenomic data submission is more problematic than
isolate genome submission because it is usually not discrete. For example, should a
metagenomic dataset be described as a single entry or as multiple entries? On one hand,
the data is a collection of sequence fragments from multiple species, which argues
towards multiple entries. On the other hand, there is often a single sampling site and
single study performed on the sequence, although this too is changing as single studies
incorporate spatial or temporal sampling. At the JGI, we submit the data as one entry, and
whenever possible subdivide it into bins of organisms. For example the metagenome of
the Olavius algarvensis symbionts was submitted under accession number
AASZ00000000, with scaffolds ranging between AASZ01000001 and AASZ01005597.
The scaffolds assigned to particular genome bins were then assigned to sub-accession

numbers, such as DS021107-DS021197 for the O. algarvensis Gamma 1 symbiont.

Concluding remarks

We hope that this review will serve as a useful primer for researchers embarking on

their first metagenomic project. The field is moving forward rapidly driven by changes in
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sequencing technology and the availability of many complementary technologies (137).
We therefore anticipate that methodological details presented in this review will rapidly
change and improve, particularly if (when) Sanger sequencing is no longer the main
source of metagenomic data. The discussed methodological considerations and
approaches for analyzing communities and populations, however, will no doubt persist
for much longer enabling interpretation of metagenomic datasets and likely contributing

many more profound insights into the microbial world.
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