

EFFECTS OF CHEMISTRY AND OTHER VARIABLES ON CORROSION AND STRESS CORROSION CRACKING IN HANFORD DOUBLE-SHELL TANKS

Feng Gui, Colin Scott and Sean Brossia

CC Technologies, Inc. for CH2M HILL Hanford Group, Inc.

Richland, WA 99352

U.S. Department of Energy Contract DE-AC27-99RL14047

EDT/ECN: DRF

UC:

Cost Center:

Charge Code:

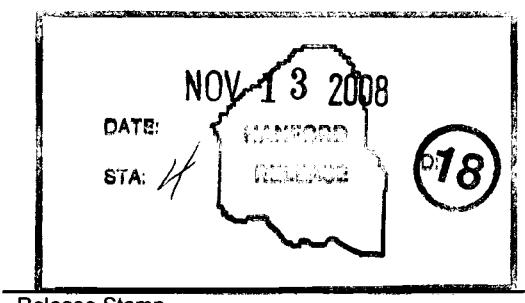
B&R Code:

Total Pages:

341
343
PP 1113/08

Key Words: laboratory testing, cyclic potentiodynamic polarization test, slow strain rate test, crack growth rate test, tank waste simulants, open circuit potential, localized corrosion, pitting, stress corrosion cracking, double-shell tank, 241-AP-105, 241-SY-103, 241-AW-105, 241-AZ-102, 241-SY-101, 241-AN-107, 241-AY-101

Abstract: Laboratory testing was performed to develop a comprehensive understanding of the corrosivity of the tank wastes stored in Double-Shell Tanks using simulants primarily from Tanks 241-AP-105, 241-SY-103 and 241-AW-105. Additional tests were conducted using simulants of the waste stored in 241-AZ-102, 241-SY-101, 241-AN-107, and 241-AY-101. This test program placed particular emphasis on defining the range of tank waste chemistries that do not induce the onset of localized forms of corrosion, particularly pitting and stress corrosion cracking. This document summarizes the key findings of the research program.



TRADEMARK DISCLAIMER. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

Printed in the United States of America. To obtain copies of this document, contact: Document Control Services, P.O. Box 950, Mailstop H6-08, Richland WA 99352, Phone (509) 372-2420; Fax (509) 376-4989.

Release Approval

11/13/2008
Date

Approved For Public Release

**EFFECTS OF CHEMISTRY AND OTHER VARIABLES ON CORROSION AND
STRESS CORROSION CRACKING IN HANFORD DOUBLE-SHELL TANKS**

September 2008

prepared by

CC Technologies, Inc. – A DNV Company
5777 Frantz Road
Dublin, Ohio 43017-1386

prepared for

CH2M HILL Hanford Group, Inc.

EXECUTIVE SUMMARY

The Hanford reservation contains approximately 50-million gallons of liquid legacy radioactive waste from cold war weapons production that is stored in 177 underground storage tanks. Current plans call for vitrification of the waste and final disposal in a geologic repository at Yucca Mountain. The double-shelled carbon steel tanks presently used for storage will continue in operation until a vitrification plant is constructed and waste processing operations are completed. Due to various chemical reactions taking place inside the tanks, the waste chemistries will tend to change over time. Although the changes occur slowly, the waste compositions will be altered because of the current estimate for storage of waste, which goes beyond 2035.

In addition, the present chemistries for some of the tank waste types are no longer in specification with respect to corrosion mitigation (e.g., maintaining pH levels above 12). Thus, there is concern within the U.S. Department of Energy (DOE), oversight groups, and regulatory bodies that tank integrity may have been or may become compromised given these changes in chemistry. Furthermore, if tank integrity is potentially compromised, there is a need to define mitigation strategies. Additional resources would be required to mitigate potential leaks and conduct repairs. The objective of this work was to finalize the range of conditions where the tank steel is susceptible to localized corrosion and stress corrosion cracking (SCC) in the Double-Shell Tanks (DSTs) using primarily simulants of wastes stored in various tanks, in particular Tanks 241-AP-105, 241-SY-103 and 241-AW-105. The chemistries in these tanks cover a broad range of waste chemistries in the tank farm including low nitrate concentration wastes, low nitrite to nitrate ratio wastes, and wastes containing high halide concentrations. These tanks were specifically selected because they provide bounding compositions of aggressive ions. In addition, testing was conducted in simulants of wastes from Tank 241-AZ-102 and 241-SY-101 to test the impact of specific aggressive ions. Tank 241-AN-107 and Tank 241-AY-101 simulants were tested to complement results from previous corrosion studies with respect to carbonate SCC and pH impact on corrosion susceptibility, respectively. The work involved a series of cyclic potentiodynamic polarization (CPP), slow strain rate tests (SSRTs) and crack growth rate (CGR) tests in the waste simulants on a plate of American Association of Railways Tank Car (AAR TC) 128 Grade B steel, which is believed to have similar properties to the waste tanks.

Based on the work conducted, the key findings of the research are listed below.

- The SCC potency of the waste simulants for the three tanks studied followed the trends previously established for nitrate-based simulants. SCC only occurred at relatively high applied potentials (e.g., 0 mV vs. SCE) or at low nitrite/nitrate concentrations ratios.
- Limited CGR testing performed in AY-101 simulants indicated that stress intensity factors above 45 ksi $\sqrt{\text{in}}$ were necessary for crack propagation to occur in the waste simulants tested.
- Though at current tank conditions the Present Supernate Composition (PSC) simulant for tank 241-AP-105 (AP-105-PSC) showed a low propensity for corrosion, the tank steel exposed to the Tank AP-105-PSC simulant at elevated temperatures and under anodically

polarizing conditions demonstrated a susceptibility to SCC and localized corrosion at the liquid/vapor interface. Long-term immersion tests indicated that the steel was susceptible to corrosion at the liquid/vapor interface even at open circuit potential (OCP), but the extent at room temperature was not as severe as at elevated temperatures (e.g., 50°C). The AP-105-PSC is the only simulant in which SCC was observed in a SSRT performed at OCP. Local chemistry changes (nitrite depletion or pH drop) may be responsible for the interfacial attack, though the precise mechanism is unclear at this time. The liquid/vapor interface attack indicates that localized corrosion is possible in simulants with high pH, and this should be considered in any future corrosion mitigation strategies.

- The Present Interstitial Liquid (PIL) for Tank 241-SY-103 (SY-103-PIL) simulant, which has the upper limit of chloride concentration of the DSTs, appears to be benign with respect to corrosion and SCC relative to the AP-105-PSC and previously tested Tank 241-AN-107 simulants and the PIL for Tank 241-AY-102 (AY-102PIL) simulant. Any possible corrosion liability associated with the high chloride content, appears to be offset by the relatively high nitrite content.
- The PIL for Tank 241-AW-105 (AW-105-PIL) simulant, which has the upper limit of fluoride concentration, also appears to be benign with respect to tank steel SCC. However, some localized corrosion has been observed at the liquid/vapor interface.
- The AZ-102 simulant, tested at the higher temperature of 77°C, appears to be benign with respect to SCC, confirming the inhibitory nature of nitrite. The AZ-102 simulant has a high nitrite/nitrate ratio of 8.4.

TABLE OF CONTENTS

1.0	INTRODUCTION AND BACKGROUND	11
2.0	EXPERIMENTAL APPROACH.....	14
2.1	Materials and Specimens	14
2.2	Chemicals and Solutions.....	17
3.0	OPEN CIRCUIT POTENTIAL MONITORING, POTENTIOSTATIC AND CYCLIC POTENTIODYNAMIC POLARIZATION TESTING	18
3.1	Slow Strain Rate Testing	20
3.2	K_{thSCC} and Crack Growth Rate Testing using Compact Tension Specimens	20
4.0	RESULTS AND DISCUSSION	22
4.1	Electrochemical Polarization Behavior in Tank 241-AP-105 Based Simulants.....	22
4.1.1	Cyclic Potentiodynamic Polarization Behavior	22
4.1.2	Liquid/Vapor Interfacial Corrosion in AP-105-PSC	26
4.2	Slow Strain Rate Testing in Tank 241-AP-105 Based Simulants.....	41
4.3	Electrochemical Polarization Behavior in Tank 241-SY-103-PIL Based Simulants.....	48
4.4	Slow Strain Rate Testing in Tank 241-SY-103-PIL Based Simulants	49
4.5	Electrochemical Polarization Behavior in Tank 241-AW-105 Based Simulants.....	51
4.6	Slow Strain Rate Testing in Tank 241-AW-105 Based Simulants	53
4.7	Slow Strain Rate Testing in Tank 241-AN-107 Based Simulants.....	59
4.8	Electrochemical Polarization Behavior in Tank 241-AZ-102 Based Simulant	61
4.9	Slow Strain Rate Testing in Tank 241-AZ-102 Based Simulant.....	62
4.10	Electrochemical Polarization Behavior in Tank 241-SY-101 Based Simulant	63
4.11	Slow Strain Rate Testing in Tank 241-SY-101 Based Simulant	64
4.12	Electrochemical Polarization Behavior in Tank 241-AY-101-CSL Simulant.....	66
4.13	Slow Strain Rate Testing in Tank 241-AY-101-CSL Based Simulant.....	68
4.14	Dynamic-K Testing in 5M NaNO_3 and Tank 241-AY-101-PSC Based Simulant	70
4.15	General Discussion of Results	75
5.0	SUMMARY OF KEY FINDINGS	80

LIST OF APPENDICES

Appendix A	– Simulant Recipes, Certificates for Chemicals and QA Documents
Appendix B	– Cyclic Potentiodynamic Polarization (CPP) Testing Data
Appendix C	– Slow Strain Rate Test Data and Micrographs
Appendix D	– Crack Growth Rate Test Data

LIST OF FIGURES

Figure 1. Photomicrographs of (a) the Microstructure of the AAR TC 128 Grade B Tank Car Steel Used for the Current Work and Previous AY-102 and AP101 Work, and (b) the Microstructure of the ASTM A537 Class 2 Steel used for Previous AN-105 and AN-107 Work.	15
Figure 2. Engineering Drawing of the Cyclic Potentiodynamic Polarization (CPP) Specimen (Units in Inches).	16
Figure 3. Engineering Drawing of the Slow Strain Rate Test Specimen (Units in Inches).	16
Figure 4. Engineering Drawing of the Crack Growth Rate Specimen (Units in Inches).	16
Figure 5. A Photograph of One of the CGR Specimens Following Side-Grooving.	17
Figure 6. The CPP Curve in Nitrogen Daeerated AP-105-PSC Simulant (T= 50°C and pH>13).	25
Figure 7. CPP Curves in Nitrogen Daeerated AP-105 Mixed and Evaporated Simulants at pH 14 and 50°C.	25
Figure 8. CPP Curves Obtained in Nitrogen Daeerated AP-105 Evaporated and Mixed with Nitrite-to-nitrate Concentration Ratio of 0.1 (pH 12+ and T=50°C).	26
Figure 9. A Comparison of CPP Curves in Nitrogen Daeerated AP-105-PSC Simulant at Different Nitrite and Nitrate Concentrations (pH=13+, T=50°C).	27
Figure 10. Sample Appearance after CPP Testing in AP-105-PSC Simulant under Quiescent Air Conditions (pH=13+, T=50°C).	27
Figure 11. The Change in the Current as a Function of Time when the Partially Immersed Sample Was Held at 0 mV vs. SCE (AP-105-PSC, pH>13, T=50°C, Quiescent Air Conditions).	28
Figure 12. The Sample Appearance after 50 Hours of Potentiostatic Testing at 0 mV vs. SCE in the AP-105-PSC Simulant (pH>13, T=50°C, Quiescent Air Conditions).	29
Figure 13. Current as a Function of Time for Fully Immersed Sample Polarized at 0 mV vs. SCE in AP-105-PSC Simulant (T=50°C, pH>13) Under Quiescent Air Conditions.	30
Figure 14. A Comparison of the Change in the Current as a Function of Time in the Potentiostatic Tests Conducted in AP-105-PSC Simulants with Different Nitrite Concentrations at 50°C and Quiescent Air Conditions.	31
Figure 15. The Sample Appearance after Potentiostatic Test at 0 mV (vs. SCE) in the AP-105-PSC Simulant with 0.6 M Nitrite for 50 Hours (Sample Partially Immersed) at 50°C Under Quiescent Air Conditions.	31
Figure 16. A Comparison of the Current Density as a Function of Time in the Potentiostatic Tests Conducted at 0 mV (vs. SCE) in Quiescent and Nitrogen Purged AP-105-PSC Simulants at 50°C.	32
Figure 17. The Sample Appearance after Potentiostatic Test at 0 mV (vs. SCE) in Nitrogen Daeerated AP-105-PSC Simulant for 50 hours (Sample Partially Immersed) at 50°C.	32
Figure 18. The Current Density as a Function of Time in the Potentiostatic Tests Conducted at 0 mV (vs. SCE) in AP-105-PSC Simulants with the Head Space of the Test Cell Purged with Nitrogen at 50°C.	33

Figure 19. The Sample Appearance after the Potentiostatic Tests Conducted at 0 mV (vs. SCE) in AP-105-PSC Simulants with the Head Space of the Test Cell Purged with Nitrogen at 50°C.....	33
Figure 20. Current as a Function of Time in Potentiostatic Tests Conducted at Different Temperature Levels and Quiescent Air Conditions.....	34
Figure 21. Current Density as a Function of Time in the Potentiostatic Tests Conducted in AP-105-PSC Simulants Under Quiescent Air Conditions at (a) 0 mV (vs. SCE, 50°C) and 100 mV (vs. OCP, 50°C); (b) 50 mV (vs. OCP, Room Temperature) and 0 mV (vs. SCE, Room Temperature).....	35
Figure 22. Sample Appearance after 50 Hours Potentiostatic Testing in AP-105-PSC Simulant at Different Potentials (Under Quiescent Air Conditions, Room Temperature). (a) 0 mV vs. SCE; (b) 50 mV vs. OCP (-160 mV vs. SCE).....	36
Figure 23. Corrosion Rate Calculated Based on Weight Loss for the Samples Partially Immersed in the AP-105-PSC Simulants Under Freely Corroding Conditions for More than Three Months (T=50°C Unless Noted Otherwise).....	37
Figure 24. The Appearance of the Sample (a) and the Cross Section of a Corroded Site (b) after Exposed in AP-105-PSC under Quiescent Air Conditions (Sample Partially Immersed, T=50°, EL1196-83).....	37
Figure 25. The Appearance of the Sample (a) and the Cross Section of a Corroded Site (b) after Exposed in AP-105-PSC under Quiescent Air Conditions (Sample Partially Immersed, Room Temperature, EL1196-97) at OCP.....	38
Figure 26. A Comparison of CPP Curves in Nitrogen Daeerated AP-105-PSC Simulant at Different Nitrite and Nitrate Concentrations (pH=13+, T=50°C).....	39
Figure 27. The Sample Appearance after CPP Testing in Nitrogen Daeerated AP-105-PSC with No Nitrite and 3.85 M Nitrate (pH=13+, T=50°C).....	40
Figure 28. A Comparison of the CPP Curves Obtained in the AP-105-PSC Simulant under Different Aeration Conditions using Fully Immersed Samples.....	40
Figure 29. The Pit on the Sample Tested in the AP-105-PSC Simulant Under Quiescent Air Conditions and at 50°C (pH=13+).....	41
Figure 30. The Stress-Strain Behavior of Samples Tested in AP-105-PSC Based Simulants at 0 mV vs. SCE and at OCP (-249 mV vs. SCE).....	43
Figure 31. An Electron-Micrograph of a Secondary Crack in Test Sample SSRT-51 Performed in AP-105-PSC Standard Simulant at 50°C, pH 13+, and at OCP (-249 mV vs. SCE).....	44
Figure 32. A Stereo-Micrograph of the Test Sample from SSRT-51 Performed in AP-105-PSC Standard Simulant at 50°C, pH 13+, and at OCP (-249 mV vs. SCE).....	44
Figure 33. A Stereo-Micrograph of the Test Sample from SSRT-60 Performed in AP-105-PSC Standard Simulant at 50°C, pH 13+, and at OCP (-277 mV vs. SCE). The test was stopped at the ultimate tensile strength.....	45
Figure 34. Electron-Micrograph of the Fracture Surface of Test Sample from SSRT-53 Performed in AP-105-PSC Standard Simulant at 50°C, pH 13+, and at 0 mV vs. SCE.....	46
Figure 35. Stereo-Micrograph of the Test Sample from SSRT-53 Performed in AP-105-PSC Standard Simulant at 50°C, pH 13+, and at 0 mV vs. SCE.....	47

Figure 36. Photograph of the Test Sample from SSRT-54 Performed in AP-105-PSC Standard Simulant at 50°C, pH 13+, and at 0 mV vs. SCE.....	47
Figure 37. Photograph and Schematic of the Test Cell and Sample Indicating Regions of Corrosion (Schematic Not To Scale).....	48
Figure 38. A CPP Curve in Deaerated SY-103-PIL Simulant (pH>13 and T=50°C).....	49
Figure 39. The Stress-Strain Behavior of Samples Tested in SY-103-PIL Based Simulants at 0 mV vs. SCE and at OCP (-424 mV vs. SCE).....	50
Figure 40. Stereo-Micrograph of the Test Sample from SSRT-57 Performed in SY-103-PIL Standard Simulant at 50°C, pH 14, at a Potential of 0 mV vs. SCE. The yellow dashed circles indicate axial microcracks observed on the shaft of the sample.....	50
Figure 41. Electron-Micrograph of the Fracture Surface of Test Sample from SSRT-57 Performed in SY-103-PIL Standard Simulant at 50°C, pH 14, at a Potential of 0 mV vs. SCE.....	51
Figure 42. A CPP Curve in Deaerated AW-105-PIL Simulant (pH>13 and T=50°C).....	52
Figure 43. A CPP Curve in Deaerated AW-105-PSC Simulant (pH>13 and T=50°C).....	52
Figure 44. Stress-Strain Behavior of Samples Tested in AW-105-PIL Based Simulants at 0 mV vs. SCE and at OCP (-290 mV vs. SCE).....	54
Figure 45. Stereo-Micrograph of the Test Sample from SSRT-56 Performed in AW-105-PIL Standard Simulant at 50°C, pH 13+, at OCP (-290 mV vs. SCE). The yellow dashed circles indicate axial microcracks observed on the shaft of the sample.....	54
Figure 46. Electron-Micrograph of the Fracture Surface of Test Sample from SSRT-56 Performed in AW-105-PIL Standard Simulant at 50°C, pH 13+, at OCP (-290 mV vs. SCE).....	55
Figure 47. Electron-Micrograph of an Axial Micro-Crack on the Shaft of Test Sample from SSRT-56 Performed in AW-105-PIL Standard Simulant at 50°C, pH 13+, at OCP (-290 mV vs. SCE).....	55
Figure 48. Electron-Micrograph of the Fracture Surface of Test Sample from SSRT-58 Performed in AW-105-PIL Standard Simulant at 50°C, pH 13+, at 0 mV vs. SCE.....	56
Figure 49. Stereo-Micrograph of the Shaft of Test Sample from SSRT-58 Performed in AW-105-PIL Standard Simulant at 50°C, pH 13+, at 0 mV vs. SCE.....	56
Figure 50. Stress-Strain Behavior of Samples Tested in AW-105-PSC “6X” Simulant at -50 and -100 mV vs. SCE.....	57
Figure 51. Photograph of the Test Sample from SSRT-74 Performed in AW-105-PSC 6X Simulant at 50°C, pH 13+, at a Potential of -100 mV vs. SCE.....	57
Figure 52. Electron-Micrograph of the Fracture Surface of Test Sample from SSRT-74 Performed in AW-105-PSC 6X Simulant at 50°C, pH 13+, at a Potential of -100 mV vs. SCE.....	58
Figure 53. Stereo-Micrograph of the Test Sample from SSRT-75 Performed in AW-105-PSC 6X Simulant at 50°C, pH 13+, at a Potential of -50 mV vs. SCE.....	58
Figure 54. Stress-Strain Behavior of Samples Tested in AN-107 Based Simulants at various potentials.....	60

Figure 55. Electron-Micrograph of the Fracture Surface of Test Sample from SSRT-48 Performed in AN-107 Standard Simulant at 50°C, pH 11, at a Potential of -765 mV vs. SCE.....	60
Figure 56. CPP Curve in Daeerated AZ-102 Simulant (pH>12 and T=77°C).....	61
Figure 57. The Stress-Strain Behavior of the Sample Tested in AZ-102 Simulants at OCP (-239 mV vs. SCE).....	62
Figure 58. Electron-Micrograph of the Fracture Surface of Test Sample from SSRT-61 Performed in AZ-102 Simulant at 77°C, pH 12+, at a Potential of -239 mV vs. SCE.....	63
Figure 59. CPP curves in deaerated SY-101 simulant at pH 13+ and 50°C.....	64
Figure 60. Stress-Strain Behavior of the Sample Tested in SY-101 Simulant at OCP (-206 mV vs. SCE).....	65
Figure 61. Electron-Micrograph of the Fracture Surface of Test Sample from SSRT-67 Performed in SY-101 Simulant at 50°, pH 13+, at a Potential of -206 mV vs. SCE.....	65
Figure 62. A Comparison of CPP Curves in the Daeerated AY-101-CSL Simulant at Different pH Levels and Temperatures.....	67
Figure 63. Appearance of the Sample after CPP test in the Daeerated AY-101-CSL Simulant at 50°C and pH 11.8. (a) Before Cleaning; (b) After cleaning.....	67
Figure 64. The Appearance of the Sample after CPP Test in AY-101-CSL Simulant at pH 12.3 and 50°C.....	68
Figure 65. Stress-Strain Behavior of the Sample Tested in AY-101-CSL Simulant at OCP (-181 mV vs. SCE).....	69
Figure 66. Electron-Micrograph of the Fracture Surface of Test Sample from SSRT-69 Performed in AY-101-CSL Simulant at 50°, pH 11.8, at a Potential of -181 mV vs. SCE.....	69
Figure 67. Plot of DCPD Calculated Crack Length as a Function of Time for CT-17 Performed in 5M NaNO ₃ at Open Circuit Potential. The Displacement was Held Constant Following Loading to a Nominal K ~ 25 ksi $\sqrt{\text{in}}$	71
Figure 68. Load as a Function of Time for CT-17 Performed in 5M NaNO ₃ at Open Circuit Potential. The Displacement was Held Constant Following Loading to a Nominal K ~ 25 ksi $\sqrt{\text{in}}$	71
Figure 69. Plot of DCPD Calculated Crack Length as a Function of Time for CT-18 Performed in AY-101-PSC Simulant at 0 mV vs. SCE. The Displacement was Held Constant Following Loading and Adjustment to a Nominal K ~ 45 ksi $\sqrt{\text{in}}$	72
Figure 70. Load as a Function of Time for CT-18 Performed in AY-101-PSC Simulant at 0 mV vs. SCE. The Displacement was Held Constant Following Loading and Adjustment to a Nominal K ~ 45 ksi $\sqrt{\text{in}}$	72
Figure 71. Electron-Micrograph of the Fracture Surface of Test Sample from CT-17 Performed in 5M NaNO ₃ at 50°, at OCP (+107 mV vs. SCE). The sample was held at a constant displacement for ~80 days following a constant displacement rate slow loading to a nominal K of 25 ksi $\sqrt{\text{in}}$	73
Figure 72. Electron-Micrograph of the Fracture Surface of Test Sample from CT-18 Performed in AY-101 Simulant at 50°, at 0 mV vs. SCE. The sample was held at a constant displacement for ~150 days following a constant displacement rate slow loading to a nominal K of 45 ksi $\sqrt{\text{in}}$	74

Figure 73. Susceptibility of Materials to Pitting Corrosion as a Function of Nitrite and Nitrate Concentration. The Symbols Represent Various Simulant Chemistries Previously Studied.....	77
Figure 74. Estimated CGR vs. Potential in the Investigated Simulants.....	78
Figure 75. A Plot of Nitrite/nitrate Ratio vs. Applied Test Potential Indicating Conditions for SCC Susceptibility. Only Nitrate Based simulant Results Are Included.....	79

LIST OF TABLES

Table 1. A List of the Concentrations of the Main Constituents in Different Simulants.....	13
Table 2. Chemical Specifications for AAR TC128 Grade B Tank Car Steel.....	14
Table 3. Mechanical Specifications for AAR TC128 Grade B Tank Car Steel.....	14
Table 4. The Concentrations of Chemicals Used in Preparation of the Simulants.....	19
Table 5. A Summary of Electrochemical Tests Performed in AP-105-PSC Based Simulants. (2 sheets).....	23
Table 6. The Bulk pH Values of the Simulant after the Long-Term Immersion Tests.....	38
Table 7. The Equilibrium Potential of Nitrite and Nitrate Redox Couple as a Function of Temperature at pH 13.5 (Nitrite=0.27M, Nitrate=3.58M).	39
Table 8. A Summary of Slow Strain Rate Tests Performed in AP-105 Based Simulants.....	42
Table 9. A Summary of Electrochemical Test Performed in SY-103-PIL Based Simulant.....	49
Table 10. A Summary of Slow Strain Rate Tests Performed in SY-103-PIL Based Simulants.....	49
Table 11. A Summary of Electrochemical Test Performed in AW-105 Based Simulant.....	51
Table 12. A Summary of Slow Strain Rate Tests Performed in AW-105 Based Simulants.....	53
Table 13. A Summary of Slow Strain Rate Tests Performed in AN-107 Based Simulants.....	59
Table 14. A Summary of Electrochemical Test Performed in AZ-102 Based Simulant.....	61
Table 15. A Summary of Slow Strain Rate Tests Performed in AZ-102 Simulant.....	62
Table 16. A Summary of Electrochemical Test Performed in SY-101 Based Simulant.....	63
Table 17. Summary of Slow Strain Rate Tests Performed in SY-101 Simulants.....	64
Table 18. Summary of Electrochemical Test Performed in AY-101-CSL Based Simulant.....	66
Table 19. A Summary of Slow Strain Rate Tests Performed in AY-101-CSL Simulant.....	68
Table 20. A Summary of the Dynamic-K Tests Performed.....	70
Figure B-17. A Comparison of the CPP Curves Obtained with and without Using a Crevice Former (AP105-PSC, pH>13, T=50°C).....	11
Table B-3. A Summary of Electrochemical Test Performed in SY103-PIL Based Simulant.....	22
Table B-4. A Summary of Electrochemical Test Performed in AW105 Based Simulant.....	22
Table B-5. A Summary of Electrochemical Test Performed in AZ102 Based Simulant.....	23
Table B-6. A Summary of Electrochemical Test Performed in SY101 Based Simulant.....	24
Table B-7. A Summary of Electrochemical Test Performed in AY101-CSL Based Simulant.....	25

LIST OF TERMS

Abbreviations and Acronyms

AAR TC	American Association of Railways Tank Car
ASTM	American Society for Testing and Materials
CGR	Crack Growth Rate
CPP	Cyclic Potentiodynamic Polarization
CT	Compact Tension
DCPD	Direct Current Potential Drop
DI	Deionized
DOE	U.S. Department of Energy
K_{ISCC}	Stress intensity factor for stress corrosion cracking
K_{th}	Threshold stress intensity factor
K_{thSCC}	Threshold stress intensity factor for stress corrosion cracking
OCP	Open Circuit Potential
PIL	Present Interstitial Liquid
PSC	Present Supernate Composition
SCC	Stress Corrosion Cracking
SCE	Saturated Calomel Electrode
SEM	Scanning Electron Microscope
SSR	Slow Strain Rate
SSRT	Slow Strain Rate Test
TIC	Total Inorganic Carbon

Units

°C	degrees Celsius
°F	degrees Fahrenheit
h	hour
in.	inch
ksi	kilopounds per square inch
ksi $\sqrt{\text{in}}$	ksi square root inch
M	molarity
mM	milli-molar
mV	millivolt
sec	second

1.0 INTRODUCTION AND BACKGROUND

The Hanford tank reservation contains approximately 50 million gallons of liquid legacy radioactive waste from cold war weapons production that is stored in 177 underground storage tanks. Current plans call for vitrification of the waste and final disposal in a geologic repository at Yucca Mountain. The carbon steel DSTs presently used for storage will continue in operation until a vitrification plant is constructed and waste processing operations are completed.

The waste chemistries in the storage tanks are grouped according to their main constituents, such as nitrite/nitrate-based and carbonate-based chemistries. Most of the wastes are highly alkaline in nature, typically with pH values between 12 and 14. Under alkaline conditions, carbon steels will tend to be passive and undergo relatively slow rates of uniform corrosion. However, carbon steels can become susceptible to localized corrosion (e.g., pitting) and SCC in the presence of certain aggressive constituents, such as chloride and nitrate, even in these passive conditions¹. The original Single-Shell Tanks (SSTs) at Hanford experienced some SCC failures because of the presence of high concentrations of nitrate in the waste and high residual stresses near the welds in the tanks. Research at Hanford and Savannah River Laboratories demonstrated that cracking could be prevented by post weld heat treating the tanks and maintaining the waste at a high pH (>13), which were practices incorporated into construction and operation of the tanks respectively. Although most wastes stored in the DSTs are currently within specification and will remain within specification for the next 20 years, there will be cases in which the chemistry will be out of specification (i.e., pH levels below 12). This transformation is a result of waste chemistries changing over time due to various chemical reactions taking place inside the tanks. These out of specification conditions could also develop during waste transfer and mixing operations. Thus, there is concern within DOE, oversight groups, and regulatory bodies that tank integrity could be compromised given these chemistry changes. If tank integrity is threatened, there is a need to define mitigation strategies. Additional resources would be required to mitigate potential leaks as well as conduct repairs.

Thus far, research has been conducted with waste simulants for Tanks 241-AN-107 (AN-107), 241-AN-102 (AN-102), 241-AY-101 (AY-101) and 241-AY-102 (AY-102) using the simulants developed for the wastes in these tanks. The AN-107, AN-102, and AY-101 simulants have nitrate-based chemistries with high concentrations of nitrite and nitrate (typically > 1.3M nitrate). The AY-102 stimulant has a carbonate-based chemistry as the carbonate concentration is considerably higher than the nitrite and nitrate concentrations (typically in the order of 1 M carbonate, vs. mM nitrate concentration).

Research conducted at CC Technologies in AN-107² simulants revealed that a nitrite concentration above 1M considerably reduced the susceptibility of carbon steel to pitting corrosion and SCC. Although the current pH value of the interstitial liquid in the salt cake/sludge in AN-107 is out of specifications (pH 11 rather than 13), the laboratory testing demonstrated that the pH did not have a significant impact on either localized corrosion or SCC

¹ R. N. Parkins, and R. Usher, *The Effect of Nitrate Solutions in Producing Stress Corrosion Cracking in Mild Steel*, Proceedings Frist International Congress on Metallic Corrosion. London, U.K.: Butterworths (1962): 296-302.

² Hanford Tanks 241-AN-107 and 241-AN-102: *Effect of Chemistry and Other Variables on Corrosion and Stress Corrosion Cracking*, CC Technologies Inc, September 8, 2006.

of carbon steel in the range of 10 to 13.5. SCC was commonly observed at an applied potential of -100 mV (vs. SCE) or above. This potential range is more positive than the OCP of the steel in the simulants. Furthermore, the concentration of the corrosion and SCC inhibitor nitrite is gradually increasing in the AN-107 waste from the initial concentration of 1.2M to 2.3M in the predicted endpoint chemistry. Thus, the tank chemistry in AN-107 is self-inhibiting owing to the increasing nitrite concentration with time. The implication of this research is that adjustments to the pH of the interstitial liquid in the salt cake/sludge to high levels is unnecessary (specifications stipulate pH between 12 and 14). Applications of these findings to interstitial liquid was immediate, but changes to control of the supernate liquid will only be possible if it can be shown that corrosion at the liquid/air interface and vapor space will be unaffected.

The work in AY-101³ and AY-102⁴ simulants indicated that these chemistries were largely benign with respect to localized corrosion. As with the AN-107 simulants, nitrite is a potent inhibitor to localized corrosion for these simulants. In nitrate-based AY-101, SCC was observed only at relatively high applied potentials (e.g., 0 mV vs. SCE). In carbonate-based AY-102, however, SCC was observed both at high potentials (0 mV vs. SCE) and at potentials near -800 mV vs. SCE where an active-passive transition was noted on CPP curves. Fortunately, corrosion potential monitoring of steel in the carbonate-based simulants suggested that the OCP of the steel will be far more positive than -800 mV vs. SCE. These results indicated the necessity to monitor the corrosion potential of the tank wall.

In the present work, the localized and SCC corrosion behavior of steel in waste simulants for Tanks 241-AP-105 (AP-105), 241-SY-103 (SY-103), 241-AW-105 (AW-105), 241-AZ-102 (AZ-102), 241-SY-101 (SY-101), AN-107 and AY-101 were investigated. The AP-105- PSC contains high nitrate (3.58 M) and low nitrite (0.27 M) concentrations. It has the lowest nitrite-to-nitrate concentration ratio among all simulants that have been investigated thus far. The SY-103 and AW-105 PILs (SY-103-PIL and AW-105-PIL) represent wastes with bounding chloride (0.5 M) and fluoride (0.58 M) levels, respectively. Chloride is known to contribute to pitting behavior in steels. Fluoride is expected to be detrimental to the tank steel as well. The AW-105 simulant has low nitrite (0.12 M) and nitrate (0.42 M) concentrations, whereas the SY-103 simulant is high in both nitrite (2.91 M) and nitrate (1.97 M). These differences are expected to have a significant influence on the corrosion and SCC behavior of the tank steel. The various chemistries of simulants investigated in this work are listed in Table 1 and compared with other chemistries studied previously.

The SY-101 simulant also has a low nitrite-to-nitrate concentration ratio and raised a concern for the susceptibility of the tank steel to localized corrosion and SCC. The AN-107 simulant was previously studied to examine its propensity for corrosion. The simulant was investigated to test susceptibility to carbonate SCC because of the high carbonate concentration of 1.4 M. The AZ-102 simulant represents a tank chemistry at the other extreme: the nitrite-to-nitrate ratio is a relatively high 8.4, with a nitrate content of 0.105 M and a nitrite content of 0.883 M. The

³ Hanford Tank AY-101: *Effect of Chemistry and Other variables on Corrosion and Stress Corrosion Cracking*, CC Technologies Inc, January 2008.

⁴ Hanford Tanks AY-102 and AP101: *Effect of Chemistry and Other Variable on Corrosion and Stress Corrosion Cracking*, CC Technologies, September 7th 2007.

supernate and interstitial liquid in Tank 241-AY-101 was investigated in previous programs. In this work, the condensate surface layer (CSL) in Tank AY-101 (AY-101-CSL), which has a relatively low nitrite-to-nitrate ratio (0.2), was studied.

This report summarizes the results obtained for the chemistries described above. The scope of the test program includes a series of CPP, SSRTs, and CGR tests on a plate of AAR TC 128 Grade B steel. AAR TC128 Grade B steel has similar properties to the steels used in constructing the DSTs.

The results from this work in conjunction with those obtained in other previous research programs for other tanks will help expand understanding of the roles of nitrite and nitrate (both absolute concentrations and ratio), and the roles of high chloride and fluoride in the corrosion process. Based on these results, strategies may be formulated about possible mitigation schemes.

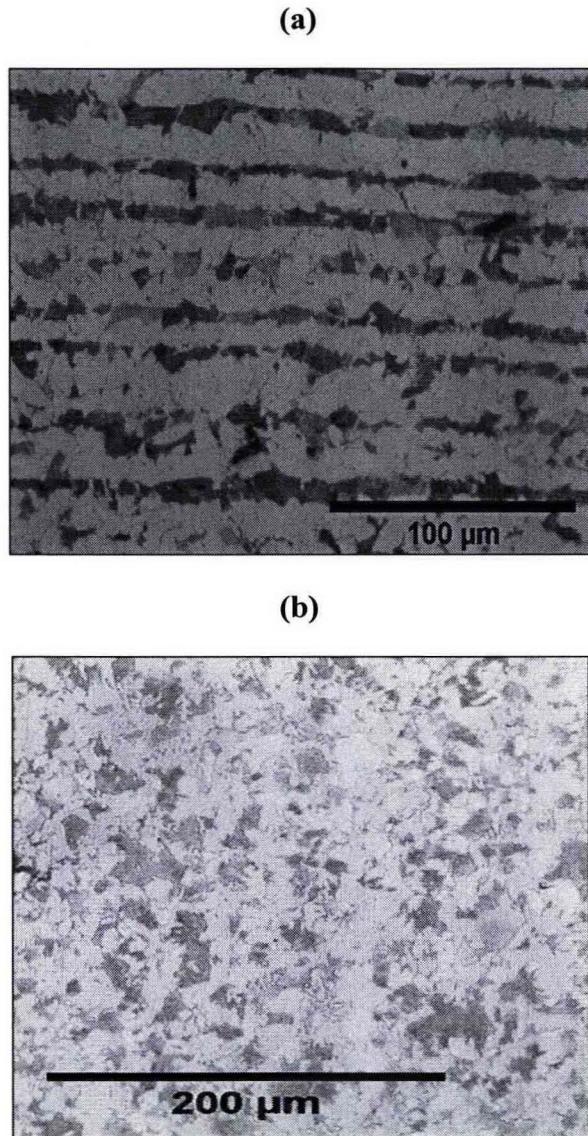
Table 1. A List of the Concentrations of the Main Constituents in Different Simulants.

Acronym	Simulant	AlO_2^-	SO_4^{2-}	NO_2^-	NO_3^-	TIC	Cr^+	F	OH^-	pH
AY-102-PIL	Present Interstitial Liquid	0.002	0.018	0.001	0.002	1.021	0.004	0.003	0.001	11
AP101-TSC	Transferred Supernatant Composition	0.31	0.029	0.98	2.13	0.47	0.05	0.09	2.61	14+
AY-102-CSC	Combined Supernatant Composition	0.29	0.028	0.938	1.967	0.477	0.046	0.084	2.42	14+
AY-102-ACS	Aged Combined Supernatant	0.29	0.028	1.27	1.635	1.118	0.046	0.084	1.24	14+
AY-102-AIL	Aged Interstitial Liquid	0.002	0.009	0.001	0.002	0.935	0.004	0.003	0.001	11
AY-102-ATL	Aged Total Liquid	0.37	0.027	1.20	1.532	1.242	0.043	0.079	0.96	14+
AY-101-PIL	Present Interstitial Liquid	-	0.305	0.847	0.057	1.842	0.011	0.068	0.001	11
AY-101-PSC	Present Supernatant Composition	0.107	0.020	0.205	1.33	0.201	0.018	0.014	0.71	13+
AP-105-PSC	Present Supernatant Composition	0.15	0.047	0.270	3.58	0.326	0.03	0.009	0.18	13+
SY-103-PIL	Present Interstitial Liquid	2.06	0.017	2.91	1.97	0.123	0.50	-	2.43	14
AW-105-PIL	Present Interstitial Liquid	0.02	0.014	0.12	0.42	0.097	0.01	0.58	0.45	13+
AP-105-Mixed	Mixed Simulant	0.195	0.04	0.413	2.857	0.274	0.039	0.026	0.95	13+
AP-105-Evaporated	Evaporated Simulant	0.347	0.072	0.736	5.087	0.489	0.069	0.047	1.67	14
AZ-102	AZ-102 Simulant	0.007	0.186	0.883	0.105	0.619	-	0.0520	-	12+
AW-105-PSC	Present Supernate Composition	0.0065	0.005	0.064	0.44	0.108	0.008	0.156	0.26	13+
SY-101	SY-101 Simulant	0.1407	0.02	0.203	0.931	0.133	0.023	0.028	0.66	13+
AY-101-CSL	Condensate Surface Layer	0.0153	0.002	0.037	0.181	0.147	0.006	0.002	0.005	11.82

2.0 EXPERIMENTAL APPROACH

2.1 MATERIALS AND SPECIMENS

All test specimens were fabricated from a 2'×2'×1" as-supplied plate of AAR TC Grade B steel. This is similar in composition and mechanical properties to the A515 Grade 60 steel used in the Hanford AY-101 double-shelled underground storage tank construction. The plate was supplied to CC Technologies by ARES Corporation. Chemical and mechanical specifications for AAR TC 128 Grade B tank car steel are shown in Table 2 and Table 3, respectively; however, no efforts were made to confirm these values. Figure 1 (a) shows a photomicrograph of the AAR TC128 Grade B Tank Car Steel used in this investigation. This steel was also used in previous AY-102, AP101, and AY-101 work. For comparison, Figure 1 (b) shows the microstructure of the American Society for Testing and Materials (ASTM) A537 Class 2 steel used previously for Tank 241-AN-105 and AN-107 work. The most significant difference between the two microstructures is the presence of pearlite bands in the tank car steel which is commonly observed in hot rolled steels.


Table 2. Chemical Specifications for AAR TC128 Grade B Tank Car Steel.

Element							
	C	Mn	P	S	Si	Cu	Fe
Max.	0.50	1.35	0.040	0.05	0.30	0.35	balance
Min.	--	--	--	--	--	--	--

Table 3. Mechanical Specifications for AAR TC128 Grade B Tank Car Steel.

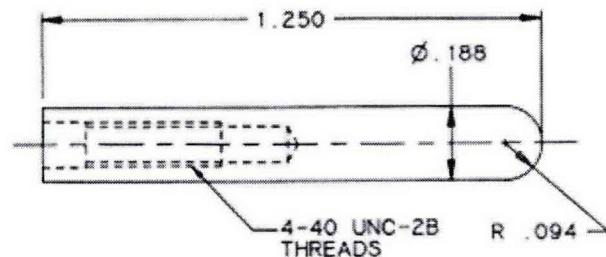
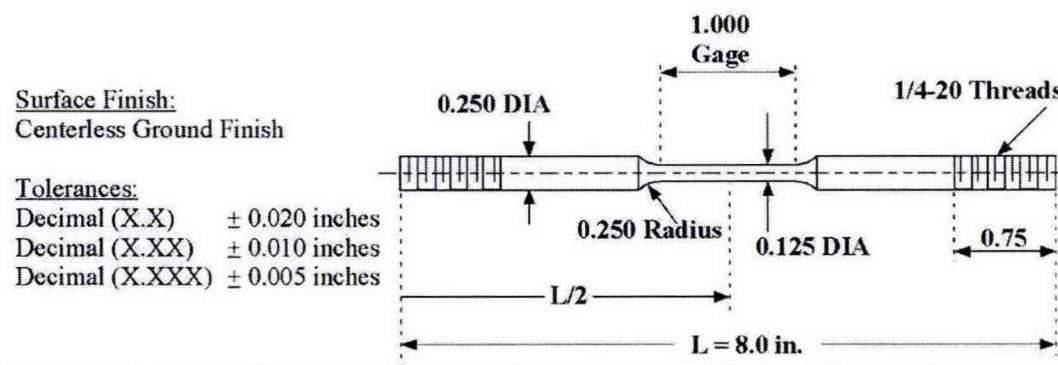

	Ultimate Tensile Strength (psi)	0.2% Offset Yield Strength (psi)	Elongation in 2" (%)
Max.	101,000	--	--
Min.	81,000	50,000	21.0

Figure 1. Photomicrographs of (a) the Microstructure of the AAR TC 128 Grade B Tank Car Steel Used for the Current Work and Previous AY-102 and AP101 Work, and (b) the Microstructure of the ASTM A537 Class 2 Steel used for Previous AN-105 and AN-107 Work.



Three main specimen geometries were utilized in this work. A schematic representation of the CPP specimens, SSRT specimens, and CGR specimens are shown in Figure 2, Figure 3, and Figure 4, respectively. The specimens were fabricated by Metal Samples Company in Munford, AL and Metcut Research, Inc., in Cincinnati, Ohio. Material close to the flame cuts at the edges of the plates was avoided for specimen fabrication to ensure consistent microstructures. SSRT specimens were fabricated such that the longitudinal axis was aligned with the plate rolling direction (i.e., longitudinal orientation). Compact tension (CT) specimens were fabricated such that the pre-crack was in the plate rolling direction (i.e., transverse-longitudinal orientation).

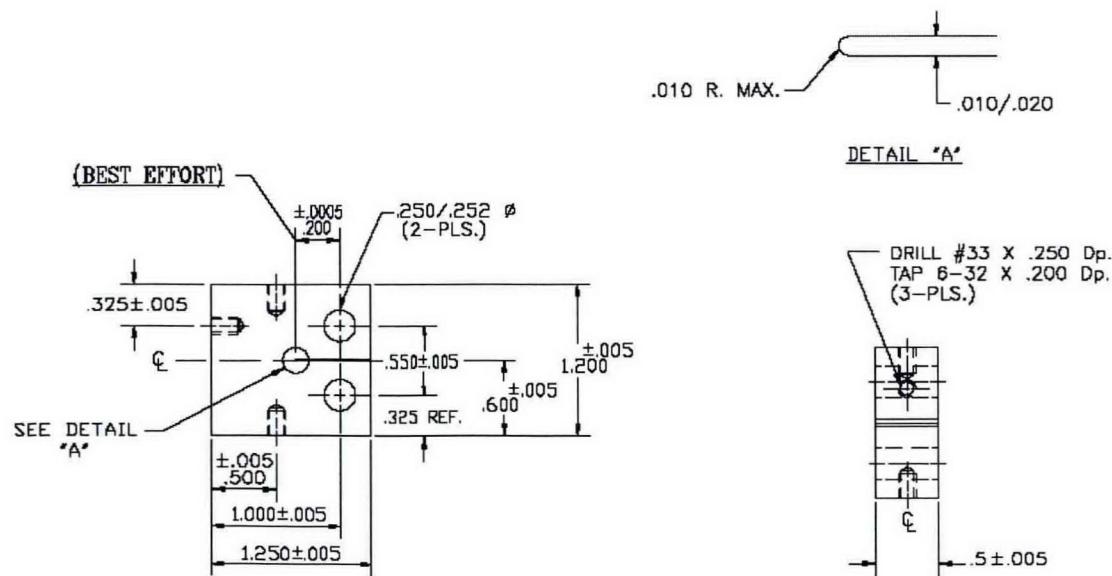

Figure 2. Engineering Drawing of the Cyclic Potentiodynamic Polarization (CPP) Specimen (Units in Inches).

Figure 3. Engineering Drawing of the Slow Strain Rate Test Specimen (Units in Inches).

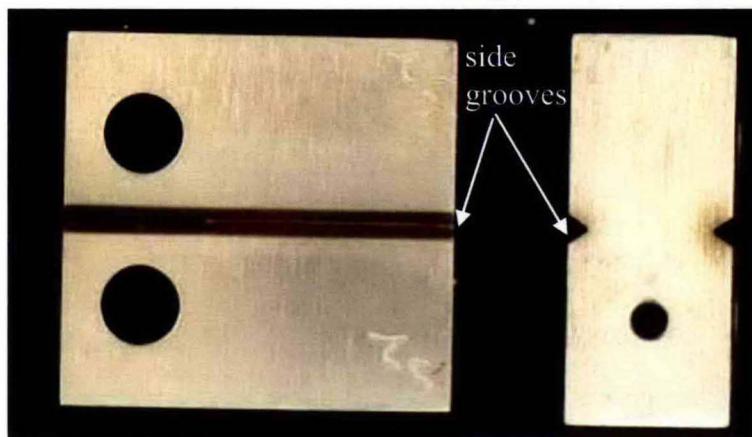


Figure 4. Engineering Drawing of the Crack Growth Rate Specimen (Units in Inches).

The dimensions of the CT specimens shown in the figure below are a standard size, and consistent with the dimensions used for CT samples in previous constant load experiments. Constant displacement rate tests previously used were again employed to determine the CGR and the threshold stress intensity for SCC ($K_{th,SCC}$). All specimens were side-grooved (Figure 5) following the guidelines provided in ASTM E1820-06e1⁵ to ensure crack growth did not diverge significantly from the pre-crack direction and to promote plane strain conditions. This standard recommends a total reduction in cross-section of the crack plane of 20% of the width of the test sample, with an included angle of 90° or less, and a root radius of $\leq 0.02 \pm 0.01$ in. Figure 5 shows a digital photograph of the CT sample machined with side-grooves.

Figure 5. A Photograph of One of the CGR Specimens Following Side-Grooving.

2.2 CHEMICALS AND SOLUTIONS

The chemistries used in this work with AP-105, SY-103 and AW-105 were “present” chemistries. The aged chemistries for the tanks studied are not expected to be significantly different from the present chemistries due to the small concentration of organic carbon compounds (0.05M). That is, the oxidation of organic carbon compounds, when present at such low quantities, will not significantly alter the carbonate, hydroxide, nitrate, or nitrite concentrations. The presence and concentration of these species are believed to play critical roles in the corrosivity of the simulants.

As stated previously, the simulants that were chosen for evaluation were selected to bind the effects of various tank chemistry compositions, such as the effects of chloride, fluoride, and nitrite/nitrate ratio. All of the simulants are considered chemically stable and did not require continuous agitation prior to being used. The pH of each simulant was adjusted after initial mixing using either sodium hydroxide (Noah), or nitric acid (HNO_3) or acetic acid (CH_3COOH). If the difference between the measured pH and the target pH was large, nitric acid was favored over acetic acid; however, acetic acid was most commonly used because of the small adjustments that were typically required.

⁵ ASTM E1820-06e1, 2006, *Standard Test Method for Measurement of Fracture Toughness*, American Society for Testing and Materials, ASTM International, West Conshohocken, PA.

For each simulant a standard chemistry and several modified chemistries were often investigated. The standard chemistry was used to establish the baseline localized corrosion and SCC behavior. The modified chemistries were used to explore the role of certain species, such as nitrite, nitrate, and sulfate, on the localized corrosion and SCC behavior of the material. The chemicals used to mix the baseline simulants (i.e., without modifications) as well as the concentrations used are listed in Table 4. The rows containing some of the key species of interest are shaded. Note that in some cases simulants were mixed using the baseline chemistry, and then pH balanced. The pH balance will change the hydroxide concentration, and influence the proportions of carbonate and bicarbonate present in the solution.

3.0 OPEN CIRCUIT POTENTIAL MONITORING, POTENTIOSTATIC AND CYCLIC POTENTIODYNAMIC POLARIZATION TESTING

CPP testing was performed according to the guidelines set forth in ASTM G61-86e1.⁶ Samples were either fully immersed or partially immersed in the simulants. When the samples were partially immersed, a liquid/vapor interface was created so that the corrosion phenomena at the interface could be investigated.

Prior to testing, the specimens were prepared to a 600 grit surface finish, ultrasonically cleaned with isopropanol for five minutes, rinsed with DI water, and then dried with nitrogen. Prior to introducing the specimen to the test cell, the test solution was added. In cases where testing above room temperature was conducted, the solution was then heated to the desired temperature (50°C [122°F] or 77°C [170°F]). The test solution was then purged with the desired test gas for approximately one hour prior to specimen introduction and testing unless the test was conducted under quiescent conditions. A saturated calomel electrode (SCE) was usually used as the reference electrode with a salt bridge to separate the reference electrode from the testing environment. This was done so that the reference electrode could be maintained at room temperature. In a few limited cases, a Ag/AgCl wire reference electrode was used. For tests where polarization was required, a platinized niobium wire was used as the counter electrode.

The OCP, CPP, and potentiostatic tests were performed under two different conditions – (1) quiescent in air conditions (i.e., no gas purging and the cell was open), (2) gas purging conditions (nitrogen, high purity Ar or compressed “zero” air containing no CO₂). In a set of long-term immersion tests to investigate the susceptibility of the steel to interfacial corrosion in the AP-105-PSC simulants, the head space of the cell was blanketed with compressed “zero” air (no CO₂), nitrogen or argon so that the mixing of the interface chemistry with the bulk solution could be minimized. The quiescent conditions and compressed air purging aimed to provide oxygen to the simulants, and in many cases were used to investigate the role of oxygen in both CPP and corrosion at the liquid/vapor interface. Nitrogen and argon purging were used to maintain deaerated conditions (i.e., the oxygen reduction reaction was minimized or eliminated). For the deaerated experiments the cathodic reactions were dominated either by other reducible species in the solution (i.e., nitrite or nitrate) or water reduction (assuming the potential was sufficiently negative).

⁶ ASTM G61-86e1, 2003, *Standard Test Method for Conducting Cyclic Potentiodynamic Polarization Measurements for Localized Corrosion Susceptibility of Iron-, Nickel-, or Cobalt-Based Alloys*, American Society for Testing and Materials, ASTM International, West Conshohocken, PA.

Table 4. The Concentrations of Chemicals Used in Preparation of the Simulants.

Chemical	Formula	AP-105-PSC	AP-105-Mixed	AP-105-Evaporated	SY-103-PIL	SY-101	AW-105-PIL	AW-105-PSC	AZ-102	AY-101-CSL
		Molarity (M)	Molarity (M)	Molarity (M)	Molarity (M)	Molarity (M)	Molarity (M)	Molarity (M)	Molarity (M)	Molarity (M)
Sodium Aluminate	NaAlO ₂ .2H ₂ O	0.15	0.195	0.3470	2.06	0.1407	0.0160	0.0065	0.0070	0.0153
Sodium Chloride	NaCl	0.0308	0.039	0.0690	0.4960	0.0228	0.0102	0.0083	-	0.0064
Sodium Fluoride	NaF	0.0091	0.026	0.0470	-	0.0277	0.5810	0.156	0.0520	0.0015
Sodium Chromate	Na ₂ CrO ₄	0.0106	0.008	0.0140	0.0010	0.0021	0.0002	0.00004	0.0130	0.0003
Sodium Phosphate, 12-Hydrate	Na ₃ PO ₄ .12H ₂ O	0.0301	0.03	0.0530	0.0275	0.0984	0.0032	0.0045	-	0.0059
Potassium Nitrate	KNO ₃	0.0133	0.13	0.23	0.1280	0.0069	0.2180	0.1444	0.0710	-
Sodium Sulfate	Na ₂ SO ₄	0.0472	0.04	0.072	0.0167	0.0196	0.0139	0.0053	0.1860	0.0021
Sodium Formate	NaHCOO	0.0100	0.0115	0.016	0.1880	-	0.0033	0.0021	-	-
Sodium Acetate Trihydrate	NaCH ₃ COO.3H ₂ O	0.0075	0.0105	-	0.0439	-	0.0062	0.0023	-	-
Sodium Oxalate	Na ₂ C ₂ O ₄	0.0075	0.0115	0.016	0.0044	0.0244	0.0032	0.0017	0.0170	0.0014
Sodium Nitrate	NaNO ₃	3.5644	2.727	4.857	1.8400	0.9244	0.2010	0.2956	0.0340	0.1810
Sodium Nitrite	NaNO ₂	0.2700	0.413	0.736	2.9100	0.2027	0.1240	0.0638	0.8830	0.0368
Sodium Carbonate	Na ₂ CO ₃	0.3260	0.274	0.489	0.1230	0.1328	0.0966	0.1076	0.6070	0.147
Glycolic Acid	C ₂ H ₄ O ₃	0.0075	0.0115	-	0.0334	-	-	0.0010	-	-
Sodium Hydroxide	NaOH	0.1761	0.952	1.67	2.43	0.6555	0.4502	0.2630	-	0.0051
Cobaltous Nitrate	Co(NO ₃) ₂	-	-	-	-	-	0.0000242	-	-	-
Nickel Nitrate	Ni(NO ₃) ₂	-	-	-	-	-	0.00007	-	-	-
Boric Acid	H ₃ BO ₃	-	-	-	-	0.0008	0.0006	0.0003	-	-
Potassium Molybdate	K ₂ MoO ₄	-	-	-	-	-	0.00003	0.00001	0.0005	-
Zirconyl Nitrate	ZrO(NO ₃) ₂	-	-	-	-	-	0.0000049	-	-	-
Tributyl phosphate	C ₁₂ H ₂₇ O ₄ P	-	-	-	-	-	0.0049	-	-	-
1-Butanol	C ₄ H ₉ OH	-	-	-	-	-	0.0125	-	-	-
Dibutyl Phosphate	C ₈ H ₁₉ O ₄ P	-	-	-	-	-	0.0125	-	-	-
Ammonium Acetate	NH ₄ CH ₃ COO	-	0.0040	0.008	-	-	-	-	-	-
Iron Nitrate, 9-Hydrate	Fe(NO ₃) ₂ .9H ₂ O	-	-	0.00002	-	-	-	-	-	-
Zinc Nitrate, 6-Hydrate	Zn(NO ₃) ₂ .6H ₂ O	-	-	0.00007	-	-	-	0.00003	-	-
Sodium Bicarbonate	NaHCO ₃	-	-	-	-	-	-	-	0.0120	-

Prior to CPP and potentiostatic testing, the OCP was monitored for 18 hours. The start potential for the CPP tests was -100 mV vs. OCP. The scan was reversed at 1V vs. SCE or if the current reached 1mA/cm². A scan rate of 0.17mV/s (0.6 V/h) was used. For the potentiostatic testing, the sample was polarized to an anodic potential for the desired amount of time.

When a test was completed, the specimen was removed from the test solution, rinsed with deionized (DI) water, and then dried with nitrogen gas. If visible corrosion products were present on the specimen surface, the specimen was ultrasonically cleaned in acetone for five minutes, rinsed with DI water, and dried with nitrogen. The post-test appearance of the specimen was photographically documented to show any evidence of corrosion attack. In some cases, the test specimen was examined using a scanning electron microscope (SEM) in addition to examination using optical stereomicroscopy. Finally, the tested specimens were stored in separate specimen bags in a desiccator for possible further analysis.

3.1 SLOW STRAIN RATE TESTING

All SSRTs were performed according to the guidelines provided in ASTM G129-00⁷ using cylindrical tensile specimens at a constant extension rate of 10⁻⁶ in/in-s (unless otherwise noted). To perform the tests, the specimen was placed in a Teflon®⁸ test cell and the load was applied using grips that entered the cell through sliding seals. This assembly was then inserted into the load frame, after which the solution of interest was introduced and heated to 50 °C. Tests were conducted at open circuit or at an applied potential against a SCE reference electrode that was maintained at room temperature using a Luggin probe/salt bridge filled with the test solution. A platinum flag was used as a counter electrode. All of the SSRTs were performed under quiescent air conditions; i.e., exposed to air with no gas sparging.

The test specimens were pulled to failure. The stress-strain curves provided in the following results sections are for reference purposes. However, the time-to-failure and the strain-at-failure of the specimens did not always clearly indicate the presence of SCC. Also, the degree of SCC was not easily established from these parameters. Therefore, the occurrence of SCC was always confirmed by both visual inspection and SEM examination. Examination of the specimens after failure consisted of examination in a stereographic optical microscope at 10 – 63x, and a SEM. The fracture surface of each of the test samples was examined using the SEM to identify regions of intergranular fracture, indicative of high pH SCC.

3.2 $K_{th,SCC}$ AND CRACK GROWTH RATE TESTING USING COMPACT TENSION SPECIMENS

$K_{th,SCC}$ and CGR tests were performed using pre-cracked ½-T (0.5 inch wide) CT specimens (Figure 5). The objective of these tests was to determine the $K_{th,SCC}$ for the steel in various

⁷ ASTM G129-00, 2006, *Standard Practice for Slow Strain Rate Testing to Evaluate the Susceptibility of Metallic Materials to Environmentally Assisted Cracking*, American Society for Testing and Materials, ASTM International, West Conshohocken, PA.

⁸ Teflon® is a registered trademark of DuPont in the United States and other countries.

simulants. The K_{thSCC} could then be related to the maximum K_I expected for a variety of flaw sizes in the tank. This would aid in the determination as to whether or not there is an integrity concern for the tank. The CGRs estimated in these tests can also be used to approximate the time for any growing flaw to go through-wall. The term K_{thSCC} refers to a "threshold." The term K_{ISCC} is not used because the test procedure utilized for this investigation does not satisfy the requirements of ASTM E1820. In particular, samples were not wide enough to ensure plane strain conditions, which are necessary for a valid K_{ISCC} determination.

Previous tank chemistry studies had been performed using a constant tensile load. Constant tensile load testing was not performed in the current investigation because of the difficulties associated with the determination of K_{thSCC} in tank waste simulants with this technique. Results from previous testing showed some inconsistencies in estimated K_{thSCC} from the different tests. In some cases, direct current potential drop (DCPD) indicated negative crack growth due to build up of corrosion product in the crack mouth. To avoid the difficulties, the approach was modified to a "dynamic-K" test. The dynamic K-tests were initiated with a constant displacement rate rather than a constant load. At the onset of cracking or a predefined K, the displacement was held constant for several weeks or months. Tests were concluded when evidence of crack growth and a declining K were observed or a sufficient length of time had elapsed (~5 months) to imply no cracking in the test sample. The advantage of the technique is that both K_{thSCC} and CGR can be estimated from the same test data, provided that some crack growth occurs during the test.

The dynamic-K tests were performed using the same loading frames as those used in the SSRTs. The dynamic-K tests were run at approximately 5×10^{-8} in/s, which was substantially slower than the nominal extension rate of 10^{-6} in/s used for SSRTs. The time frame for the dynamic load experiments ranged from several weeks to several months because of the slow loading rate to a specified K value and longer hold time. Comparatively, the constant load tests typically concluded within 30 days.

Dynamic-K experiments were conducted at 50°C in Teflon cells that contained the desired solutions. Tests were carried out either at open circuit or an applied potential. The OCPs were continuously monitored with a high impedance voltmeter and a reference electrode (SCE). The reference electrode was maintained at room temperature in a separate container that was connected to the test cell by means of a Luggin probe/salt bridge filled with the test solution. For the tests at applied potential, a platinum flag counter electrode was included in the test cell while a potentiostat was used to maintain the potential at the desired value.

The applied load and displacement for the test samples were monitored and recorded continuously throughout the experiments. Additionally, the DCPD was monitored as a means to estimate crack growth *in situ*. The DCPD technique involves the application of a constant current (in this case 20A) through the specimen while the potential drop across the two sides of the crack is recorded. Any crack propagation during the test will increase the resistance across the sample and this will be reflected by a change in potential drop. The increase in crack length is calculated from the potential drop and sample geometry using the Johnson equation⁹.

⁹ Johnson, H. H. "Calibrating the Electric Potential Method for Studying Slow Crack Growth," Materials Research and Standards, Volume 5, No 9, September 1965, pp 442-445.

To monitor crack propagation and growth, both the DCPD measurements and load measurements were used. A significant DCPD (beyond the noise in the data) was interpreted as crack growth. A reduction in the loading rate during loading or a reduction in load during the hold time was also interpreted as crack growth, as it indicates an increase in specimen compliance. Tests were carried out until cracking was detected by load and/or DCPD measurements or until a predefined limit of K was reached.

Following testing, the samples were sectioned longitudinally. Half of the sample was mounted and prepared for metallographic examination, while the other half of the sample was cooled in liquid nitrogen, and then overloaded to failure. The fracture surfaces were examined using the SEM for evidence of intergranular fracture features, which are indicative of SCC as described above for the SSRT specimens.

The morphology of the fracture surfaces observed in the SEM reveals whether crack growth has occurred. In particular, fracture surfaces were examined for intergranular features, which are indicative of high pH SCC. Four types of fracture surfaces are expected during examination of the samples: transgranular fatigue (pre-crack), transgranular ductile (tearing during the test), intergranular (SCC), and transgranular brittle overload (fracture of the specimen in liquid nitrogen). From the inspection of the fracture surfaces, the known test conditions, and the load and DCPD data, estimates of both K_{thSCC} and CGRs are generated provided there was some crack propagation. If no crack propagation is observed, then it is known that K_{thSCC} is higher than the K applied in the test.

4.0 RESULTS AND DISCUSSION

4.1 ELECTROCHEMICAL POLARIZATION BEHAVIOR IN TANK 241-AP-105 BASED SIMULANTS

Table 5 summarizes the results of the electrochemical tests conducted in FY2008 AP-105-PSC based simulants, including standard AP-105-PSC simulants, AP-105-Evaporated simulants, and AP-105-Mixed simulants as well as their modified versions.

4.1.1 Cyclic Potentiodynamic Polarization Behavior

Figure 6 (a) is the CPP curve obtained with a fully immersed specimen in deaerated AP-105-PSC at 50°C and at pH above 13. This simulant contains 0.27 M nitrite ion and 3.58 M nitrate ion (nitrite-to-nitrate concentration ratio of 0.075). As shown in Figure 6 (a), the polarization curve showed a wide passive region before the increase in the current. This area of increased current is shown with more detail in Figure 6 (b). A small positive hysteresis loop was observed but no pitting corrosion was noted on the post-test sample. This implied that the increase in current at approximately 500 mV (vs. SCE) was not associated with localized corrosion but the oxidation of electro-active species in this simulant.

Table 5. A Summary of Electrochemical Tests Performed in AP-105-PSC Based Simulants. (2 sheets)

Base Chemistry	pH	NO ₂ ⁻ (M)	NO ₃ ⁻ (M)	TIC (M)	OH ⁻ (M)*	Cl ⁻ (M)	F ⁻ (M)	T (°C)	Aeration condition	Testing type	Visual	Sample ID (#EL1196-)
AP-105-PSC	>13	0.27	3.58	0.326	0.176	0.03	0.009	50	N ₂ purging	CPP Full immersion	No pitting	54
AP-105-PSC	>13	0.27	3.58	0.326	0.176	0.03	0.009	50	N ₂ purging	CPP Full immersion	No pitting	60
AP-105-PSC	>13	0.27	3.58	0.326	0.176	0.03	0.009	50	N ₂ purging	Potentiostatic at 0 mV	No pitting	63
AP-105-PSC	>13	0.27	3.58	0.326	0.176	0.03	0.009	50	N ₂ purging	CPP Full immersion	Crevice corrosion	64
AP-105-PSC	>13	0.27	3.58	0.326	0.176	0.03	0.009	50	N ₂ purging	Potentiostatic at 0 mV	Crevice corrosion	65
AP-105-PSC	>13	0.27	3.58	0.326	0.176	0.03	0.009	50	Quiescent Air	Potentiostatic at 0 mV, half immersion	Severe attack at liquid/vapor interface	66
AP-105-PSC	>13	0.6	3.58	0.326	0.176	0.03	0.009	50	Quiescent Air	Potentiostatic at 0 mV, half immersion	Corrosion	72
AP-105-PSC	>13	0.27	3.58	0.326	0.176	0.03	0.009	50	N ₂ purging	Potentiostatic at 0 mV, half immersion	Corrosion	73
AP-105-PSC	>13	0.27	3.58	0.326	0.176	0.03	0.009	50	Quiescent Air	CPP Half immersion	Corrosion	75
AP-105-PSC	>13	0.27	3.58	0.326	0.176	0.03	0.009	Room	Quiescent Air	Potentiostatic at 0 mV, half immersion	Corrosion	76
AP-105-PSC	>13	0.27	3.58	0.326	0.176	0.03	0.009	50	Quiescent Air	Potentiostatic at 100 mV vs. OCP, half immersion	Corrosion	77
AP-105-PSC	>13	0.27	3.58	0.326	0.176	0.03	0.009	Room	Quiescent Air	CPP Full immersion	No pitting	81
AP-105-PSC	>13	0.27	3.58	0.326	0.176	0.03	0.009	50	Quiescent air	Potentiostatic at 0 mV Half immersion	Minor corrosion	91
AP-105-PSC	>13	0.27	3.58	0.326	0.176	0.03	0.009	50	Zero air purging	OCP Half immersion	Corrosion	84
AP-105-PSC	>13	0.27	3.58	0.326	0.176	0.03	0.009	50	High Purity Ar purging	OCP Half immersion	Corrosion	85
AP-105-PSC	>13	0.27	3.58	0.326	0.176	0.03	0.009	50	N ₂ purging	OCP Half immersion	Corrosion	86
AP-105-PSC	>13	0.27	3.58	0.326	0.176	0.03	0.009	50	Quiescent air	OCP Half immersion	Interface attack	83

* This reflects the concentration prior to pH adjustment.

Table 5. A Summary of Electrochemical Tests Performed in AP-105-PSC Based Simulants. (2 sheets)

Base Chemistry	pH	NO ₂ ⁻ (M)	NO ₃ ⁻ (M)	TIC (M)	OH ⁻ (M)*	Cl ⁻ (M)	F ⁻ (M)	T (°C)	Aeration condition	Testing type	Visual	Sample ID (#EL1196-)
AP-105-PSC	>13	0.27	3.58	0.326	0.176	0.03	0.009	Room	Quiescent air	Potentiostatic at 50 mV vs. OCP Half immersion	Corrosion	92
AP-105-PSC	>13	0	3.85	0.326	0.176	0.03	0.009	50	N ₂ purging	CPP Full immersion	Pitting	93
AP-105-Mixed	>13	0.41 3	2.85 7	0.274	0.952	0.03 9	0.026	50	N ₂ purging	CPP Full Immersion	No pitting	98
AP-105-Evaporated	14	0.73 6	5.08 7	0.489	1.67	0.06 9	0.047	50	N ₂ purging	CPP	No pitting	99
AP-105-Evaporated (Nitrite/Nitrate=0.1)	14	0.51	5.08 7	0.489	1.67	0.06 9	0.047	50	N ₂ purging	CPP Full immersion	No pitting	105
AP-105-Mixed (Nitrite/Nitrate=0.1)	>13	0.28	2.85 7	0.274	0.952	0.03 9	0.026	50	N ₂ purging	CPP Full immersion	No pitting	106
AP-105-PSC	>13	0.27	3.58	0.326	0.176	0.03	0.009	50	Zero air Blanket	OCP Half immersion	Minor corrosion	94
AP-105-PSC	>13	0.27	3.58	0.326	0.176	0.03	0.009	50	High Purity Ar blanket	OCP Half immersion	Minor corrosion	95
AP-105-PSC	>13	0.27	3.58	0.326	0.176	0.03	0.009	50	N ₂ blanket	OCP Half immersion	Minor corrosion	96
AP-105-PSC	>13	0.27	3.58	0.326	0.176	0.03	0.009	Room	Quiescent air	OCP Half immersion	Interface attack	97
AP-105-PSC	>13	0.27	3.58	0.326	0.176	0.03	0.009	50	Quiescent air	CPP Full immersion	Pitting	102

* This reflects the concentration prior to pH adjustment.

Figure 6. The CPP Curve in Nitrogen Daeaerated AP-105-PSC Simulant (T= 50°C and pH>13).

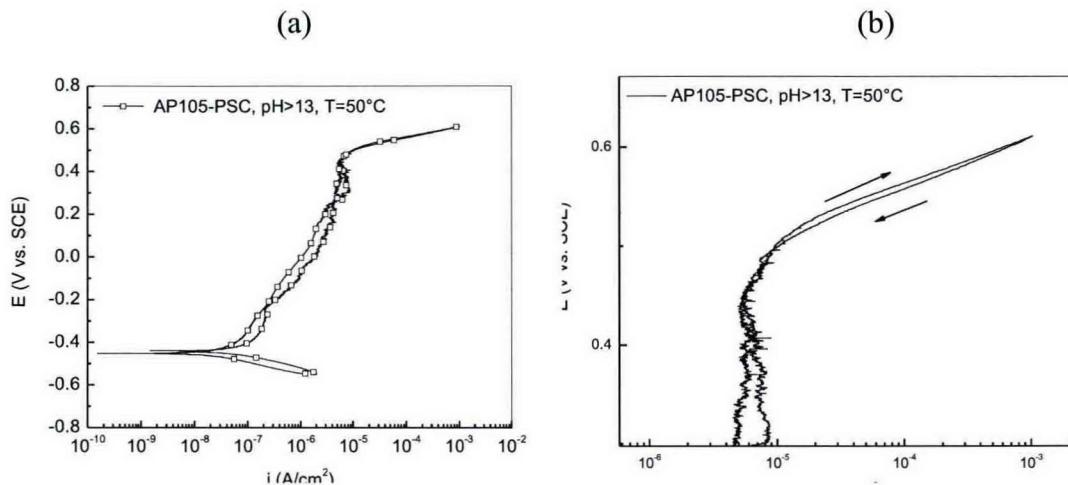
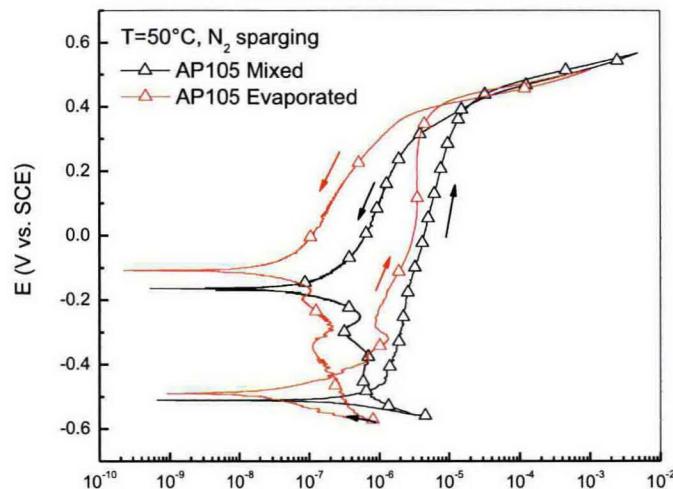
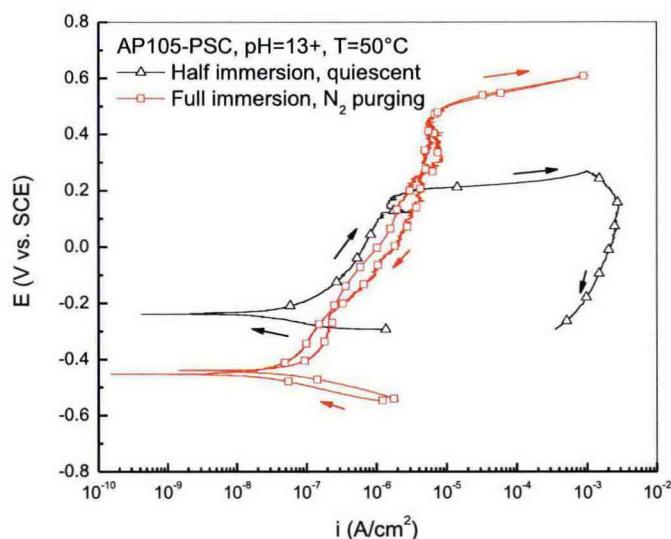




Figure 7 shows a comparison of the CPP curves obtained in deaerated AP-105 mixed and evaporated simulants at 50°C. These simulants have a higher nitrite-to-nitrate ratio (0.14) than the standard AP-105 simulant (0.075). The CPP curves showed a tiny hysteresis loop. No pitting corrosion was observed on the sample after CPP testing. Similar to the observation in AP-105-PSC, therefore, the hysteresis loop was not associated with localized corrosion but most likely with the electrochemical oxidation and reduction of other electro-active species in the simulants.

Figure 8 is a comparison of the CPP curves obtained in the AP-105 evaporated and mixed simulants with nitrite-to-nitrate concentration ratio of 0.1. No clear positive hysteresis loops were noted in either CPP curves and the samples tested in both simulants did not show any indication of localized corrosion.

Figure 7. CPP Curves in Nitrogen Daeaerated AP-105 Mixed and Evaporated Simulants at pH 14 and 50°C.

Figure 8. CPP Curves Obtained in Nitrogen Daeerated AP-105 Evaporated and Mixed with Nitrite-to-nitrate Concentration Ratio of 0.1 (pH 12+ and T=50°C).


The lack of localized attack on the samples tested in the AP-105 based simulants was likely a result of relatively high hydroxide concentration and the combined inhibition from both nitrite and other inhibitory species. In the previous AN-107 program, at nitrite/nitrate ratio of 0.095, a value slightly higher than that in AP-105-PSC, severe pitting was noted and the repassivation potential was more negative than OCP. Although the nitrite/nitrate concentration ratio in the AP-105-PSC is lower than 0.095, the pH was significantly higher than the AN-107 simulant. Furthermore, other inhibitory species, such as aluminate, were present in the AP-105 simulant but not in the AN-107 simulants. The combined effect from all these differences very possibly caused the difference in the observed polarization behavior (i.e., different repassivation potential and the extent of localized attack). Similarly, although the nitrate concentration in the evaporated simulant is 5.087 M, a significantly higher value than other simulants investigated to date, no pitting corrosion was noted on the CPP specimen. Thus, it appears that nitrite, combined with other inhibitory species (e.g., hydroxide, aluminate), efficiently inhibited localized corrosion in the evaporated simulant.

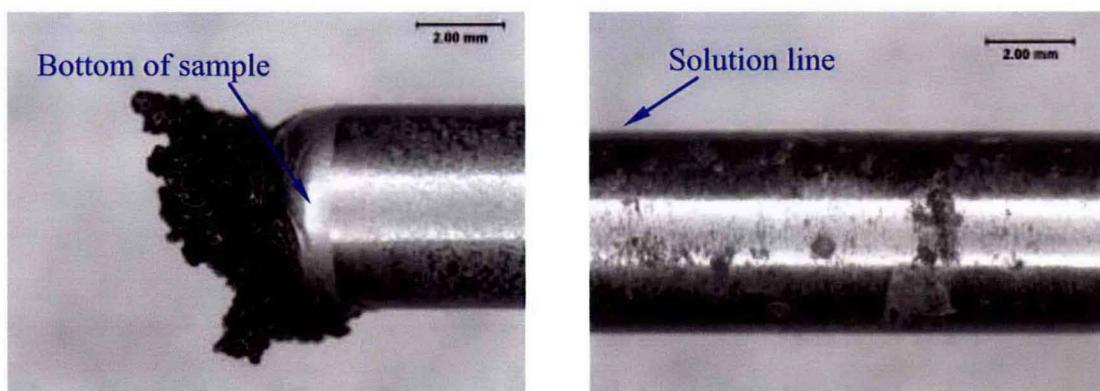
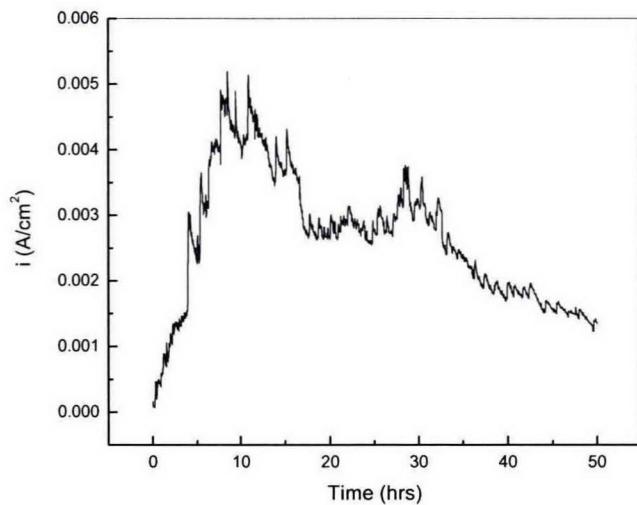
4.1.2 Liquid/Vapor Interfacial Corrosion in AP-105-PSC

Figure 9 is a comparison of the CPP curves obtained in AP-105-PSC simulant when the specimen was partially immersed in quiescent air conditions and fully immersed in deaerated conditions. The sample was partially immersed to create a liquid/vapor interface that simulated the sample configuration in the SSRTs. In the SSRTs, which were all performed in quiescent air conditions, a liquid/vapor interface was present and severe attack at the interface was observed after polarizing to 0 mV vs. SCE at 50°C for approximately 60 hours in the AP-105-PSC simulant. Details of the SSRT results are discussed in the following section. Also, the investigation of corrosion at the interface could provide insight into the integrity evaluation of the waste storage tanks because a liquid/vapor interface will be present at the supernate level in the tank. As

mentioned above, a slightly positive hysteresis loop was observed when the sample was fully immersed in the deaerated simulant. However, the CPP curve for the partially immersed specimen in quiescent conditions exhibited a large hysteresis. The post-test inspection of the partially immersed sample revealed corrosion at the bottom of the sample, near the liquid/vapor interface, and the portion exposed to the vapor phase (Figure 10). The attack at the liquid/vapor interface was further investigated in a set of potentiostatic tests, as will be discussed below.

Figure 9. A Comparison of CPP Curves in Nitrogen Daeaerated AP-105-PSC Simulant at Different Nitrite and Nitrate Concentrations (pH=13+, T=50°C).

Figure 10. Sample Appearance after CPP Testing in AP-105-PSC Simulant under Quiescent Air Conditions (pH=13+, T=50°C).

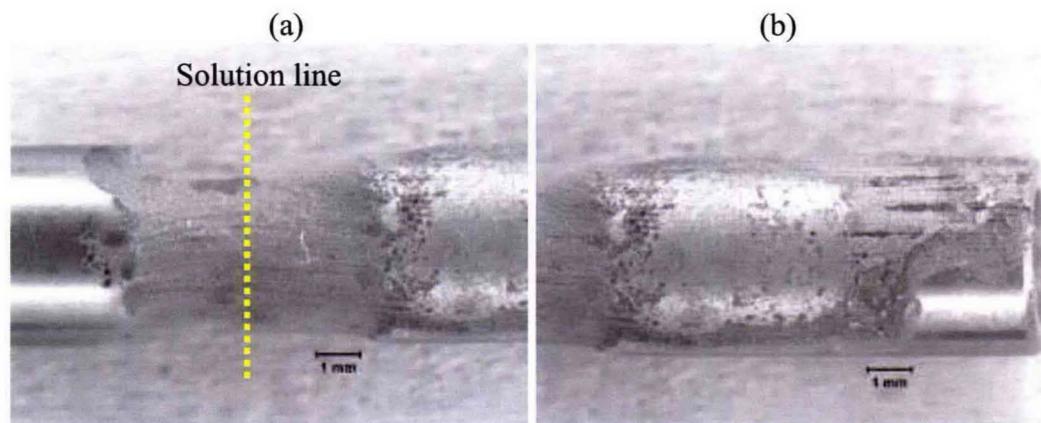

Figure 11 shows the current change as a function of time when a partially immersed sample was polarized at 0 mV vs. SCE for 50 hours (pH>13, T=50°C) in an AP-105-PSC simulant under quiescent conditions. The current measured in the potentiostatic test showed a sharp increase shortly after the potentiostatic test began. Severe corrosion attack was noted on the sample at the liquid/vapor interface, as shown in Figure 12 (a). Corrosion attack was also observed on the specimen areas that were above the liquid/vapor interface (Figure 12 (b)). The observed corrosion attack was similar to that observed on the SSRT sample when exposed to the same simulant under quiescent air conditions. In contrast, no corrosion was noted on a fully immersed sample in the same environment and conditions. The measured current density remained low indicating passive conditions throughout the test, as shown in Figure 13.

Figure 11. The Change in the Current as a Function of Time when the Partially Immersed Sample Was Held at 0 mV vs. SCE (AP-105-PSC, pH>13, T=50°C, Quiescent Air Conditions).

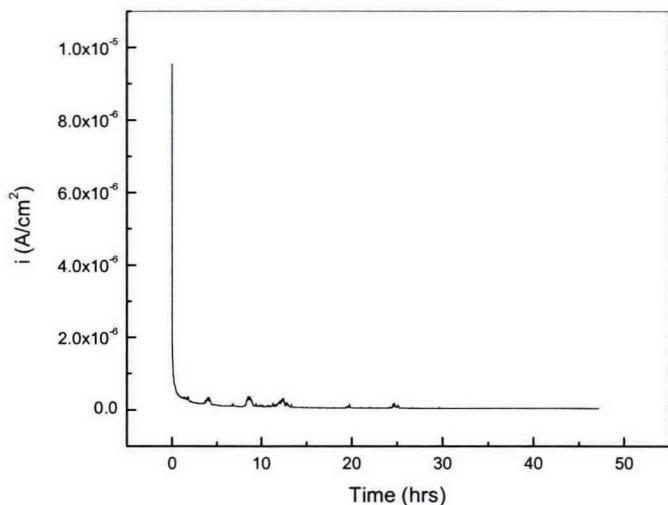
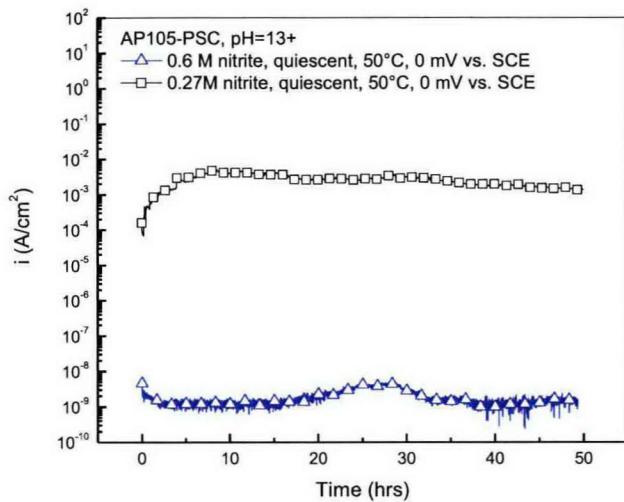


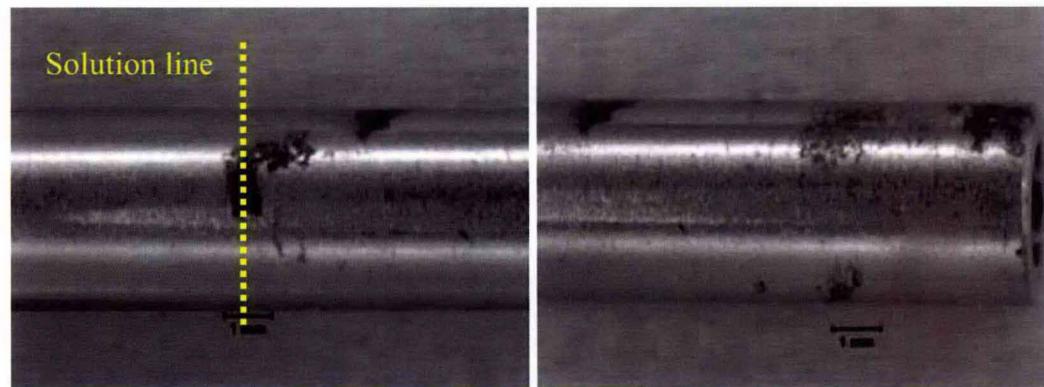
Figure 12. The Sample Appearance after 50 Hours of Potentiostatic Testing at 0 mV vs. SCE in the AP-105-PSC Simulant (pH>13, T=50°C, Quiescent Air Conditions).

(a) Corrosion at Liquid/vapor Interface; (b) Corrosion on the Portion above the Liquid/vapor Interface.

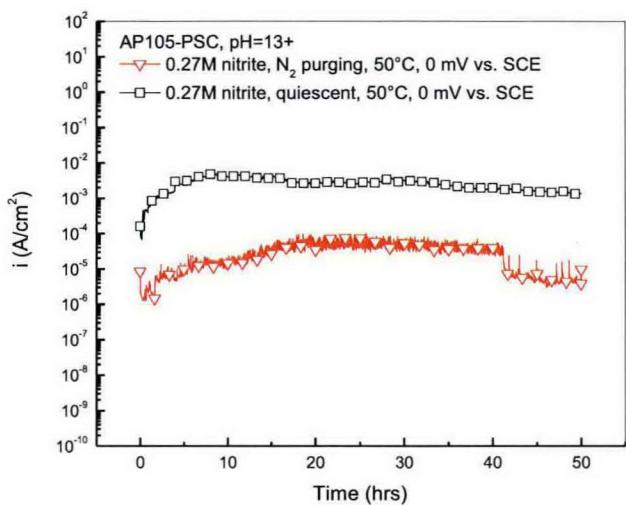
Figure 13. Current as a Function of Time for Fully Immersed Sample Polarized at 0 mV vs. SCE in AP-105-PSC Simulant (T=50°C, pH>13) Under Quiescent Air Conditions.



The contrasting results of severe corrosion attack for the partially immersed specimen and no corrosion attack for the fully immersed specimen are likely related to chemical reactions occurring at the interface. Typically, materials corrode more readily (at a higher rate) at a liquid/vapor interface than in the bulk in an aggressive environment. This is because oxygen is more readily available at the interface than in the bulk solution, allowing oxygen to contribute more significantly to the cathodic reaction (assuming oxygen reduction dominates the cathodic kinetics). However, when a sample is polarized to a noble potential (e.g., 0 mV vs. SCE as it was in these experiments), it is expected that all the cathodic reactions would be displaced to the counter electrode. This indicates that the fully immersed and partially immersed specimen should have similar cathodic reactions (as well as similar anodic reactions). Therefore, it is possible that some unknown reactions at the interface created a locally aggressive environment that resulted in severe corrosion attack of the partially immersed specimen.


While corrosion attack was noted at the liquid/vapor interface in quiescent air, the extent of corrosion attack was greatly decreased when the nitrite concentration was increased to 0.6M. The observed decrease in current density with the higher nitrite concentration is shown in Figure 14. Minimal corrosion attack was observed for this condition as shown in Figure 15.

Similarly, the current densities under deaerated conditions were lower than under quiescent conditions for the AP-105-PSC simulant with 0.27 M nitrite, as shown in Figure 16. The corrosion attack on the samples tested in deaerated simulants was also less severe than that observed under quiescent air conditions (see Figure 17). Additionally, the corrosion attack was noted to be less severe when the solution was actively sparged with nitrogen (Figure 16 and Figure 17). Note that in the test for the sample shown in Figure 17, though, the interface was actively disturbed and mixed with the bulk solution under the gas purging.


Figure 14. A Comparison of the Change in the Current as a Function of Time in the Potentiostatic Tests Conducted in AP-105-PSC Simulants with Different Nitrite Concentrations at 50°C and Quiescent Air Conditions.

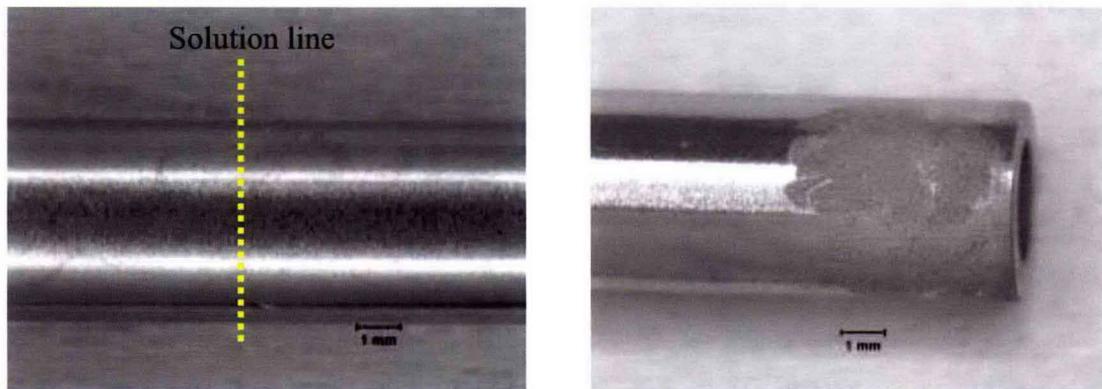

Figure 15. The Sample Appearance after Potentiostatic Test at 0 mV (vs. SCE) in the AP-105-PSC Simulant with 0.6 M Nitrite for 50 Hours (Sample Partially Immersed) at 50°C Under Quiescent Air Conditions.

Figure 16. A Comparison of the Current Density as a Function of Time in the Potentiostatic Tests Conducted at 0 mV (vs. SCE) in Quiescent and Nitrogen Purged AP-105-PSC Simulants at 50°C.

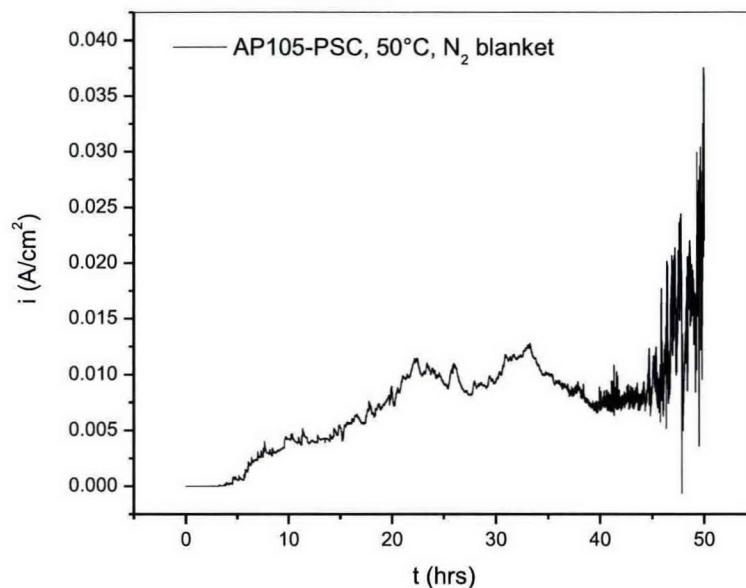
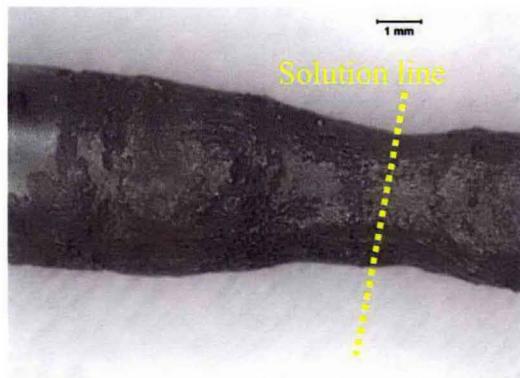
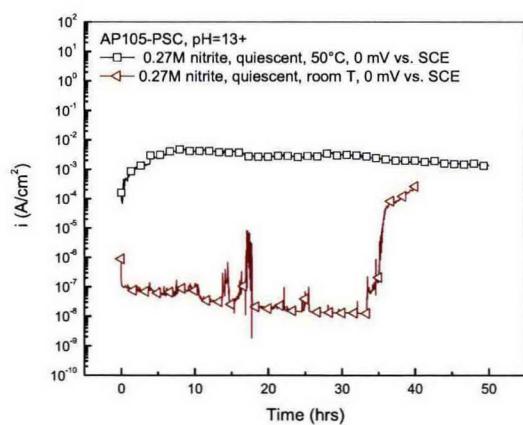


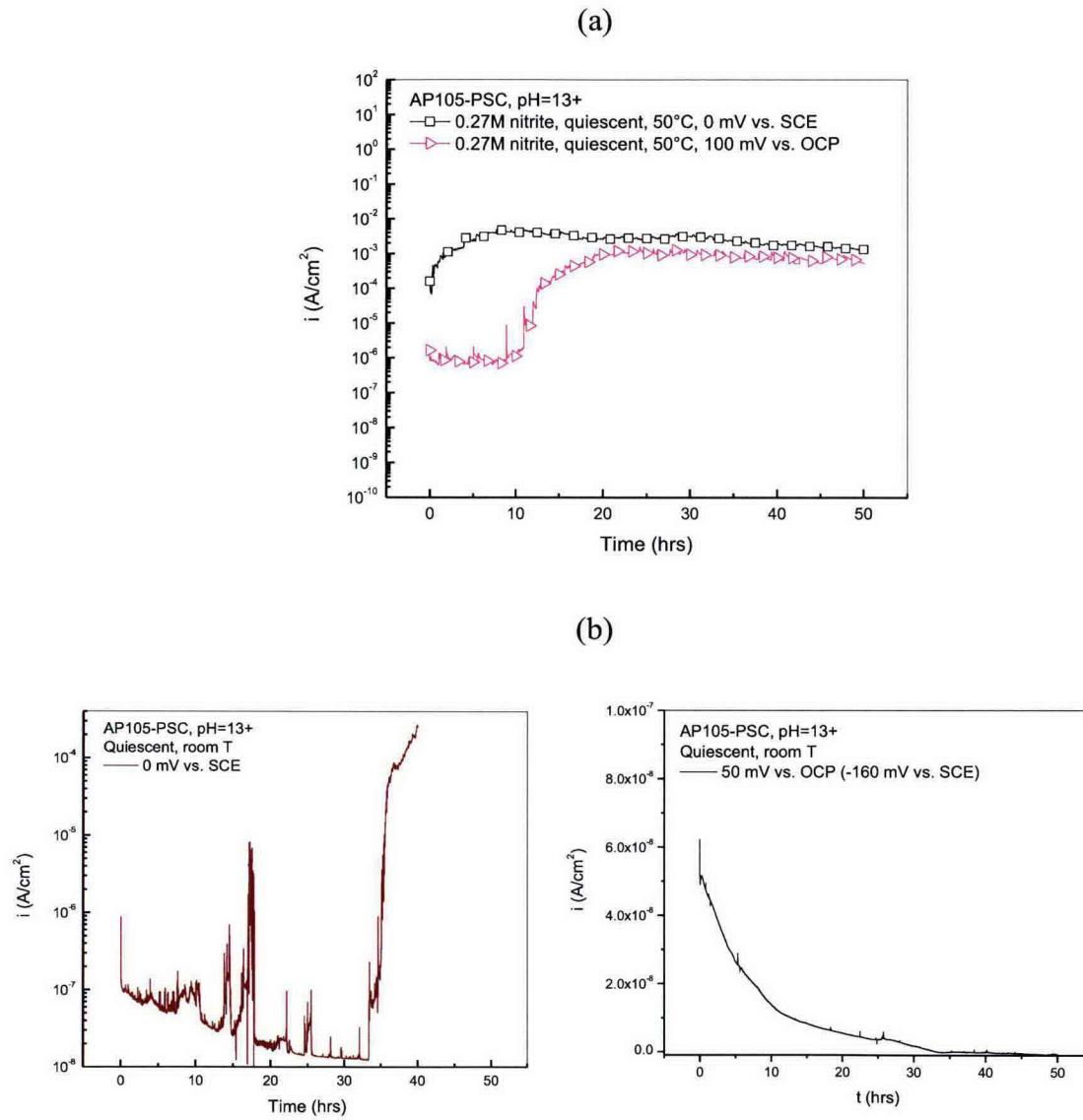
Figure 17. The Sample Appearance after Potentiostatic Test at 0 mV (vs. SCE) in Nitrogen Daeerated AP-105-PSC Simulant for 50 hours (Sample Partially Immersed) at 50°C.



Initially, it was thought that the rapid corrosion observed at the liquid/air interface was linked to the oxidation of nitrite in the presence of oxygen. However, corrosion at the interface was still observed in one test in which the head space of the test cell was purged with nitrogen to eliminate oxygen (i.e., the solution was not agitated). The current change as a function of time is shown in Figure 18 and the sample appearance after the potentiostatic test is shown in Figure 19. This demonstrated that the attack at the interface at 0 mV vs. SCE could still occur in the absence of oxygen. It also indicated that the role of nitrogen when actively purging the simulant was to primarily mix the bulk solution and the interface environment so that the local aggressive environment could be eliminated. Thus, it seems necessary to have a stable liquid/vapor interface to maintain the local chemistry at the interface in order to observe the corrosion attack as shown in Figure 12.

Figure 18. The Current Density as a Function of Time in the Potentiostatic Tests Conducted at 0 mV (vs. SCE) in AP-105-PSC Simulants with the Head Space of the Test Cell Purged with Nitrogen at 50°C.


Figure 19. The Sample Appearance after the Potentiostatic Tests Conducted at 0 mV (vs. SCE) in AP-105-PSC Simulants with the Head Space of the Test Cell Purged with Nitrogen at 50°C.


The extent of corrosion attack at the liquid/vapor interface at a polarized potential decreased significantly with a decrease in temperature from 50°C to room temperature. Figure 20 shows a comparison of the current density as a function of time at room temperature (~25°C) and 50°C at 0 mV vs. SCE with quiescent air in the head space. Although corrosion was noted when the solution was at room temperature and at 0 mV vs. SCE, the extent of corrosion was much less severe compared to 50°C and 0 mV vs. SCE (Figure 22 (a) vs. Figure 12). The current density at room temperature did increase dramatically after approximately 33 hours of exposure (Figure 20), while at a temperature of 50°C under the same conditions, the current increased within the first few hours, indicating the onset of corrosion.

The applied potential also had an impact on the onset of corrosion initiation at the liquid/vapor interface. Figure 21 shows that corrosion initiation took approximately 10 hours to appear at the interface when polarized to 100 mV vs. OCP (-204 mV vs. SCE) at 50°C and under quiescent air conditions. Comparatively, the current increased (i.e., corrosion initiated) within a few hours at 0 mV vs. SCE at 50°C in quiescent air conditions. A similar trend was observed at room temperature. In Figure 21 (b), the current did not increase within 50 hours of exposure at room temperature with an applied potential of 50 mV vs. OCP (-160 mV vs. SCE). However an increase in the current was noted after 33 hours at room temperature and an applied potential of 0 mV vs. SCE. Figure 22 (b) shows minimal corrosion attack at the interface for the 50mV vs. OCP potentiostatic polarization at room temperature and quiescent air conditions. As expected from the current transient data, the corrosion attack for the 0 mV vs. SCE, room temperature, quiescent air case (Figure 22 (a)) was more severe; however, the overall corrosion damage to both specimens was not substantial.

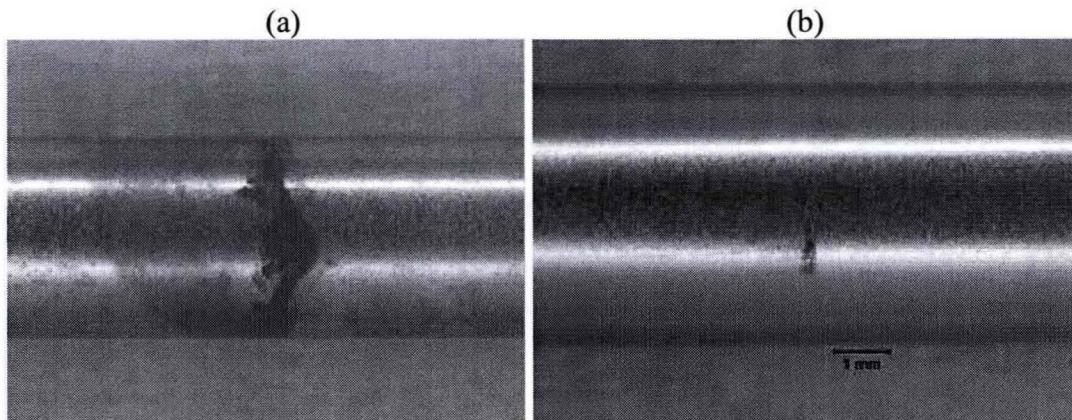
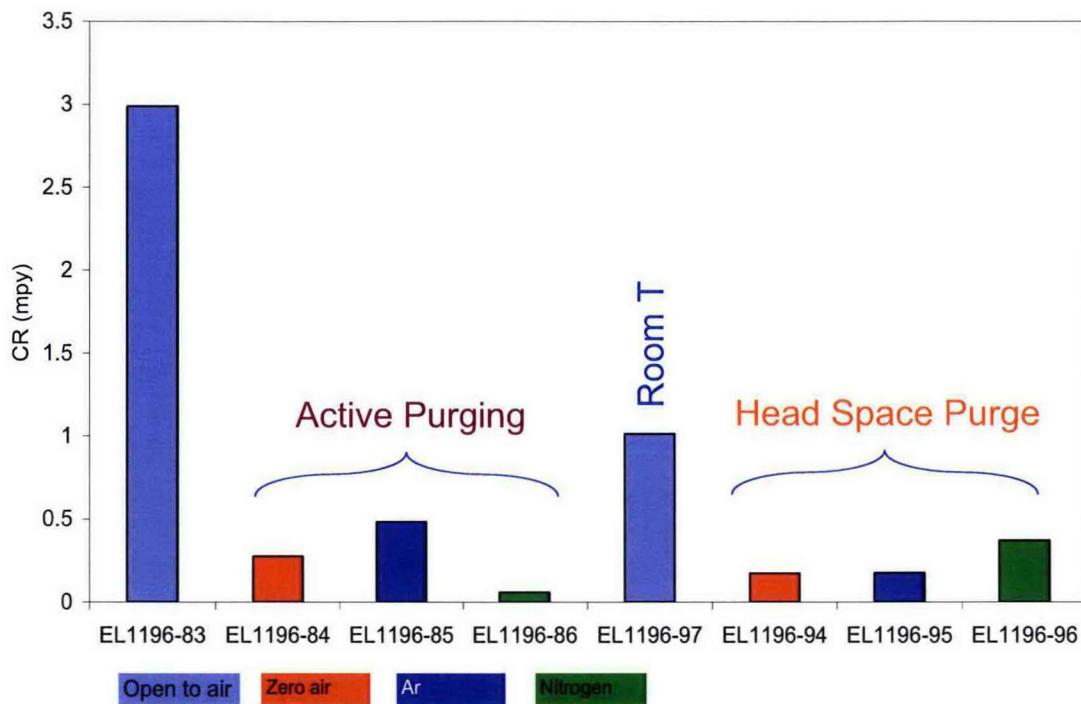
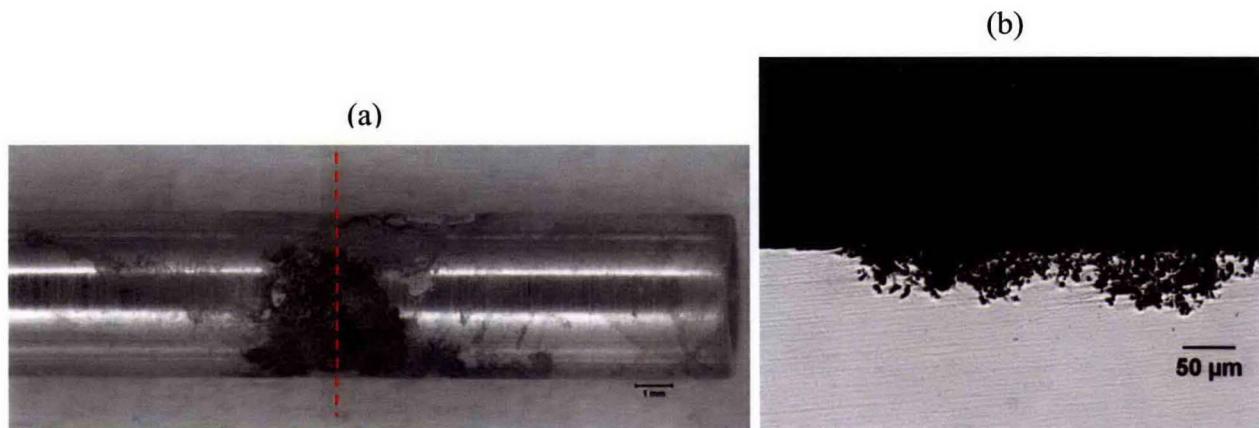

Figure 20. Current as a Function of Time in Potentiostatic Tests Conducted at Different Temperature Levels and Quiescent Air Conditions.

Figure 21. Current Density as a Function of Time in the Potentiostatic Tests Conducted in AP-105-PSC Simulants Under Quiescent Air Conditions at (a) 0 mV (vs. SCE, 50°C) and 100 mV (vs. OCP, 50°C); (b) 50 mV (vs. OCP, Room Temperature) and 0 mV (vs. SCE, Room Temperature).


Figure 22. Sample Appearance after 50 Hours Potentiostatic Testing in AP-105-PSC Simulant at Different Potentials (Under Quiescent Air Conditions, Room Temperature).
(a) 0 mV vs. SCE; (b) 50 mV vs. OCP (-160 mV vs. SCE).


To further investigate the corrosion attack at the liquid/vapor interface in the AP-105-PSC simulant, long-term immersion tests were performed with the samples partially immersed in the simulant to create a liquid/vapor interface. The effect of gas purging (through the bulk solution and the cell head space), temperature levels (room and 50°C), gas types (quiescent, compressed zero air, nitrogen and argon) on the interfacial corrosion susceptibility and extent were of particular interest. Figure 23 compares the corrosion rates of the samples that were partially immersed in the AP-105-PSC simulant at different conditions. It should be noted that the corrosion rate was calculated using the exposed surface area. This tends to underestimate the corrosion rate since the corrosion attack usually focused at the liquid/vapor interface or a few local sites. The samples exposed to the simulant open to the ambient air showed evident attack at the liquid/vapor interface (Figure 24 and Figure 25) and the extent of corrosion was less at room temperature. The corrosion rates at the other conditions (e.g., purged with nitrogen, argon and compressed zero air) did not differ from each other significantly. Additionally, the corrosion attack on the samples partially immersed in the actively sparged simulants were mainly located on the portion exposed to the vapor space region. Conversely, the corrosion was widely spread to the entire sample surface in cases where the solution remained stagnant or only the head space of the cell was purged with gases. These differences in the amount and mode of attack may suggest that the mixing of the bulk solution and the interface solution may have prevented the formation of a relatively aggressive environment adjacent to the sample surface.

It was also noted that the samples exposed to solutions with oxygen behaved differently. When the solution was open to the ambient air, the corrosion attack was more severe at an elevated temperature than at room temperature. In the case where the oxygen was introduced by actively purging the solution using zero air (i.e., air without CO₂), the corrosion was minor as the mixing of the interface with the bulk likely prevented the locally aggressive environment from forming. When the head space of the cell was purged with zero air, the corrosion attack was still not as severe as that in the solution open to the ambient air. Since the pH of the bulk solution did not change dramatically after the exposure, as shown in Table 6, it is not clear whether the local pH change at the interface played a significant role on the initiation of the attack at the interface.

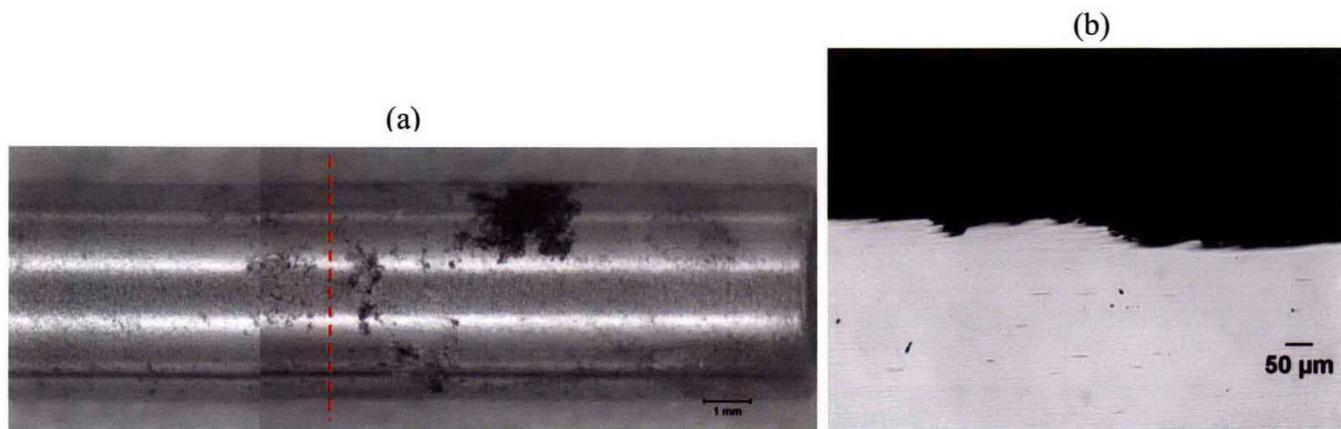

Figure 23. Corrosion Rate Calculated Based on Weight Loss for the Samples Partially Immersed in the AP-105-PSC Simulants Under Freely Corroding Conditions for More than Three Months (T=50°C Unless Noted Otherwise).

Figure 24. The Appearance of the Sample (a) and the Cross Section of a Corroded Site (b) after Exposed in AP-105-PSC under Quiescent Air Conditions (Sample Partially Immersed, T=50°, EL1196-83).

Figure 25. The Appearance of the Sample (a) and the Cross Section of a Corroded Site (b) after Exposed in AP-105-PSC under Quiescent Air Conditions (Sample Partially Immersed, Room Temperature, EL1196-97) at OCP.

Table 6. The Bulk pH Values of the Simulant after the Long-Term Immersion Tests.

Exposed sample	Solution pH after test
EL1196-83	13.28
EL1196-84	13.23
EL1196-85	13.32
EL1196-86	13.21
EL1196-97	13.32
EL1196-94	13.4
EL1196-95	13.44
EL1196-96	13.38

The interfacial corrosion appears to be a complicated process and the exact mechanism is still uncertain without conducting a comprehensive investigation. Based on the results obtained to date in the present work, several mechanisms are possible, as discussed below.

(a). Nitrite depletion through oxidation at a polarized potential

Severe attack at the interface in deaerated AP-105-PSC simulants at polarized potentials above OCP may be able to convert the inhibitory nitrite locally to nitrate. Thus, a locally aggressive environment could be formed. It has been demonstrated above that the interfacial attack strongly depends on the applied potential. Typically, a more positive polarized potential led to more severe attack with a shorter initiation time. The depletion of nitrite could be linked to the oxidation of nitrite to nitrate via the electrochemical reaction below:

$$E(NO_2^- / NO_3^-) = 0.835 - 0.000198TpH + 0.000099T \log([NO_3^-]/[NO_2^-])$$

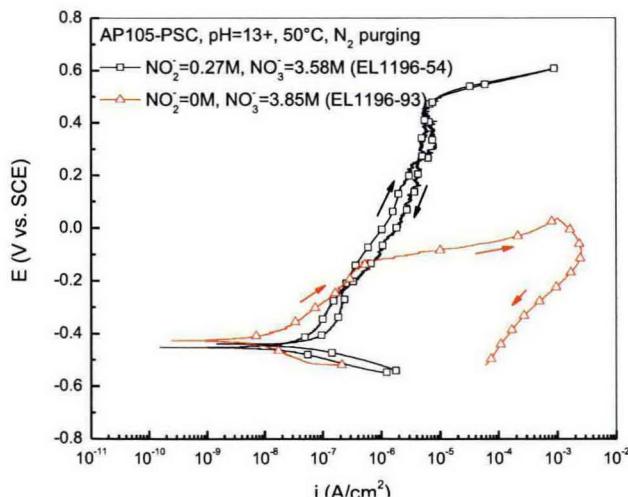
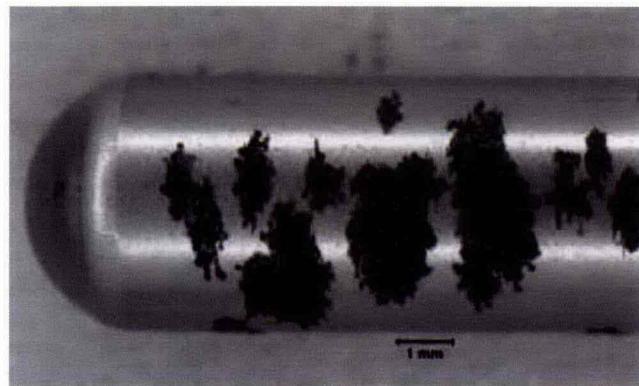
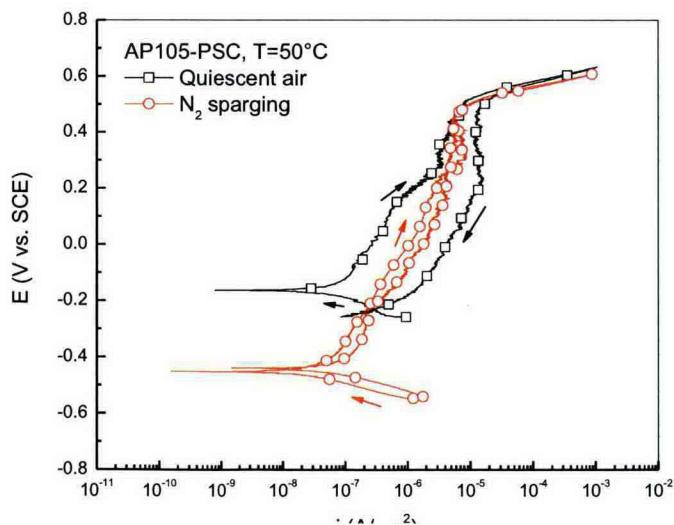

The equilibrium potential for this half reaction is listed in Table 7. Clearly, a polarization of 0 mV vs. SCE and 50 mV vs. OCP (-160 mV vs. SCE) are both sufficiently noble to oxidize nitrite to nitrate and the oxidation is still thermodynamically possible even at some OCPs. Although nitrite oxidation can occur anywhere on the immersed electrode surface, the local depletion can be compensated by the nitrite in the bulk solution through mass transport. At the liquid/vapor interface, however, the mass transport may be limited such that a local low nitrite environment can be maintained to form an aggressive environment.

Table 7. The Equilibrium Potential of Nitrite and Nitrate Redox Couple as a Function of Temperature at pH 13.5 (Nitrite=0.27M, Nitrate=3.58M).


T (°C)	E (V vs. SCE)
25	-0.170
50	-0.235

To illustrate that the depletion of nitrite and a corresponding increase in nitrate concentration compared to the bulk AP-105-PSC simulant solution could lead to a more corrosive environment, a modified AP-105-PSC simulant was created in which the nitrite was removed and the nitrate concentration was increased to 3.85 M. This high nitrate content represents complete conversion of nitrite to nitrate. CPP testing showed an open hysteresis loop (Figure 26) with severe localized corrosion attack noted, as shown in Figure 27. Clearly, the depletion of nitrite can lead to a very aggressive environment. The CPP curve shows a repassivation potential more negative than the OCP, indicating that localized corrosion may occur at open circuit. This could be a plausible explanation for the observation of severe corrosion in the vapor phase and interfacial regions on some samples.

Figure 26. A Comparison of CPP Curves in Nitrogen Deaerated AP-105-PSC Simulant at Different Nitrite and Nitrate Concentrations (pH=13+, T=50°C).


Figure 27. The Sample Appearance after CPP Testing in Nitrogen Daeaerated AP-105-PSC with No Nitrite and 3.85 M Nitrate (pH=13+, T=50°C).

(b). Oxygen enhanced corrosion and possible nitrite depletion

In general, increased oxygen concentration results in higher corrosion rates. Furthermore, the role of oxygen is uncertain in the process of nitrite depletion. Oxygen may be a promoter for the nitrite depletion to aid in creating a more corrosive environment. As shown Figure 28, the CPP curve in AP-105-PSC simulant under quiescent air conditions and 50°C showed a positive hysteresis loop and the sample showed pitting corrosion (Figure 29). In the long-term immersion tests, however, the samples immersed in the simulants purged by compressed zero air (no CO₂) did not show appreciable corrosion attack. These observations seem to indicate that the presence of oxygen may have no strong influence on the liquid/vapor corrosion process. Rather, the presence of CO₂ in the quiescent air coupled with evident corrosion, and the lack of CO₂ and observable corrosion in the zero air (and nitrogen), suggests that CO₂ may be the controlling species in liquid/vapor corrosion process.

Figure 28. A Comparison of the CPP Curves Obtained in the AP-105-PSC Simulant under Different Aeration Conditions using Fully Immersed Samples.

Figure 29. The Pit on the Sample Tested in the AP-105-PSC Simulant Under Quiescent Air Conditions and at 50°C (pH=13+).

(b). Local pH change causes an aggressive environment

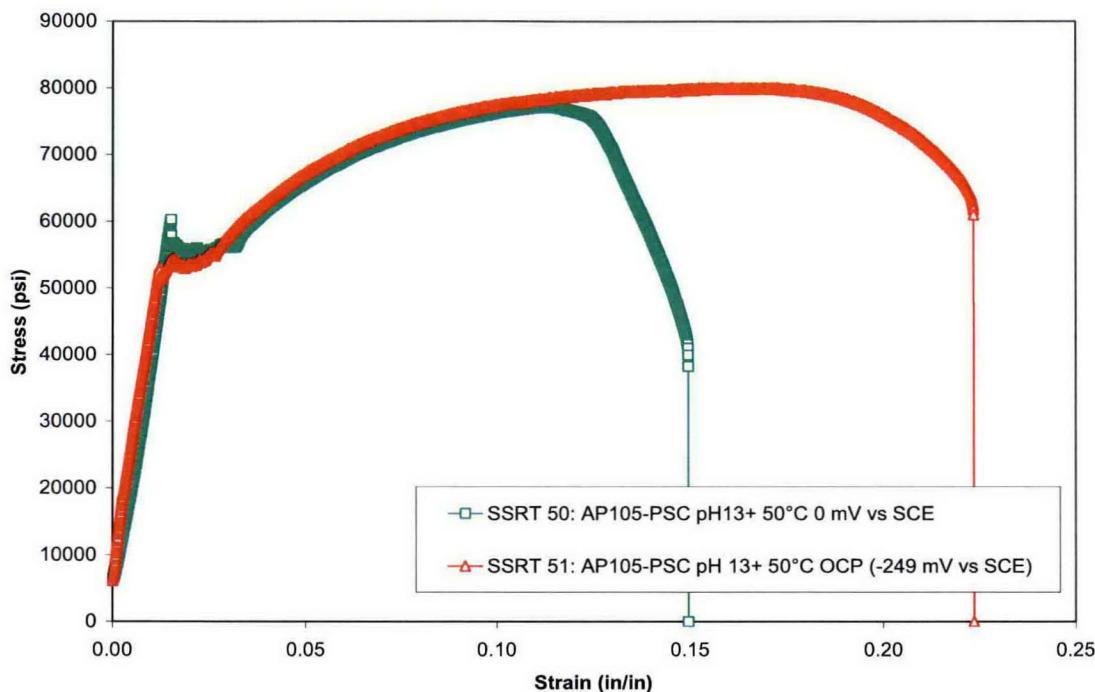
In the long-term immersion tests, the samples immersed in the simulants under quiescent conditions (open to air) showed appreciable interface attack. However, when the solution or the cell head space was purged with zero air (compressed air without CO₂), the corrosion attack was minimal. This may indicate that the attack at the interface was due to a change in the interfacial pH resulting from reaction with CO₂ in the air.

The results of the four tests in which oxygen and carbon dioxide were both excluded from the test systems with the AP-105 simulant at 50 °C imply that one or both of these gases are required for rapid corrosion at the liquid air interface. The results of the two tests carried out with air from which carbon dioxide has been removed imply that the carbon dioxide content of air is the key factor in determining the rate of the interfacial corrosion process. Because in the absence of carbon dioxide the corrosion rate was low and since the bulk pH at the conclusion of these tests was observed to be similar, it seems that interfacial corrosion is a localized phenomena and that the rate of transport of hydroxide ion from the bulk solution to the corrosion site is insufficient to neutralize the acidic influence of carbon dioxide in unmixed solutions. However, no confirmatory chemical analysis has been performed to validate the proposed CO₂/pH reduction mechanism.

4.2 SLOW STRAIN RATE TESTING IN TANK 241-AP-105 BASED SIMULANTS

Table 8 summarizes the results of SSRTs performed in AP-105 based simulants. Variants include “mixed” and “evaporated” simulants. Tests were performed at 50°C, at potentials of 0 mV and -250 mV vs. SCE, and at OCP. In two cases the tests were stopped at the ultimate tensile strength of the steel, in order to study the role of the strain in the development of intergranular SCC in the gage sections of the samples. Replicate tests were conducted for some conditions.

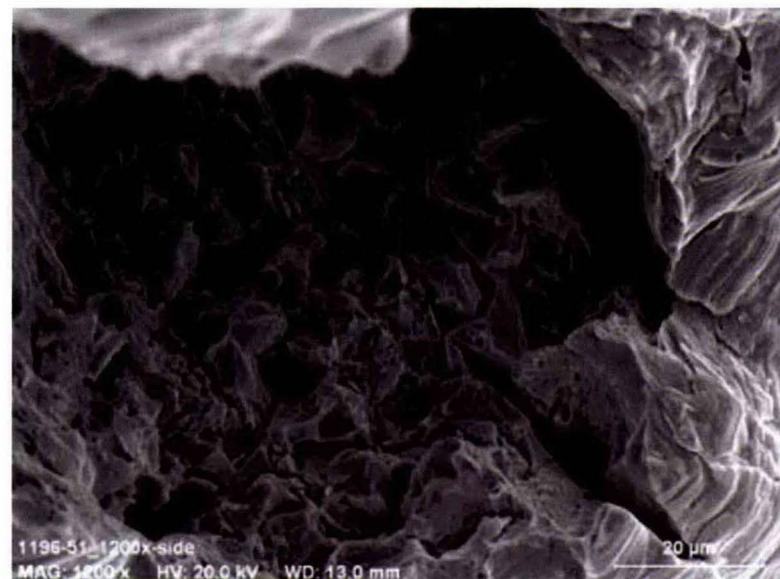
Table 8. A Summary of Slow Strain Rate Tests Performed in AP-105 Based Simulants.

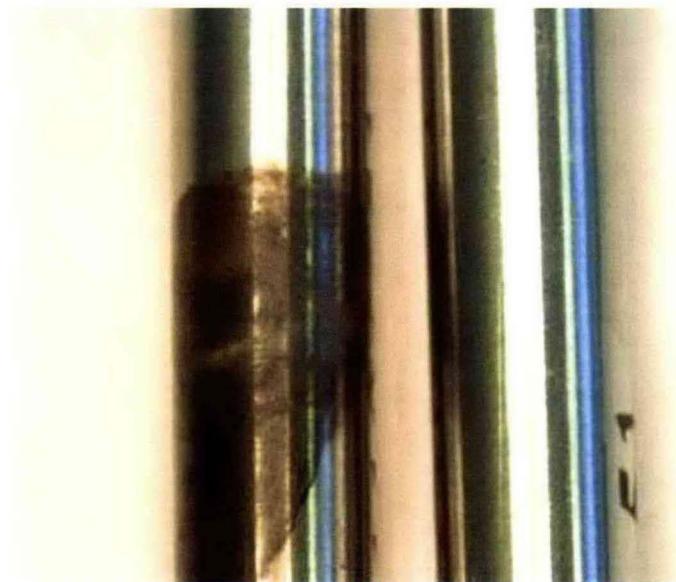

Test ID	Base Chemistry	pH	Temp (°C)	Pot (mV)	OCP (mV)	Failure Strain (%)	Failure Time (hrs)	SEM Surface Exam	Estimated CGR (mm/sec)
50	AP-105-PSC	13+	50	0	-242	15.0	41.6	Visual cracking	
51	AP-105-PSC	13+	50	OCP	-249	22.3	62.1	Secondary Crack IG	1.3×10^{-7}
52	AP-105-PSC	13+	50	OCP	-289	21.5	62.1	Ductile*	-
53	AP-105-PSC	13+	50	0	-259	16.3	49.2	Visual cracking	3×10^{-6}
54	AP-105-PSC	13+	50	0	-287	19.4	53.8	Visual cracking	
59	AP-105-Evaporated	13+	50	OCP	-510	21.2	59.0	Ductile	-
60	AP-105-PSC**	13+	50	OCP	-277	-	-	No cracking	-
62	AP-105-Evaporated (ratio 0.1)	13+	50	OCP	-333	23.3	64.7	Ductile	-
63	AP-105-Mixed (ratio 0.1)	13+	50	OCP	-259	23.2	64.3	Ductile	-
64	AP-105-Mixed	13+	50	OCP	-312	21.7	60.3	Ductile	-
65	AP-105-PSC**	13+	50	-250	-281	-	-	No cracking	-

*Secondary cracks were re-examined using the SEM, no apparent intergranular features

** Test was stopped at ultimate tensile stress

Figure 30 shows a plot of the stress-strain data from two of the slow strain rate tests, SSRT 50 and 51, performed in the AP-105-PSC base simulant. The specimens failed at 15.0 and 22.3 % strain. The former failure strain is lower than expected for this grade of steel, and is indicative of reduced cross-sectional area associated with severe corrosion attack during the testing. Visual and stereographic examination of the test specimens indicated severe corrosion, though the nature of the corrosion was not typical of the corrosion that had been observed in previous testing.


Figure 30. The Stress-Strain Behavior of Samples Tested in AP-105-PSC Based Simulants at 0 mV vs. SCE and at OCP (-249 mV vs. SCE).


A fracture surface examination of the samples tested at OCP (SSRT 51 and SSRT 52) indicated ductile failure. However, in SSRT 51, with an OCP of -249 mV vs. SCE, secondary crack examination showed intergranular features, indicative of high pH SCC (Figure 31). Similar behavior has been observed in previous testing, for example testing in modified AY-102 simulants with high nitrate contents when the specimen was polarized between -200 to -300 Mv vs. SCE. In addition, some tarnishing was seen on the shafts of samples as shown in Figure 32.

The intergranular features observed in the secondary cracks in the shaft of SSRT 51, tested in AP-105-PSC simulant at OCP, were unexpected. SCC has not been observed in any tests performed at OCP in waste simulants, including AN-107. One thought is that the sample may have been overly strained to enable the formation of the side cracks. This overly strained condition is unlikely to be relevant under normal tank operations. To investigate the role of strain, SSRT 60 was performed in AP-105-PSC simulant at OCP, but the test was stopped at the ultimate tensile strength. Post-test examination did not reveal any evidence of secondary cracking (Figure 33).

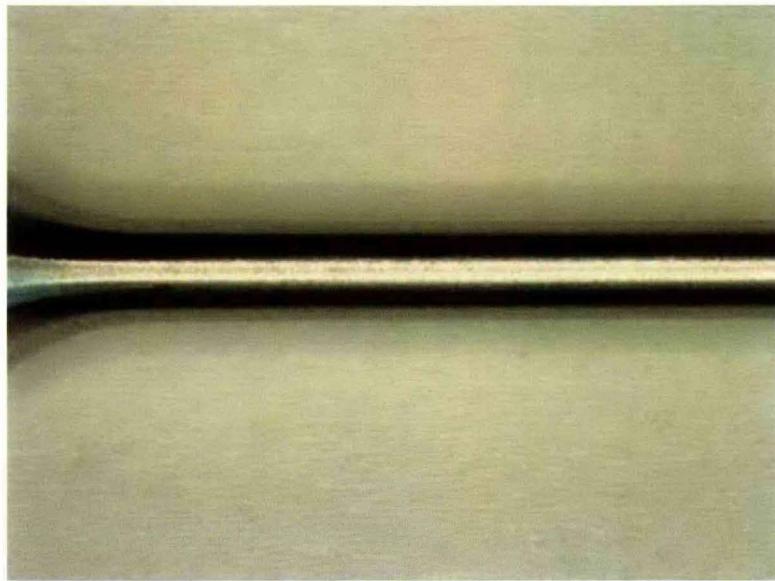
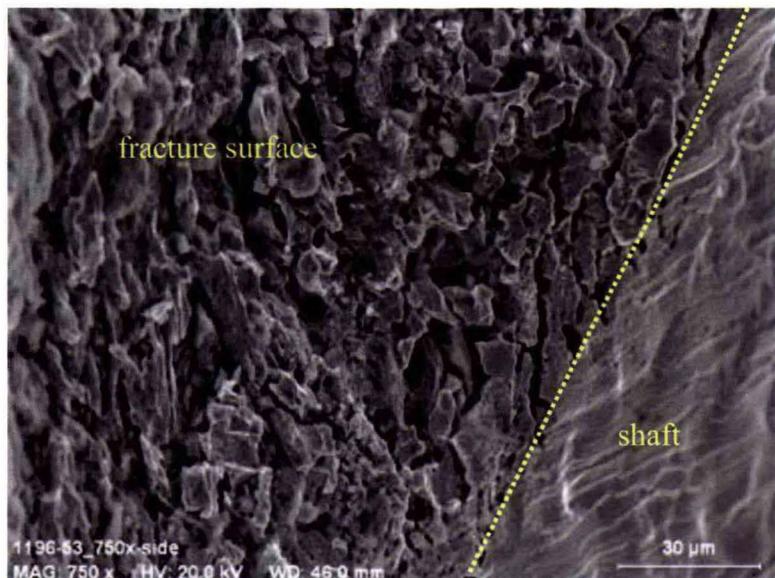

Figure 31. An Electron-Micrograph of a Secondary Crack in Test Sample SSRT-51 Performed in AP-105-PSC Standard Simulant at 50°C, pH 13+, and at OCP (-249 mV vs. SCE).

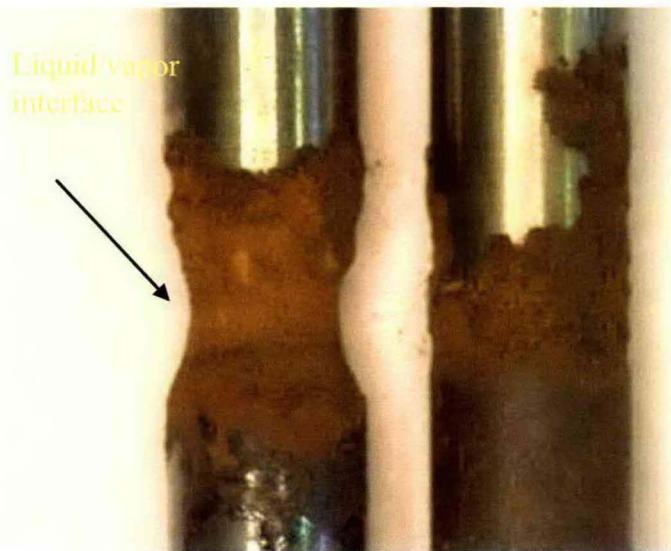
Figure 32. A Stereo-Micrograph of the Test Sample from SSRT-51 Performed in AP-105-PSC Standard Simulant at 50°C, pH 13+, and at OCP (-249 mV vs. SCE).


Figure 33. A Stereo-Micrograph of the Test Sample from SSRT-60 Performed in AP-105-PSC Standard Simulant at 50°C, pH 13+, and at OCP (-277 mV vs. SCE). The test was stopped at the ultimate tensile strength.

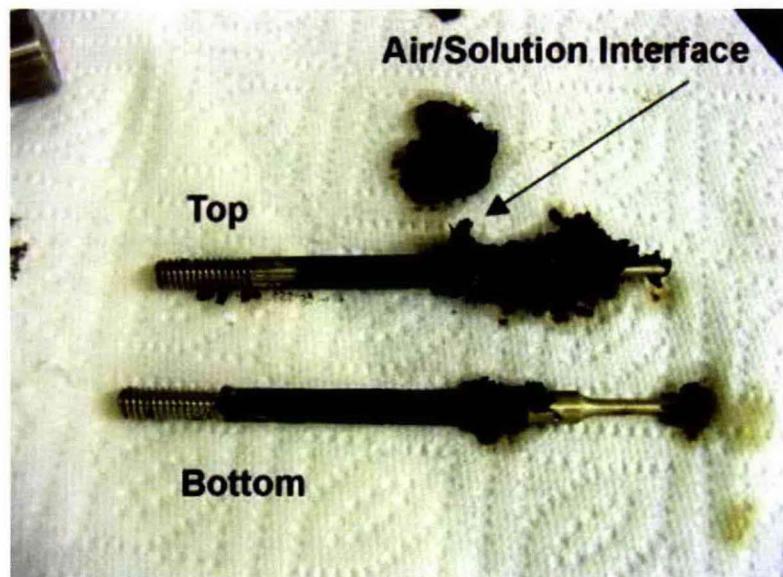
It was also noted that the OCP in SSRT 51 was -249 mV and the OCP in SSRT 52 was -289 mV vs. SCE. The test performed at the more noble potential was the one that had intergranular features. To determine if the more noble potential and/or the increased strain was primarily responsible for the SCC at OCP, SSRT 65 was performed in AP-105-PSC simulant at -250 mV vs. SCE, and stopped at the ultimate tensile strength. No secondary cracking was observed, indicating the SCC in SSRT 51 was most likely influenced by the high strain.

Examination of the fracture surface of the samples tested at 0 mV vs. SCE in the AP-105-PSC simulant showed intergranular features, indicative of high pH SCC (Figure 34). The observation of SCC at 0 mV vs. SCE is expected in a nitrate-based simulant, based on the results obtained in the previous testing programs. Previous testing had demonstrated that steels were susceptible to SCC in simulants containing high concentrations of nitrate and with low concentrations of inhibiting nitrite.

Figure 34. Electron-Micrograph of the Fracture Surface of Test Sample from SSRT-53 Performed in AP-105-PSC Standard Simulant at 50°C, pH 13+, and at 0 mV vs. SCE.



Visual examination of the samples tested under polarizing conditions (0 mV vs. SCE) also revealed severe corrosion on the sample above the gauge section (Figure 35 and Figure 36). A close examination of the SSRT cell indicated that the corroded section was at the liquid/vapor interface (Figure 37). Similar corrosion attack was observed in replicate tests. The discussion in the earlier section suggests the attack at the interface may be a result of the depletion of the inhibiting species (e.g., nitrite) or a reduction in the interfacial pH, both of which would result in the formation of a locally aggressive environment.


Significant corrosion has not been observed during SSR testing except under highly aggressive conditions in modified AN-107 simulants. Re-examination of the samples from testing in AN-107 with decreased nitrite concentrations showed severe corrosion along the entire length on the test sample, as opposed to just at the liquid/vapor interface. For those tests in the AN-107 program, however, the nitrite concentration was lower than 0.27 M while the simulant contained comparable amount of nitrate. Thus, the environment was sufficiently aggressive to attack the entire immersed portion. In the case of AP-105-PSC, it seems the nitrite concentration is near a threshold level below which localized corrosion could initiate. Therefore, the corrosion was observed at the liquid/vapor interface where even a slight decrease in nitrite or drop in pH could change its concentration to be below the threshold leading to an aggressive environment.

Corrosion attack was also seen near the base of several test samples. This attack was originally believed to be crevice corrosion associated with the seal between the test cell and sample. However, further examination indicated the corrosion was higher up on the sample than the test cell seal. Because a significant amount of corrosion product was observed at the interface (Figure 36), it was speculated that corrosion products may have accumulated at the base of the test cell and contributed to creating an occluded region. This hypothesis, however, was not studied further but is supported by the observation of corrosion products at the location of heavy corrosion. What is unclear is if the buildup of corrosion products is the cause or the result (or both) of the corrosion reaction at this location.

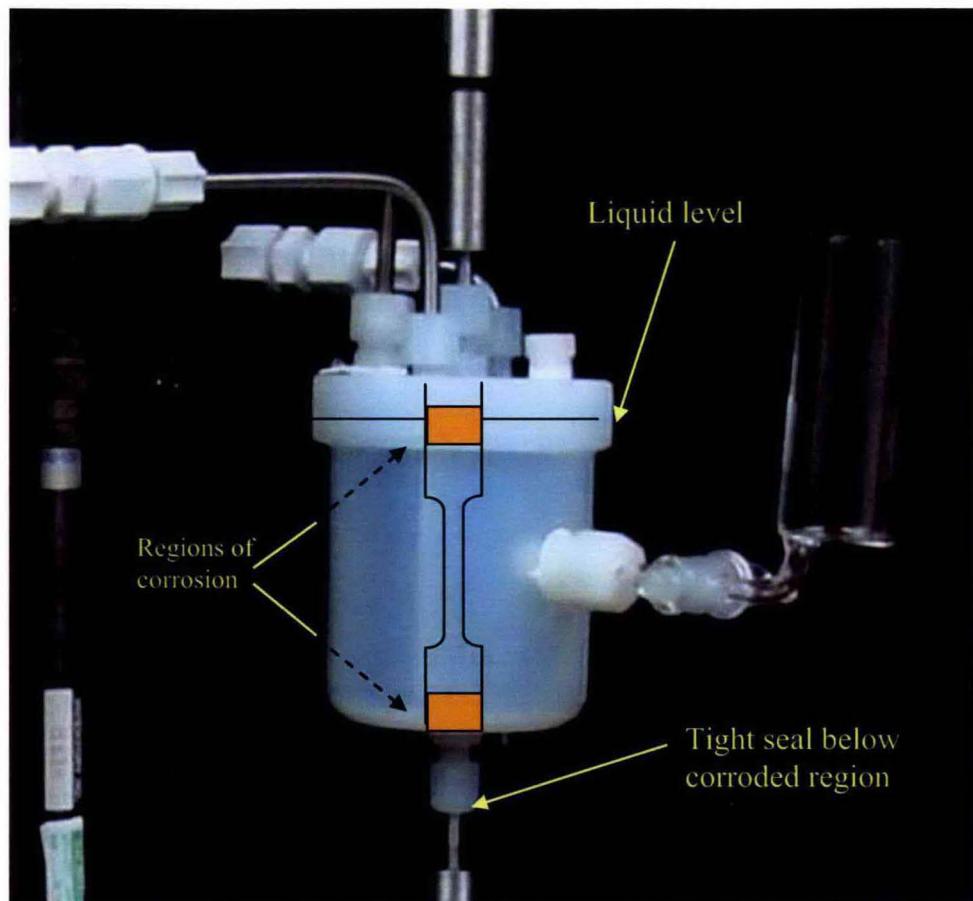

Figure 35. Stereo-Micrograph of the Test Sample from SSRT-53 Performed in AP-105-PSC Standard Simulant at 50°C, pH 13+, and at 0 mV vs. SCE.

Figure 36. Photograph of the Test Sample from SSRT-54 Performed in AP-105-PSC Standard Simulant at 50°C, pH 13+, and at 0 mV vs. SCE.

Figure 37. Photograph and Schematic of the Test Cell and Sample Indicating Regions of Corrosion (Schematic Not To Scale).

Tests performed in the AP-105 variants, that is mixed and evaporated simulants (SSRT 64 and SSRT 59, respectively), showed no evidence of SCC. These simulants have nitrite/nitrate ratios of ~ 0.14 , so it was expected there may be SCC based on previous testing in the simulants with low nitrite contents. The simulants were modified to further decrease the nitrite/nitrate ratio to 0.1 to study the SCC sensitivity to the chemistry. SSRT 63 and SSRT 62, performed in mixed and evaporated simulants with a decreased nitrite content showed no evidence of SCC. Note that all of these tests were performed at OCP, and potentials were lower than potentials at which SCC has typically been observed.

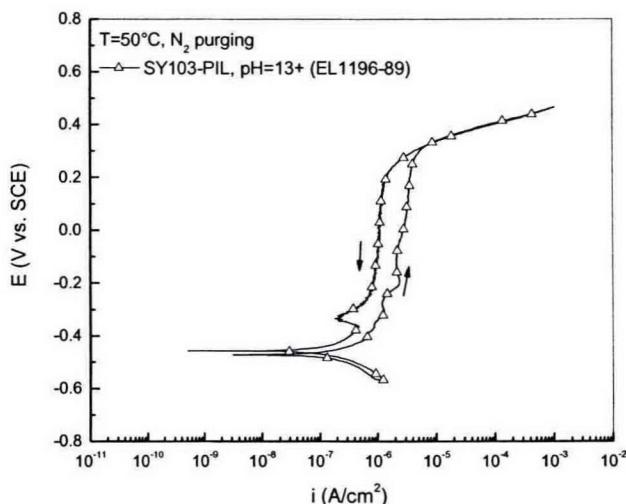

4.3 ELECTROCHEMICAL POLARIZATION BEHAVIOR IN TANK 241-SY-103-PIL BASED SIMULANTS

Table 9 summarizes the results of a CPP test conducted in the SY-103-PIL baseline simulant that investigated the susceptibility of the steel to localized corrosion in a simulant containing high chloride (0.5M). The chloride concentration in this simulant is the highest among the simulants that have been investigated thus far. No tests were performed in modified SY-103-PIL simulants.

Table 9. A Summary of Electrochemical Test Performed in SY-103-PIL Based Simulant.

Base Chemistry	pH	NO ₂ ⁻ (M)	NO ₃ ⁻ (M)	TIC (M)	OH ⁻ (M)	Cl ⁻ (M)	F (M)	T (°C)	Aeration condition	Visual	Sample ID (#EL1196-)
SY-103-PIL	>13	2.91	1.97	0.123	2.43	0.5	0	50	N ₂ purging	No pitting	89

Figure 38 shows the CPP curve obtained in deaerated SY-103-PIL simulant at 50°C with a pH above 13. The CPP curve showed a negative hysteresis loop. No pitting corrosion was noted on the samples during post-test inspection. This phenomenon could indicate that there are other inhibiting species present in this simulant (e.g., 2.91 M nitrite in SY-103-PIL and/or pH 13), even though the chloride concentration in this simulant is high, 0.5 M.

Figure 38. A CPP Curve in Daeaerated SY-103-PIL Simulant (pH>13 and T=50°C).

4.4 SLOW STRAIN RATE TESTING IN TANK 241-SY-103-PIL BASED SIMULANTS

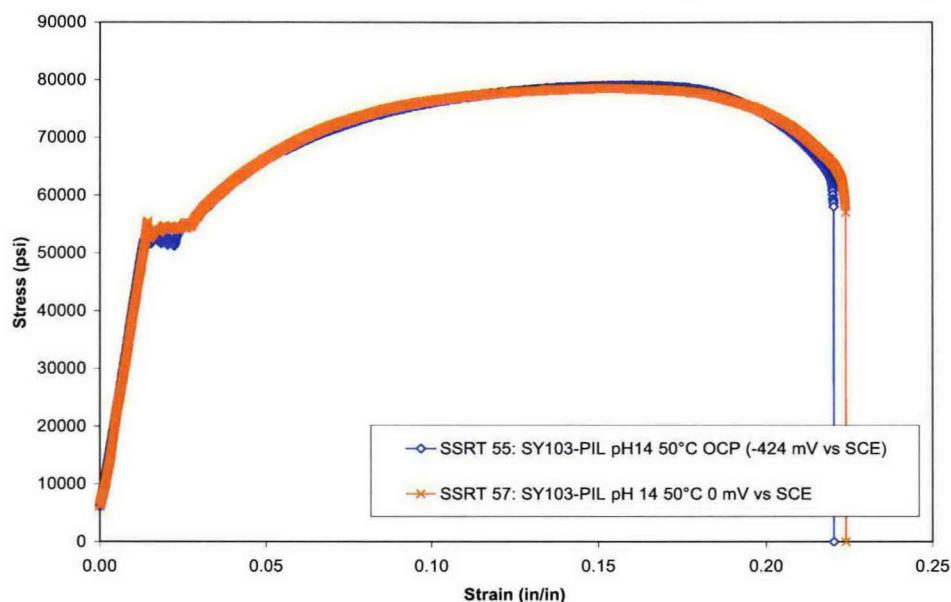

Table 10 summarizes the results of the slow strain rate tests performed in SY-103-PIL simulants in quiescent air. Tests were performed at 50°C, and potentiostatically polarized to 0 mV vs. SCE or at OCP. Both tests were performed in the standard SY-103-PIL simulant. This simulant has high nitrate (1.97 M) and nitrite (2.91 M) concentrations, as well as a high chloride (0.5 M) concentration.

Table 10. A Summary of Slow Strain Rate Tests Performed in SY-103-PIL Based Simulants.

Test ID	Base Chemistry	pH	Temp (°C)	Pot (mV)	OCP (mV)	Failure Strain (%)	Failure Time (hrs)	SEM Surface Exam	Estimated CGR (mm/sec)
55	SY-103-PIL	14	50	OCP	-424	22.0	61.2	Ductile	-
57	SY-103-PIL	14	50	0	-477	22.4	62.2	Ductile	-

Figure 39 is a plot of the stress-strain data from the two tests. When polarized to 0 mV vs. SCE the SSRT specimen failed at 22.4% strain. The specimen that was tested at open circuit failed at 22.0% strain. No evidence of SCC was observed in either of the tests. Both stereoscopic (Figure 40) and electron microscopic (Figure 41) examinations displayed ductile fracture features. Examination of the secondary microcracks observed in the gauge section of the specimen indicated no intergranular features. These results are consistent with CPP results already discussed. That is, although chloride concentration is elevated in this simulant, other inhibiting chemicals may still be able to prevent SCC.

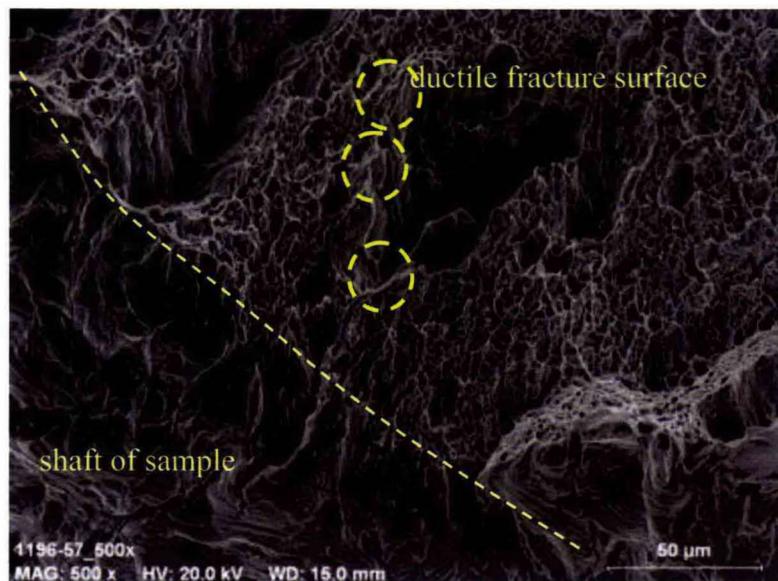

Figure 39. The Stress-Strain Behavior of Samples Tested in SY-103-PIL Based Simulants at 0 mV vs. SCE and at OCP (-424 mV vs. SCE).

Figure 40. Stereo-Micrograph of the Test Sample from SSRT-57 Performed in SY-103-PIL Standard Simulant at 50°C, pH 14, at a Potential of 0 mV vs. SCE. The yellow dashed circles indicate axial microcracks observed on the shaft of the sample.

Figure 41. Electron-Micrograph of the Fracture Surface of Test Sample from SSRT-57 Performed in SY-103-PIL Standard Simulant at 50°C, pH 14, at a Potential of 0 mV vs. SCE.

4.5 ELECTROCHEMICAL POLARIZATION BEHAVIOR IN TANK 241-AW-105 BASED SIMULANTS

Table 11 summarizes the CPP test conducted in the AW-105 baseline simulant. These tests were aimed at investigating the susceptibility of the steel to localized corrosion in simulants containing high fluoride concentrations (0.58M fluoride in the AW-105-PIL simulant) or a low nitrite-to-nitrate concentration ratio (Nitrite/nitrate of 0.145 in the AW-105-PSC simulant). No tests were performed using modified AW-105 simulants.

Table 11. A Summary of Electrochemical Test Performed in AW-105 Based Simulant.

Base Chemistry	pH	NO_2^- (M)	NO_3^- (M)	TIC (M)	OH^- (M)	Cl^- (M)	F ⁻ (M)	T (°C)	Aeration condition	Testing type	Visual	Sample ID (#EL1196-)
AW-105-PIL	>13	0.124	0.419	0.097	0.4502	0.01	0.58	50	N_2 purging	CPP Full immersion	No pitting	90
AW-105-PSC	>13	0.0638	0.44	0.1076	0.2630	0.0083	0.156	50	N_2 purging	CPP Full immersion	No pitting	108

Figure 42 shows the CPP curve obtained in deaerated AW-105-PIL simulant at 50°C with a pH above 13. The CPP curve showed a negative hysteresis loop and no pitting corrosion was noted on the samples during post-test inspection even though the fluoride concentration in this simulant is as high as 0.58 M. This indicates that either there are other inhibiting species present in these simulants (e.g., pH 13) or that the concentration of the aggressive species (e.g., nitrate at 0.42 M) is below a critical threshold above which localized corrosion would occur.

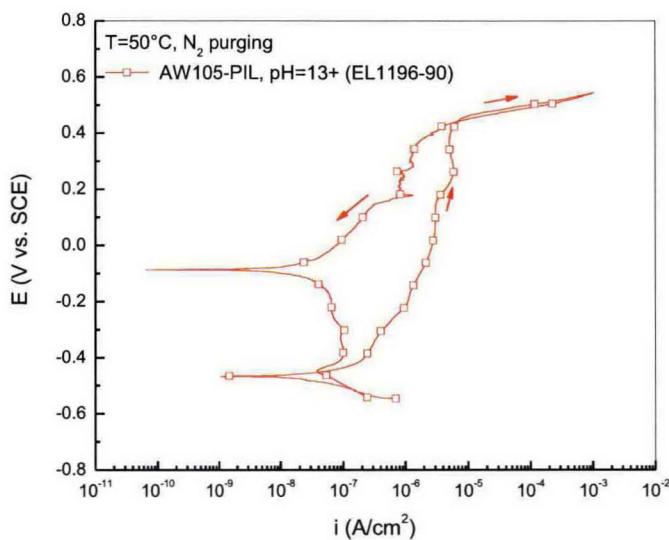
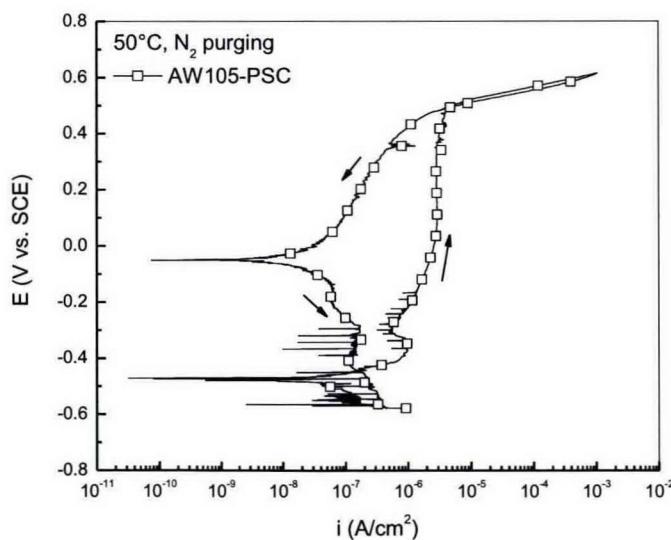


Figure 42. A CPP Curve in Daeaerated AW-105-PIL Simulant (pH>13 and T=50°C).

Figure 43 is a CPP curves in deaerated AW-105-PSC simulant at 50°C. Again, no clear positive hysteresis loop was observed on the curve and the sample did not show any indication of localized corrosion. The lack of localized corrosion on the samples suggests that even though the nitrite/nitrate ratio in this simulant is lower than other simulants investigated before, other inhibitory species present in these simulants were able to efficiently prevent localized corrosion. Additionally, the benign nature of these simulants with respect to localized corrosion may be a result of the relatively low concentration of the aggressive nitrate.

Figure 43. A CPP Curve in Daeaerated AW-105-PSC Simulant (pH>13 and T=50°C).

4.6 SLOW STRAIN RATE TESTING IN TANK 241-AW-105 BASED SIMULANTS

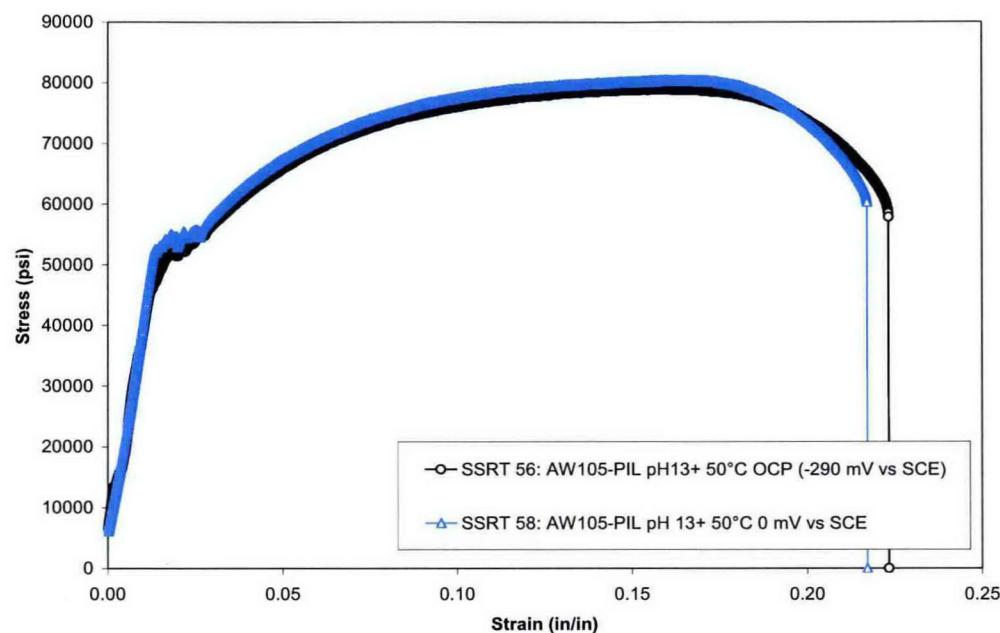

Table 12 summarizes the results of the SSRTs performed in AW-105 based simulants. Tests were performed at 50°C and at OCP or potentiostatically polarized to 0 mV vs. SCE. Two tests were performed in the base AW-105-PIL simulant. This simulant has a low nitrate (0.42 M) and nitrite (0.12 M) concentration, as well as a high fluoride (0.58 M) content. Six tests were performed in AW-105-PSC or PSC-modified simulant. The PSC simulant has a low nitrate (0.44 M) and low nitrite (0.06 M) concentration. The PSC –modified tests were performed with either half the typical nitrite, or with three times the typical nitrite and six times the typical nitrate. These modifications were made to study the nitrite / nitrate ratio versus potential relationship.

Table 12. A Summary of Slow Strain Rate Tests Performed in AW-105 Based Simulants.

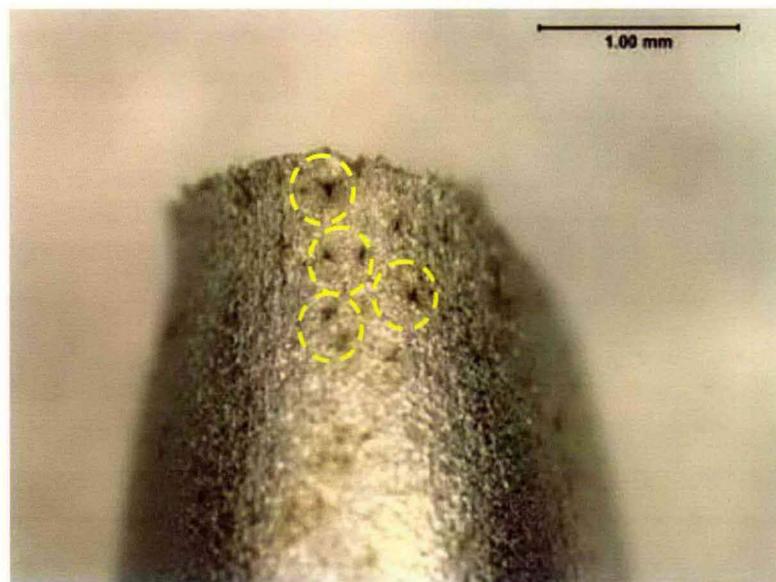
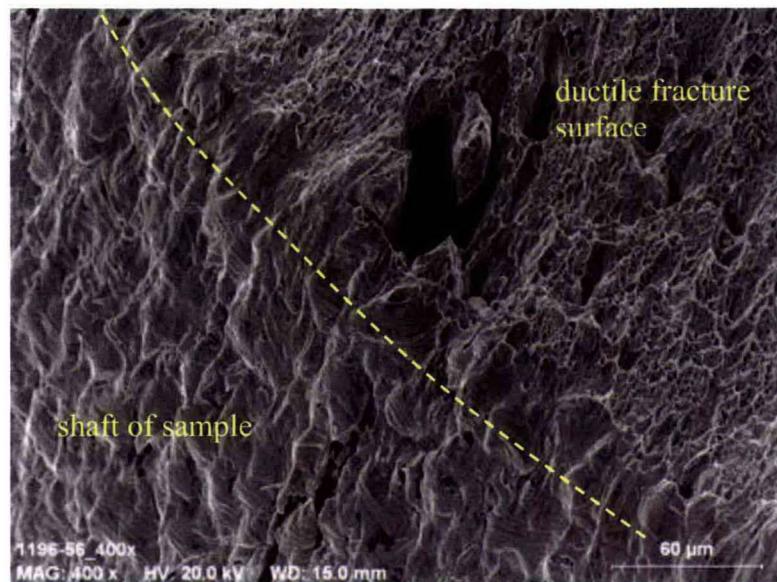
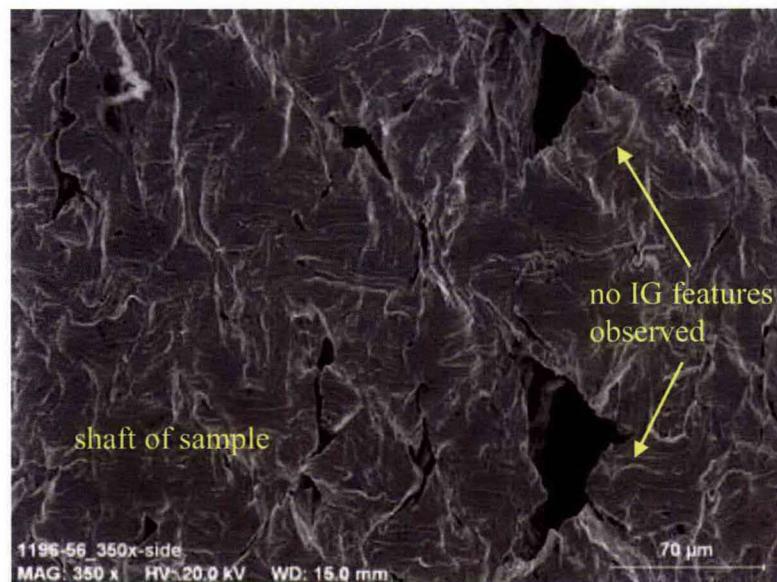
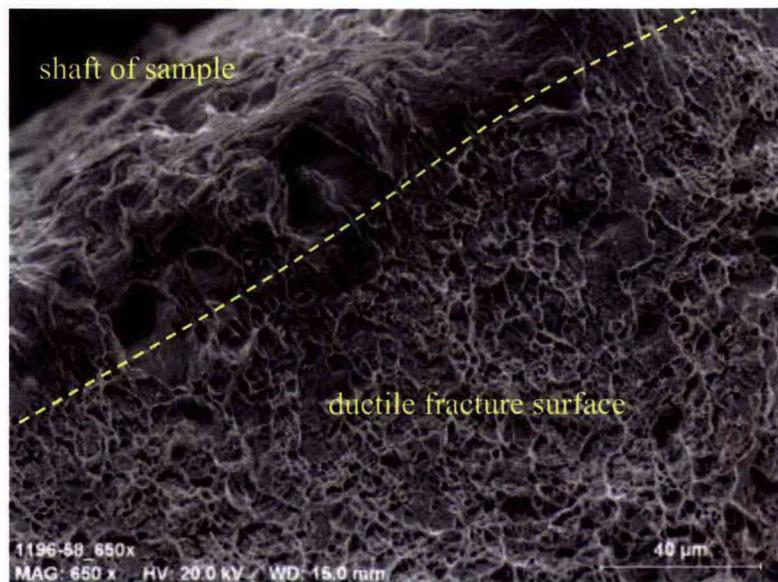

Test ID	Base Chemistry	pH	Temp (°C)	Pot (mV)	OCP (mV)	Failure Strain (%)	Failure Time (hrs)	SEM Surface Exam	Estimated CGR (mm/sec)
56	AW-105-PIL	13+	50	OCP	-290	22.3	62.0	Ductile	-
58	AW-105-PIL	13+	50	0	-193	21.7	60.3	Ductile	-
66	AW-105-PSC	13+	50	OCP	-235	21.3	61.9	Ductile	-
71	AW-105-PSC	13+	50	-100	-269	23.4	65.1	Ductile	-
72	AW-105-PSC	13+	50	-50	-210	21.9	60.8	Ductile	-
73	AW-105-PSC (half nitrite)	13+	50	-100	-217	22.5	65.4	Ductile	-
74	AW-105-PSC "6X"	13+	50	-100	-257	22.1	61.3	Ductile	-
75	AW-105-PSC "6X"	13+	50	-50	-270	8.5	23.6	Visible corrosion	

Figure 44 is a plot of the stress-strain data from the two tests performed in AW-105-PIL. When polarized to 0 mV vs. SCE, the SSRT specimen failed at 21.7% strain. The specimen that was tested at open circuit failed at 22.3% strain. Corrosion product was observed around axial micro-cracks along the shaft of the test sample that was performed at OCP (Figure 45). These microcracks have been observed in many of the previous test samples, and are attributed to grain boundary tearing. No intergranular features were observed during SEM examination, as shown in Figure 46 and Figure 47, though it is possible that such features corroded away prior to examination (though this seems unlikely given the nominally benign nature of this simulant) The test performed at 0 mV vs. SCE was also devoid of intergranular features on the fracture surface (Figure 48); however, there was some interfacial corrosion along the shaft of the test specimen at the liquid/vapor interface (Figure 49). Since the nitrite concentration in the AW-105-PIL is relatively low compared to other aggressive species, the attack at the interface may be due to a similar mechanism that led to the interface corrosion in the AP-105-PSC. That is, although the existing nitrite concentration was able to inhibit localized corrosion in the bulk solution, in the case that the nitrite concentration was decreased due to an unknown depletion mechanism at the interface, the environment could become aggressive to cause localized corrosion.


Figure 44. Stress-Strain Behavior of Samples Tested in AW-105-PIL Based Simulants at 0 mV vs. SCE and at OCP (-290 mV vs. SCE).


Figure 45. Stereo-Micrograph of the Test Sample from SSRT-56 Performed in AW-105-PIL Standard Simulant at 50°C, pH 13+, at OCP (-290 mV vs. SCE). The yellow dashed circles indicate axial microcracks observed on the shaft of the sample.


Figure 46. Electron-Micrograph of the Fracture Surface of Test Sample from SSRT-56 Performed in AW-105-PIL Standard Simulant at 50°C, pH 13+, at OCP (-290 mV vs. SCE).

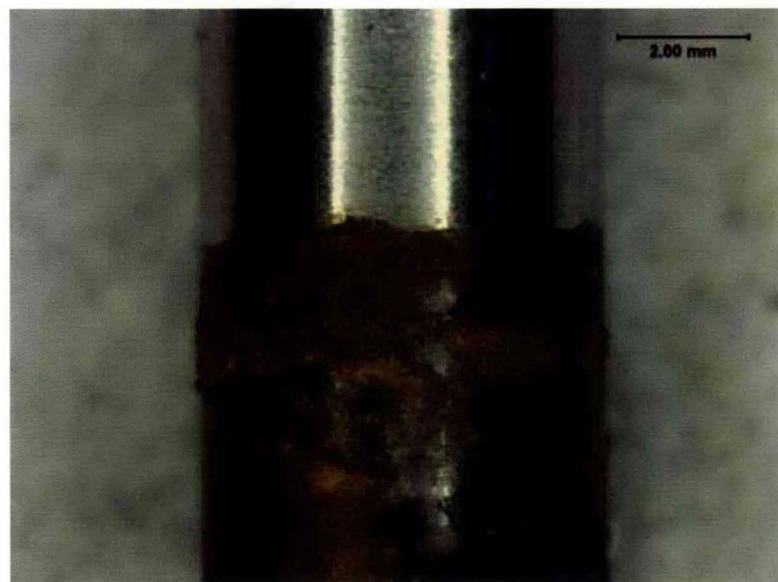
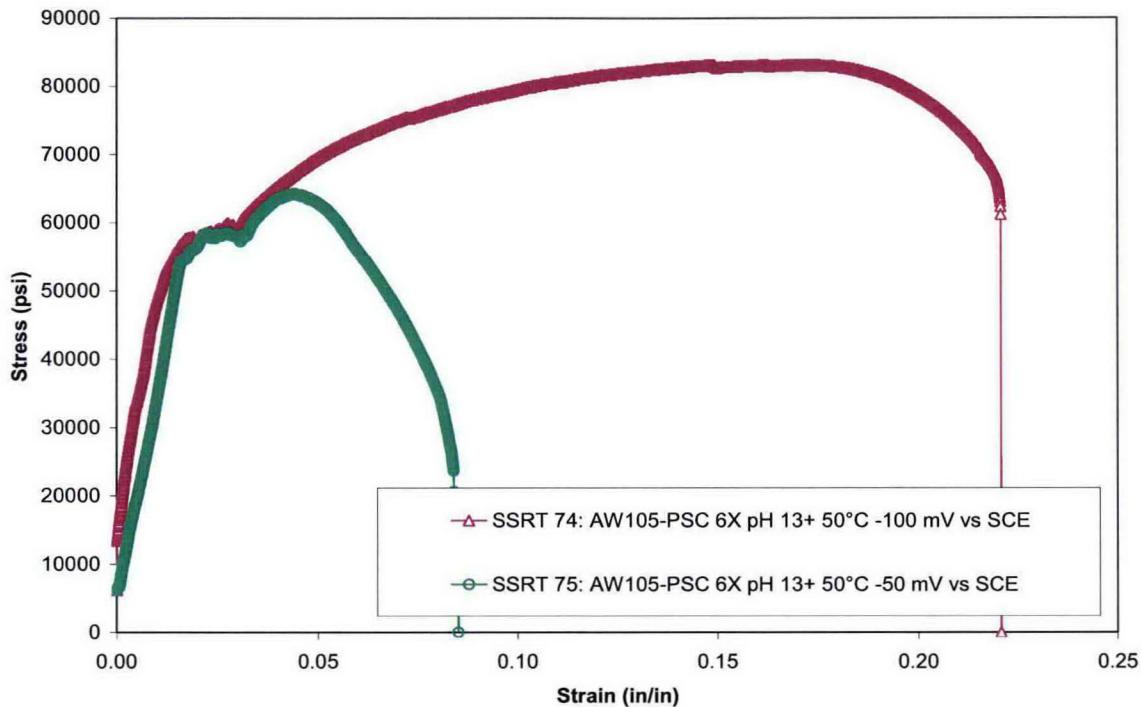
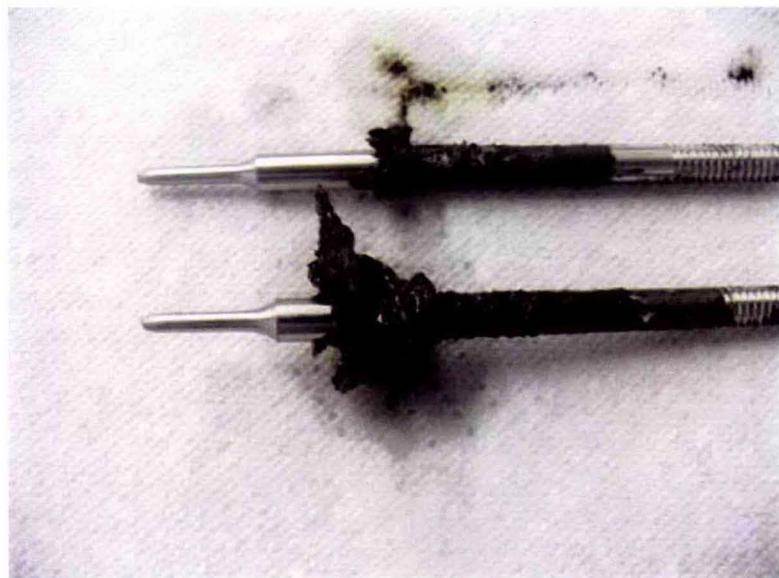

Figure 47. Electron-Micrograph of an Axial Micro-Crack on the Shaft of Test Sample from SSRT-56 Performed in AW-105-PIL Standard Simulant at 50°C, pH 13+, at OCP (-290 mV vs. SCE).

Figure 48. Electron-Micrograph of the Fracture Surface of Test Sample from SSRT-58 Performed in AW-105-PIL Standard Simulant at 50°C, pH 13+, at 0 mV vs. SCE.


Figure 49. Stereo-Micrograph of the Shaft of Test Sample from SSRT-58 Performed in AW-105-PIL Standard Simulant at 50°C, pH 13+, at 0 mV vs. SCE.


Tests in AW-105-PSC base simulants showed no evidence of SCC when performed at OCP, -100 mV or -50 mV vs. SCE. Failure occurred between 21.3 and 23.4 %. Tests in the “6X” simulant were performed with the same nitrite/nitrate ratio as the “half nitrite” modified simulant, but with six times the absolute amounts of both nitrite and nitrate. This was done to explore the relations between nitrite / nitrate ratio and absolute nitrate content versus potential. Figure 50 is a plot of the stress-strain data from two of the tests performed in AW-105-PSC modified simulants. The test performed at -100 mV vs. SCE failed at 22.1 % strain. Corrosion was observed at the liquid/vapor interface, but no intergranular features were observed on the fracture surface during

SEM examination, see Figure 51 and Figure 52. The test performed at -50 mV vs. SCE failed at 8.5 % strain, and severe corrosion was observed on the fracture surface and along its gauge length, see Figure 53. The results suggest that there is a “critical” potential between -100 mV and -50 mV vs. SCE necessary for significant corrosion to occur in this modified simulant.

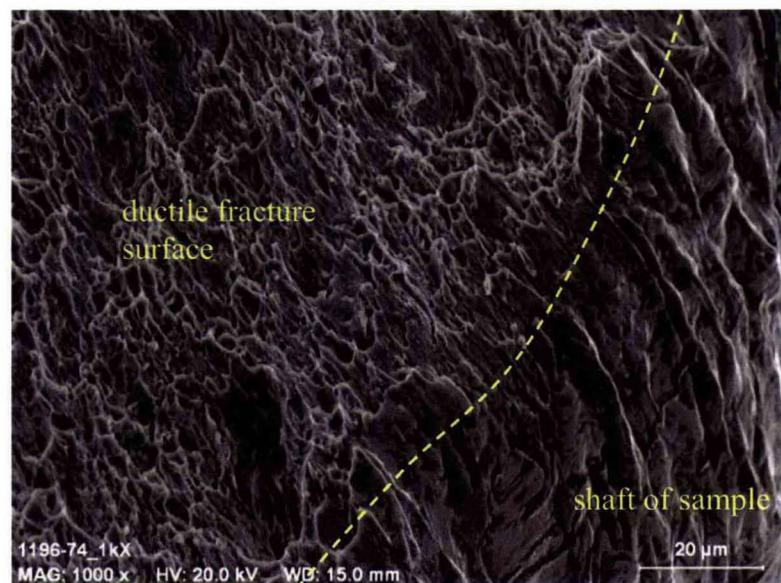

Figure 50. Stress-Strain Behavior of Samples Tested in AW-105-PSC “6X” Simulant at -50 and -100 mV vs. SCE.

Figure 51. Photograph of the Test Sample from SSRT-74 Performed in AW-105-PSC 6X Simulant at 50°C, pH 13+, at a Potential of -100 mV vs. SCE.

Figure 52. Electron-Micrograph of the Fracture Surface of Test Sample from SSRT-74 Performed in AW-105-PSC 6X Simulant at 50°C, pH 13+, at a Potential of -100 mV vs. SCE.

Figure 53. Stereo-Micrograph of the Test Sample from SSRT-75 Performed in AW-105-PSC 6X Simulant at 50°C, pH 13+, at a Potential of -50 mV vs. SCE.

4.7 SLOW STRAIN RATE TESTING IN TANK 241-AN-107 BASED SIMULANTS

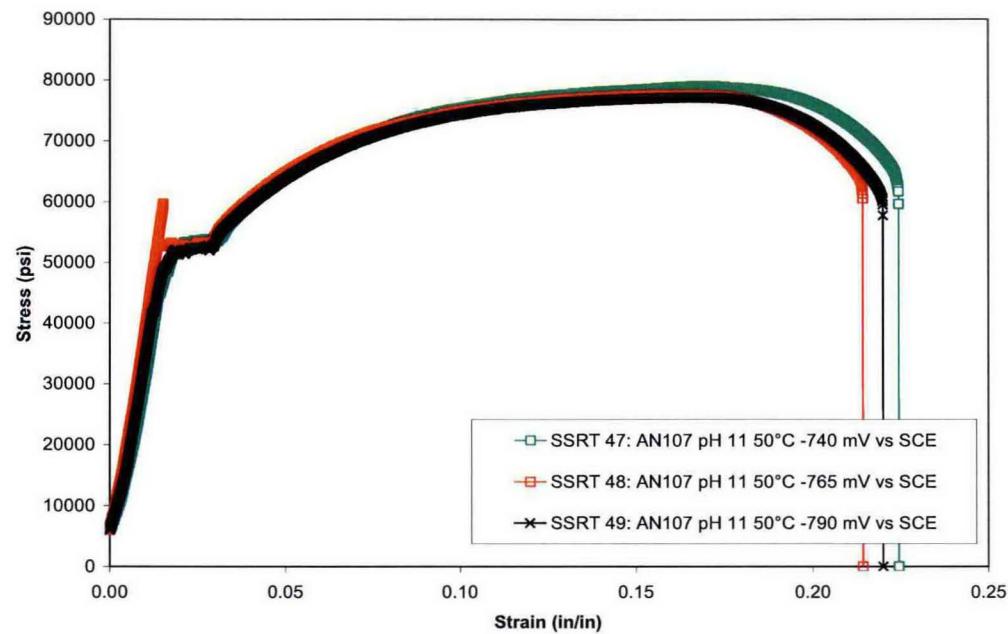

Table 13 summarizes the results of SSRTs performed in AN-107 simulants. Tests were performed at 50°C and potentiostatically polarized to potentials between -740 and -790 mV vs. SCE. The objective of these experiments was to test the propensity of carbonate cracking at low potentials since AN-107 simulant contains 1.4 M carbonate. Previous testing in AY-102-PIL simulants with high carbonate (1.021M) contents indicated cracking at low potentials -750 to -800 mV vs. SCE. These potentials correspond to the active-passive transition range observed in the AY-102-PIL CPP curve from previous studies.

Table 13. A Summary of Slow Strain Rate Tests Performed in AN-107 Based Simulants.

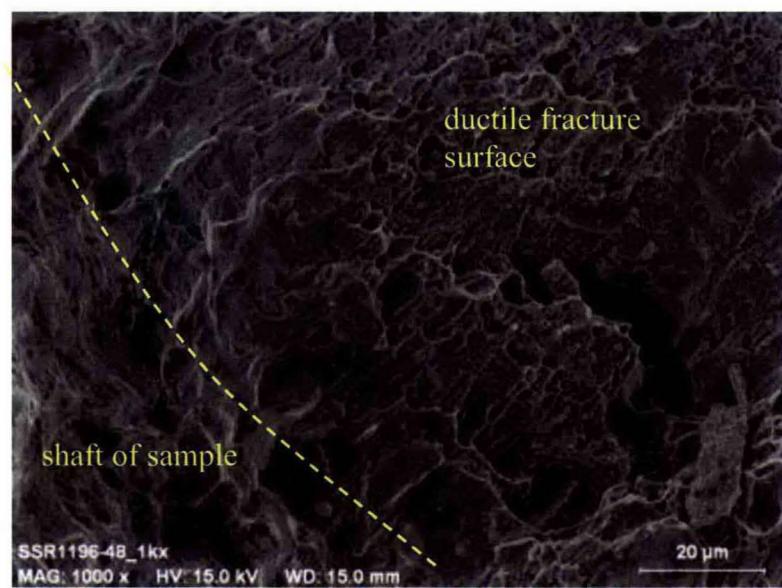

Test ID	Base Chemistry	pH	Temp (°C)	Pot (mV)	OCP (mV)	Failure Strain (%)	Failure Time (hrs)	SEM Surface Exam	Estimated CGR (mm/sec)
47	AN-107	11	50	-740	-315	22.5	62.9	Ductile	-
48	AN-107	11	50	-765	-296	21.4	61.6	Ductile	-
49	AN-107	11	50	-790	-274	22.0	61.1	Ductile	-

Figure 54 is a plot of the stress-strain data from the three SSRTs. The samples all failed at strain from 21.4 to 22.5 %. No intergranular features were observed during SEM examination of any of these tests, suggesting the steel is not susceptible to cracking in AN-107 at potentials where carbonate cracking was observed in AY-102-PIL simulants, see example (Figure 55). It should be pointed out that the OCP of steel in the AN-107 simulants were generally much higher than the tested potentials above because the cathodic reactions were likely dominated by nitrite and/or nitrate reduction that occurred at potentials much more positive than -800 mV vs. SCE. In carbonate-based waste simulants, an active-passive transition associated with the formation of carbonate films was observed at potentials near -800 mV vs. SCE and was not observed on the CPP curves in the AN-107 simulants. Therefore, these tested potentials were selected similar to the potentials in AY-102-PIL where carbonate cracking was observed. Based on the observations in AY-102-PIL, the potential range for carbonate cracking was near -800 mV vs. SCE and fairly narrow. In the AN-107 simulants, the results above could indicate that cracking at these low potentials is not possible or the tested potentials may be away from any active/passive transition that may (or may not) be present. As mentioned above, because of the significant amount of nitrite and nitrate in AN-107 simulants, it is unlikely that the OCP of the tank steel would be anywhere near -800 mV vs. SCE and therefore the likelihood of the steel cracking at these low potentials is extremely small. Because of this, no further work was conducted to investigate the susceptibility of steel to carbonate cracking in AN-107 simulants.

Figure 54. Stress-Strain Behavior of Samples Tested in AN-107 Based Simulants at various potentials.

Figure 55. Electron-Micrograph of the Fracture Surface of Test Sample from SSRT-48 Performed in AN-107 Standard Simulant at 50°C, pH 11, at a Potential of -765 mV vs. SCE.

4.8 ELECTROCHEMICAL POLARIZATION BEHAVIOR IN TANK 241-AZ-102 BASED SIMULANT

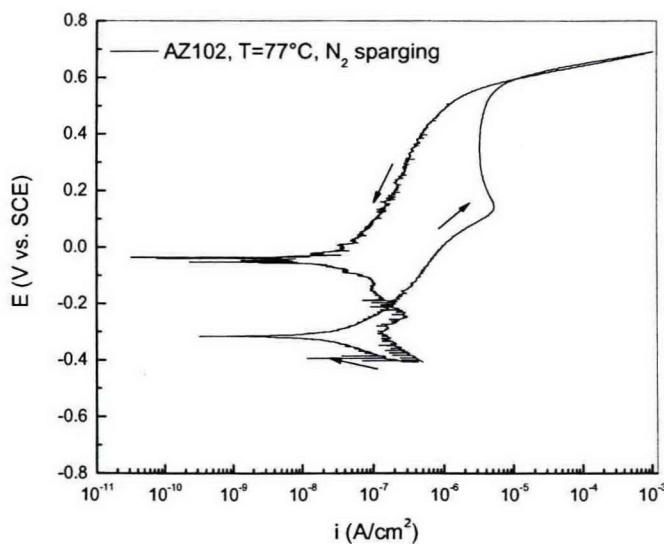

Table 14 summarizes the results of the CPP test conducted in the AZ-102 simulant that investigated the susceptibility of the steel to localized corrosion in simulants at a temperature level higher than 50°C. The test temperature for AZ-102 simulant was 77°C, which represents the upper bound of the temperature levels in all waste simulants. No tests were performed using modified AZ-102 simulants.

Table 14. A Summary of Electrochemical Test Performed in AZ-102 Based Simulant.

Base Chemistry	pH	NO ₂ ⁻ (M)	NO ₃ ⁻ (M)	TIC (M)	OH ⁻ (M)	Cl ⁻ (M)	F ⁻ (M)	T (°C)	Aeration condition	Testing type	Visual	Sample ID (#EL1196-)
AZ-102	>12	0.883	0.105	0.619	-	-	0.052	77	N ₂ purging	CPP Full immersion	No pitting	103

Figure 56 is the CPP curve obtained in the deaerated AZ-102 simulant at 77°C. No clear positive hysteresis loop was observed and the sample did not show any indication of localized corrosion even at 77°C. The lack of localized corrosion on the sample is consistent with the inhibitory role of nitrite, since the nitrite concentration in this simulant is significantly higher than nitrate and other aggressive species (nitrite-to-nitrate concentration ratio of 8.4).

Figure 56. CPP Curve in Daeaerated AZ-102 Simulant (pH>12 and T=77°C).

4.9 SLOW STRAIN RATE TESTING IN TANK 241-AZ-102 BASED SIMULANT

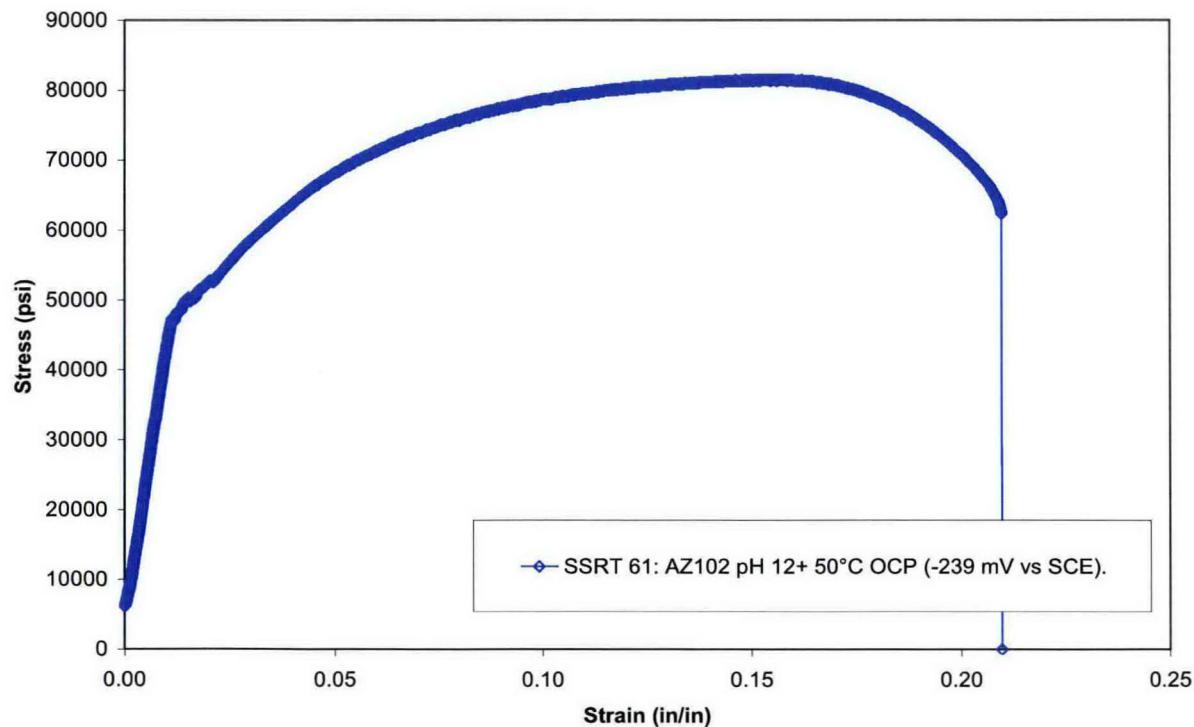

Table 15 summarizes the results of the slow strain rate test performed in the AZ-102 simulant. Only one test was performed, and it was at 77°C and at OCP. The standard AZ-102 simulant has high nitrite (0.88 M) and low nitrate (0.105 M) concentrations, and contains no halides.

Table 15. A Summary of Slow Strain Rate Tests Performed in AZ-102 Simulant.

Test ID	Base Chemistry	pH	Temp (°C)	Pot (mV)	OCP (mV)	Failure Strain (%)	Failure Time (hrs)	SEM Surface Exam	Estimated CGR (mm/sec)
61	AZ-102	12+	77	OCP	-239	21.0	58.3	Ductile	-

The AZ-102 simulant has a very high nitrite/nitrate ratio (8.4) and no chlorides or fluorides, so no SCC or pitting was expected. In addition, the CPP curve exhibited no positive hysteresis. No localized corrosion was observed during post-test examination of the sample. The single SSRT in AZ-102 simulant failed at 21.0 % strain (Figure 57). No evidence of SCC was observed on the fracture surface of the test sample during SEM examination (see Figure 58). The SSRT result and CPP test results are consistent with previous test results in which nitrite was demonstrated to be inhibitory towards localized corrosion and SCC.

Figure 57. The Stress-Strain Behavior of the Sample Tested in AZ-102 Simulants at OCP (-239 mV vs. SCE).

Figure 58. Electron-Micrograph of the Fracture Surface of Test Sample from SSRT-61 Performed in AZ-102 Simulant at 77°C, pH 12+, at a Potential of -239 mV vs. SCE.

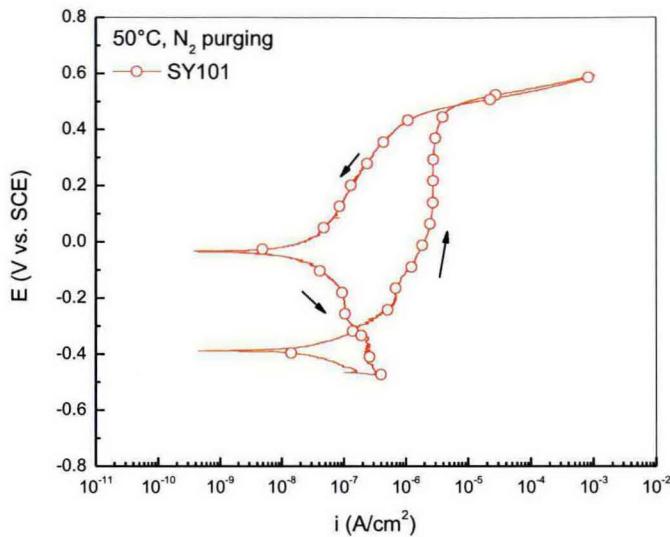

4.10 ELECTROCHEMICAL POLARIZATION BEHAVIOR IN TANK 241-SY-101 BASED SIMULANT

Table 16 summarizes the results of the CPP test conducted in the SY-101 simulant. The SY-101 simulant has a relatively lower nitrite-to-nitrate concentration ratio than other simulants being investigated. No tests were performed using modified SY-101 simulants.

Table 16. A Summary of Electrochemical Test Performed in SY-101 Based Simulant.

Base Chemistry	pH	NO_2^- (M)	NO_3^- (M)	TIC (M)	OH^- (M)*	Cl^- (M)	F^- (M)	T (°C)	Aeration condition	Testing type	Visual	Sample ID (#EL1196-)
SY-101	>13	0.2027	0.9313	0.1328	0.6555	0.0228	0.0277	50	N_2 purging	CPP Full immersion	No pitting	109

Figure 59 is a CPP curve in deaerated SY-101 simulant at 50°C. No positive hysteresis loop was observed on the curve and the sample did not show any indication of localized corrosion. The lack of localized corrosion on the samples suggests that even though the nitrite/nitrate ratio in this simulant is lower than other simulants investigated before, other inhibitory species present in this simulant were able to efficiently prevent localized corrosion. Additionally, the benign nature of this simulant with respect to localized corrosion may be a result of the relatively low concentration of the aggressive species.

Figure 59. CPP curves in deaerated SY-101 simulant at pH 13+ and 50°C.

4.11 SLOW STRAIN RATE TESTING IN TANK 241-SY-101 BASED SIMULANT

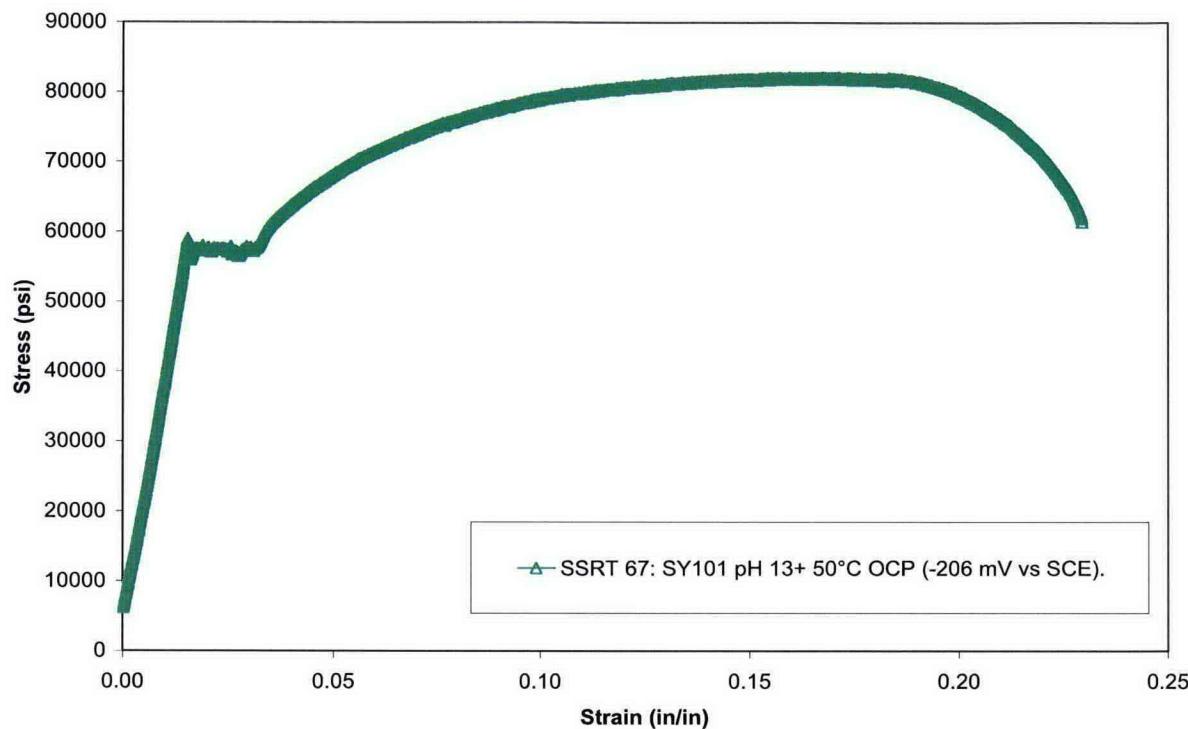
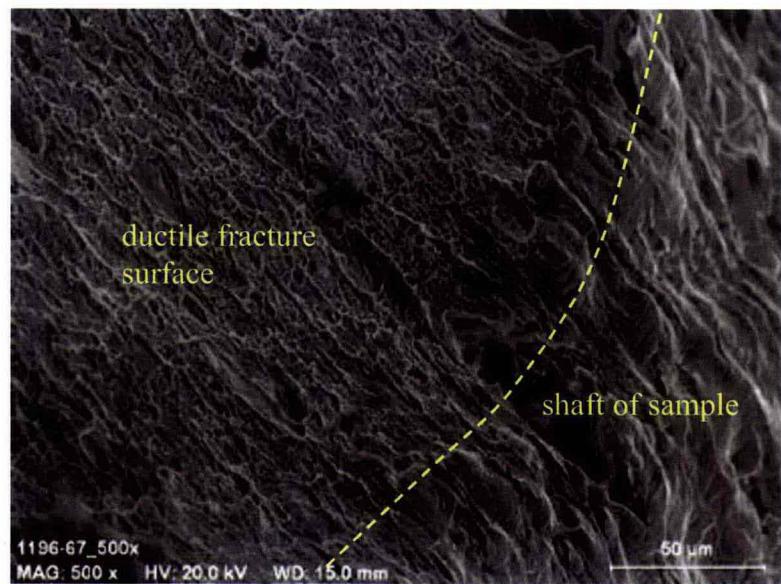

Table 17 summarizes the results of the slow strain rate tests performed in the SY-101 simulant. Only one test was performed, and it was at 50°C and OCP. This simulant has high nitrate (0.93 M) and low nitrite (0.20 M) concentrations.

Table 17. Summary of Slow Strain Rate Tests Performed in SY-101 Simulants.


Test ID	Base Chemistry	pH	Temp (°C)	Pot (mV)	OCP (mV)	Failure Strain (%)	Failure Time (hrs)	SEM Surface Exam	Estimated CGR (mm/sec)
67	SY-101	13+	50	OCP	-206	22.9	63.7	Ductile	-

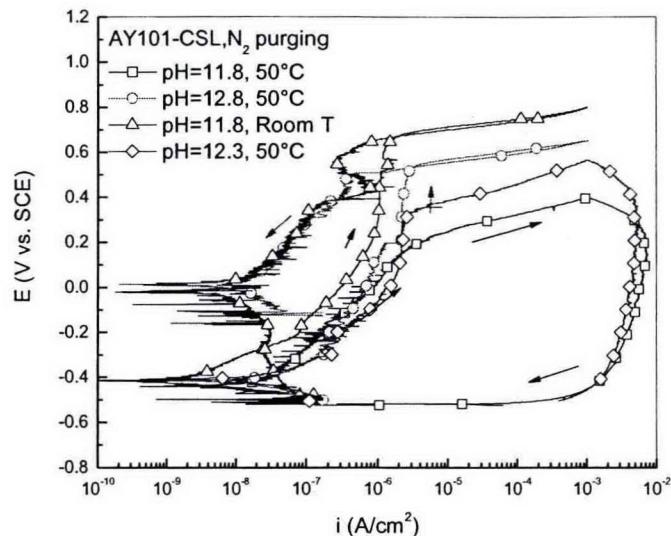
The SY-101 simulant has a relatively low nitrite/nitrate ratio (0.18), so SCC or pitting was considered possible. However, no positive hysteresis was observed in the CPP curve and no localized corrosion was observed during post-test examination of the sample. The single SSRT performed in SY-101 simulant failed at 22.9 % strain (Figure 60). No evidence of SCC was observed on the fracture surface of the test sample during SEM examination (see Figure 61).

Figure 60. Stress-Strain Behavior of the Sample Tested in SY-101 Simulant at OCP (-206 mV vs. SCE).

Figure 61. Electron-Micrograph of the Fracture Surface of Test Sample from SSRT-67 Performed in SY-101 Simulant at 50°, pH 13+, at a Potential of -206 mV vs. SCE.

4.12 ELECTROCHEMICAL POLARIZATION BEHAVIOR IN TANK 241-AY-101-CSL SIMULANT

Table 18 summarizes the results of the CPP tests conducted in the standard AY-101-CSL simulants and the modified AY-101-CSL simulants. The tests performed in the standard AY-101-CSL simulants established the baseline of the susceptibility of the tank steel to localized corrosion whereas the tests in the modified AY-101-CSL simulants (with pH adjusted) were performed to understand the impact of pH on the localized corrosion susceptibility of the tank steel.


Table 18. Summary of Electrochemical Test Performed in AY-101-CSL Based Simulant.

Base Chemistry	pH	NO ₂ ⁻ (M)	NO ₃ ⁻ (M)	TIC (M)	OH ⁻ (M)*	Cl ⁻ (M)	F ⁻ (M)	T (°C)	Aeration condition	Testing type	Visual	Sample ID (#EL1196-)
AY-101-CSL	11.8	0.0368	0.181	0.1474	0.0051	0.0064	0.0015	50	N ₂ purging	CPP Full immersion	Pitting	111
AY-101-CSL	12.8	0.0368	0.181	0.1474	0.0051	0.0064	0.0015	50	N ₂ purging	CPP Full immersion	No Pitting	112
AY-101-CSL	11.8	0.0368	0.181	0.1474	0.0051	0.0064	0.0015	Room	N ₂ purging	CPP Full immersion	No Pitting	113
AY-101-CSL	12.3	0.0368	0.181	0.1474	0.0051	0.0064	0.0015	50	N ₂ purging	CPP Full immersion	Pitting	115

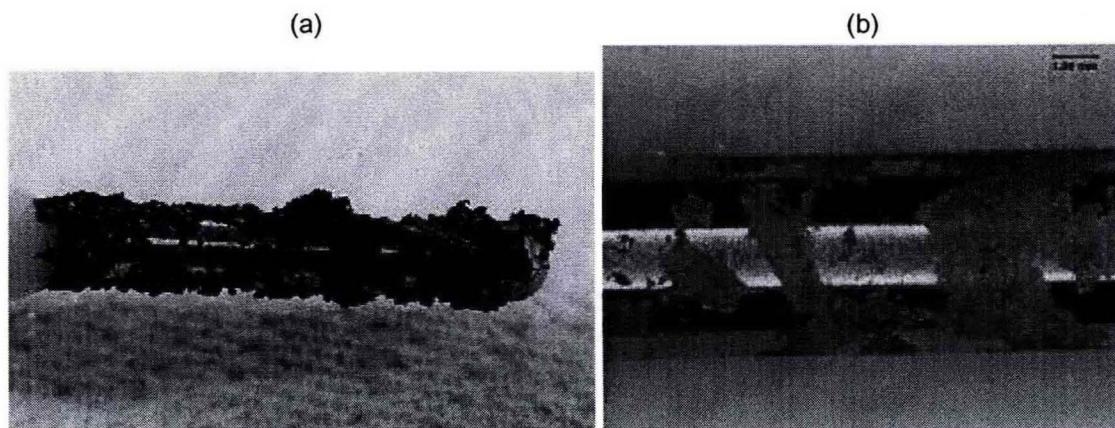

* This reflects the concentration prior to pH adjustment.

Figure 62 is a comparison of the CPP curves obtained in the AY-101-CSL simulants under different conditions. The CPP curve at pH 11.8 and 50°C showed an open loop with the passivation potential below the OCP. This is consistent with the observation of severe localized corrosion on the sample after the CPP test, as shown in Figure 63. At room temperature and pH 11.8, the CPP curve showed a negative hysteresis loop. The pitting corrosion noted at 50°C was not observed on the sample tested at the same pH but at room temperature. At pH 12.3 and 50°C, the CPP curve still exhibited an open loop even though the pitting potential was slightly higher than at pH 11.8. The sample showed severe localized corrosion after the CPP test, as shown in Figure 64. When the pH of the simulant was increased to 12.82, the CPP curve was similar to that at room temperature and pH 11.8 in that it showed a negative hysteresis loop. No pitting corrosion was noted at pH 12.8, even at 50°C. The testing results in the AY-101-CSL as a function of temperature and pH implied that the steel was susceptible to localized corrosion in this simulant at 50°C and pH 11.8 despite the relatively low concentration of aggressive species (such as nitrate = 0.181 M). The pitting corrosion at this pH, however, can be mitigated by decreasing the temperature. Furthermore, the results suggest that a threshold of pH exists above which pitting corrosion will not occur even at an elevated temperature (50°C). This threshold appeared to be between pH 12.3 and pH 12.8, but was not precisely determined with the limited experimental efforts conducted.

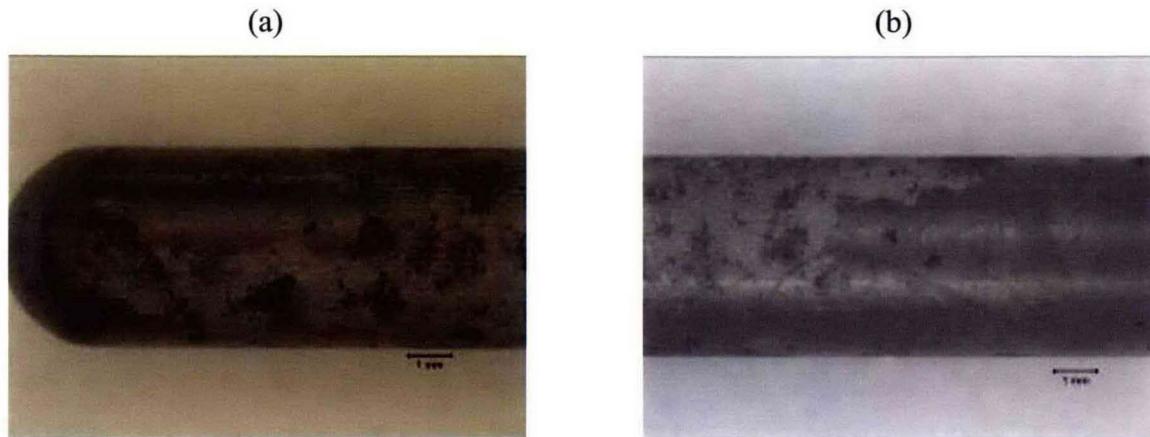

Figure 62. A Comparison of CPP Curves in the Daeaerated AY-101-CSL Simulant at Different pH Levels and Temperatures.

Figure 63. Appearance of the Sample after CPP test in the Daeaerated AY-101-CSL Simulant at 50°C and pH 11.8. (a) Before Cleaning; (b) After cleaning.

Figure 64. The Appearance of the Sample after CPP Test in AY-101-CSL Simulant at pH 12.3 and 50°C.

4.13 SLOW STRAIN RATE TESTING IN TANK 241-AY-101-CSL BASED SIMULANT

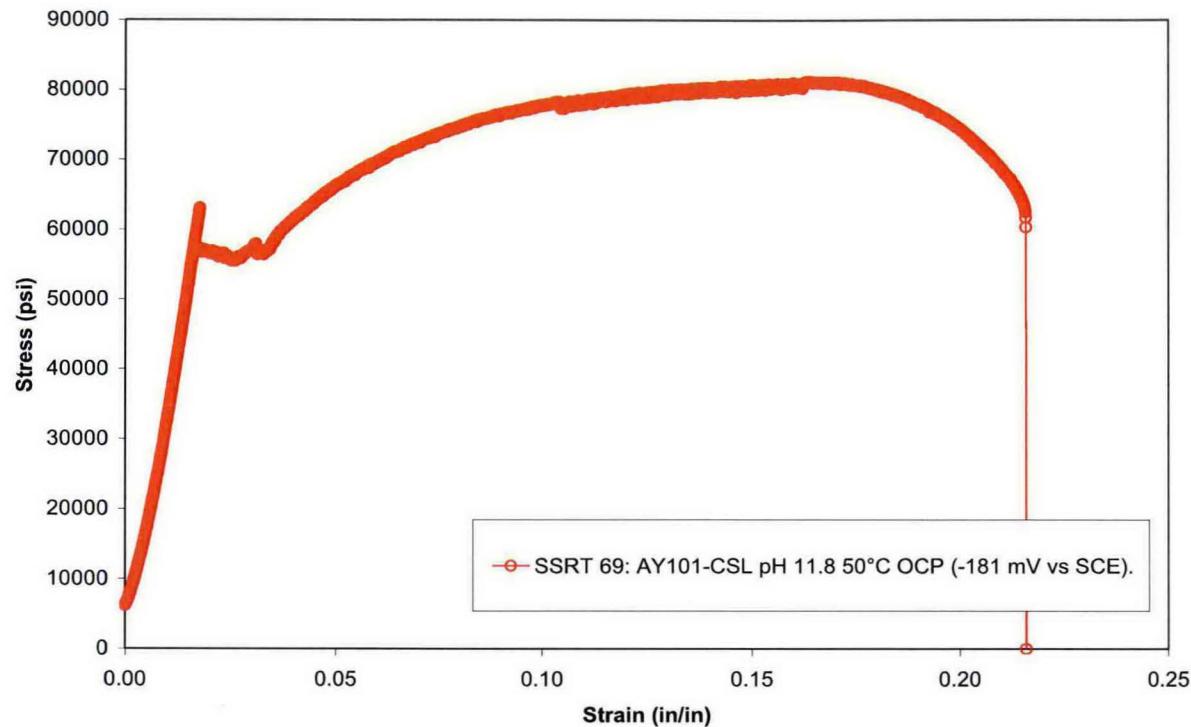
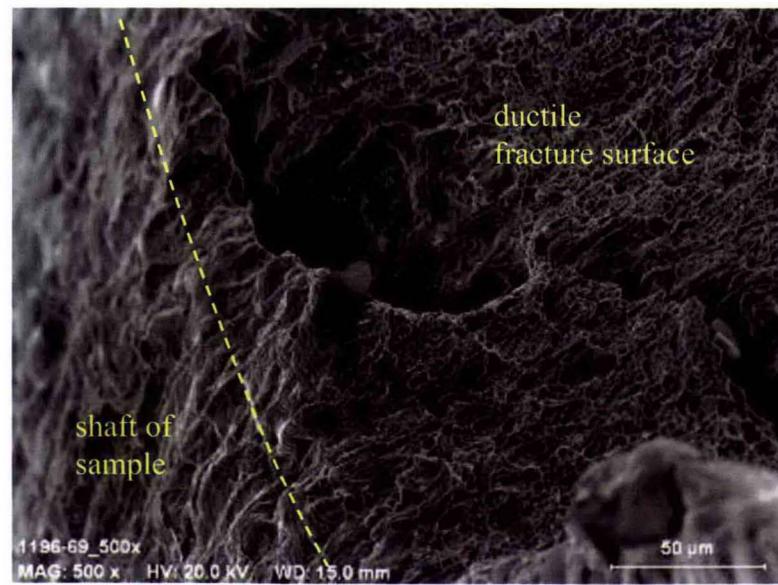

Table 19 summarizes the results of the slow strain rate tests performed in the AY-101-CSL simulant. Only one test was performed at 50°C and OCP. This simulant has low nitrate (0.181 M) and nitrite (0.0368 M) concentrations.

Table 19. A Summary of Slow Strain Rate Tests Performed in AY-101-CSL Simulant.


Test ID	Base Chemistry	pH	Temp (°C)	Pot (mV)	OCP (mV)	Failure Strain (%)	Failure Time (hrs)	SEM Surface Exam	Estimated CGR (mm/sec)
69	AY-101-CSL	11.8	50	OCP	-181	21.6	59.9	Ductile	-

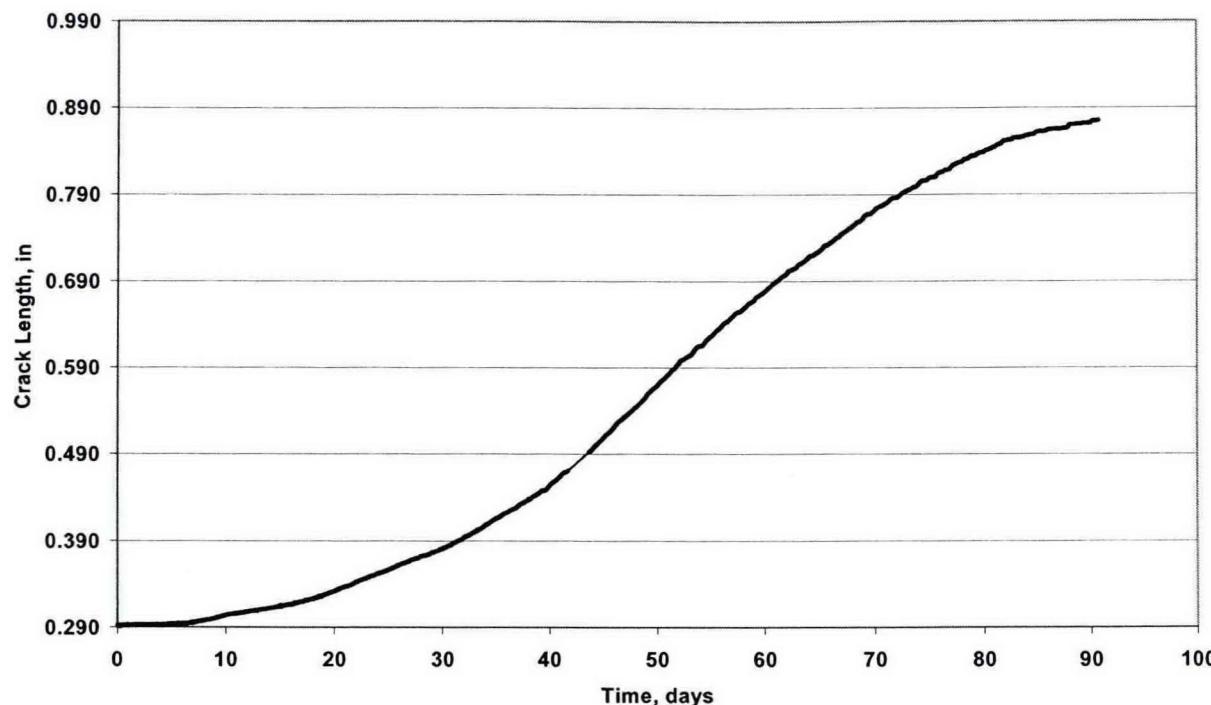
The one SSRT sample failed at 21.9% strain, and showed no evidence of SCC during SEM examination (Figure 65 and Figure 66). The simulant has a relatively low nitrate content, and it may be that there was insufficient nitrate to cause SCC. A large positive hysteresis was noted in CPP curve provided by electrochemical testing in the AY-101-CSL simulant at pH 11.8 at 50°C. These results indicate that evidence of pitting is not necessarily indicative of SCC susceptibility. Note that the SSRT was performed at OCP, and the combination of potential and limited test time may not have been sufficient to allow any localized corrosion to initiate.

Figure 65. Stress-Strain Behavior of the Sample Tested in AY-101-CSL Simulant at OCP (-181 mV vs. SCE).

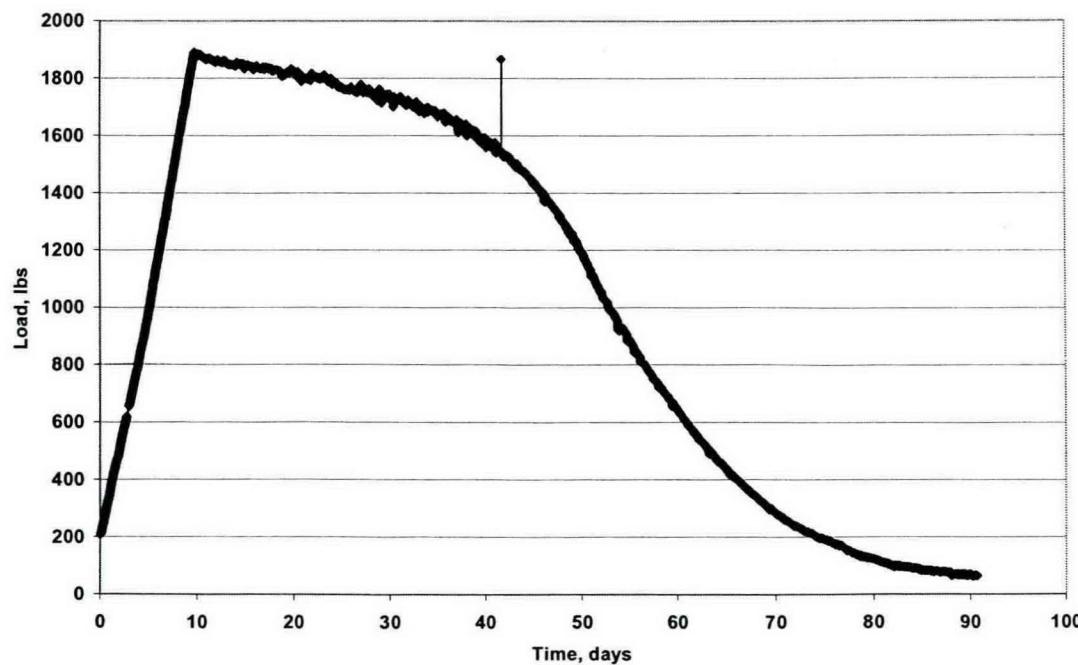
Figure 66. Electron-Micrograph of the Fracture Surface of Test Sample from SSRT-69 Performed in AY-101-CSL Simulant at 50°, pH 11.8, at a Potential of -181 mV vs. SCE.

4.14 DYNAMIC-K TESTING IN 5M NANO₃ AND TANK 241-AY-101-PSC BASED SIMULANT

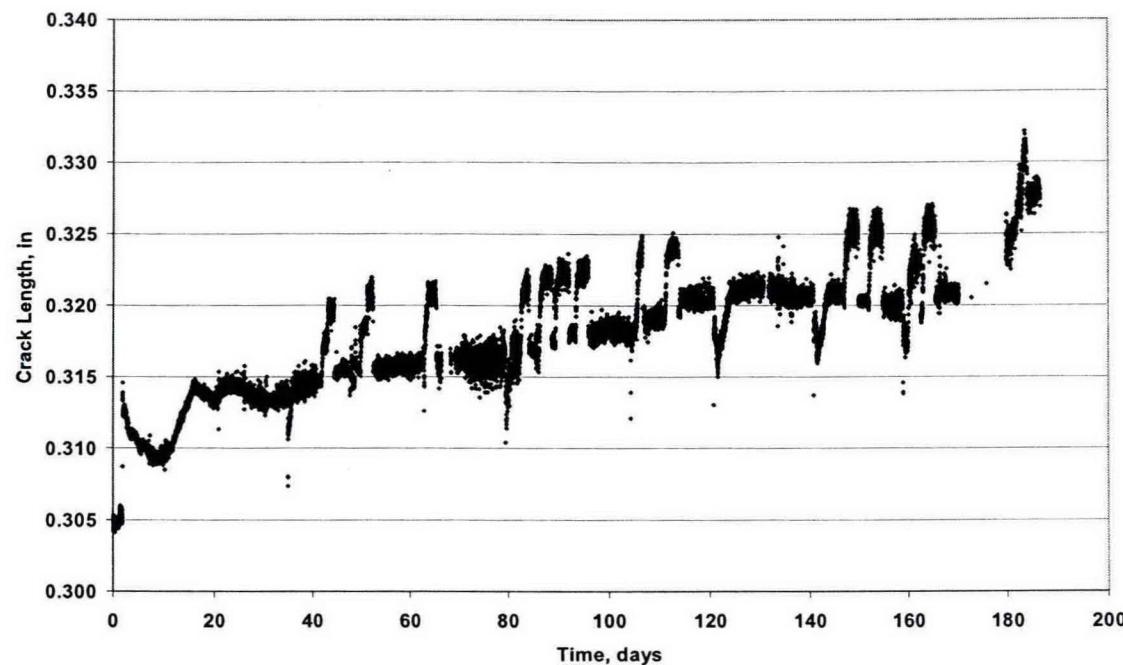
Table 20 summarizes the details of the two dynamic-K tests performed during this test program. The objectives of the two K-tests were (1) to investigate the effect of a hold time on crack growth initiation; and, (2) to aid in the determination of K_{thSCC} by measuring the nominal K_I at which crack growth arrests under constant displacement conditions. With the test specimen geometry, both load and stress intensity reduce as a crack propagates under constant displacement conditions. A constant load during the test indicates the crack is not propagating. The crack's stability point and K_{thSCC} can then be calculated from the test parameters. Previous tests performed for this program were not held sufficiently long for this phenomenon to occur.


CT-17 was performed in 5 M NaNO₃ solution at OCP and at 50°C. This solution has previously been shown to cause severe cracking. The sample was loaded at a constant displacement rate until both DCPD and load measurements indicated cracking. The loading was stopped and the sample was held at constant displacement for approximately 80 days. DCPD (Figure 67) and load measurements (Figure 68) indicated continued cracking of the sample during the test. The maximum CGR for this sample was estimated as 4.5 inch / year (1.4×10^{-7} in/sec) based on DCPD data.

CT-18 was performed in AY-101-PSC simulant at 0 mV vs. SCE and at 50°C. Previous testing indicated no cracking in this environment for samples loaded to 40 ksi $\sqrt{\text{in}}$; however, the hold time was relatively short (approximately 30 days). The current investigation loaded the constant displacement sample to 45 ksi $\sqrt{\text{in}}$. DCPD (Figure 69) and load data (Figure 70) indicated that there may have been minor cracking in the sample, but it was not definitive because of the significant noise detected in the data. Note that a lower stress intensity (40 ksi $\sqrt{\text{in}}$) was accidentally placed on the specimen for over a week near the onset of testing.


Table 20. A Summary of the Dynamic-K Tests Performed.

Test ID	Base Chemistry	pH	Temp (°C)	Pot (mV)	OCP (mV)	Test Type	Comments
17	5M NaNO ₃	11	50	OCP	+107	Load to above K_{thSCC} and hold 80 days	DCPD, load reduction and SEM examination indicated significant cracking
18	AY-101-PSC	11	50	0	-328	Load to 45 ksi $\sqrt{\text{in}}$ and hold 150 days	DCPD and load reduction indicated possible minor cracking. Not confirmed by SEM examination


Figure 67. Plot of DCPD Calculated Crack Length as a Function of Time for CT-17 Performed in 5M NaNO₃ at Open Circuit Potential. The Displacement was Held Constant Following Loading to a Nominal $K \sim 25$ ksi $\sqrt{\text{in.}}$

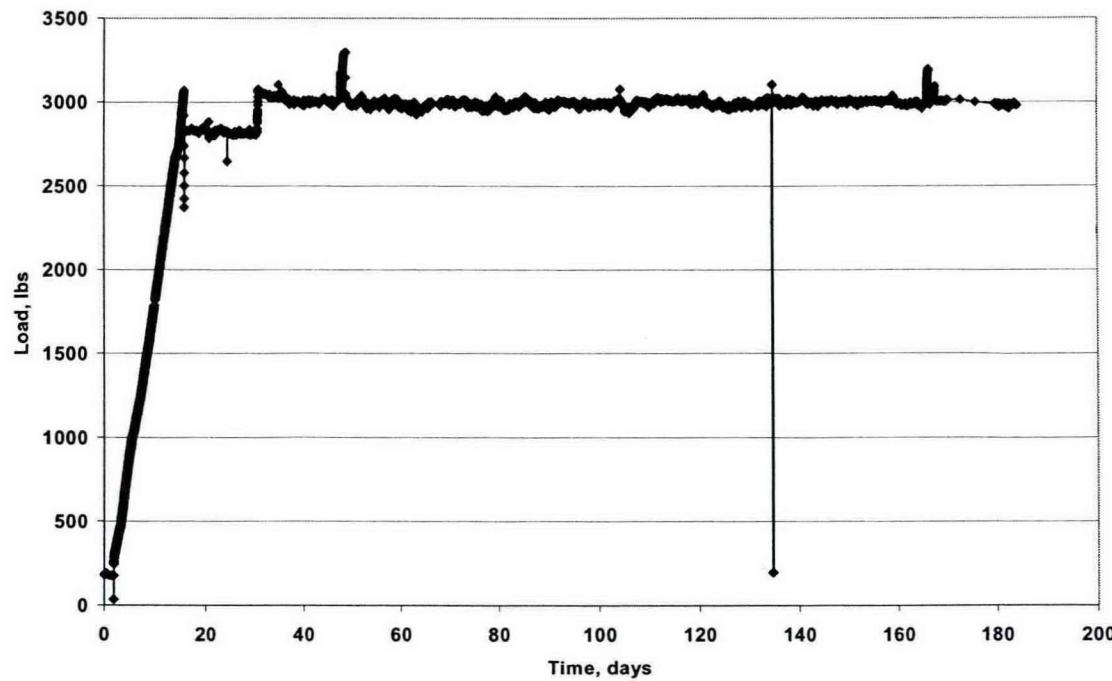

Figure 68. Load as a Function of Time for CT-17 Performed in 5M NaNO₃ at Open Circuit Potential. The Displacement was Held Constant Following Loading to a Nominal $K \sim 25$ ksi $\sqrt{\text{in.}}$

Figure 69. Plot of DCPD Calculated Crack Length as a Function of Time for CT-18 Performed in AY-101-PSC Simulant at 0 mV vs. SCE. The Displacement was Held Constant Following Loading and Adjustment to a Nominal $K \sim 45 \text{ ksi}\sqrt{\text{in}}$.

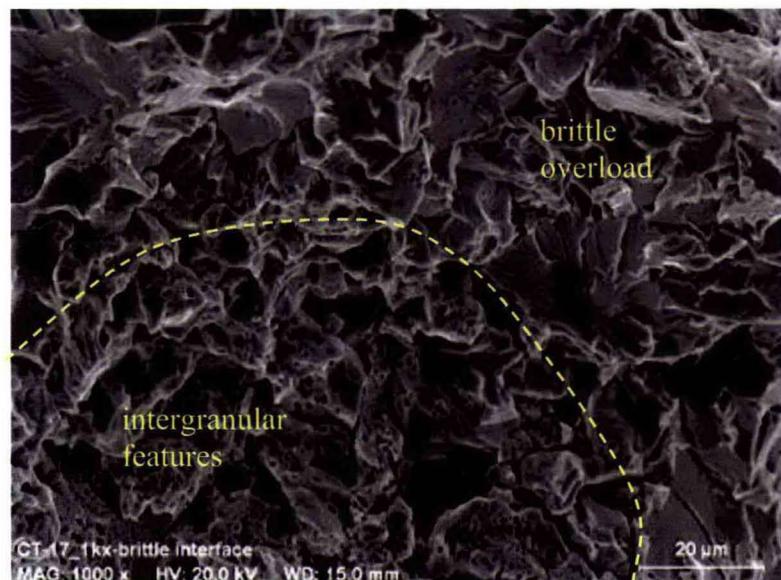
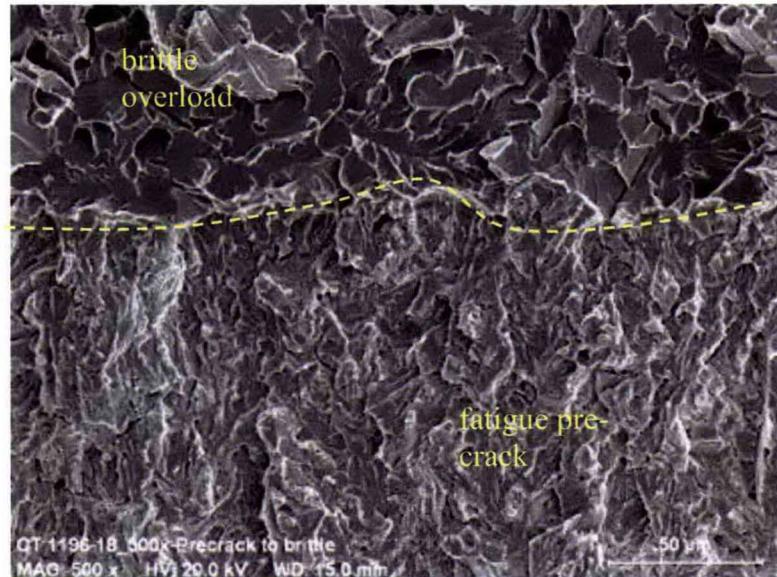


Figure 70. Load as a Function of Time for CT-18 Performed in AY-101-PSC Simulant at 0 mV vs. SCE. The Displacement was Held Constant Following Loading and Adjustment to a Nominal $K \sim 45 \text{ ksi}\sqrt{\text{in}}$.



The fracture surfaces of the two K-test samples were examined using the SEM. Figure 71 is an electron-micrograph of the fracture surface of the test sample from CT-17, performed in 5M NaNO₃ solution. SCC was confirmed by the presence of intergranular features. Figure 72 is an electron-micrograph of the fracture surface of the test sample from CT-18, performed in the AY-101 simulant with an applied potential of 0 mV vs. SCE. No intergranular features were observed. This confirms the previous results, in which no SCC was detected in the AY-101 simulant loaded to 40 ksi $\sqrt{\text{in}}$ and held for 30 days. This indicates that K_{thSCC} is over 45 ksi $\sqrt{\text{in}}$ in this environment.

Figure 71. Electron-Micrograph of the Fracture Surface of Test Sample from CT-17 Performed in 5M NaNO₃ at 50°, at OCP (+107 mV vs. SCE). The sample was held at a constant displacement for ~80 days following a constant displacement rate slow loading to a nominal K of 25 ksi $\sqrt{\text{in}}$.

Figure 72. Electron-Micrograph of the Fracture Surface of Test Sample from CT-18
Performed in AY-101 Simulant at 50°, at 0 mV vs. SCE. The sample
was held at a constant displacement for ~150 days following a constant
displacement rate slow loading to a nominal K of 45 ksi/in.

The lack of intergranular features in test CT-18 was unexpected, given the apparent crack growth indicated by the DCPD measurements. Post-test analysis of the DCPD data indicated some drift in the applied DCPD current occurred over the course of the test, resulting in potential drop changes on the order of a few tens of millivolts. This explains the apparent crack growth from the DCPD data calculations. Another possibility is that there was some minor ductile tearing during the long-term hold.

The recent K-tests were performed using a constant displacement rate slow loading and a long-term hold. This technique was developed to try to eliminate some of the inconsistencies observed in data from tests that were performed using constant loads tests. However, it has not yet been confirmed that the test technique provided conservative values of $K_{th,SCC}$. The technique relies on crack arrest following some SCC propagation. The $K_{th,SCC}$ calculation is then based on the final load and crack length values at arrest. To date, only one test (CT-17 performed in 5M NaNO₃ solution) has shown significant crack propagation and has been held for a long enough time to confirm crack arrest. Tests in various simulants have shown some minimal cracking, but not sufficient to provide a high level of confidence in the $K_{th,SCC}$ estimates. The effect of loading rate on K_{th} has also yet to be considered. Loading rate effects may influence the applied K at which SCC initiates, and the slower loading may produce artificially high $K_{th,SCC}$ estimates, though this would go against results typically observed in SSRTs. If this is the case then it is even more important to allow any growing cracks to arrest. The microstructural mechanisms involved in SCC crack initiation become an important consideration.

The dynamic-K test used in the current program shows promise as a test technique, but there are some issues still to be resolved. One limitation is that the tests must be run for a sufficient period of time for cracking to initiate and to arrest. This has only been done with the 5 M NaNO₃

solution. Given the low CGRs observed in some of the tests performed in waste simulants, tests would have to be performed for months, or years in some cases, in order to achieve the same results. A second limitation of the dynamic K-test is that it has not been validated that the test results are conservative. There are few comparisons that can be made between the current results and previous years' results, as the tests were performed under different conditions. Previous constant load testing in AN-107 simulant indicated a K_{thSCC} of approximately 20 ksi \sqrt{in} . However, the more recent dynamic K-test in AN-107 simulant implied a K_{thSCC} closer to 35 ksi \sqrt{in} , as crack growth was minimal when loaded to that level and held for 30 days. Note that in the latter test, the sample was not held for sufficient time for the crack to arrest. It is possible that the crack would have continued to propagate and eventually arrested at K nearer to 20 ksi \sqrt{in} . If so, the test techniques' results would have been self-consistent.

There are common features of the results of the constant load and dynamic-K tests that are encouraging. The CGRs measured in the waste simulant have been significantly less than those measured in the 5 M NaNO₃ solution. Consistent with this is the higher K_{thSCC} estimates in the waste simulants. Although the technique requires some further validation to ensure conservatism, the current qualitative indications are that the tests are providing useful information.

In previous work, crack growth in constant load tests was identified by DCPD, examination in the stereo-microscope and metallographically. Many of the tests showed a minimal amount of crack growth and visual observations become subjective. It is very difficult to distinguish between fatigue pre-crack, ductile tearing at the crack tip, and intergranular SCC. In some cases, the results were inconsistent between techniques, and in general the conservative result was reported. The difficulties in distinguishing microstructural features led to the use of the SEM in post test-examinations.

4.15 GENERAL DISCUSSION OF RESULTS

The purpose of this work was to examine the effects of different tank farm operational variables (chemistry, temperature) on the propensity for localized corrosion and stress corrosion cracking. To accomplish this goal, a range of tank chemistry simulants and variations thereof have been examined in an attempt to bound certain tank farm characteristics and to better elucidate the controlling mechanisms and processes that may compromise tank integrity from a materials degradation perspective. In the course of this work, nitrite has been found to inhibit both localized corrosion and SCC whereas nitrate promotes these degradation modes. In the present work, the localized and SCC corrosion behavior of steel in waste simulants for Tanks 241-AP-105 (AP-105), 241-SY-103 (SY-103), 241-AW-105 (AW-105), 241-AZ-102 (AZ-102), 241-SY-101 (SY-101), AN-107 and AY-101 were investigated to better examine the effects of low nitrite-nitrate concentration ratios, high bounding chloride and fluoride concentrations, and low and high absolute nitrite and nitrate concentrations. The AP-105-PSC simulant has a unique chemistry that includes 0.27 M nitrite and 3.58 M nitrate (nitrite/nitrate ratio of 0.075). Although the nitrite concentration is less than 10% of the nitrate concentration, this chemistry appears to be more benign than some of the previously investigated simulants (e.g., AN-107) at pH above 13 (assuming the nitrite concentration can be maintained). While this nitrite concentration seemed to play some inhibiting role, the previous discussion indicates that this concentration may be near a threshold of nitrite below which the nitrite will not be able to provide effective protection for the

steel. Severe corrosion was observed at the liquid/vapor interface where the nitrite may have become depleted to a concentration below the threshold level for efficient inhibition or alternatively the pH was suppressed below a critical value.

Corrosion attack at the liquid/vapor interface strongly depends on temperature, potential, and liquid/vapor interface stability. The results obtained thus far indicate that the extent of corrosion could be decreased relative to test conditions at potentials near OCP or at temperatures near room temperature. The corrosion initiation time generally increased significantly for these conditions. However, the long-term immersion tests revealed that the corrosion at the liquid/vapor interface is likely even at room temperature. It appears that the CO₂ present in the air may have played a role by changing the pH locally to create an aggressive environment locally at the liquid/vapor interface. No definitive conclusion can be drawn with respect to the initiation mechanism of the interfacial attack. Even though the experimental evidence indicated that potential, oxygen, and CO₂ may play certain roles, a comprehensive understanding of the initiation mechanism is lacking.

Figure 73 summarizes the susceptibility of the steel to pitting corrosion as a function of inhibiting species and aggressive species in various simulants. Open symbols indicate that no pitting corrosion was observed after CPP testing. For AN-107 simulants, pitting corrosion was observed in all cases. However, the difference of repassivation potential and the OCP was considerably larger in some cases and thus the safety margin was sufficiently wide to prevent pitting under freely corroding conditions. Therefore, the tests that showed a |Epit-OCP| greater than 500 mV are indicated with half-filled symbols, meaning that pitting corrosion was observed but a large safety margin (the difference between OCP and pitting potential) exists. Note that pitting corrosion was observed after polarizing to potentials higher than OCP during CPP testing. The conditions outlined in Figure 73 indicate that pitting *might* occur under the given environmental conditions. Therefore, Figure 73 should be used only as an illustrative tool to help understand the prospective roles of inhibiting and aggressive species.

Three zones are indicated in Figure 73: no pitting zone, pitting possible but unlikely zone, and pitting possible zone. AP-105-evaporated simulants were outliers that did not lead to localized corrosion at an extremely high nitrate concentration (5.087M). For illustrative purposes, dashed lines have been included in Figure 73 to qualitatively differentiate the pitting possible, pitting possible but unlikely, and no pitting regions. At each nitrate concentration level, there appears to be a critical nitrite level, above which the material was protected from localized corrosion.

Figure 73. Susceptibility of Materials to Pitting Corrosion as a Function of Nitrite and Nitrate Concentration. The Symbols Represent Various Simulant Chemistries Previously Studied.

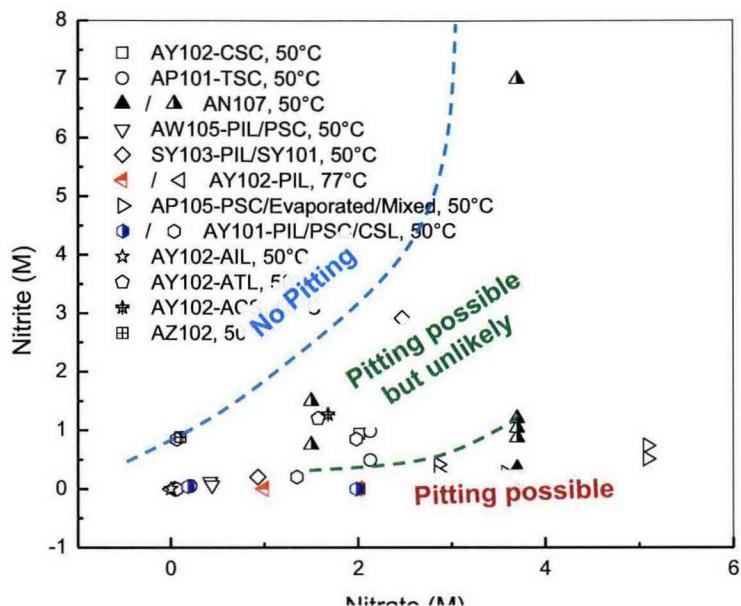


Figure 74 shows the estimated CGRs for tests that cracked as a function of applied potential in all simulants investigated. These data are primarily from SSRTs, with the one exception being the data point for the 5M NaNO₃ solution which was provided by a dynamic -K test. The new data obtained from the recent tests do not affect the general trend of the curve, which was developed using results from previous work. From previous testing, significant crack growth was only observed at potentials higher than -100 mV (vs. SCE) for the nitrate-based simulants (e.g., AY-101-PSC). Much slower CGRs were observed in carbonate-based simulants at potentials near -800 mV (vs. SCE). Similar slow CGRs were also observed in modified (increased nitrate) carbonate based simulants around -300 to -200 mV vs. SCE. The new data is seen in this third peak in the plot at -249 mV vs. SCE. This was generated from the one CGR experiment conducted in AP-105-PSC stimulant at OCP that showed cracking.

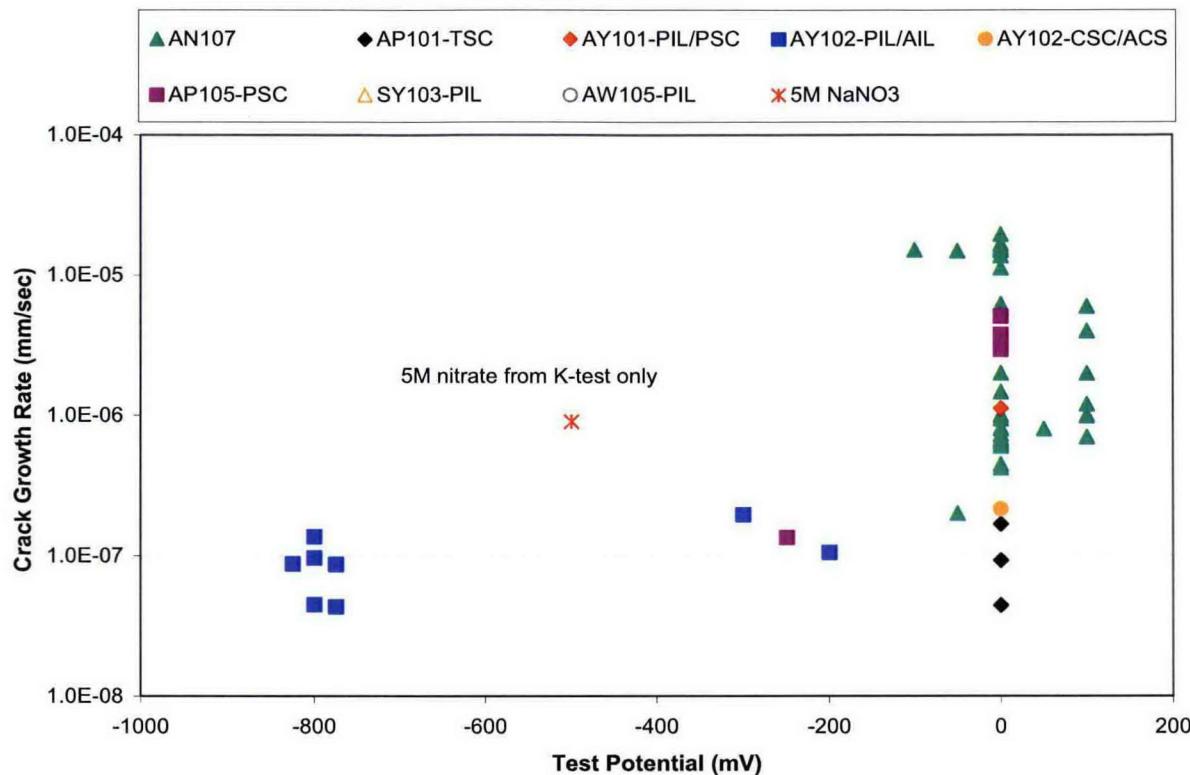
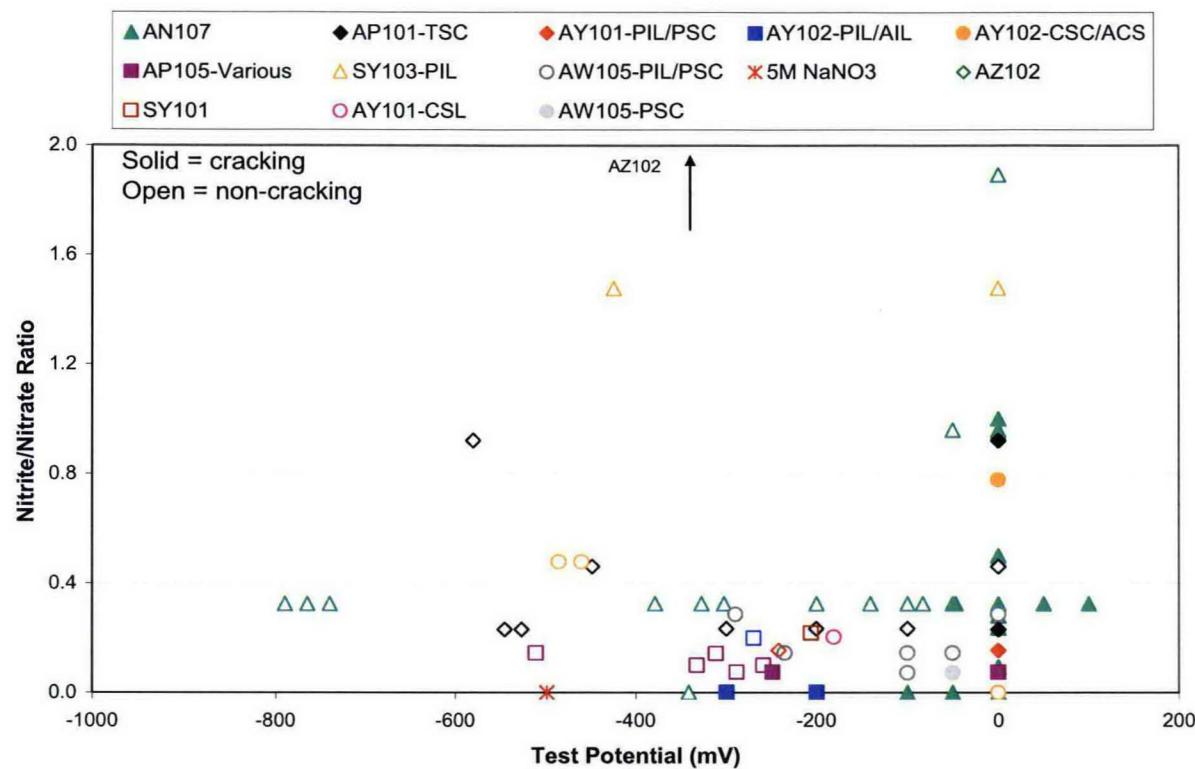


Figure 74. Estimated CGR vs. Potential in the Investigated Simulants.

Figure 75 is a plot of the nitrite/nitrate ratio vs. applied test potential. This data indicates conditions for SCC susceptibility. A similar plot was developed during previous work, and has been updated to include the new test data. SSRTs that showed cracking are indicated by solid symbols and tests that showed no cracking are indicated by open symbols. The general trend for the nitrate-based simulants is that SCC susceptibility tends to increase with increasing potential and decrease with increasing nitrite concentration. There is a transitional region of SCC behavior at low nitrite/nitrate ratios between potentials of -200 and -300 mV vs. SCE which remains poorly defined.

The results of the AP-105-PSC, SY-103-PIL and AW-105 testing are consistent with the results from previous tests programs, as can be seen from Figure 75. The AP-105-PSC simulant has a very low nitrite/nitrate ratio (0.075), and did show evidence of SCC, even at the relatively low OCP potential (-249 mV vs. SCE). The AW-105-PIL simulant has a slightly higher nitrite/nitrate ratio (0.29) and showed no evidence of SCC, at a comparable potential (-290 mV vs. SCE). These data help to further define the transitional region of the plot. The SY-103-PIL simulant has a much higher nitrite/nitrate ratio (1.47), and also shows no evidence of cracking, as the data in the Figure 75 would predict. The AW-105-PSC simulant and modified "6X" simulant data further defines the critical region in low nitrite/nitrate ratio and higher potential 0 mV to -100 mV vs. SCE region. Figure 75 indicates that SCC is possible in many of the simulants. However, it is important to realize that all but one of the tests that showed cracking behavior were anodically polarized. The one exception is the one of the two tests performed in AP-105-PSC at OCP that cracked. This is the only test that has shown evidence of cracking at OCP. This observation is important from a tank integrity perspective.

Figure 75. A Plot of Nitrite/nitrate Ratio vs. Applied Test Potential Indicating Conditions for SCC Susceptibility. Only Nitrate Based simulant Results Are Included.

An important conclusion that was drawn from this test program is that localized corrosion at liquid/vapor interfaces is possible at high pH. This indicates that the current requirements to maintain a high pH may not necessarily be sufficient to ensure long-term tank integrity. The interfacial corrosion is not currently well understood, and should be considered as a possible focus area for future work.

Based on the work conducted to date, it would seem that the risk of localized corrosion and SCC is relatively low under nominal tank operating conditions. There is, however, a possibility of SCC in achievable chemistries (these are chemistries similar to those already existing in the tank farm or those that may develop due to mixing/transfer operations) if a sufficiently noble potential is reached. This observation highlights the importance of the tank probe monitoring program. Also of significant note was the observation of rapid corrosion at the liquid/vapor interface which appears to be related to a drop in the interfacial pH due to the presence of CO₂ in the head space. Because the corrosion rates observed with some simulants were quite rapid, additional efforts to explore optimal mitigation strategies for this interfacial region are recommended.

5.0 SUMMARY OF KEY FINDINGS

Based on the work conducted, the key findings of the research are listed below.

- The SCC potency of the waste simulants for the three tanks studied followed the trends previously established for nitrate-based simulants. SCC only occurred at relatively high applied potentials (e.g., 0 mV vs. SCE) or at low nitrite/nitrate concentrations ratios.
- Limited GCR testing performed in AY-101 simulants indicated that stress intensity factors above 45 ksi $\sqrt{\text{in}}$ were necessary for crack propagation to occur in the waste simulants tested.
- Though at current tank conditions the PSC for tank 241-AP-105 (AP-105-PSC) simulant of the tank showed a low propensity for corrosion. The tank steel exposed to the Tank AP-105-PSC simulant at elevated temperatures and under anodically polarizing conditions demonstrated a susceptibility to stress corrosion cracking (SCC) and localized corrosion at the liquid/vapor interface. Long-term immersion tests indicated that the steel was susceptible to corrosion at the liquid/vapor interface even at OCP, but the extent at room temperature was not as severe as at elevated temperatures (e.g., 50°C). The AP-105-PSC is the only simulant in which SCC was observed in a slow strain rate test (SSRT) performed at OCP. Local chemistry changes (nitrite depletion or pH drop) may be responsible for the interfacial attack, though the precise mechanism is unclear at this time. The liquid/vapor interface attack indicates that localized corrosion is possible in simulants with high pH, and this should be considered in any future corrosion mitigation strategies.
- The PIL for Tank 241-SY-103 (SY-103-PIL) simulant, which has the upper limit of chloride concentration of the DSTs, appears to be benign with respect to corrosion and SCC relative to the AP-105-PSC and previously tested Tank 241-AN-107 simulants and the PIL for Tank 241-AY-102 (AY-102PIL) simulant. Any possible corrosion liability associated with the high chloride content, appears to be offset by the relatively high nitrite content.
- The PIL for Tank 241-AW-105 (AW-105-PIL) simulant, which has the upper limit of fluoride concentration, also appears to be benign with respect to tank steel SCC. However, some localized corrosion has been observed at the liquid/vapor interface.
- The AZ-102 simulant, tested at the higher temperature of 77°C, appears to be benign with respect to SCC, confirming the inhibitory nature of nitrite. The AZ-102 simulant has a high nitrite/nitrate ratio of 8.4.

APPENDIX A

SIMULANT RECIPES, CERTIFICATES FOR CHEMICALS AND QA DOCUMENTS

AN-107 Supernate Simulant Recipe for a 2-Liter Batch, pH = 11
BASE SOLUTION: April 2005 Version

Balance Device ID No: 080 NIST Weight (10 g): 10.000
 Balance Device ID No: 018 NIST Weight (150 g): 149.7
 Prepared By: Wayne Kellie Date Prepared: 11/107

Tracking #65.

Tare a 2-liter Volumetric Flask and then Add the Following, in Order:

Compound	Formula	Mass Required, grams	Actual Mass Used, grams
Deionized Water	H ₂ O	400.00	AK 400 400
Calcium Nitrate, 4-Hydrate	Ca(NO ₃) ₂ ·4H ₂ O	6.98	6.93
Calcium Nitrate, 6-Hydrate	Ca(NO ₃) ₂ ·6H ₂ O	0.32	0.35
Cesium Nitrate	Ce(NO ₃) ₃	0.054	0.050
Copper Nitrate, 2.5-Hydrate	Cu(NO ₃) ₂ ·2.5H ₂ O	0.22	0.22
Iron Nitrate, 9-Hydrate	Fe(NO ₃) ₃ ·9H ₂ O	24.48	24.50
Lanthanum Nitrate	La(NO ₃) ₃ ·6H ₂ O	0.28	0.30
Lanthanum Nitrate	La(NO ₃) ₃ ·6H ₂ O	1.24	1.24
Magnesium Nitrate, 6-Hydrate	Mg(NO ₃) ₂ ·6H ₂ O	0.52	0.52
Manganese Chloride, 4-Hydrate	MnCl ₂ ·4H ₂ O	4.06	4.06
Neodymium Nitrate, 6-Hydrate	Nd(NO ₃) ₃ ·6H ₂ O	0.58	0.58
Nickel Nitrate, 6-Hydrate	Ni(NO ₃) ₂ ·6H ₂ O	5.26	5.06
Potassium Nitrate	KNO ₃	9.20	9.20
Samarium Nitrate	Sm(NO ₃) ₃	0.032	0.035
Zinc Nitrate, 6-Hydrate	Zn(NO ₃) ₂ ·6H ₂ O	0.42	0.41
Zirconium Nitrate	Zr(NO ₃) ₄ ·4H ₂ O	0.38	0.37
EDTA, Ethylenediaminetetraacetate	Na ₂ EDTA	14.52	14.52
EDTA, n-hydroxyethylenediamine Triacetate	EDTA	4.32	4.32
Sodium Gluconate	C ₆ H ₁₁ NaO ₇	7.06	7.87
Glycolic Acid	C ₂ H ₄ O ₂	53.96	52.86
Gllic Acid Monohydrate	C ₃ H ₆ O ₂	18.88	18.88
Nitrobutyric Acid	C ₄ H ₇ NO ₂	1.14	1.14
Imidodicetic Acid	HN(CH ₂ COOH) ₂	12.06	12.09
Boric Acid	H ₃ BO ₃	0.40	0.40
Sodium Chloride	NaCl	11.68	11.30
Sodium Fluoride	NaF	0.58	0.58
Sodium Chromate	Na ₂ O ₂ O ₄	1.10	1.10
Sodium Sulfate	Na ₂ SO ₄	24.40	24.40
Potassium Molybdate	K ₂ MoO ₄	0.18	0.18
SUM		604.9660	

In a SEPARATE Container, Mix the Following:

		30.50
Aluminum Nitrate, 9-Hydrate	Al(NO ₃) ₃ ·9H ₂ O	10.74
Sodium Phosphate, 12-Hydrate	Na ₃ PO ₄ ·12H ₂ O	8.88
Sodium Formate	NaHCOO	31.42
Sodium Acetate Trihydrate	NaCH ₃ COO·3H ₂ O	4.74
Sodium Oxalate	Na ₂ C ₂ O ₄	2.52
Deionized Water	H ₂ O	400.00
SUM		488.82

Mix Thoroughly. Then Add this Solution to the Volumetric Flask.

After the Addition to the Volumetric Flask, Add the Following:

Sodium Carbonate	Na ₂ CO ₃	296.50	296.5
------------------	---------------------------------	--------	-------

Mix Thoroughly

Next, Mix the Following:

Sodium Nitrate	NaNO ₃	584.88	574.60
Sodium Nitrite	NaNO ₂	165.58	165.60
Water	H ₂ O	200.00	200.00

Add and Mix thoroughly.

Sum		940.16	
SUM OF ALL		2350.46	

Record the Final Weight

10.38

Density:

B

Measure the pH

Adjust the Final Solution to pH = 11 by progressively adding 2 g of sodium hydroxide (NaOH) up to 20g. MIX THOROUGHLY after any addition of sodium hydroxide and measure pH.

Comments:

AP105-PSC

Base Solution 2007 Version

Balance Device ID: 080
Balance Device ID: 018Batch Size: 4 L
pH: 13+

AP105-PSC
<u>30,0000</u>
<u>500.0</u>

Technician: Noy Kelley Date: 11/14/07 Tracking: 68

Add 2400 mL DI water to a beaker.
 Insert Teflon stirbar and thermocouple, and place on stirrer / hotplate.
 Turn on heater and adjust to 60°C (±10°C).

Add the following chemicals and record their actual weights:

Chemical	Formula	Required Mass (g)	Actual Mass (g)	Comments
Sodium Aluminate	NaAlO ₂ ·2H ₂ O	70.71	<u>70.71</u>	
Sodium Chloride	NaCl	7.20	<u>7.20</u>	
Sodium Fluoride	NaF	1.53	<u>1.53</u>	
Sodium Chromate	Na ₂ CrO ₄	6.87	<u>6.87</u>	
Sodium Sulfate	Na ₂ SO ₄	26.82	<u>26.82</u>	
Sodium Phosphate, 12-Hydrate	Na ₃ PO ₄ ·12H ₂ O	45.77	<u>45.78</u>	
Sodium Formate	NaHCOO	2.72	<u>2.72</u>	
Sodium Acetate Trihydrate	NaCH ₃ COO·3H ₂ O	4.08	<u>4.09</u>	
Sodium Oxalate	Na ₂ C ₂ O ₄	4.02	<u>4.01</u>	
Sodium Carbonate	Na ₂ CO ₃	138.21	<u>138.2</u>	
Sodium Nitrate	NaNO ₃	1211.75	<u>1211.8</u>	
Potassium Nitrate	KNO ₃	5.38	<u>5.41</u>	
Sodium Nitrite	NaNO ₂	74.52	<u>74.5</u>	
Glycolic Acid	C ₂ H ₄ O ₃	3.23	<u>3.23</u>	
Sodium Hydroxide	NaOH	28.18	<u>28.18</u>	

* Sodium fluoride is highly toxic. Handle with caution.

1631.06Adjust total solution volume to 3400 mL by adding DI water.

Adjust solution temperature to 50°C to 60°C.

Filter solution by vacuum through medium glass filter. *Handle with caution, hot and caustic solution.*

Rinse beaker with approximately 50 mL of DI water

Rinse filter with approximately 50 mL of DI water

Transfer final filtrate and rinse solutions to large beaker with stir bar.

Measure and record initial pH A/ 13.35 13.01Check the pH to make sure it is 11/14/07 13+

Transfer to volumetric flask and include rinse with DI water. Allow solution to cool

Adjust final solution to volume of 4 L with DI water, and mix thoroughly.

SUM	Total chemicals (target)	<u>1630.98</u> g	Total chemicals (actual)	<u>1631.06</u> g
	Total water (target)	<u>4 L</u>	Total water (actual)	<u>4000</u> mL
	Target Specific Density	<u>1.41</u>	Calculated density	<u>1.41</u>

Check final solution pH and record. pH = 13.2 (Readjust if significantly different from target.)

Comments: record any difficulties or discrepancies

QA APPROVED

NAME: CleamDATE: 1-7-08B.

AP105-PSC

Base Solution 2007 Version

Batch Size: 2 L
pH: 13+

AP105-PSC

Balance Device ID: 020
Balance Device ID: 018NIST Weight (40 g): 20.000
NIST Weight (500 g): 300.0

Technician: Noy Kelley

Date: 12/12/07

Tracking: 73

Add 1200 mL mL DI water to a beaker.
 Insert Teflon stirbar and thermocouple, and place on stirrer / hotplate.
 Turn on heater and adjust to 60°C (±10°C).

Add the following chemicals and record their actual weights:

Chemical	Formula	Required Mass (g)	Actual Mass (g)	Comments
Sodium Aluminate	NaAlO ₂ ·2H ₂ O	35.35	35.36	
Sodium Chloride	NaCl	3.60	3.60	
Sodium Fluoride	NaF	0.76	0.76	
Sodium Chromate	Na ₂ CrO ₄	3.43	3.42	
Sodium Sulfate	Na ₂ SO ₄	13.41	13.40	
Sodium Phosphate, 12-Hydrate	Na ₃ PO ₄ ·12H ₂ O	22.88	22.88	
Sodium Formate	NaHCOO	1.36	1.36	
Sodium Acetate Trihydrate	NaCH ₃ COO·3H ₂ O	2.04	2.04	
Sodium Oxalate	Na ₂ C ₂ O ₄	2.01	2.02	
Sodium Carbonate	Na ₂ CO ₃	69.11	69.20	
Sodium Nitrate	NaNO ₃	605.88	605.9	
Potassium Nitrate	KNO ₃	2.69	2.70	
Sodium Nitrite	NaNO ₂	37.26	37.20	
Glycolic Acid	C ₂ H ₄ O ₃	1.62	1.62	
Sodium Hydroxide	NaOH	14.09	14.16	

* Sodium fluoride is highly toxic. Handle with caution.

Adjust total solution volume to 1700 mL by adding DI water.

Adjust solution temperature to 50°C to 60°C.

Filter solution by vacuum through medium glass filter. Handle with caution, hot and caustic solution.

Rinse beaker with approximately 50 mL of DI water

Rinse filter with approximately 50 mL of DI water

Transfer final filtrate and rinse solutions to large beaker with stir bar.

Measure and record initial pH 13.44

Check the pH to make sure it is 13+

Transfer to volumetric flask and include rinse with DI water. Allow solution to cool

Adjust final solution to volume of 2 L with DI water, and mix thoroughly.

SUM	Total chemicals (target)	815.49 g	Total chemicals (actual)	815.62
	Total water (target)	2 L	Total water (actual)	2.000
	Target Specific Density	1.41	Calculated density	1.41

Check final solution pH and record. pH = 13.44 Readjust if significantly different from target.

Comments: record any difficulties or discrepancies

APPROVED

NAME: Cleburn

DATE: 1-7-07

AP105-PSC

Base Solution 2007 Version

Batch Size: 4 L
pH: 13+

AP105-PSC

Balance Device ID: 020 NIST Weight (20g): 19.9999
Balance Device ID: 018 NIST Weight (500g): 500.0Technician: Nay Kelley Date: 1/18/08 Tracking: 76Add 2400 mL DI water to a beaker.
Insert Teflon stirbar and thermocouple, and place on stirrer / hotplate.

Turn on heater and adjust to 60°C (±10°C).

Add the following chemicals and record their actual weights:

Chemical	Formula	Required Mass (g)	Actual Mass (g)	Comments
Sodium Aluminate	NaAlO ₂ ·2H ₂ O	70.71	70.71	
Sodium Chloride	NaCl	7.20	7.20	
Sodium Fluoride	NaF	1.53	1.53	
Sodium Chromate	Na ₂ CrO ₄	6.87	6.87	
Sodium Sulfate	Na ₂ SO ₄	26.82	26.82	
Sodium Phosphate, 12-Hydrate	Na ₃ PO ₄ ·12H ₂ O	45.77	45.77	
Sodium Formate	NaHCOO	2.72	2.72	
Sodium Acetate Trihydrate	NaCH ₃ COO·3H ₂ O	4.08	4.08	
Sodium Oxalate	Na ₂ C ₂ O ₄	4.02	4.02	
Sodium Carbonate	Na ₂ CO ₃	138.21	138.3	
Sodium Nitrate	NaNO ₃	1211.75	1211.6	
Potassium Nitrate	KNO ₃	5.38	5.40	
Sodium Nitrite	NaNO ₂	74.52	74.6	
Glycolic Acid	C ₂ H ₄ O ₃	3.23	3.23	precipitation (1%)
Sodium Hydroxide	NaOH	28.18	28.25	disolve, precipitation all

* Sodium fluoride is highly toxic. Handle with caution.

Adjust total solution volume to 3400 mL by adding DI water.

Adjust solution temperature to 50°C to 60°C.

Filter solution by vacuum through medium glass filter. **Handle with caution, hot and caustic solution.**

Rinse beaker with approximately 50 mL of DI water

Rinse filter with approximately 50 mL of DI water

Transfer final filtrate and rinse solutions to large beaker with stir bar.

Measure and record initial pH 13.45Check the pH to make sure it is 13.45

Transfer to volumetric flask and include rinse with DI water. Allow solution to cool

Adjust final solution to volume of 4 L with DI water, and mix thoroughly.

SUM	Total chemicals (target)	1630.98 g	Total chemicals (actual)	1631.10 g
	Total water (target)	4 L	Total water (actual)	4.000 mL
	Target Specific Density	1.41	Calculated density	1.41

Check final solution pH and record.

pH = 13.45 Readjust if significantly different from target.

Comments: record any difficulties or discrepancies

AP105-PSC

Base Solution 2007 Version

Batch Size:	4 L	
pH:	13+	AP105-PSC

Balance Device ID: 080 NIST Weight (10 g): 10.0000
 Balance Device ID: 078 NIST Weight (500 g): 500.0

Technician: Noy Kelley Date: 2/11/08 Tracking: 77

Add 2400 L mL DI water to a beaker.
 Insert Teflon stirbar and thermocouple, and place on stirrer / hotplate.
 Turn on heater and adjust to 60°C (±10°C).

Add the following chemicals and record their actual weights:

Chemical	Formula	Required Mass (g)	Actual Mass (g)	Comments
Sodium Aluminate	NaAlO ₂ ·2H ₂ O	70.71	70.70	
Sodium Chloride	NaCl	7.20	7.20	
Sodium Fluoride	NaF	1.53	1.55	
Sodium Chromate	Na ₂ CrO ₄	6.87	6.84	
Sodium Sulfate	Na ₂ SO ₄	26.82	26.84	
Sodium Phosphate, 12-Hydrate	Na ₃ PO ₄ ·12H ₂ O	45.77	45.80	
Sodium Formate	NaHCOO	2.72	2.72	
Sodium Acetate Trihydrate	NaCH ₃ COO·3H ₂ O	4.08	4.09	
Sodium Oxalate	Na ₂ C ₂ O ₄	4.02	4.02	
Sodium Carbonate	Na ₂ CO ₃	138.21	138.3	
Sodium Nitrate	NaNO ₃	1211.75	1212	
Potassium Nitrate	KNO ₃	5.38	5.40	
Sodium Nitrite	NaNO ₂	74.52	74.6	
Glycolic Acid	C ₂ H ₄ O ₃	3.23	3.27	Small precipitation occurs
Sodium Hydroxide	NaOH	28.18	28.3	Dissolve after adding NaOH

* Sodium fluoride is highly toxic. Handle with caution.

1631.73

Adjust total solution volume to

3400 mL by adding DI water.

Adjust solution temperature to 50°C to 60°C.

Filter solution by vacuum through medium glass filter. Handle with caution, hot and caustic solution.

Rinse beaker with approximately 50 mL of DI water

Rinse filter with approximately 50 mL of DI water

Transfer final filtrate and rinse solutions to large beaker with stir bar.

Measure and record initial pH 12.98

Check the pH to make sure it is 13+

QA APPROVED

NAME: Olden

DATE: 2-5-08

Transfer to volumetric flask and include rinse with DI water. Allow solution to cool

Adjust final solution to volume of 4 L with DI water, and mix thoroughly.

SUM	Total chemicals (target)	1630.98 g	Total chemicals (actual)	1631.73 g
	Total water (target)	4 L	Total water (actual)	4000 mL
	Target Specific Density	1.41	Calculated density	1.41

Check final solution pH and record.

pH = 12.98 Readjust if significantly different from target.

Comments: record any difficulties or discrepancies

AY101-PSC

Base Solution 2007 Version

Batch Size: 2 L
pH: >13

AY-101-PSC

Balance Device ID: 080
Balance Device ID: 078NIST Weight (10g):
NIST Weight (500g):10.0000
500.0

Technician: Noy Kelley

Date: 2/12/08

Tracking: 78

Add 1200 mL DI water to a beaker.
Insert Teflon stirbar and thermocouple, and place on stirrer / hotplate.
Turn on heater and adjust to 60°C (±10°C).

Add the following chemicals and record their actual weights:

Chemical	Formula	Required Mass (g)	Actual Mass (g)	Comments
Sodium Aluminate	NaAlO ₂ ·2H ₂ O	25.25	25.27	
Sodium Chloride	NaCl	2.13	2.14	
Sodium Fluoride	NaF	1.16	1.17	
Sodium Chromate	Na ₂ CrO ₄	0.92	0.93	
Sodium Sulfate	Na ₂ SO ₄	5.65	5.65	
Sodium Phosphate, 12-Hydrate	Na ₃ PO ₄ ·12H ₂ O	37.71	37.71	
Sodium Formate	NaHCOO	1.73	1.75	
Sodium Acetate Trihydrate	NaCH ₃ COO·3H ₂ O	2.41	2.45	
Sodium Oxalate	Na ₂ C ₂ O ₄	1.34	1.34	
Sodium Carbonate	Na ₂ CO ₃	42.61	42.62	
Sodium Nitrate	NaNO ₃	226.07	226.10	
Sodium Nitrite	NaNO ₂	28.29	28.30	
Sodium Silicate	Na ₂ SiO ₃ ·9H ₂ O	0.99	1.00	Precipitation
Glycolic Acid	C ₂ H ₄ O ₃	1.60	1.59	"
Sodium Hydroxide	NaOH	56.88	56.9	

* Sodium fluoride is highly toxic. Handle with caution.

434.91 Clear when filter

Adjust total solution volume to

1700 mL by adding DI water.

Adjust solution temperature to 50°C to 60°C.

Filter solution by vacuum through medium glass filter. *Handle with caution, hot and caustic solution.*

Rinse beaker with approximately 50 mL of DI water

Rinse filter with approximately 50 mL of DI water

Transfer final filtrate and rinse solutions to large beaker with stir bar.

Measure and record initial pH

13.66

Check the pH to make sure it is

>13

non-standard pH

NAME: Cedum

QA APPROVED

Transfer to volumetric flask and include rinse with DI water. Allow solution to cool

DATE: 2-12-08

Adjust final solution to volume of

2 L with DI water, and mix thoroughly.

SUM	Total chemicals (target)	434.74 g	Total chemicals (actual)	434.91
	Total water (target)	2 L	Total water (actual)	2000 mL
	Target Specific Density	1.22	Calculated density	1.22

Check final solution pH and record.

pH = 13.66 Readjust if significantly different from target.

Comments: record any difficulties or discrepancies

AP105-PSC

Base Solution 2007 Version

Batch Size: 4 L
pH: 13+

AP105-PSC

Balance Device ID: 020
Balance Device ID: 078NIST Weight (20 g):
NIST Weight (300 g):20.000
300.0

Technician: Noy Kelley Date: 2/14/08 Tracking: 79

Add 2400 mL DI water to a beaker.
Insert Teflon stirbar and thermocouple, and place on stirrer / hotplate.
Turn on heater and adjust to 60°C (±10°C).

Add the following chemicals and record their actual weights:

Chemical	Formula	Required Mass (g)	Actual Mass (g)	Comments
Sodium Aluminate	NaAlO ₂ .2H ₂ O	70.71	70.72	
Sodium Chloride	NaCl	7.20	7.20	
Sodium Fluoride	NaF	1.53	1.53	
Sodium Chromate	Na ₂ CrO ₄ .4H ₂ O	9.92	10.0	
Sodium Sulfate	Na ₂ SO ₄	26.82	26.82	
Sodium Phosphate, 12-Hydrate	Na ₃ PO ₄ .12H ₂ O	45.77	45.83	
Sodium Formate	NaHCOO	2.72	2.73	
Sodium Acetate Trihydrate	NaCH ₃ COO.3H ₂ O	4.08	4.08	
Sodium Oxalate	Na ₂ C ₂ O ₄	4.02	4.03	
Sodium Carbonate	Na ₂ CO ₃	138.21	138.2	
Sodium Nitrate	NaNO ₃	1211.75	1212	
Potassium Nitrate	KNO ₃	5.38	5.38	
Sodium Nitrite	NaNO ₂	74.52	74.52	
Glycolic Acid	C ₂ H ₄ O ₃	3.23	3.23	
Sodium Hydroxide	NaOH	28.18	28.16	

* Sodium fluoride is highly toxic. Handle with caution.

1634.56

Adjust total solution volume to 3400 mL by adding DI water.

Adjust solution temperature to 50°C to 60°C.

Filter solution by vacuum through medium glass filter. **Handle with caution, hot and caustic solution.**

Rinse beaker with approximately 50 mL of DI water

Rinse filter with approximately 50 mL of DI water

Transfer final filtrate and rinse solutions to large beaker with stir bar.

Measure and record initial pH

Check the pH to make sure it is

13.45
13+

Transfer to volumetric flask and include rinse with DI water. Allow solution to cool

Adjust final solution to volume of 4 L with DI water, and mix thoroughly.

SUM	Total chemicals (target)	1634.03 g	Total chemicals (actual)	1634.56
	Total water (target)	4 L	Total water (actual)	4.000
	Target Specific Density	1.41	Calculated density	1.41

Check final solution pH and record.

pH = 13.45 Readjust if significantly different from target.

Comments: record any difficulties or discrepancies

QA APPROVED

NAME: Olden

DATE: 2-15-08

AP105-PSC

Base Solution 2007 Version

Balance Device ID:
018Batch Size: 4 L
pH: 13+

AP105-PSC
0.6M nitrite

20.000

500.0

Balance Device ID:

020
018NIST Weight (40g):
NIST Weight (500g):

Technician: Noy Kelley

Date: 2/14/08

Tracking: 80

Add 2400 L mL DI water to a beaker.
 Insert Teflon stirbar and thermocouple, and place on stirrer / hotplate.
 Turn on heater and adjust to 60°C (±10°C).
 Add the following chemicals and record their actual weights:

Chemical	Formula	Required Mass (g)	Actual Mass (g)	Comments
Sodium Aluminate	NaAlO ₂ ·2H ₂ O	70.71	71.72	
Sodium Chloride	NaCl	7.20	7.20	
Sodium Fluoride	NaF	1.53	1.52	
Sodium Chromate	Na ₂ CrO ₄ ·4H ₂ O	9.92	10.0	
Sodium Sulfate	Na ₂ SO ₄	26.82	26.83	
Sodium Phosphate, 12-Hydrate	Na ₃ PO ₄ ·12H ₂ O	45.77	45.78	
Sodium Formate	NaHCOO	2.72	2.72	
Sodium Acetate Trihydrate	NaCH ₃ COO·3H ₂ O	4.08	4.09	
Sodium Oxalate	Na ₂ C ₂ O ₄	4.02	4.04	
Sodium Carbonate	Na ₂ CO ₃	138.21	138.2	
Sodium Nitrate	NaNO ₃	1211.75	1212	
Potassium Nitrate	KNO ₃	5.38	5.38	
Sodium Nitrite	NaNO ₂	165.60	165.6	
Glycolic Acid	C ₂ H ₄ O ₃	3.23	3.23	
Sodium Hydroxide	NaOH	28.18	28.17	

* Sodium fluoride is highly toxic. Handle with caution.

1725.59

Adjust total solution volume to

3400 mL by adding DI water.

Adjust solution temperature to 50°C to 60°C.

Filter solution by vacuum through medium glass filter. **Handle with caution, hot and caustic solution.**

Rinse beaker with approximately 50 mL of DI water

Rinse filter with approximately 50 mL of DI water

Transfer final filtrate and rinse solutions to large beaker with stir bar.

Measure and record initial pH

13.52

13+

Check the pH to make sure it is

QA APPROVED

NAME: Cedur

DATE: 2-15-08

Transfer to volumetric flask and include rinse with DI water. Allow solution to cool

Adjust final solution to volume of 4 L with DI water, and mix thoroughly.

SUM	Total chemicals (target)	1725.11 g	Total chemicals (actual)	1725.59 g
	Total water (target)	4 L	Total water (actual)	4000 mL
	Target Specific Density	1.43	Calculated density	1.043

Check final solution pH and record.

pH = 13.52 Readjust if significantly different from target.

Comments: record any difficulties or discrepancies

AP105-PSC

Base Solution 2007 Version

Batch Size: 4 L
pH: 13+

AP105-PSC

Balance Device ID:
026
Balance Device ID:
018NIST Weight (20 g):
20.000
NIST Weight (500 g):
500.0

Technician: Nancy Kelley

Date: 2/28/08

Tracking: 81

Add 2400 mL DI water to a beaker.
Insert Teflon stirbar and thermocouple, and place on stirrer / hotplate.
Turn on heater and adjust to 60°C ($\pm 10^\circ\text{C}$).

Add the following chemicals and record their actual weights:

Chemical	Formula	Required Mass (g)	Actual Mass (g)	Comments
Sodium Aluminate	NaAlO ₂ .2H ₂ O	70.71	70.73	
Sodium Chloride	NaCl	7.20	7.20	
Sodium Fluoride	NaF	1.53	1.54	
Sodium Chromate	Na ₂ CrO ₄ .4H ₂ O	9.92	9.91	
Sodium Sulfate	Na ₂ SO ₄	26.82	26.86	
Sodium Phosphate, 12-Hydrate	Na ₂ PO ₄ .12H ₂ O	45.77	45.78	
Sodium Formate	NaHCOO	2.72	2.79	
Sodium Acetate Trihydrate	NaCH ₃ COO.3H ₂ O	4.08	4.09	
Sodium Oxalate	Na ₂ C ₂ O ₄	4.02	4.03	
Sodium Carbonate	Na ₂ CO ₃	138.21	138.3	
Sodium Nitrate	NaNO ₃	1211.75	1212	
Potassium Nitrate	KNO ₃	5.38	5.38	
Sodium Nitrite	NaNO ₂	74.52	74.5	
Glycolic Acid	C ₂ H ₄ O ₃	3.23	3.23	Small amount of precipitation occurred
Sodium Hydroxide	NaOH	28.18	28.19	all precipitation

* Sodium fluoride is highly toxic. Handle with caution.

1634.58 dissolve

Adjust total solution volume to

3400 mL by adding DI water.

Adjust solution temperature to 50°C to 60°C.

Filter solution by vacuum through medium glass filter. **Handle with caution, hot and caustic solution.**

Rinse beaker with approximately 50 mL of DI water

Rinse filter with approximately 50 mL of DI water

Transfer final filtrate and rinse solutions to large beaker with stir bar.

Measure and record initial pH 12.82

Check the pH to make sure it is

13+

add 12 g NaOH to pH 13+

Transfer to volumetric flask and include rinse with DI water. Allow solution to cool

Adjust final solution to volume of

4 L with DI water, and mix thoroughly.

SUM	Total chemicals (target)	1634.03 g	Total chemicals (actual)	1634.58
	Total water (target)	4 L	Total water (actual)	4000
	Target Specific Density	1.41	Calculated density	1.41

Check final solution pH and record.

pH = 13.8 Readjust if significantly different from target.

Comments: record any difficulties or discrepancies

add 12 g of NaOH to get

pH = 13

QA APPROVED

NAME: C. Durr

DATE: 3-6-08

AP105-PSC

Base Solution 2007 Version

Batch Size: 4 L
pH: 13+

AP105-PSC

Balance Device ID: 020 NIST Weight (30 g): 80.0000
Balance Device ID: 018 NIST Weight (500 g): 500.0

Technician: Noy Kelley Date: 3/11/08 Tracking: 82

Add 2400 mL DI water to a beaker.
 Insert Teflon stirbar and thermocouple, and place on stirrer / hotplate.
 Turn on heater and adjust to 60°C ($\pm 10^\circ\text{C}$).
 Add the following chemicals and record their actual weights:

Chemical	Formula	Required Mass (g)	Actual Mass (g)	Comments
Sodium Aluminate	NaAlO ₂ ·2H ₂ O	70.71	70.71	
Sodium Chloride	NaCl	7.20	7.20	
Sodium Fluoride	NaF	1.53	1.58	
Sodium Chromate	Na ₂ CrO ₄ ·4H ₂ O	9.92	9.94	
Sodium Sulfate	Na ₂ SO ₄	26.82	27.0	
Sodium Phosphate, 12-Hydrate	Na ₃ PO ₄ ·12H ₂ O	45.77	45.80	
Sodium Formate	NaHCOO	2.72	2.74	
Sodium Acetate Trihydrate	NaCH ₃ COO·3H ₂ O	4.08	4.08	
Sodium Oxalate	Na ₂ C ₂ O ₄	4.02	4.02	
Sodium Carbonate	Na ₂ CO ₃	138.21	138.2	
Sodium Nitrate	NaNO ₃	1211.75	1212	
Potassium Nitrate	KNO ₃	5.38	5.40	
Sodium Nitrite	NaNO ₂	74.52	74.7	
Glycolic Acid	C ₂ H ₄ O ₃	3.23	3.24	
Sodium Hydroxide	NaOH	28.18	28.3	

* Sodium fluoride is highly toxic. Handle with caution.

Adjust total solution volume to 3400 mL by adding DI water.

Adjust solution temperature to 50°C to 60°C.

Filter solution by vacuum through medium glass filter. **Handle with caution, hot and caustic solution.**

Rinse beaker with approximately 50 mL of DI water

Rinse filter with approximately 50 mL of DI water

Transfer final filtrate and rinse solutions to large beaker with stir bar.

Measure and record initial pH

13.16

13+

Check the pH to make sure it is

QA APPROVED

NAME: Odom

DATE: 3-26-08

Adjust final solution to volume of 4 L with DI water, and mix thoroughly.

SUM	Total chemicals (target)	1634.03 g	Total chemicals (actual)	1638.91
	Total water (target)	4 L	Total water (actual)	4.000
	Target Specific Density	1.41	Calculated density	1.41

Check final solution pH and record.

pH=13.15 Readjust if significantly different from target.

Comments: record any difficulties or discrepancies

SY103-PIL

Base Solution 2008 Version

Balance Device ID: 0020
Balance Device ID: 0018Technician: EmilyBatch Size: 4 L
pH: 13+

SY103-PIL

NIST Weight (66 g): 19.799
NIST Weight (100 g): 100.0Date: 3/19/08Tracking: 85

Add the following chemicals and record their actual weights:

Chemical	Formula	Required Mass (g)	Actual Mass (g)	Comments
In the first container measure		2400 mL	DI water, heat to 80-90°C using hot-plate	
Sodium Aluminate	Na ₂ AlO ₂	675.680	<u>675.7</u>	
Sodium Hydroxide	NaOH	388.800	<u>388.9</u>	
In a separate container measure		1000 mL	DI water	
Copper Nitrate 2.5-hydrate	Cu(NO ₃) ₂ ·2.5H ₂ O	0.186	<u>0.183</u>	
Ferroc Nitrate 9-hydrate	Fe(NO ₃) ₃ ·9H ₂ O	0.808	<u>0.809</u>	
Add the following Organics (to the second container)				
Sodium Acetate 3-hydrate	NaCH ₃ COO·3H ₂ O	23.896	<u>23.902</u>	
Sodium Formate	NaHCOO	51.144	<u>51.146</u>	
Glycolic Acid	C ₂ H ₄ O ₃	14.39	<u>14.38</u>	
Sodium Oxalate	Na ₂ C ₂ O ₄	2.358	<u>2.359</u>	
Citric Acid 1-hydrate	C ₆ H ₈ O ₇ ·H ₂ O	16.643	<u>16.641</u>	
Disodium EDTA	Na ₂ C ₁₀ H ₁₄ O ₆ ·2H ₂ O	13.103	<u>13.103</u>	
HEDTA	C ₁₀ H ₁₂ N ₂ O ₇	4.897	<u>4.891</u>	
Nitrolotriacetic Acid	C ₆ H ₉ NO ₆	1.682	<u>1.683</u>	
Iminodiacetic Acid	C ₄ H ₇ NO ₂	10.542	<u>10.544</u>	
Combine the two solutions into one container, maintain a temperature of 50°C. Add the remaining chemicals.				
Boric Acid	H ₃ BO ₃	3.263	<u>3.266</u>	
Sodium Chromate	Na ₂ CrO ₄ ·4H ₂ O	0.936	<u>0.930</u>	
Potassium Molybdate	K ₂ MoO ₄	1.714	<u>1.714</u>	
Potassium Nitrate	KNO ₃	51.712	<u>51.703</u>	
Sodium Chloride	NaCl	115.845	<u>116.0</u>	
Sodium Nitrate	NaNO ₃	625.600	<u>625.6</u>	
Sodium Nitrite	NaNO ₂	803.160	<u>803.2</u>	
Sodium Phosphate, 12-Hydrate	Na ₃ PO ₄ ·12H ₂ O	41.800	<u>41.799</u>	
Sodium Sulfate	Na ₂ SO ₄	9.486	<u>9.484</u>	
Sodium Carbonate	Na ₂ CO ₃	52.152	<u>52.2</u>	

Filter solution by vacuum through medium glass filter. **Handle with caution, caustic solution.**

Rinse beaker with approximately 50 mL of DI water

Rinse filter with approximately 50 mL of DI water

Transfer final filtrate and rinse solutions to large beaker with stir bar.

Transfer to volumetric flask and include rinse with DI water.

Adjust final solution to volume of 4 L with DI water, and mix thoroughly.

SUM	Total chemicals (target)	2910 g	Total chemicals (actual)	<u>2910.091</u>
	Total water (target)	4 L	Total water (actual)	<u>4000</u>
	Target Specific Densit	1.73	Calculated density	<u>1.173</u>

Check final solution pH and record pH=14.06. Readjust if significantly different from target.

Comments: record any difficulties or discrepancies

QA APPROVED

NAME: C. OdumDATE: 3/26/08

AW105 Interstitial

Base Solution 2008 Version

Batch Size: 4 L
pH: 13+ AW105-PILBalance Device ID:
0020
Balance Device ID:
0018NIST Weight (20 g): 20.000
NIST Weight (1000 g): 1000.0

Technician:

Date: 3-20

Tracking: 86

Add the following chemicals and record their actual weights:

Chemical	Formula	Required Mass (g)	Actual Mass (g)	Comments
In the first container measure				
Sodium Aluminate	Na ₂ AlO ₂	5.248	5.264	
Sodium Hydroxide	NaOH	72.032	72.06	
In a separate container measure				
Cobaltous Nitrate 6-hydrate	Co(NO ₃) ₂ .6H ₂ O	0.028	0.027	
Nickel Nitrate 6-hydrate	Ni(NO ₃) ₂ .6H ₂ O	0.081	0.083	

Add the following Organics (to the second container)

Sodium Acetate 3-hydrate	NaCH ₃ COO.3H ₂ O	3.369	3.370	
Sodium Formate	NaHCOO	0.884	0.941	
Sodium Oxalate	Na ₂ C ₂ O ₄	1.726	1.725	
Tributyl Phosphate	C ₁₂ H ₂₂ O ₄ P	5.192	5.133	
1-Butanol	C ₄ H ₉ OH	3.705	3.706	
Dibutyl Phosphate	C ₈ H ₁₉ O ₄ P	10.500	10.51	

Combine the two solutions into one container, maintain a temperature of 50°C. Add the remaining chemicals.

Boric Acid	H ₃ BO ₃	0.156	0.165	
Sodium Chromate	Na ₂ CrO ₄ .4H ₂ O	0.192	0.194	
Potassium Molybdate	K ₂ MoO ₄	0.029	0.0292	
Potassium Nitrate	KNO ₃	88.072	88.2	
Zirconyl Nitrate 1-hydrate	ZrO(NO ₃) ₂ .H ₂ O	0.005	0.007	
Sodium Chloride	NaCl	2.384	2.362	
Sodium Fluoride	NaF	97.608	97.5	
Sodium Nitrate	NaNO ₃	68.340	68.0	
Sodium Nitrite	NaNO ₂	34.224	34.3	
Sodium Phosphate, 12-Hydrate	Na ₃ PO ₄ .12H ₂ O	4.864	4.856	
Sodium Sulfate	Na ₂ SO ₄	7.895	7.883	
Sodium Carbonate	Na ₂ CO ₃	40.958	41.0	

Filter solution by vacuum through medium glass filter. **Handle with caution, hot and caustic solution.**

Rinse beaker with approximately 50 mL of DI water

Rinse filter with approximately 50 mL of DI water

Transfer final filtrate and rinse solutions to large beaker with stir bar.

Transfer to volumetric flask and include rinse with DI water. Allow solution to cool

Adjust final solution to volume of 4 L with DI water, and mix thoroughly.

SUM	Total chemicals (target)	447.49 g	Total chemicals (actual)	447.46
	Total water (target)	4 L	Total water (actual)	4.000
	Target Specific Density	1.11	Calculated density	1.11

Check final solution pH and record. pH = 13.6 Readjust if significantly different from target.

Comments: record any difficulties or discrepancies

QA APPROVED

NAME: ChadwickDATE: 3-26-08

AP105-PSC

Base Solution 2007 Version

Batch Size: 4 L
pH: 13+AP105-PSC
3.85M nitrate, no nitriteBalance Device ID: 0020 NIST Weight (10 g): 10.0000 →
Balance Device ID: 0018 NIST Weight (50 g): 49.9999 →Technician: Jesse Rhodes Date: 4/1/08 Tracking: 87

Add 2400 L mL DI water to a beaker.

Insert Teflon stirbar and thermocouple, and place on stirrer / hotplate.

Turn on heater and adjust to 60°C (±10°C).

Add the following chemicals and record their actual weights:

Chemical	Formula	Required Mass (g)	Actual Mass (g)	Comments
Sodium Aluminate	NaAlO ₂ ·2H ₂ O	70.71	<u>70.70</u>	
Sodium Chloride	NaCl	7.20	<u>7.203</u>	
Sodium Fluoride	NaF	1.53	<u>1.530</u>	
Sodium Chromate	Na ₂ CrO ₄ ·4H ₂ O	9.92	<u>9.922</u>	
Sodium Sulfate	Na ₂ SO ₄	26.82	<u>26.90</u>	
Sodium Phosphate, 12-Hydrate	Na ₃ PO ₄ ·12H ₂ O	45.77	<u>45.80</u>	
Sodium Formate	NaHCOO	2.72	<u>2.719</u>	
Sodium Acetate Trihydrate	NaCH ₃ COO·3H ₂ O	4.08	<u>4.081</u>	
Sodium Oxalate	Na ₂ C ₂ O ₄	4.02	<u>4.032</u>	
Sodium Carbonate	Na ₂ CO ₃	138.21	<u>138.20</u>	
Sodium Nitrate	NaNO ₃	1211.75	<u>1211.80</u>	
Potassium Nitrate	KNO ₃	114.57	<u>114.60</u>	
Sodium Nitrite	NaNO ₂	0.00		
Glycolic Acid	C ₂ H ₄ O ₃	3.23	<u>3.241</u>	
Sodium Hydroxide	NaOH	28.18	<u>28.20</u>	

* Sodium fluoride is highly toxic. Handle with caution.

Adjust total solution volume to 3400 mL by adding DI water.

Adjust solution temperature to 50°C to 60°C.

Filter solution by vacuum through medium glass filter. **Handle with caution, hot and caustic solution.**

Rinse beaker with approximately 50 mL of DI water

Rinse filter with approximately 50 mL of DI water

Transfer final filtrate and rinse solutions to large beaker with stir bar.

Measure and record initial pH 14.04Check the pH to make sure it is 13+

Transfer to volumetric flask and include rinse with DI water. Allow solution to cool

Adjust final solution to volume of 4 L with DI water, and mix thoroughly.

SUM	Total chemicals (target)	1668.70 g	Total chemicals (actual)	<u>1668.82</u>
	Total water (target)	4 L	Total water (actual)	<u>4 L</u>
	Target Specific Density	1.42	Calculated density	<u>1.42</u>

Check final solution pH and record. pH = 13.95 Readjust if significantly different from target.

Comments: record any difficulties or discrepancies

573.9, 560.9, 9.8**QA APPROVED**NAME: C. deDATE: 4-14-08

AP105-PSC

Base Solution 2007 Version

Batch Size: 4 L
pH: 13+

AP105-PSC

Balance Device ID: 0030 NIST Weight (10 g): 10.0000
Balance Device ID: 0018 NIST Weight (50 g): 49.9999Technician: Jesse Rhodes Date: 4/2/08 Tracking: 88

Add 2400 L mL DI water to a beaker.
 Insert Teflon stirbar and thermocouple, and place on stirrer / hotplate.
 Turn on heater and adjust to 60°C (±10°C).

Add the following chemicals and record their actual weights:

Chemical	Formula	Required Mass (g)	Actual Mass (g)	Comments
Sodium Aluminate	NaAlO ₂ ·2H ₂ O	70.71	70.70	
Sodium Chloride	NaCl	7.20	7.201	
Sodium Fluoride	NaF	1.53	1.530	
Sodium Chromate	Na ₂ CrO ₄ ·4H ₂ O	9.92	9.919	
Sodium Sulfate	Na ₂ SO ₄	26.82	26.80	
Sodium Phosphate, 12-Hydrate	Na ₃ PO ₄ ·12H ₂ O	45.77	45.80	
Sodium Formate	NaHCOO	2.72	2.721	
Sodium Acetate Trihydrate	NaCH ₃ COO·3H ₂ O	4.08	4.078	
Sodium Oxalate	Na ₂ C ₂ O ₄	4.02	4.019	
Sodium Carbonate	Na ₂ CO ₃	138.21	138.20	
Sodium Nitrate	NaNO ₃	1211.75	1211.80	
Potassium Nitrate	KNO ₃	5.38	5.378	
Sodium Nitrite	NaNO ₂	74.52	74.50	
Glycolic Acid	C ₂ H ₄ O ₃	3.23	3.233	
Sodium Hydroxide	NaOH	28.18	28.10	

* Sodium fluoride is highly toxic. Handle with caution.

Adjust total solution volume to 3400 mL by adding DI water.

Adjust solution temperature to 50°C to 60°C.

Filter solution by vacuum through medium glass filter. **Handle with caution, hot and caustic solution.**

Rinse beaker with approximately 50 mL of DI water

Rinse filter with approximately 50 mL of DI water

Transfer final filtrate and rinse solutions to large beaker with stir bar.

Measure and record initial pH 14.40Check the pH to make sure it is 13+

Transfer to volumetric flask and include rinse with DI water. Allow solution to cool

Adjust final solution to volume of 4 L with DI water, and mix thoroughly.

SUM	Total chemicals (target)	1634.03 g	Total chemicals (actual)	1633.98
	Total water (target)	4 L	Total water (actual)	4 L
	Target Specific Density	1.41	Calculated density	1.41

Check final solution pH and record. pH = 14.19 Readjust if significantly different from target.

Comments: record any difficulties or discrepancies

573.9; 5546.1 OR

QA APPROVED

NAME: JohnDATE: 4-14-00

AP105 - Mixed Supernate

Base Solution 2008 Version

Batch Size: 4 L
pH: 13+

AP105-Mixed Super

Balance Device ID: 020
Balance Device ID: 018NIST Weight (20g):
NIST Weight (500g):00.0000
500.0

Technician: Noy Kelley Date: 11/10/08 Tracking: 89

Add 2400 mL DI water to a beaker.
Insert Teflon stirbar and thermocouple, and place on stirrer / hotplate.
Turn on heater and adjust to 60°C (±10°C).

Add the following chemicals and record their actual weights:

Chemical	Formula	Required Mass (g)	Actual Mass (g)	Comments
Sodium Aluminate	NaAlO ₂ ·2H ₂ O	92.04	92.2	Cloudy then clear
Sodium Chloride	NaCl	9.12	9.13	
Sodium Fluoride	NaF	4.37	4.39	
Sodium Chromate 4-hydrate	Na ₂ CrO ₄ ·4H ₂ O	7.49	7.50	Yellow
Sodium Sulfate	Na ₂ SO ₄	22.73	22.73	
Sodium Phosphate, 12-Hydrate	Na ₂ PO ₄ ·12H ₂ O	45.61	45.17	
Sodium Formate	NaHCOO	3.13	3.15	
Sodium Acetate Trihydrate	NaCH ₃ COO·3H ₂ O	5.72	5.74	
Sodium Oxalate	Na ₂ C ₂ O ₄	6.16	6.17	
Sodium Carbonate	Na ₂ CO ₃	116.17	116.2	Cloudy
Sodium Nitrate	NaNO ₃	927.07	927.02	
Potassium Nitrate	KNO ₃	52.57	52.5	
Sodium Nitrite	NaNO ₂	113.99	114.0	
Glycolic Acid (70% solution)	C ₂ H ₄ O ₃	4.96	4.98	1/2 Precipitation
Sodium Hydroxide	NaOH	152.32	152.4	Clear at precipitation
Ammonium Acetate	NH ₄ CH ₃ COO	1.23	1.29	

* Sodium fluoride is highly toxic. Handle with caution.

small amount of white chemical left
on filter

Adjust total solution volume to

3400 mL by adding DI water.

Adjust solution temperature to 50°C to 60°C.

Filter solution by vacuum through medium glass filter. **Handle with caution, hot and caustic solution.**

Rinse beaker with approximately 50 mL of DI water

Rinse filter with approximately 50 mL of DI water

Transfer final filtrate and rinse solutions to large beaker with stir bar.

Measure and record initial pH

13.63

13+

Check the pH to make sure it is

Transfer to volumetric flask and include rinse with DI water. Allow solution to cool

Adjust final solution to volume of

4 L with DI water, and mix thoroughly.

SUM	Total chemicals (target)	1564.67 g	Total chemicals (actual)	1565.28 g
	Total water (target)	4 L	Total water (actual)	4.000 mL
	Target Specific Density	1.39	Calculated density	1.39

Check final solution pH and record.

pH = 13 + Readjust if significantly different from target.

Comments: record any difficulties or discrepancies

QA APPROVED

NAME: ColleenDATE: 4-14-08

AP105-PSC

Base Solution 2007 Version

Batch Size: 4 L
pH: 13+

AP105-PSC

Balance Device ID: 020
Balance Device ID: 018NIST Weight (20 g):
NIST Weight (500 g):20.000
500.0

Technician: Noy Kelley

Date: 4/14/08

Tracking: 90

Add 2400 mL DI water to a beaker.
 Insert Teflon stirbar and thermocouple, and place on stirrer / hotplate.
 Turn on heater and adjust to 60°C ($\pm 10^\circ\text{C}$).
 Add the following chemicals and record their actual weights:

Chemical	Formula	Required Mass (g)	Actual Mass (g)	Comments
Sodium Aluminate	NaAlO ₂ ·2H ₂ O	70.71	70.70	Cloudy
Sodium Chloride	NaCl	7.20	7.22	"
Sodium Fluoride	NaF	1.53	1.56	"
Sodium Chromate	Na ₂ CrO ₄ ·4H ₂ O	9.92	9.96	"
Sodium Sulfate	Na ₂ SO ₄	26.82	26.84	"
Sodium Phosphate, 12-Hydrate	Na ₃ PO ₄ ·12H ₂ O	45.77	46.0	"
Sodium Formate	NaHCOO	2.72	2.84	"
Sodium Acetate Trihydrate	NaCH ₃ COO·3H ₂ O	4.08	4.09	"
Sodium Oxalate	Na ₂ C ₂ O ₄	4.02	4.02	"
Sodium Carbonate	Na ₂ CO ₃	138.21	138.4	"
Sodium Nitrate	NaNO ₃	1211.75	1211.8	"
Potassium Nitrate	KNO ₃	5.38	5.40	"
Sodium Nitrite	NaNO ₂	74.52	74.5	"
Glycolic Acid	C ₂ H ₄ O ₃	3.23	3.24	"
Sodium Hydroxide	NaOH	28.18	28.23	"

* Sodium fluoride is highly toxic. Handle with caution.

solution clear when filter

Adjust total solution volume to

3400 mL by adding DI water.

Adjust solution temperature to 50°C to 60°C.

Filter solution by vacuum through medium glass filter. *Handle with caution, hot and caustic solution.*

Rinse beaker with approximately 50 mL of DI water

Rinse filter with approximately 50 mL of DI water

Transfer final filtrate and rinse solutions to large beaker with stir bar.

Measure and record initial pH

Check the pH to make sure it is 13+

QA APPROVED

NAME: Cleon

DATE: 4-18-08

Transfer to volumetric flask and include rinse with DI water. Allow solution to cool

Adjust final solution to volume of 4 L with DI water, and mix thoroughly.

SUM	Total chemicals (target)	1634.03 g	Total chemicals (actual)	1634.8 g
	Total water (target)	4 L	Total water (actual)	4000 mL
	Target Specific Density	1.41	Calculated density	1.41

Check final solution pH and record.

pH = 13.18 Readjust if significantly different from target.

Comments: record any difficulties or discrepancies

solution cloudy but clear when filter. About 7.5 g of white powder remained on filter (NaAlO₂·2H₂O?)

Evaporated Supernate

Base Solution 2008 Version

Batch Size: 2 L
pH: 14

Evaporated Supernate
20.000
500.0

Balance Device ID: 0.50 NIST Weight (20 g):
Balance Device ID: 0.18 NIST Weight (500 g):

Technician: Noy Kelley Date: 4/15/08 Tracking: 91

Add 1200 mL DI water to a beaker.
 Insert Teflon stirbar and thermocouple, and place on stirrer / hotplate.
 Turn on heater and adjust to 60°C (±10°C).

Add the following chemicals and record their actual weights:

Chemical	Formula	Required Mass (g)	Actual Mass (g)	Comments
Sodium Aluminate	NaAlO ₂ ·2H ₂ O	81.89	81.9	
Sodium Chloride	NaCl	8.06	8.07	
Sodium Fluoride	NaF	3.95	3.97	
Sodium Chromate 4-hydrate	Na ₂ CrO ₄ ·4H ₂ O	6.55	6.55	
Sodium Sulfate	Na ₂ SO ₄	20.45	20.45	
Sodium Phosphate, 12-Hydrate	Na ₃ PO ₄ ·12H ₂ O	40.29	40.34	AK 4/15/08
Sodium Formate	NaHCOO	2.18	2.18	
Sodium Oxalate	Na ₂ C ₂ O ₄	4.29	4.30	
Sodium Carbonate	Na ₂ CO ₃	103.66	103.7	
Sodium Nitrate	NaNO ₃	825.59	826.0	
Potassium Nitrate	KNO ₃	46.51	46.50	
Sodium Nitrite	NaNO ₂	101.57	101.50	
Sodium Hydroxide	NaOH	133.60	134.0	
Ammonium Acetate	NH ₄ CH ₃ COO	1.23	1.24	
* Sodium fluoride is highly toxic. Handle with caution.				
1380.7				

Adjust total solution volume to 1700 mL by adding DI water.

Adjust solution temperature to 50°C to 60°C. Stir solution to dissolve all chemicals

Handle with caution, hot and caustic solution.

Adjust final solution to volume of 2 L with DI water, and mix thoroughly.

Maintain solution temperature to 50°C to 60°C.

Check the pH to make sure it is 14⁺ 14**QA APPROVED**

NAME: Olden

DATE: 4-18-08

SUM	Total chemicals (target)	1379.83 g	Total chemicals (actual)	1380.7
	Total water (target)	2 L	Total water (actual)	2000
	Target Specific Density	1.69	Calculated density	1.69

Check final solution pH and record.

pH = 14⁺ Readjust if significantly different from target.

Comments: record any difficulties or discrepancies

Keep solution at 50°C at all the time

AY101-PSC

Base Solution 2007 Version

Balance Device ID: 0dc
Balance Device ID: 018Batch Size: 2 L
pH: >13

AY-101-PSC

NIST Weight (20 g):
NIST Weight (150 g):20.0000
150.0Technician: Noel KelleyDate: 5/18/08Tracking: 92Add 1200 mL DI water to a beaker.
Insert Teflon stirbar and thermocouple, and place on stirrer / hotplate.
Turn on heater and adjust to 60°C (±10°C).

Add the following chemicals and record their actual weights:

Chemical	Formula	Required Mass (g)	Actual Mass (g)	Comments
Sodium Aluminate	NaAlO ₂ ·2H ₂ O	25.25	<u>25.31</u>	
Sodium Chloride	NaCl	2.13	<u>2.15</u>	
Sodium Fluoride	NaF	1.16	<u>1.17</u>	
Sodium Chromate	Na ₂ CrO ₄ ·4H ₂ O	1.33	<u>1.33</u>	
Sodium Sulfate	Na ₂ SO ₄	5.65	<u>5.65</u>	
Sodium Phosphate, 12-Hydrate	Na ₃ PO ₄ ·12H ₂ O	37.71	<u>37.71</u>	
Sodium Formate	NaHCOO	1.73	<u>1.74</u>	
Sodium Acetate Trihydrate	NaCH ₃ COO·3H ₂ O	2.41	<u>2.43</u>	
Sodium Oxalate	Na ₂ C ₂ O ₄	1.34	<u>1.36</u>	
Sodium Carbonate	Na ₂ CO ₃	42.61	<u>42.61</u>	
Sodium Nitrate	NaNO ₃	226.07	<u>226.0</u>	
Sodium Nitrite	NaNO ₂	28.29	<u>28.30</u>	
Sodium Silicate	Na ₂ SiO ₃ ·9H ₂ O	0.99	<u>1.00</u>	*
Glycolic Acid	C ₂ H ₄ O ₃	1.60	<u>1.60</u>	
Sodium Hydroxide	NaOH	56.88	<u>56.94</u>	

* Sodium fluoride is highly toxic. Handle with caution.

Adjust total solution volume to 1700 mL by adding DI water.

Adjust solution temperature to 50°C to 60°C.

Filter solution by vacuum through medium glass filter. **Handle with caution, hot and caustic solution.**

Rinse beaker with approximately 50 mL of DI water

Rinse filter with approximately 50 mL of DI water

Transfer final filtrate and rinse solutions to large beaker with stir bar.

Measure and record initial pH 7.13Check the pH to make sure it is >13 non-standard pH

Transfer to volumetric flask and include rinse with DI water. Allow solution to cool

Adjust final solution to volume of 2 L with DI water, and mix thoroughly.

SUM	Total chemicals (target)	<u>435.15</u> g	Total chemicals (actual)	<u>435.09</u> g
	Total water (target)	<u>2 L</u>	Total water (actual)	<u>2.000</u> mL
	Target Specific Density	<u>1.22</u>	Calculated density	<u>1.22</u>

Check final solution pH and record. pH = 7.13 Readjust if significantly different from target.

Comments: record any difficulties or discrepancies
 Precipitation occurs after adding Na₂SiO₃·9H₂O but dissolves
 these after adding NaOH
 ~ 1 g of solid left on filter

QA APPROVED

NAME: ClownDATE: 6-18-08

AZ102

Base Solution 2008 Version

Balance Device ID: 020
Balance Device ID: 018Batch Size: 4 L
pH: 12

AZ102
<u>20.0000</u>
<u>000.0</u>

Technician: Noy Kelley Date: 6/6/08 Tracking: 93

Insert Teflon stirbar and thermocouple, and place on stirrer / hotplate.

Turn on heater and adjust to 60°C (±10°C).

Add 2400 mL DI water to a beaker or carboy as appropriate

Add the following chemicals and record their actual weights:

Chemical	Formula	Required Mass (g)	Actual Mass (g)	Comments
Sodium Aluminate	NaAlO ₂	2.296	<u>2.313</u>	
Sodium Chromate 4-Hydrate	Na ₂ CrO ₄ ·4H ₂ O	12.168	<u>12.176</u>	
Potassium Molybdate	K ₂ MoO ₄	0.476	<u>0.481</u>	
Potassium Nitrate	KNO ₃	28.684	<u>28.696</u>	
Sodium Fluoride	NaF	8.736	<u>8.756</u>	
Sodium Hydroxide	NaOH *	0.000	<u>0.00</u>	
Sodium Nitrate	NaNO ₃	11.560	<u>11.571</u>	
Sodium Nitrite	NaNO ₂	243.708	<u>242.70</u>	
Sodium Sulfate	Na ₂ SO ₄	105.648	<u>106.0</u>	
Sodium Carbonate	Na ₂ CO ₃	257.368	<u>257.4</u>	
Sodium bicarbonate	NaHCO ₃	4.032	<u>4.08</u>	
Organics				
Sodium Oxalate	Na ₂ C ₂ O ₄	9.112	<u>9.112</u>	

Adjust total solution volume to 3400 mL by adding DI water.

Adjust solution temperature to 50°C to 60°C.

Filter solution by vacuum through medium glass filter. *Handle with caution, hot and caustic solution.*

Rinse beaker with approximately 50 mL of DI water

Rinse filter with approximately 50 mL of DI water

Transfer final filtrate and rinse solutions to large beaker with stir bar.

Transfer to volumetric flask and include rinse with DI water. Allow solution to cool

pH initial 11.15Adjust final solution to volume of 4 L with DI water, and mix thoroughly.

SUM	Total chemicals (target)	683.79 g	Total chemicals (actual)	<u>694.295</u> g
	Total water (target)	4 L	Total water (actual)	<u>4000</u> mL
	Target Specific Density	1.17	Calculated density	<u>1.17</u>

Check final solution pH and record.

pH = 12.05 Adjust to required pH using NaOH

Comments: record any difficulties or discrepancies

add 5 g of NaOH to bring pH 11.15 to 12.05

OCP 18 hr

CPP

QA APPROVED

NAME: claudiaDATE: 6-18-08

Evaporated Supernate

Base Solution 2008 Version

Batch Size: 2 L
pH: 14

Nitrite/Nitrate=0.1

Balance Device ID: 010
Balance Device ID: 018

NIST Weight (200g):

30.0000

NIST Weight (500g):

300.0

Technician: Noy Kelley Date: 5/12/08 Tracking: 94

Add 1200 mL DI water to a beaker.
 Insert Teflon stirbar and thermocouple, and place on stirrer / hotplate.
 Turn on heater and adjust to 60°C (±10°C).

Add the following chemicals and record their actual weights:

Chemical	Formula	Required Mass (g)	Actual Mass (g)	Comments
Sodium Aluminate	NaAlO ₂ ·2H ₂ O	81.89	82.0	
Sodium Chloride	NaCl	8.06	8.08	
Sodium Fluoride	NaF	3.95	3.99	
Sodium Chromate 4-hydrate	Na ₂ CrO ₄ ·4H ₂ O	6.55	6.55	
Sodium Sulfate	Na ₂ SO ₄	20.45	20.47	
Sodium Phosphate, 12-Hydrate	Na ₃ PO ₄ ·12H ₂ O	40.29	40.32	
Sodium Formate	NaHCOO	2.18	2.19	
Sodium Oxalate	Na ₂ C ₂ O ₄	4.29	4.29	
Sodium Carbonate	Na ₂ CO ₃	103.66	104.0	
Sodium Nitrate	NaNO ₃	825.59	828.6	
Potassium Nitrate	KNO ₃	46.51	46.6	
Sodium Nitrite	NaNO ₂	70.38	70.40	
Sodium Hydroxide	NaOH	133.60	134.0	
Ammonium Acetate	NH ₄ CH ₃ COO	1.23	1.24	

* Sodium fluoride is highly toxic. Handle with caution.

Adjust total solution volume to 1700 mL by adding DI water.

Adjust solution temperature to 50°C to 60°C. Stir solution to dissolve all chemicals

Handle with caution, hot and caustic solution

Adjust final solution to volume of 2 L with DI water, and mix thoroughly.

Maintain solution temperature to 50°C to 60°C.

Check the pH to make sure it is 14

SUM	Total chemicals (target)	1348.64 g	Total chemicals (actual)	1349.73 g
	Total water (target)	2 L	Total water (actual)	2.000 mL
	Target Specific Density	1.67	Calculated density	1.67

Check final solution pH and record.

pH= 14.0 Readjust if significantly different from target.

Comments: record any difficulties or discrepancies

QA APPROVED

NAME: C. Dunn

DATE: 6-19-08

Evaporated Supernate

Base Solution 2008 Version

Balance Device ID: 020Balance Device ID: 018Batch Size: 1 LpH: 12.4

11+

No aluminate

No NaOH

NIST Weight (20 g): 19.9999NIST Weight (500 g): 500.0Technician: Noy KelleyDate: 5/15/08Tracking: 95Add 600 mL DI water to a beaker.

Insert Teflon stirbar and thermocouple, and place on stirrer / hotplate.

Turn on heater and adjust to 60°C (±10°C).

Add the following chemicals and record their actual weights:

Chemical	Formula	Required Mass (g)	Actual Mass (g)	Comments
Sodium Aluminate	NaAlO ₂ ·2H ₂ O	0.00	0.00	
Sodium Chloride	NaCl	4.03	4.03	
Sodium Fluoride	NaF	1.97	1.97	
Sodium Chromate 4-hydrate	Na ₂ CrO ₄ ·4H ₂ O	3.28	3.28	
Sodium Sulfate	Na ₂ SO ₄	10.23	10.23	
Sodium Phosphate, 12-Hydrate	Na ₃ PO ₄ ·12H ₂ O	20.15	20.18	
Sodium Formate	NaHCOO	1.09	1.10	
Sodium Oxalate	Na ₂ C ₂ O ₄	2.14	2.15	
Sodium Carbonate	Na ₂ CO ₃	51.83	51.84	
Sodium Nitrate	NaNO ₃	412.80	413.0	
Potassium Nitrate	KNO ₃	23.25	23.84	
Sodium Nitrite	NaNO ₂	51.06	51.05	
Sodium Hydroxide	NaOH	0.00	0.00	
Ammonium Acetate	NH ₄ CH ₃ COO	0.62	0.62	

* Sodium fluoride is highly toxic. Handle with caution.

Adjust total solution volume to 850 mL by adding DI water.

Adjust solution temperature to 50°C to 60°C. Stir solution to dissolve all chemicals

Handle with caution, hot and caustic solution.Adjust final solution to volume of 1 L with DI water, and mix thoroughly.

Maintain solution temperature to 50°C to 60°C.

Check the pH to make sure it is 12.4

non-standard pH

** limited sample use all sample for OCP & CPP **

SUM	Total chemicals (target)	<u>582.44 g</u>	Total chemicals (actual)	
	Total water (target)	<u>1 L</u>	Total water (actual)	
	Target Specific Density	<u>1.58</u>	Calculated density	

Check final solution pH and record. pH = 12.4 Readjust if significantly different from target.**Comments:** record any difficulties or discrepancies*no sample left***QA APPROVED**NAME: CedarsDATE: 6-18-08

AP105 - Mixed Supernate

Base Solution 2008 Version

Batch Size: 2 L
pH: 13+

Nitrite/Nitrate=0.1

Balance Device ID: 020
Balance Device ID: 018

NIST Weight (20 g):

20.000

NIST Weight (50 g):

500.1

Technician: Noy Kelley Date: 5/13/08 Tracking: 96

Add 1200 mL DI water to a beaker.
Insert Teflon stirbar and thermocouple, and place on stirrer / hotplate.

Turn on heater and adjust to 60°C (±10°C).

Add the following chemicals and record their actual weights:

Chemical	Formula	Required Mass (g)	Actual Mass (g)	Comments
Sodium Aluminate	NaAlO ₂ .2H ₂ O	46.02	46.06	
Sodium Chloride	NaCl	4.56	4.65	
Sodium Fluoride	NaF	2.18	2.18	
Sodium Chromate 4-hydrate	Na ₂ CrO ₄ .4H ₂ O	3.74	3.75	
Sodium Sulfate	Na ₂ SO ₄	11.36	11.38	
Sodium Phosphate, 12-Hydrate	Na ₃ PO ₄ .12H ₂ O	22.81	22.80	
Sodium Formate	NaHCOO	1.56	1.58	
Sodium Acetate Trihydrate	NaCH ₃ COO.3H ₂ O	2.86	3.86	
Sodium Oxalate	Na ₂ C ₂ O ₄	3.08	3.10	
Sodium Carbonate	Na ₂ CO ₃	58.08	58.07	
Sodium Nitrate	NaNO ₃	463.54	463.8	
Potassium Nitrate	KNO ₃	26.29	26.25	
Sodium Nitrite	NaNO ₂	38.64	38.63	
Glycolic Acid (70% solution)	C ₂ H ₄ O ₃	2.48	2.50	precipitation occurs
Sodium Hydroxide	NaOH	76.16	76.20	
Ammonium Acetate	NH ₄ CH ₃ COO	0.62	0.62	

* Sodium fluoride is highly toxic. Handle with caution.

Adjust total solution volume to 1700 mL by adding DI water.

Adjust solution temperature to 50°C to 60°C.

Filter solution by vacuum through medium glass filter. Handle with caution, hot and caustic solution.

Rinse beaker with approximately 50 mL of DI water

Rinse filter with approximately 50 mL of DI water

Transfer final filtrate and rinse solutions to large beaker with stir bar.

Measure and record initial pH

Check the pH to make sure it is 13.50

Transfer to volumetric flask and include rinse with DI water. Allow solution to cool

Adjust final solution to volume of 2 L with DI water, and mix thoroughly.

SUM	Total chemicals (target)	763.98 g	Total chemicals (actual)	764.43 g
	Total water (target)	2 L	Total water (actual)	2.000 mL
	Target Specific Density	1.38	Calculated density	1.38

Check final solution pH and record. pH = 12.80 Readjust if significantly different from target.

Comments: record any difficulties or discrepancies

QA APPROVED

NAME: Clever

DATE: 6-18-08

AW105 Supernate

Base Solution 2008 Version

Batch Size: 4 L
pH: 13+AW105-PSC
20.000
500.0Balance Device ID: 020
Balance Device ID: 018NIST Weight (20 g):
NIST Weight (500 g):

Technician: Noy Kelley

Date: 5/27/08

Tracking: 97

Add 2400 L mL DI water to a beaker.

Insert Teflon stirbar and thermocouple, and place on stirrer / hotplate.
Turn on heater and adjust to 60°C (±10°C).

Add the following chemicals and record their actual weights:

Chemical	Formula
Sodium Aluminate	Na ₂ AlO ₂
Sodium Hydroxide	NaOH
Boric Acid	H ₃ BO ₃
Sodium Chromate	Na ₂ CrO ₄ .4H ₂ O
Potassium Molybdate	K ₂ MoO ₄
Potassium Nitrate	KNO ₃
Zinc Nitrate 6-hydrate	Zn(NO ₃) ₂ .6H ₂ O
Sodium Chloride	NaCl
Sodium Fluoride	NaF
Sodium Nitrate	NaNO ₃
Sodium Nitrite	NaNO ₂
Sodium Phosphate, 12-Hydrate	Na ₃ PO ₄ .12H ₂ O
Sodium Sulfate	Na ₂ SO ₄
Sodium Carbonate	Na ₂ CO ₃
Glycolic Acid	C ₂ H ₄ O ₃
Sodium Acetate 3-hydrate	NaCH ₃ COO.3H ₂ O
Sodium Formate	NaHCOO
Sodium Oxalate	Na ₂ C ₂ O ₄

Required Mass (g) 3.097	Actual Mass (g)	Comments
3.799	4.80 +0.26 g	per CS
42.080	42.15	
0.079	0.10	
0.037	0.040	
0.010	0.015	
58.338	56.38	
0.036	0.040	
1.931	1.95	
26.208	26.19	
100.504	100.50	
17.609	17.37	
6.794	6.80	
2.988	3.00	
45.622	45.65	
0.437	0.45	
1.252	1.27	
0.558	0.56	
0.884	0.890	
308.355 +0.26		

Filter solution by vacuum through medium glass filter. **Handle with caution, hot and caustic solution.**

Rinse beaker with approximately 50 mL of DI water

Rinse filter with approximately 50 mL of DI water

Transfer final filtrate and rinse solutions to large beaker with stir bar.

Transfer to volumetric flask and include rinse with DI water. Allow solution to cool

Adjust final solution to volume of 4 L with DI water, and mix thoroughly.

add 0.26 g

SUM	Total chemicals (target)	308.17 g	Total chemicals (actual)	308.355 g	308.615 g
	Total water (target)	4 L	Total water (actual)	4.000 mL	4.000 mL
	Target Specific Density	1.08	Calculated density	1.08	1.08

Check final solution pH and record.

pH= Readjust if significantly different from target.

Comments: record any difficulties or discrepancies.
add more NaAlO₂ 0.26 g per Collin Scott

As requested. (di St)

QA APPROVED

NAME: CollinDATE: 6-24-08

SY101

Base Solution 2008 Version

Balance Device ID:
018020
018Batch Size:
4 L
pH:
13+

SY101

NIST Weight (40 g):
NIST Weight (500 g):20.0000
300.0

Technician: Noy Kelley

Date: 5/28/08

Tracking: 98

Add 2400 mL DI water to a beaker.
 Insert Teflon stirbar and thermocouple, and place on stirrer / hotplate.
 Turn on heater and adjust to 60°C (±10°C).

Add the following chemicals and record their actual weights:

Chemical	Formula	Required Mass (g)	Actual Mass (g)	Comments
Sodium Aluminate	NaAlO ₂ .2H ₂ O	66.41	66.42	
Sodium Chloride	NaCl	5.32	5.32	
Sodium Fluoride *	NaF	4.65	4.66	
Sodium Chromate	Na ₂ CrO ₄ .4H ₂ O	1.92	1.92	
Sodium Sulfate	Na ₂ SO ₄	11.16	11.16	
Sodium Phosphate, 12-Hydrate	Na ₃ PO ₄ .12H ₂ O	149.54	149.6	
Sodium Oxalate	Na ₂ C ₂ O ₄	13.08	13.11	
Sodium Carbonate	Na ₂ CO ₃	56.30	56.31	
Iron Nitrate, 9-hydrate	Fe(NO ₃) ₂ .9H ₂ O	0.04	0.05	
Zinc Nitrate, 6-hydrate	Zn(NO ₃) ₂ .6H ₂ O	0.08	0.08	
Calcium Nitrate	Ca(NO ₃) ₂ .4H ₂ O	0.50	0.55	
Sodium Nitrate	NaNO ₃	314.26	314.3	
Potassium Nitrate	KNO ₃	2.79	2.80	
Sodium Nitrite	NaNO ₂	55.95	55.95	
Sodium Hydroxide	NaOH	104.88	105.0	
Boric Acid	H ₃ BO ₃	0.21	0.22	

* Sodium fluoride is highly toxic. Handle with caution.

787.45

Adjust total solution volume to

3400 mL by adding DI water.

Adjust solution temperature to 50°C to 60°C.

Filter solution by vacuum through medium glass filter. **Handle with caution, hot and caustic solution.**

Rinse beaker with approximately 50 mL of DI water

Rinse filter with approximately 50 mL of DI water

Transfer final filtrate and rinse solutions to large beaker with stir bar.

Measure and record initial pH 13.30

Check the pH to make sure it is

13+

Transfer to volumetric flask and include rinse with DI water. Allow solution to cool

Adjust final solution to volume of

4 L with DI water, and mix thoroughly.

SUM	Total chemicals (target)	786.88 g	Total chemicals (actual)	787.45 g
	Total water (target)	4 L	Total water (actual)	1.000 mL
	Target Specific Density	1.20	Calculated density	1.020

Check final solution pH and record.

pH=13.30 Readjust if significantly different from target.

Comments: record any difficulties or discrepancies

about 0.5 g of Boron x solid left on the filter

QA APPROVED

NAME: claudia

DATE: 6-19-08

AY101-CSL

Base Solution 2008 Version

Balance Device ID:
080
Balance Device ID:
018Batch Size:
4 L
pH:
11.82

AY101-CSL

19.9999

100.00

Technician: Noy KelleyDate: 3/29/08Tracking: 99

Add 2400 mL DI water to a beaker.
 Insert Teflon stirbar and thermocouple, and place on stirrer / hotplate.
 Turn on heater and adjust to 60°C (±10°C).

Add the following chemicals and record their actual weights:

Chemical	Formula	Required Mass (g)	Actual Mass (g)	Comments
Sodium Aluminate	NaAlO ₂ ·2H ₂ O	7.22	7.22	
Sodium Chloride	NaCl	1.50	1.49	
Sodium Fluoride	NaF	0.25	0.25	
Sodium Chromate	Na ₂ CrO ₄ ·4H ₂ O	0.28	0.28	
Sodium Sulfate	Na ₂ SO ₄	1.19	1.20	
Sodium Phosphate, 12-Hydrate	Na ₃ PO ₄ ·12H ₂ O	8.97	9.0	
Sodium Oxalate	Na ₂ C ₂ O ₄	0.75	0.75	
Sodium Carbonate	Na ₂ CO ₃	62.49	62.49	
Sodium Nitrate	NaNO ₃	6.15	6.15	
Sodium Nitrite	NaNO ₂	10.16	10.16	
Sodium Hydroxide	NaOH	0.82	0.82	

* Sodium fluoride is highly toxic. Handle with caution.

Adjust total solution volume to

3400 mL by adding DI water.

Adjust solution temperature to 50°C to 60°C.

Filter solution by vacuum through medium glass filter. **Handle with caution, hot and caustic solution.**

Rinse beaker with approximately 50 mL of DI water

Rinse filter with approximately 50 mL of DI water

Transfer final filtrate and rinse solutions to large beaker with stir bar.

Transfer to volumetric flask and include rinse with DI water. Allow solution to cool

Adjust final solution to volume of 4 L with DI water, and mix thoroughly.

SUM	Total chemicals (target)	99.78 g	Total chemicals (actual)	99.81
	Total water (target)	4 L	Total water (actual)	4.000
	Target Specific Density	1.02	Calculated density	1.02

Check final solution pH and record.

pH = 11.85 Readjust if significantly different from target.

Comments: record any difficulties or discrepancies

QA APPROVED

NAME: OldenDATE: 6-18-08

AY101-CSL

Base Solution 2008 Version

Batch Size: 4 L
pH: 11.82

AY101-CSL

Balance Device ID:
020
Balance Device ID:
018NIST Weight (g):
20.0000
NIST Weight (100 g):
100.0

Technician: Noy Kelley

Date: 6/16/08

Tracking: 100

Add 2400 mL DI water to a beaker.
 Insert Teflon stirbar and thermocouple, and place on stirrer / hotplate.
 Turn on heater and adjust to 60°C (±10°C).

Add the following chemicals and record their actual weights:

Chemical	Formula	Required Mass (g)	Actual Mass (g)	Comments
Sodium Aluminate	NaAlO ₂ ·2H ₂ O	7.22	7.22	
Sodium Chloride	NaCl	1.50	1.52	
Sodium Fluoride	NaF	0.25	0.25	
Sodium Chromate	Na ₂ CrO ₄ ·4H ₂ O	0.28	0.28	
Sodium Sulfate	Na ₂ SO ₄	1.19	1.19	
Sodium Phosphate, 12-Hydrate	Na ₃ PO ₄ ·12H ₂ O	8.97	9.00	
Sodium Oxalate	Na ₂ C ₂ O ₄	0.75	0.75	
Sodium Carbonate	Na ₂ CO ₃	62.49	62.49	
Sodium Nitrate	NaNO ₃	61.53	61.55	
Sodium Nitrite	NaNO ₂	10.16	10.16	
Sodium Hydroxide	NaOH	0.82	0.82	

* Sodium fluoride is highly toxic. Handle with caution.

Adjust total solution volume to

3400 mL by adding DI water.

Adjust solution temperature to 50°C to 60°C.

Filter solution by vacuum through medium glass filter. *Handle with caution, hot and caustic solution.*

Rinse beaker with approximately 50 mL of DI water

Rinse filter with approximately 50 mL of DI water

Transfer final filtrate and rinse solutions to large beaker with stir bar.

Transfer to volumetric flask and include rinse with DI water. Allow solution to cool

Adjust final solution to volume of 4 L with DI water, and mix thoroughly.

SUM	Total chemicals (target)	155.16 g	Total chemicals (actual)	155.18 g
	Total water (target)	4 L	Total water (actual)	4.000 mL
	Target Specific Density	1.04	Calculated density	1.04

Check final solution pH and record.

pH = 11.82 Readjust if significantly different from target.

Comments: record any difficulties or discrepancies

QA APPROVED

NAME: AdamDATE: 6-18-08

AW105 Supernate

Base Solution 2008 Version

Batch Size: 2 L
pH: 13+

AW105-PSC

Balance Device ID: 020
Balance Device ID: 018NIST Weight (80 g):
NIST Weight (100 g):20.0000
100.0

Technician: Noy Kelley

Date: 7/18/08

Tracking: 102

Add 1200 mL DI water to a beaker.

Insert Teflon stirbar and thermocouple, and place on stirrer / hotplate.

Turn on heater and adjust to 60°C (±10°C).

Add the following chemicals and record their actual weights:

Chemical	Formula	Required Mass (g)	Actual Mass (g)	Comments
Sodium Aluminate	Na ₂ AlO ₂ ·2H ₂ O	1.529	1.56 ✓	
Sodium Hydroxide	NaOH	21.040	21.06 ✓	
Boric Acid	H ₃ BO ₃	0.040	0.03 ✓	
Sodium Chromate	Na ₂ CrO ₄ ·4H ₂ O	0.019	0.03 ✓	
Potassium Molybdate	K ₂ MoO ₄	0.005	0.008 ✓	
Potassium Nitrate	KNO ₃	29.169	29.169 ✓	
Zinc Nitrate 6-hydrate	Zn(NO ₃) ₂ ·6H ₂ O	0.018	0.022 ✓	
Sodium Chloride	NaCl	0.965	0.967 ✓	
Sodium Fluoride	NaF	13.104	13.13 ✓	
Sodium Nitrate	NaNO ₃	50.252	50.25 ✓	
Sodium Nitrite	NaNO ₂	8.804	8.88 ✓	
Sodium Phosphate, 12-Hydrate	Na ₃ PO ₄ ·12H ₂ O	3.397	3.39 ✓	
Sodium Sulfate	Na ₂ SO ₄	1.494	1.50 ✓	
Sodium Carbonate	Na ₂ CO ₃	22.811	22.83 ✓	
Glycolic Acid	C ₂ H ₄ O ₃	0.219	0.237 ✓	
Sodium Acetate 3-hydrate	NaCH ₃ COO·3H ₂ O	0.626	0.629 ✓	
Sodium Formate	NaHCOO	0.279	0.281 ✓	
Sodium Oxalate	Na ₂ C ₂ O ₄	0.442	0.455 ✓	

Filter solution by vacuum through medium glass filter. *Handle with caution, hot and caustic solution.*

Rinse beaker with approximately 50 mL of DI water

Rinse filter with approximately 50 mL of DI water

Transfer final filtrate and rinse solutions to large beaker with stir bar.

Transfer to volumetric flask and include rinse with DI water. Allow solution to cool

QA APPROVED

NAME: Olden

DATE: 8-20-08

Adjust final solution to volume of 2 L with DI water, and mix thoroughly.

SUM	Total chemicals (target)	154.21 g	Total chemicals (actual)	154.498 g
	Total water (target)	2 L	Total water (actual)	2.002 mL
	Target Specific Density	1.08	Calculated density	1.08

Check final solution pH and record.

pH = 13.17 Readjust if significantly different from target.

Comments: record any difficulties or discrepancies:

AY101-CSL

Base Solution 2008 Version

Batch Size: 2 L
pH: 12.82

AY101-CSL

Balance Device ID: 020
Balance Device ID: 018NIST Weight (10g):
NIST Weight (100g):30.000
100.0

Technician: Noy Kelley

Date: 7/18/08

Tracking: 103

2 + 3 + 2

Add 1200 mL DI water to a beaker.
Insert Teflon stirbar and thermocouple, and place on stirrer / hotplate.
Turn on heater and adjust to 60°C (±10°C).

Add the following chemicals and record their actual weights:

Chemical	Formula	Required Mass (g)	Actual Mass (g)	Comments
Sodium Aluminate	NaAlO ₂ ·2H ₂ O	3.61	3.61 ✓	
Sodium Chloride	NaCl	0.75	0.75 ✓	
Sodium Fluoride	NaF	0.13	0.13 ✓	
Sodium Chromate	Na ₂ CrO ₄ ·4H ₂ O	0.14	0.14 ✓	
Sodium Sulfate	Na ₂ SO ₄	0.60	0.60 ✓	
Sodium Phosphate, 12-Hydrate	Na ₃ PO ₄ ·12H ₂ O	4.49	4.50 ✓	
Sodium Oxalate	Na ₂ C ₂ O ₄	0.38	0.37 ✓	
Sodium Carbonate	Na ₂ CO ₃	31.25	31.27 ✓	
Sodium Nitrate	NaNO ₃	30.77	30.80 ✓	
Sodium Nitrite	NaNO ₂	5.08	5.09 ✓	
Sodium Hydroxide	NaOH	0.41	0.41 ✓	

* Sodium fluoride is highly toxic. Handle with caution.

Adjust total solution volume to

1700 mL by adding DI water.

Adjust solution temperature to 50°C to 60°C.

Filter solution by vacuum through medium glass filter. **Handle with caution, hot and caustic solution.**

Rinse beaker with approximately 50 mL of DI water

Rinse filter with approximately 50 mL of DI water

Transfer final filtrate and rinse solutions to large beaker with stir bar.

initial 11.8 QA APPROVED

NAME: Cldur

DATE: 8-20-08

Adjust final solution to volume of

2 L with DI water, and mix thoroughly.

SUM	Total chemicals (target)	77.58 g	Total chemicals (actual)	77.79
	Total water (target)	2 L	Total water (actual)	2000
	Target Specific Density	1.04	Calculated density	1.04

Check final solution pH and record.

pH = 12.82 Readjust if significantly different from target.

Comments: record any difficulties or discrepancies

And a 1 g of NaOH to
adjust pH to 12.82

AW105 Supernate

Base Solution 2008 Version

Balance Device ID: 0020
Balance Device ID: 001807-59923(e-4)
" "Batch Size: 2 L
pH: 13+0.032M Nitrite
AW105-PSCNIST Weight (20 g):
NIST Weight (20 g):19.9999
20.1 g

Technician: Noy & Erin

Date: 7/23/08

Tracking: 103

Add 1200 mL DI water to a beaker.
Insert Teflon stirbar and thermocouple, and place on stirrer / hotplate.
Turn on heater and adjust to 60°C (±10°C).(Check Log
8/23/08)

Add the following chemicals and record their actual weights:

Chemical	Formula	Required Mass (g)	Actual Mass (g)	Comments
Sodium Aluminate	Na ₂ AlO ₂ ·2H ₂ O	1.529	1.5299	
Sodium Hydroxide	NaOH	21.040	21.0558	
Boric Acid	H ₃ BO ₃	0.040	0.0397	
Sodium Chromate	Na ₂ CrO ₄ ·4H ₂ O	0.019	0.0193	
Potassium Molybdate	K ₂ MoO ₄	0.005	0.0058	
Potassium Nitrate	KNO ₃	29.169	29.1707	
Zinc Nitrate 6-hydrate	Zn(NO ₃) ₂ ·6H ₂ O	0.018	0.0157	
Sodium Chloride	NaCl	0.965	0.9905	
Sodium Fluoride	NaF	13.104	13.1152	
Sodium Nitrate	NaNO ₃	50.252	50.2609	
Sodium Nitrite	NaNO ₂	4.416	4.4202	
Sodium Phosphate, 12-Hydrate	Na ₃ PO ₄ ·12H ₂ O	3.397	3.3995	
Sodium Sulfate	Na ₂ SO ₄	1.494	1.5171	
Sodium Carbonate	Na ₂ CO ₃	22.811	22.8224	
Glycolic Acid	C ₂ H ₄ O ₃	0.219	0.2096	
Sodium Acetate 3-hydrate	NaCH ₃ COO·3H ₂ O	0.626	0.6489	
Sodium Formate	NaHCOO	0.279	0.2800	02606 EM 7/23/08
Sodium Oxalate	Na ₂ C ₂ O ₄	0.442	0.4571	

Filter solution by vacuum through medium glass filter. **Handle with caution, hot and caustic solution.**

Rinse beaker with approximately 50 mL of DI water

Rinse filter with approximately 50 mL of DI water

Transfer final filtrate and rinse solutions to large beaker with stir bar.

Transfer to volumetric flask and include rinse with DI water. Allow solution to cool

Adjust final solution to volume of

2 L with DI water, and mix thoroughly.

QA APPROVED

NAME: Alden

DATE: 8-26-08

SUM Total chemicals (target)

149.82 g

Total chemicals (actual)

150.0726

Total water (target)

2 L

Total water (actual)

2000

Target Specific Density

1.07

Calculated density

1.0753

Check final solution pH and record.

pH=13.32 Readjust if significantly different from target.

Comments: record any difficulties or discrepancies

AY101-CSL

Base Solution 2008 Version

Balance Device ID:
020
078Batch Size: 2 L
pH: 12.3AY101-CSL
pH=12.3NIST Weight (40 g):
NIST Weight (100 g):40.0000
100.0

Technician: Noy / Kevin

Date: 8/1/08

Tracking: 105

Add 1200 mL DI water to a beaker.
 Insert Teflon stirbar and thermocouple, and place on stirrer / hotplate.
 Turn on heater and adjust to 60°C (±10°C).

Add the following chemicals and record their actual weights:

Chemical	Formula	Required Mass (g)	Actual Mass (g)	Comments
Sodium Aluminate	NaAlO ₂ ·2H ₂ O	3.61	3.6130	
Sodium Chloride	NaCl	0.75	0.7517	
Sodium Fluoride	NaF	0.13	0.1248	
Sodium Chromate	Na ₂ CrO ₄ ·4H ₂ O	0.14	0.1430	
Sodium Sulfate	Na ₂ SO ₄	0.60	0.6026	
Sodium Phosphate, 12-Hydrate	Na ₃ PO ₄ ·12H ₂ O	4.49	4.4895	
Sodium Oxalate	Na ₂ C ₂ O ₄	0.38	0.3801	
Sodium Carbonate	Na ₂ CO ₃	31.25	31.2471	
Sodium Nitrate	NaNO ₃	30.77	30.7680	
Sodium Nitrite	NaNO ₂	5.08	5.0814	
Sodium Hydroxide	NaOH	0.41	0.4118	

* Sodium fluoride is highly toxic. Handle with caution.

Adjust total solution volume to 1700 mL by adding DI water.

Adjust solution temperature to 50°C to 60°C.

Filter solution by vacuum through medium glass filter. **Handle with caution, hot and caustic solution.**

Rinse beaker with approximately 50 mL of DI water

Rinse filter with approximately 50 mL of DI water

Transfer final filtrate and rinse solutions to large beaker with stir bar.

Initial pH 11.76
Final pH 12.30

QA APPROVED

NAME: Colleen

DATE: 8-20-08

Transfer to volumetric flask and include rinse with DI water. Allow solution to cool

Adjust final solution to volume of 2 L with DI water, and mix thoroughly.

SUM	Total chemicals (target)	77.58 g	Total chemicals (actual)	79.61 g
	Total water (target)	2 L	Total water (actual)	1000 mL
	Target Specific Density	1.04	Calculated density	1.04

Check final solution pH and record.

pH=12.30 Readjust if significantly different from target.

Comments: record any difficulties or discrepancies
 adjusting pH from 11.76 to pH 12.30 with NaOH

AW105 Supernate
Base Solution 2008 Version

Balance Device ID:
Balance Device ID:

020

018

Batch Size: 2 L
pH: 13+

6X
AW105-PSC

Technician: Nay Kelley Date: 8/16/08 Tracking: 106

Add 1200 L mL DI water to a beaker.

Insert Teflon stirbar and thermocouple, and place on stirrer / hotplate.
Turn on heater and adjust to 60°C (±10°C).

Add the following chemicals and record their actual weights:

Chemical	Formula
Sodium Aluminate	Na ₂ AlO ₂ ·2H ₂ O
Sodium Hydroxide	NaOH
Boric Acid	H ₃ BO ₃
Sodium Chromate	Na ₂ CrO ₄ ·4H ₂ O
Potassium Molybdate	K ₂ MoO ₄
Potassium Nitrate	KNO ₃
Zinc Nitrate 6-hydrate	Zn(NO ₃) ₂ ·6H ₂ O
Sodium Chloride	NaCl
Sodium Fluoride	NaF
Sodium Nitrate	NaNO ₃
Sodium Nitrite	NaNO ₂
Sodium Phosphate, 12-Hydrate	Na ₃ PO ₄ ·12H ₂ O
Sodium Sulfate	Na ₂ SO ₄
Sodium Carbonate	Na ₂ CO ₃
Glycolic Acid	C ₂ H ₄ O ₃
Sodium Acetate 3-hydrate	NaCH ₃ COO·3H ₂ O
Sodium Formate	NaHCOO
Sodium Oxalate	Na ₂ C ₂ O ₄

Required Mass (g)	Actual Mass (g)	Comments
1.529	1.5289	
21.040	21.0791	
0.040	.0402	
0.019	.0192	
0.005	.0069	
29.169	29.1610	
0.018	.0188	
0.965	.9631	
13.104	13.1042	
424.252	424.3	
26.496	26.4457	
3.397	3.3161	
1.494	1.4431	
22.811	22.8106	
0.219	.2189	
0.626	.6264	
0.279	.2786	
0.442	.4420	

Filter solution by vacuum through medium glass filter. *Handle with caution, hot and caustic solution.*

Rinse beaker with approximately 50 mL of DI water

Rinse filter with approximately 50 mL of DI water

Transfer final filtrate and rinse solutions to large beaker with stir bar.

Transfer to volumetric flask and include rinse with DI water. Allow solution to cool

QA APPROVED

NAME: Oldewu

DATE: 8-20-08

Adjust final solution to volume of	2 L with DI water, and mix thoroughly.					
SUM	Total chemicals (target)	545.90 g	Total chemicals (actual)			
	Total water (target)	2 L	Total water (actual)			
	Target Specific Density	1.27	Calculated density			
AK 8/16/08 Check final solution pH and record. pH = <u>13.04</u> Readjust if significantly different from target. Comments: record any difficulties or discrepancies <u>13.15</u>			<table border="1"> <tr> <td>545.99</td></tr> <tr> <td>2000 mL</td></tr> <tr> <td>1.27</td></tr> </table>	545.99	2000 mL	1.27
545.99						
2000 mL						
1.27						

GFS Chemicals, Inc.
Columbus, Ohio 43223

LOT ANALYSIS
ITEM: 1099 SODIUM OXALATE, REAGENT (ACS) **LOT#: P568829**

TEST	PASS/FAIL	NUMERICAL RESULT
1. Assay 99.5% min	PASS	101.8 %
2. Insoluble 0.005%	PASS	< 0.005 %
3. Loss on drying @ 105 C 0.01%	PASS	0.004 %
4. Neutrality - Pass Test	PASS	Passes Test
5. Chloride 0.002%	PASS	< 0.002 %
6. Sulfate 0.002%	PASS	< 0.002 %
7. Ammonium 0.002%	PASS	< 0.002 %
8. Heavy metals (Pb) 0.002%	PASS	< 0.002 %
9. Iron 0.001%	PASS	< 0.0001 %
10. Potassium 0.005%	PASS	< 0.002 %
11. Substances darkened by H ₂ SO ₄ pass test	PASS	Passes Test

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by: Kenneth L. Shafer

Date: 9/15/2005

QC Supervisor: Joan Plowman

Retest Date: 9/15/2010

GFS Chemicals, Inc.
Columbus, Ohio 43223

LOT ANALYSIS
ITEM: 705 SODIUM CARBONATE, ANHYDROUS, POWDER, REAGENT (ACS) **LOT#: P675164**

TEST	PASS/FAIL	NUMERICAL RESULT
1. Assay 99.5% min	PASS	100.00%
2. Insoluble 0.01%	PASS	0.004%
3. Loss on heating at 285 C 1.0% max	PASS	0.4%
4. Chloride 0.001%	PASS	0.0006%
5. Phosphate 0.001%	PASS	0.0003%
6. Silica 0.005%	PASS	0.001%
7. Sulfur compounds (as SO ₄) 0.003%	PASS	0.001%
8. Heavy metals (Pb) 0.0005%	PASS	0.0002%
9. Iron 0.0005%	PASS	0.0002%
10. Calcium 0.03%	PASS	0.005%
11. Magnesium 0.005%	PASS	0.002%
12. Potassium 0.005%	PASS	0.002%

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by: Joan E Plowman

Date: 5/3/2006

QC Supervisor: Joan Plowman

Retest Date: 5/3/2011

GFS Chemicals, Inc.
Columbus, Ohio 43223

LOT ANALYSIS
ITEM: 1099 SODIUM OXALATE, REAGENT (ACS) **LOT#: P453301**

TEST	PASS/FAIL	NUMERICAL RESULT
1. Assay 99.5% min	PASS	102.7%
2. Insoluble 0.005%	PASS	<0.005%
3. Loss on drying @ 105 C 0.01%	PASS	<0.01%
4. Neutrality - Pass Test	PASS	passes test
5. Chloride 0.002%	PASS	<0.002%
6. Sulfate 0.002%	PASS	<0.002%
7. Ammonium 0.002%	PASS	<0.002%
8. Heavy metals (Pb) 0.002%	PASS	<0.002%
9. Iron 0.001%	PASS	<0.001%
10. Potassium 0.005%	PASS	<0.005%
11. Substances darkened by H ₂ SO ₄ pass test	PASS	passes test

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by: Daniel Merkozaj

Date: 2/17/2004

QC Supervisor: Joan Plowman

Retest Date: 2/17/2006

GFS Chemicals, Inc.
Columbus, Ohio 43223

LOT ANALYSIS
ITEM: 656 SODIUM ACETATE, TRIHYDRATE, REAGENT (ACS)

LOT#: L350643

TEST	PASS/FAIL	NUMERICAL RESULT
1. Assay 99.0-101%	PASS	99.99%
2. Insoluble 0.005%	PASS	<0.005%
3. pH of 5% solution 7.5-9.2 @ 25 C	PASS	8.0
4. Chloride 0.001%	PASS	<0.001%
5. Phosphate 0.0005%	PASS	<0.0005%
6. Sulfate 0.002%	PASS	<0.002%
7. Calcium 0.005%	PASS	<0.0005%
8. Magnesium 0.002%	PASS	<0.0001%
9. Heavy metals (as Pb) 0.0005%	PASS	<0.0005%
10. Iron 0.0005%	PASS	<0.0001%
11. Substances reducing permanganate - Pass Test	PASS	passes test
12. Potassium 0.005%	PASS	<0.0016%

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by: Daniel Merkozaj

Date: 10/1/2003

QC Supervisor: Joan Plowman

Retest Date: 24 Month after shipment

GFS Chemicals, Inc.
Columbus, Ohio 43223

LOT ANALYSIS
ITEM: 658 SODIUM NITRATE, REAGENT (ACS) LOT#: L136875

TEST	PASS/FAIL	NUMERICAL RESULT
1. Assay 99.0% min.	PASS	99.7 %
2. pH of 5% solution 5.5-8.3 @ 25 C	PASS	5.9
3. Insoluble 0.005%	PASS	< 0.005 %
4. Chloride 0.001%	PASS	< 0.001 %
5. Iodate 0.0005%	PASS	< 0.0005 %
6. Nitrite 0.001%	PASS	< 0.001 %
7. Phosphate 0.0005%	PASS	< 0.0005 %
8. Sulfate 0.003%	PASS	< 0.003 %
9. Calcium 0.005%	PASS	< 0.005 %
10. Magnesium 0.002%	PASS	< 0.002 %
11. Heavy metals (Pb) 0.0005%	PASS	< 0.0005 %
12. Iron 0.0003%	PASS	< 0.0003 %

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by: Kenneth L. Shafer

Date: 9/24/2001

QC Supervisor: Joan Plowman

Retest Date: 24 Month after shipment

GFS Chemicals, Inc.
Columbus, Ohio 43223

LOT ANALYSIS
ITEM: 658 SODIUM NITRATE, REAGENT (ACS) **LOT#: L137057**

TEST	PASS/FAIL	NUMERICAL RESULT
1. Assay 99.0% min.	PASS	100.1 %
2. pH of 5% solution 5.5-8.3 @ 25 C	PASS	5.9
3. Insoluble 0.005%	PASS	< 0.005 %
4. Chloride 0.001%	PASS	< 0.001 %
5. Iodate 0.0005%	PASS	< 0.0005 %
6. Nitrite 0.001%	PASS	< 0.001 %
7. Phosphate 0.0005%	PASS	< 0.0005 %
8. Sulfate 0.003%	PASS	< 0.003 %
9. Calcium 0.005%	PASS	< 0.0005 %
10. Magnesium 0.002%	PASS	< 0.0005 %
11. Heavy metals (Pb) 0.0005%	PASS	< 0.0005 %
12. Iron 0.0003%	PASS	< 0.0003 %

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by: Kenneth L. Shafer

Date: 9/26/2001

QC Supervisor: Joan Plowman

Retest Date: 24 Month after shipment

GFS Chemicals, Inc.
Columbus, Ohio 43223

LOT ANALYSIS
ITEM: 559 SODIUM NITRITE, REAGENT (ACS) **LOT#: P673156**

TEST	PASS/FAIL	NUMERICAL RESULT
1. Assay 97.0% min.	PASS	98.6%
2. Chloride 0.005%	PASS	< 0.005%
3. Sulfate 0.01%	PASS	< 0.01%
4. Calcium 0.01%	PASS	< 0.01%
5. Heavy metals (as Pb) 0.001%	PASS	< 0.001%
6. Iron 0.001%	PASS	< 0.001%
7. Potassium 0.005%	PASS	< 0.005%
8. Insoluble 0.01%	PASS	< 0.01%
9. pH of 5% solution 5.5-8.3 @ 25 C	PASS	7.2
10. Appearance - White to pale yellow	PASS	Pale Yellow

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by: Robert Kramer

Date: 2/28/2006

QC Supervisor: Joan Plowman

Re-test Date: 2/28/2011

GFS Chemicals, Inc.
Columbus, Ohio 43223

LOT ANALYSIS
ITEM: 559 SODIUM NITRITE, REAGENT (ACS) **LOT#: P676266**

TEST	PASS/FAIL	NUMERICAL RESULT
1. Assay 97.0% min.	PASS	97.3 %
2. Chloride 0.005%	PASS	< 0.005 %
3. Sulfate 0.01%	PASS	< 0.01 %
4. Calcium 0.01%	PASS	< 0.01 %
5. Heavy metals (as Pb) 0.001%	PASS	< 0.001 %
6. Iron 0.001%	PASS	< 0.001 %
7. Potassium 0.005%	PASS	< 0.005 %
8. Insoluble 0.01%	PASS	< 0.01 %
9. pH of 5% solution 5.5-8.3 @ 25 C	PASS	7.4
10. Appearance - White to pale yellow	PASS	pale yellow

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by: Kenneth L. Shafer

Date: 6/14/2006

QC Supervisor: Joan Plowman

Retest Date: 6/14/2011

GFS Chemicals, Inc.
Columbus, Ohio 43223

LOT ANALYSIS
ITEM: 559 SODIUM NITRITE, REAGENT (ACS) **LOT#: P568476**

TEST	PASS/FAIL	NUMERICAL RESULT
1. Assay 97.0% min.	PASS	97.9 %
2. Chloride 0.005%	PASS	< 0.005 %
3. Sulfate 0.01 %	PASS	< 0.01 %
4. Calcium 0.01%	PASS	< 0.001 %
5. Heavy metals (as Pb) 0.001%	PASS	< 0.001 %
6. Iron 0.001%	PASS	< 0.0005 %
7. Potassium 0.005%	PASS	< 0.001 %
8. Insoluble 0.01%	PASS	< 0.01 %
9. pH of 5% solution 5.5-8.3 @ 25 C	PASS	7.6
10. Appearance - White to pale yellow	PASS	pale yellow

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by: Kenneth L. Shafer

Date: 8/17/2005

QC Supervisor: Joan Plowman

Retest Date: 8/17/2010

GFS Chemicals, Inc.
Columbus, Ohio 43223

LOT ANALYSIS
ITEM: 2454 SODIUM SULFATE, ANHYDROUS, POWDER, REAGENT (ACS) **LOT#: P675142**

TEST	PASS/FAIL	NUMERICAL RESULT
1. Assay 99.0% min.	PASS	99.75%
2. pH of 5% solution @ 25C 5.2-9.2	PASS	5.92
3. Insoluble matter 0.01%	PASS	0.003%
4. Loss on ignition 0.5%	PASS	0.22%
5. Chloride 0.001%	PASS	<0.0005%
6. Nitrogen compounds (as N) 0.0005%	PASS	<0.0003%
7. Phosphate 0.001%	PASS	<0.0005%
8. Calcium 0.01%	PASS	0.001%
9. Magnesium 0.005%	PASS	0.0005%
10. Heavy metals (as Pb) 0.0005%	PASS	<0.0003%
11. Iron 0.001%	PASS	<0.0005%
12. Potassium 0.01%	PASS	0.0015%

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by: Nicholas E. Dangler

Date: 5/5/2006

QC Supervisor: Joan Plowman

Retest Date: 5/5/2011

GFS Chemicals, Inc.
Columbus, Ohio 43223

LOT ANALYSIS
ITEM: 2454 SODIUM SULFATE, ANHYDROUS, POWDER, REAGENT (ACS) **LOT#: P571317**

TEST	PASS/FAIL	NUMERICAL RESULT
1. Assay 99.0% min.	PASS	100.3%
2. pH of 5% solution @ 25C 5.2-9.2	PASS	5.4
3. Insoluble matter 0.01%	PASS	< 0.01%
4. Loss on ignition 0.5%	PASS	< 0.5%
5. Chloride 0.001%	PASS	< 0.001%
6. Nitrogen compounds (as N) 0.0005%	PASS	< 0.0005%
7. Phosphate 0.001%	PASS	< 0.001%
8. Calcium 0.01%	PASS	< 0.01%
9. Magnesium 0.005%	PASS	< 0.005%
10. Heavy metals (as Pb) 0.0005%	PASS	< 0.0005%
11. Iron 0.001%	PASS	< 0.001%
12. Potassium 0.01%	PASS	< 0.01%

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by: Robert Kramer

Date: 12/14/2005

QC Supervisor: Joan Plowman

Retest Date: 12/14/2010

GFS Chemicals, Inc.
Columbus, Ohio 43223

LOT ANALYSIS
ITEM: 1035 SODIUM PHOSPHATE, TRIBASIC, DODECAHYDRATE, REAGENT **(ACS)** **LOT#: P562445**

TEST	PASS/FAIL	NUMERICAL RESULT
1. Assay 98.0-102.0%	PASS	99.2%
2. Excess alkali (NaOH) 2.5%	PASS	1.8%
3. Insoluble 0.01%	PASS	0.005%
4. Chloride 0.001%	PASS	0.000 8%
5. Sulfate 0.01%	PASS	0.002%
6. Heavy metals (as Pb) 0.001%	PASS	0.000 5%
7. Iron 0.001%	PASS	0.000 3%

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by:

Date: 1/27/2005

QC Supervisor: Joan Plowman

Retest Date: 1/27/2010

GFS Chemicals, Inc.
Columbus, Ohio 43223

LOT ANALYSIS
ITEM: 657 SODIUM CHLORIDE, REAGENT (ACS) **LOT#: P569640**

TEST	PASS/FAIL	NUMERICAL RESULT
1. Assay 99.0% min.	PASS	100.0%
2. Insoluble 0.005%	PASS	<0.005%
3. pH of 5% solution 5.0-9.0 @ 25 C	PASS	5.8
4. Iodide 0.002%	PASS	<0.002%
5. Bromide 0.01%	PASS	<0.01%
6. Chlorate and nitrate (as NO ₃) 0.003%	PASS	<0.003%
7. Phosphate 0.0005%	PASS	<0.0005%
8. Sulfate 0.004%	PASS	0.004%
9. Barium - pass test	PASS	pass test
10. Heavy Metals (as Pb) 0.0005%	PASS	<0.0005%
11. Iron 0.0002%	PASS	<0.0002%
12. Calcium 0.002%	PASS	0.0003%
13. Magnesium 0.001%	PASS	<0.0001%
14. Potassium 0.005%	PASS	<0.005%

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by: Daniel Merkozaj

Date: 10/9/2005

QC Supervisor: Joan Plowman

Retest Date: 10/9/2010

GFS Chemicals, Inc.
Columbus, Ohio 43223

LOT ANALYSIS
ITEM: 630 SODIUM HYDROXIDE, REAGENT (ACS) **LOT#: P569567**

TEST	PASS/FAIL	NUMERICAL RESULT
1. Assay 97.0% min	PASS	99.0%
2. Sodium carbonate 1.0% max	PASS	0.4%
3. Chloride 0.005%	PASS	<0.001%
4. Nitrogen compounds (N) 0.001%	PASS	<0.0003%
5. Phosphate 0.001%	PASS	<0.0002%
6. Sulfate 0.003%	PASS	0.0005%
7. Heavy metals (as Ag) 0.002%	PASS	<0.001%
8. Iron 0.001%	PASS	<0.0003%
9. Mercury 0.00001%	PASS	0.00001%
10. Nickel 0.001%	PASS	0.0001%
11. Calcium 0.005%	PASS	0.0003%
12. Magnesium 0.002%	PASS	0.002%
13. Potassium 0.02%	PASS	<0.01%

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by: Joan E Plowman

Date: 10/5/2005

QC Supervisor: Joan Plowman

Retest Date: 10/5/2010

GFS Chemicals, Inc.
Columbus, Ohio 43223

LOT ANALYSIS
ITEM: 656 SODIUM ACETATE, TRIHYDRATE, REAGENT (ACS) **LOT#: L350643**

TEST	PASS/FAIL	NUMERICAL RESULT
1. Assay 99.0-101%	PASS	99.99%
2. Insoluble 0.005%	PASS	<0.005%
3. pH of 5% solution 7.5-9.2 @ 25 C	PASS	8.0
4. Chloride 0.001%	PASS	<0.001%
5. Phosphate 0.0005%	PASS	<0.0005%
6. Sulfate 0.002%	PASS	<0.002%
7. Calcium 0.005%	PASS	<0.0005%
8. Magnesium 0.002%	PASS	<0.0001%
9. Heavy metals (as Pb) 0.0005%	PASS	<0.0005%
10. Iron 0.0005%	PASS	<0.0001%
11. Substances reducing permanganate - Pass Test	PASS	passes test
12. Potassium 0.005%	PASS	<0.0016%

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by: Daniel Merkozaj

Date: 10/1/2003

QC Supervisor: Joan Plowman

Retest Date: 24 Month after shipment

GFS Chemicals, Inc.
Columbus, Ohio 43223

LOT ANALYSIS
ITEM: 1935 SODIUM ACETATE, TRIHYDRATE, BIO-REFINED **LOT#: P677274**

TEST	PASS/FAIL	NUMERICAL RESULT
1. Assay 99.5% min.	PASS	99.7%
2. Substances reducing KMnO ₄ 0.005%	PASS	<0.005%
3. pH (0.5M in water @ 20 deg. C) 7.5-9.0	PASS	8.3
4. Insoluble matter 0.005%	PASS	<0.005%
5. Chloride (Cl) 0.0005%	PASS	<0.0005%
6. Phosphate (PO ₄) 0.0005%	PASS	<0.0005%
7. Sulfate (SO ₄) 0.002%	PASS	<0.0001%
8. Absorbance (0.50M in H ₂ O) @ 260 nm <0.004	PASS	<0.004
9. Absorbance (0.50M in H ₂ O) @ 280 nm <0.003	PASS	<0.003

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by: Joan E Plowman

Date: 7/26/2006

QC Supervisor: Joan Plowman

Retest Date: 7/26/2011

GFS Chemicals, Inc.
Columbus, Ohio 43223

LOT ANALYSIS
ITEM: 1935 SODIUM ACETATE, TRIHYDRATE, BIO-REFINED LOT#: P460400

TEST	PASS/FAIL	NUMERICAL RESULT
1. Assay 99.5% min.	PASS	100.6 %
2. Substances reducing KMnO ₄ 0.005%	PASS	< 0.005 %
3. pH (0.5M in water @ 20 deg. C) 7.5-9.0	PASS	8.5
4. Insoluble matter 0.005%	PASS	< 0.005 %
5. Chloride (Cl) 0.0005%	PASS	< 0.0005 %
6. Phosphate (PO ₄) 0.0005%	PASS	< 0.0005 %
7. Sulfate (SO ₄) 0.002%	PASS	0.0003 %
8. Absorbance @ 260nm/280nm (.5M in H ₂ O)<0.004/<0.003	PASS	<0.001 / <0.001

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by: Kenneth L. Shafer

Date: 10/27/2004

QC Supervisor: Joan Plowman

Retest Date: 10/27/2009

GFS Chemicals, Inc.
Columbus, Ohio 43223

LOT ANALYSIS
ITEM: 655 POTASSIUM NITRATE, REAGENT (ACS) **LOT#: L346711**

TEST	PASS/FAIL	NUMERICAL RESULT
1. Assay 99.0% min	PASS	99.7%
2. Insoluble 0.005%	PASS	<0.005%
3. pH of 5% solution 4.5-8.5 @ 25C	PASS	5.8
4. Chloride 0.002%	PASS	<0.002%
5. Iodate 0.0005%	PASS	<0.000 5%
6. Nitrite 0.001%	PASS	<0.001%
7. Phosphate 0.0005%	PASS	<0.000 5%
8. Sulfate 0.003%	PASS	<0.003%
9. Calcium 0.005%	PASS	<0.005%
10. Magnesium 0.002%	PASS	<0.002%
11. Heavy metals (as Pb) 0.0005%	PASS	<0.000 5%
12. Iron 0.0003%	PASS	<0.000 3%
13. Sodium 0.005%	PASS	<0.005%

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by:

Date: 3/28/2003

QC Supervisor: Joan Plowman

Retest Date: 24 Month after shipment

Fisher Scientific Company
Chemical Manufacturing Division

Certificate of Analysis

*Fisher Scientific's Quality System is Certified to
ISO9002 (1994) standard by DNV
Cert. # 96-HOU-AQ-8052*

1 Reagent Lane
Fairlawn, NJ 07410
Phone: (201) 796-7100 Fax: (201) 796-1329

Catalog Number	S392	Report Date	8/4/03	Mfg. Date	7/23/03
Lot Number	035270	Sample ID	S392.035270.CQS		
Description					SODIUM HYDROXIDE NF/FCC/EP/BP/JP

This is to certify that units of the above mentioned lot number were tested and found to comply with the specifications of the grade listed. Certain data have been supplied by third parties. Fisher Scientific expressly disclaims all warranties, expressed or implied, including the implied warranties of merchantability and fitness for a particular purpose. Unless otherwise stated, these products are not intended for dialysis, parenteral or injectable use without further processing. The following are the actual analytical results obtained:

Result Name	Specifications	Units	Test Value
APPEARANCE	White Pellets	REPORT	WHITE PELLETS
National Formulary Requirements:			
ASSAY	95.0 - 100.5	%	99.6000
ENDOTOXIN TESTING	Report	EU/g	<0.4
HEAVY METALS(AS Pb)	0.003 Maximum	%	0.0020
IDENTIFICATION	Pass test	PASS/FAIL	PASS
INSOLUBLE SUBSTANCES & ORGANIC MATTER	Pass test	PASS/FAIL	PASS
POTASSIUM	Pass test	PASS/FAIL	PASS
SODIUM CARBONATE	3.0 Maximum	%	0.100
FCC Requirements:			
ARSENIC (As)	3 Maximum	mg/kg	3
ASSAY - FCC	95.0 - 100.5	%	99.6
CARBONATE (as Na ₂ CO ₃)	3.0 Maximum	%	0.1
HEAVY METALS-FCC	0.002 Maximum	%	0.002
IDENTIFICATION - FCC	Pass test	PASS/FAIL	PASS
INSOL SUBT & ORG MAT	Pass test	PASS/FAIL	PASS
LEAD	10 Maximum	mg/kg	1
MERCURY (Hg)	0.1 Maximum	mg/kg	0.1

CERTIFIED BY

Edgar E. Hess
Lab Manager Fair Lawn

Joel Baland
Lab Manager BPF

Note: The data listed is valid for all package sizes of this lot of product, expressed as a extension of the catalog number listed above. If there are any questions with this certificate, please call Chemical Services at (800) 227-6701

Fisher Scientific Company**Chemical Manufacturing Division**

1 Reagent Lane
 Fairlawn, NJ 07410
 Phone: (201) 796-7100 Fax: (201) 796-1329

Certificate of Analysis

Fisher Scientific's Quality System is Certified to
 ISO9002 (1994) standard by DNV
 Cert. # 96-HOU-AQ-8052

Catalog Number	S392	Report Date	8/4/03	Mfg. Date	7/23/03
Lot Number	035270	Sample ID	S392..035270.CQS		
Description					SODIUM HYDROXIDE NF/FCC/EP/BP/JP

This is to certify that units of the above mentioned lot number were tested and found to comply with the specifications of the grade listed. Certain data have been supplied by third parties. Fisher Scientific expressly disclaims all warranties, expressed or implied, including the implied warranties of merchantability and fitness for a particular purpose. Unless otherwise stated, these products are not intended for dialysis, parenteral or injectable use without further processing. The following are the actual analytical results obtained:

Result Name	Specifications	Units	Test Value
-------------	----------------	-------	------------

European Pharmacopoeia Requirements:

APPEARANCE OF SOLN	Pass test	PASS/FAIL	PASS
ASSAY	97.0 - 100.5	%	98.8
CARBONATE	2.0 Maximum	%	0.6
CHLORIDE	50 Maximum	PPM	17
Bacterial Endotoxins	Report	EU/g	<0.4
HEAVY METALS	20 Maximum	PPM	7
IDENTIFICATION	Pass test	PASS/FAIL	PASS
IRON	10 Maximum	PPM	3
SULFATE	50 Maximum	PPM	13

British Pharmacopoeia Requirements:

APPEARANCE OF SOLN	Pass test	PASS/FAIL	PASS
ASSAY	97.0 - 100.5	%	98.8
CARBONATE	2.0 Maximum	%	0.6
CHLORIDE	50 Maximum	PPM	17
HEAVY METALS	20 Maximum	PPM	7
IDENTIFICATION	Pass test	PASS/FAIL	PASS
IRON	10 Maximum	PPM	3
SULFATE	50 Maximum	PPM	13

Japanese Pharmacopoeia Requirements:**CERTIFIED BY**

Edgar E. Hess
 Lab Manager Fair Lawn

Joel Boland
 Lab Manager BPF

Note: The data listed is valid for all package sizes of this lot of product, expressed as a extension of the catalog number listed above. If there are any questions with this certificate, please call Chemical Services at (800) 227-6701

Fisher Scientific Company
Chemical Manufacturing Division

1 Reagent Lane
Fairlawn, NJ 07410
Phone: (201) 796-7100 Fax: (201) 796-1329

Certificate of Analysis

*Fisher Scientific's Quality System is Certified to
ISO9002 (1994) standard by DNV
Cert. # 96-HOU-AQ-8052*

Catalog Number	S392	Report Date	8/4/03	Mfg. Date	7/23/03
Lot Number	035270	Sample ID	S392..035270.CQS		
Description					SODIUM HYDROXIDE NF/FCC/EP/BP/JP

This is to certify that units of the above mentioned lot number were tested and found to comply with the specifications of the grade listed. Certain data have been supplied by third parties. Fisher Scientific expressly disclaims all warranties, expressed or implied, including the implied warranties of merchantability and fitness for a particular purpose. Unless otherwise stated, these products are not intended for dialysis, parenteral or injectable use without further processing. The following are the actual analytical results obtained:

Result Name	Specifications	Units	Test Value
appearance of solution	Pass test	PASS/FAIL	PASS
ASSAY	95.0 Minimum	%	97.8
SODIUM CARBONATE	2.0 Maximum	%	1.6
CHLORIDE	0.050 Maximum	%	0.004
HEAVY METALS	30 Maximum	PPM	8
IDENTIFICATION	Pass test	PASS/FAIL	PASS
MERCURY	Pass test	PASS/FAIL	PASS
POTASSIUM	Pass test	PASS/FAIL	PASS

CERTIFIED BY

Edgar E. Haas
Lab Manager Fair Lawn

Joel Balend
Lab Manager BPF

Note: The data listed is valid for all package sizes of this lot of product, expressed as a extension of the catalog number listed above. If there are any questions with this certificate, please call Chemical Services at (800) 227-6701

GFS Chemicals, Inc.
Columbus, Ohio 43223

LOT ANALYSIS
ITEM: 1031 SODIUM FLUORIDE, REAGENT (ACS) **LOT#: L239673**

TEST	PASS/FAIL	NUMERICAL RESULT
1. Assay 99% min.	PASS	101.5%
2. Insoluble 0.02%	PASS	<0.02%
3. Loss on drying @ 150 C 0.3%	PASS	0.2%
4. Chloride 0.005%	PASS	<0.005%
5. Titrable acid 0.03 meq/g	PASS	<0.03 meq/g
6. Titrable base 0.01 meq/g	PASS	<0.01 meq/g
7. Sodium fluosilicate 0.1%	PASS	<0.1%
8. Sulfate 0.03%	PASS	<0.03%
9. Sulfite 0.005%	PASS	<0.005%
10. Heavy metals (as Pb) 0.003%	PASS	<0.003%
11. Iron 0.003%	PASS	<0.003%
12. Potassium 0.02%	PASS	<0.02%

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by:

Date: 3/13/2002

QC Supervisor: Joan Plowman

Retest Date: 24 Month after shipment

GFS Chemicals, Inc.
Columbus, Ohio 43223

LOT ANALYSIS

ITEM: 682 BUFFER SOLUTION, pH 10.00

LOT#: P676271

TEST	PASS/FAIL	NUMERICAL RESULT
1. pH (@ 25 C) 10.00 +/- 0.01	PASS	10.01
2. NIST Traceable	PASS	As Stated

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by: Nicholas E. Dangler

Date: 6/20/2006

QC Supervisor: Joan Plowman

Retest Date: 6/20/2008

GFS Chemicals, Inc.
Columbus, Ohio 43223

LOT ANALYSIS

ITEM: 681 BUFFER SOLUTION, pH 7.00

LOT#: P678527

TEST	PASS/FAIL	NUMERICAL RESULT
1. pH (@ 25 C) 7.00 +/- 0.01	PASS	7.01
2. NIST Traceable	PASS	As Stated

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by: Robert Kramer

Date: 10/3/2006

QC Supervisor: Joan Plowman

Retest Date: 10/3/2008

GFS Chemicals, Inc.
Columbus, Ohio 43223

LOT ANALYSIS
ITEM: 1031 SODIUM FLUORIDE, REAGENT (ACS) **LOT#: P676464**

TEST	PASS/FAIL	NUMERICAL RESULT
1. Assay 99% min.	PASS	99.24%
2. Insoluble 0.02%	PASS	0.0057%
3. Loss on drying @ 150 C 0.3%	PASS	0.042%
4. Chloride 0.005%	PASS	0.003%
5. Titrable acid 0.03 meq/g	PASS	<0.03 meq/g
6. Titrable base 0.01 meq/g	PASS	0.004 meq/g
7. Sodium fluosilicate 0.1%	PASS	NIL
8. Sulfate 0.03%	PASS	0.02%
9. Sulfite 0.005%	PASS	0.0035%
10. Heavy metals (as Pb) 0.003%	PASS	0.0025%
11. Iron 0.003%	PASS	0.0024%
12. Potassium 0.02%	PASS	0.0049%

GFS Chemicals, Inc.
Columbus, Ohio 43223

LOT ANALYSIS
ITEM: 630 SODIUM HYDROXIDE, REAGENT (ACS) **LOT#: P780673**

TEST	PASS/FAIL	NUMERICAL RESULT
1. Assay 97.0% min	PASS	99.4%
2. Sodium carbonate 1.0% max	PASS	0.93%
3. Chloride 0.005%	PASS	<0.005%
4. Nitrogen compounds (N) 0.001%	PASS	<0.001%
5. Phosphate 0.001%	PASS	<0.001%
6. Sulfate 0.003%	PASS	<0.003%
7. Heavy metals (as Ag) 0.002%	PASS	<0.002%
8. Iron 0.001%	PASS	<0.0005%
9. Mercury 0.00001%	PASS	<0.000 01%
10. Nickel 0.001%	PASS	<0.0002%
11. Calcium 0.005%	PASS	<0.0005%
12. Magnesium 0.002%	PASS	<0.0002%
13. Potassium 0.02%	PASS	<0.02%

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by: Robert Kramer

Date: 1/31/2007

QC Supervisor: Joan Plowman

Retest Date: 1/31/2012

GFS Chemicals, Inc.
Columbus, Ohio 43223

LOT ANALYSIS
ITEM: 705 SODIUM CARBONATE, ANHYDROUS, POWDER, REAGENT (ACS) **LOT#: P781010**

TEST	PASS/FAIL	NUMERICAL RESULT
1. Assay 99.5% min	PASS	99.99%
2. Insoluble 0.01%	PASS	0.004%
3. Loss on heating at 285 C 1.0% max	PASS	0.2%
4. Chloride 0.001%	PASS	0.0004%
5. Phosphate 0.001%	PASS	0.0003%
6. Silica 0.005%	PASS	0.001%
7. Sulfur compounds (as SO4) 0.003%	PASS	0.0009%
8. Heavy metals (Pb) 0.0005%	PASS	0.0003%
9. Iron 0.0005%	PASS	0.0003%
10. Calcium 0.03%	PASS	0.005%
11. Magnesium 0.005%	PASS	0.002%
12. Potassium 0.005%	PASS	0.002%

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by: Joan E Plowman

Date: 2/20/2007

QC Supervisor: Joan Plowman

Retest Date: 2/20/2012

GFS Chemicals, Inc.
Columbus, Ohio 43223

LOT ANALYSIS
ITEM: 1099 SODIUM OXALATE, REAGENT (ACS) **LOT#: P568829**

TEST	PASS/FAIL	NUMERICAL RESULT
1. Assay 99.5% min	PASS	101.8 %
2. Insoluble 0.005%	PASS	< 0.005 %
3. Loss on drying @ 105 C 0.01%	PASS	0.004 %
4. Neutrality - Pass Test	PASS	Passes Test
5. Chloride 0.002%	PASS	< 0.002 %
6. Sulfate 0.002%	PASS	< 0.002 %
7. Ammonium 0.002%	PASS	< 0.002 %
8. Heavy metals (Pb) 0.002%	PASS	< 0.002 %
9. Iron 0.001%	PASS	< 0.0001 %
10. Potassium 0.005%	PASS	< 0.002 %
11. Substances darkened by H ₂ SO ₄ pass test	PASS	Passes Test

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by: Kenneth L. Shafer

Date: 9/15/2005

QC Supervisor: Joan Plowman

Retest Date: 9/15/2010

GFS Chemicals, Inc.
Columbus, Ohio 43223

LOT ANALYSIS
ITEM: 658 SODIUM NITRATE, REAGENT (ACS) **LOT#: L136875**

TEST	PASS/FAIL	NUMERICAL RESULT
1. Assay 99.0% min.	PASS	99.7 %
2. pH of 5% solution 5.5-8.3 @ 25 C	PASS	5.9
3. Insoluble 0.005%	PASS	< 0.005 %
4. Chloride 0.001%	PASS	< 0.001 %
5. Iodate 0.0005%	PASS	< 0.0005 %
6. Nitrite 0.001%	PASS	< 0.001 %
7. Phosphate 0.0005%	PASS	< 0.0005 %
8. Sulfate 0.003%	PASS	< 0.003 %
9. Calcium 0.005%	PASS	< 0.005 %
10. Magnesium 0.002%	PASS	< 0.002 %
11. Heavy metals (Pb) 0.0005%	PASS	< 0.0005 %
12. Iron 0.0003%	PASS	< 0.0003 %

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by: Kenneth L. Shafer

Date: 9/24/2001

QC Supervisor: Joan Plowman

Retest Date: 24 Month after shipment

GFS Chemicals, Inc.
Columbus, Ohio 43223

LOT ANALYSIS
ITEM: 655 POTASSIUM NITRATE, REAGENT (ACS) **LOT#: L346711**

TEST	PASS/FAIL	NUMERICAL RESULT
1. Assay 99.0% min	PASS	99.7%
2. Insoluble 0.005%	PASS	<0.005%
3. pH of 5% solution 4.5-8.5 @ 25C	PASS	5.8
4. Chloride 0.002%	PASS	<0.002%
5. Iodate 0.0005%	PASS	<0.000 5%
6. Nitrite 0.001%	PASS	<0.001%
7. Phosphate 0.0005%	PASS	<0.000 5%
8. Sulfate 0.003%	PASS	<0.003%
9. Calcium 0.005%	PASS	<0.005%
10. Magnesium 0.002%	PASS	<0.002%
11. Heavy metals (as Pb) 0.0005%	PASS	<0.000 5%
12. Iron 0.0003%	PASS	<0.000 3%
13. Sodium 0.005%	PASS	<0.005%

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by:

Date: 3/28/2003

QC Supervisor: Joan Plowman

Retest Date: 24 Month after shipment

GFS Chemicals, Inc.
Columbus, Ohio 43223

LOT ANALYSIS
ITEM: 704 SODIUM BICARBONATE, REAGENT (ACS) **LOT#: P459685**

TEST	PASS/FAIL	NUMERICAL RESULT
1. Assay (dried basis) 99.7-100.3%	PASS	99.9 %
2. Insoluble 0.015%	PASS	< 0.015 %
3. Chloride 0.003%	PASS	< 0.003 %
4. Phosphate 0.001%	PASS	< 0.001 %
5. Sulfur compounds (as SO ₄) 0.003%	PASS	< 0.003 %
6. Ammonium 0.0005%	PASS	< 0.0005 %
7. Calcium 0.02%	PASS	0.004 %
8. Magnesium 0.005%	PASS	< 0.001 %
9. Heavy metals (as Pb) 0.0005%	PASS	< 0.0005 %
10. Iron 0.001%	PASS	0.0001 %
11. Potassium 0.005%	PASS	< 0.003 %

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by: Kenneth L. Shafer

Date: 9/29/2004

QC Supervisor: Joan Plowman

Retest Date: 9/29/2009

GFS Chemicals, Inc.
Columbus, Ohio 43223

LOT ANALYSIS
ITEM: 559 SODIUM NITRITE, REAGENT (ACS) **LOT#: P677335**

TEST	PASS/FAIL	NUMERICAL RESULT
1. Assay 97.0% min.	PASS	98.2%
2. Chloride 0.005%	PASS	<0.005%
3. Sulfate 0.01%	PASS	<0.01%
4. Calcium 0.01%	PASS	<0.001%
5. Heavy metals (as Pb) 0.001%	PASS	<0.001%
6. Iron 0.001%	PASS	<0.001%
7. Potassium 0.005%	PASS	<0.001%
8. Insoluble 0.01%	PASS	<0.01%
9. pH of 5% solution 5.5-8.3 @ 25 C	PASS	8.0
10. Appearance - White to pale yellow	PASS	pale yellow

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by: Jon Brandon Kennedy

Date: 7/31/2007

QC Supervisor: Joan Plowman

Retest Date: 8/2/2011

GFS Chemicals, Inc.
Columbus, Ohio 43223

LOT ANALYSIS
ITEM: 2454 SODIUM SULFATE, ANHYDROUS, POWDER, REAGENT (ACS) **LOT#: P785319**

TEST	PASS/FAIL	NUMERICAL RESULT
1. Assay 99.0% min.	PASS	99.1%
2. pH of 5% solution @ 25C 5.2-9.2	PASS	6.0
3. Insoluble matter 0.01%	PASS	< 0.01%
4. Loss on ignition 0.5%	PASS	< 0.5%
5. Chloride 0.001%	PASS	< 0.001%
6. Nitrogen compounds (as N) 0.0005%	PASS	< 0.0005%
7. Phosphate 0.001%	PASS	< 0.001%
8. Calcium 0.01%	PASS	< 0.001%
9. Magnesium 0.005%	PASS	< 0.0005%
10. Heavy metals (as Pb) 0.0005%	PASS	< 0.0005%
11. Iron 0.001%	PASS	< 0.0001%
12. Potassium 0.01%	PASS	0.001%

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by: Robert Kramer

Date: 1/31/2008

QC Supervisor: Joan Plowman

Retest Date: 9/17/2012

GFS Chemicals, Inc.
Columbus, Ohio 43223

LOT ANALYSIS
ITEM: 1078 SODIUM CHROMATE, TETRAHYDRATE, REAGENT LOT#: P568182

TEST	PASS/FAIL	NUMERICAL RESULT
1. Assay 99.0-102.0%	PASS	100.9%
2. Insoluble 0.005%	PASS	<0.005%
3. pH of 5% solution 8.0-9.5	PASS	9.1
4. Chloride 0.005%	PASS	<0.005%
5. Sulfate 0.01%	PASS	<0.01%
6. Aluminum 0.002%	PASS	<0.002%
7. Calcium 0.005%	PASS	<0.005%

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by: Nicholas E. Dangler

Date: 1/31/2008

QC Supervisor: Joan Plowman

Retest Date: 8/16/2010

GFS Chemicals, Inc.
Columbus, Ohio 43223

LOT ANALYSIS
ITEM: 1035 SODIUM PHOSPHATE, TRIBASIC, DODECAHYDRATE, REAGENT **LOT#: P678823**
(ACS)

TEST	PASS/FAIL	NUMERICAL RESULT
1. Assay 98.0-102.0%	PASS	101.4 %
2. Excess alkali (NaOH) 2.5%	PASS	1.0 %
3. Insoluble 0.01%	PASS	< 0.01 %
4. Chloride 0.001%	PASS	< 0.001 %
5. Sulfate 0.01%	PASS	< 0.01 %
6. Heavy metals (as Pb) 0.001%	PASS	< 0.001 %
7. Iron 0.001%	PASS	< 0.001 %

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by: Kenneth L. Shafer

Date: 1/31/2008

QC Supervisor: Joan Plowman

Retest Date: 10/22/2011

GFS Chemicals, Inc.
Columbus, Ohio 43223

LOT ANALYSIS
ITEM: 705 SODIUM CARBONATE, ANHYDROUS, POWDER, REAGENT (ACS) **LOT#: P784287**

TEST	PASS/FAIL	NUMERICAL RESULT
1. Assay 99.5% min	PASS	99.99%
2. Insoluble 0.01%	PASS	<0.01%
3. Loss on heating at 285 C 1.0% max	PASS	<1.0%
4. Chloride 0.001%	PASS	<0.001%
5. Phosphate 0.001%	PASS	<0.001%
6. Silica 0.005%	PASS	<0.005%
7. Sulfur compounds (as SO4) 0.003%	PASS	<0.003%
8. Heavy metals (Pb) 0.0005%	PASS	<0.0005%
9. Iron 0.0005%	PASS	<0.0005%
10. Calcium 0.03%	PASS	<0.03%
11. Magnesium 0.005%	PASS	0.005%
12. Potassium 0.005%	PASS	<0.005%

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by: Joan Plowman

Date: 2/1/2008

QC Supervisor: Joan Plowman

Retest Date: 7/24/2012

Certificate of Analysis

Product Name	Cerium(III) nitrate hexahydrate, 99% (metals basis)	
Product Number	238538	
Product Brand	Aldrich	
CAS Number	10294-41-4	
Molecular Formula	$\text{Ce}(\text{NO}_3)_3 \cdot 6\text{H}_2\text{O}$	
Molecular Weight	434.22	
TEST	SPECIFICATION	LOT 06703CC RESULTS
APPEARANCE	MOIST WHITE TO OFF-WHITE CRYSTALS AND/OR	MOIST WHITE CRYSTALS
TITRATION	96.5% - 103.5% (OR 31.1% - 33.4% CE)	32.2% CE (COMPLEXOMETRIC)
TRACE ANALYSIS, ICP		B 192 PPM; MG 11.4 PPM; CA 6.5 PPM
ICP ASSAY	CONFIRMS CERIUM COMPONENT	CONFIRMS CERIUM COMPONENT
SOLUBILITY	5% IN H ₂ O; CLEAR, COLORLESS SOLUTION	5% IN H ₂ O; CLEAR, COLORLESS SOLUTION
PURITY	PURITY BASED ON TRACE METALS ANALYSIS	>99% BASED ON TRACE METAL ANALYSIS
QUALITY CONTROL		
ACCEPTANCE DATE		MARCH, 2004

Barbara Rajzer, Supervisor
Quality Control
Milwaukee, Wisconsin USA

GFS Chemicals, Inc.
Columbus, Ohio 43223

LOT ANALYSIS
ITEM: 619 SODIUM FORMATE, REAGENT (ACS) **LOT#: P673902**

TEST	PASS/FAIL	NUMERICAL RESULT
1. Assay 99.0% min.	PASS	99.6%
2. Insoluble 0.005%	PASS	<0.005%
3. Chloride 0.001%	PASS	<0.001%
4. Sulfate 0.001%	PASS	<0.001%
5. Calcium 0.005%	PASS	<0.0005%
6. Heavy Metals (as Pb) 0.0005%	PASS	<0.0005%
7. Iron 0.0005%	PASS	<0.0005%

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by: Joan Plowman

Date: 2/4/2008

QC Supervisor: Joan Plowman

Retest Date: 3/24/2011

Certificate of Analysis

EMD Chemicals Inc.
 480 S. Democrat Road
 Gibbstown, NJ 08027
 Phone 856-423-6100
 Fax 856-423-4389

Name: Sodium Aluminate, Hydrated
 Technical
 Item Number: SX02753
 Lot Number: 44281541

Formula: $\text{NaAlO}_2 \cdot x\text{H}_2\text{O}$
 Formula Wt: 81.97
 Data Order No: 000089319

CHARACTERISTIC	REQUIREMENT	RESULTS	UNITS
Assay (complexometric)	Min. 85.0	Max. 78.5	%
Color		White	
Form		Granular powder	

Charles M. Wilson,
 Quality Assurance Manager
 Release Date: 10/13/2004

EMD Chemicals Inc.
 (Formerly EM Science, A Division of EM Industries, Inc.)
 An Affiliate of Merck KGaA, Darmstadt, Germany

Certificate of Analysis
Sodium meta-Silicate, 9-Hydrate, Crystal
'BAKER ANALYZED'® Reagent

Product No. 3868

Lot No. V38144

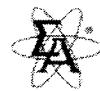
Formula $\text{Na}_2\text{SiO}_3 \cdot 9\text{H}_2\text{O}$ F.W. 284.20

Release Date 09/28/2001

TEST	SPECIFICATION	RESULT
Appearance	Passes Test	Passes Test
Chloride (Cl)	0.01 % max.	<0.005 %
Sulfate (SO_4)	0.01 % max.	0.005 %
Heavy Metals (as Pb)	0.001 % max.	<0.0005 %
Iron (Fe)	0.005 % max.	<0.003 %

The following information is derived from testing completed after the original Certificate of Analysis was prepared. The information was added 06/25/2004.

Assay	Information Only %	96.4 %
-------	--------------------	--------


Country of Origin:	USA
--------------------	-----

Phillipsburg, NJ 08865
 Paris, KY 9001
 Mexico City, Mexico 9002
 Dordrecht, Holland 9001
 Kuala Lumpur, Malaysia 9002

 Kent R. Weber
 Director of Total Quality

J.T. Baker - A Division of Mallinckrodt Baker, Inc. - 222 Red School Lane - Phillipsburg, NJ 08865 - Phone: 908-869-2151 - Fax: 908-869-0906

SIGMA-ALDRICH

Certificate of Analysis

Product Name Glycolic acid solution,
 technical grade, 70 wt. % in H₂O
Product Number 420603
Product Brand Aldrich
CAS Number 79-14-1
Molecular Formula HOCH₂COOH
Molecular Weight 76.05

TEST	SPECIFICATION	LOT 10915KD RESULTS
APPEARANCE	COLORLESS TO AMBER LIQUID	COLORLESS LIQUID
PROTON NMR SPECTRUM	CONFORMS TO STRUCTURE.	CONFORMS TO STRUCTURE.
VENDOR INFORMATION	70.0%-72.0% TOTAL ACID AS GLYCOLIC ACID * 3 GARDNER COLOR (MAXIMUM) * <1% FORMIC ACID * 800 PPM SO ₄ (MAXIMUM) * 6.0 NTU (MAXIMUM) * * DUPONT SPECIFICATION REVISED FEBRUARY 15, 2005 RJM * DUPONT SPECIFICATION REVISED FEBRUARY 15, 2005 RJM	70.80% TOTAL ACID AS GLYCOLIC ACID * 0.798% FORMIC ACID * 1 GARDNER (COLOR) * 111.2 PPM SULFATES * TURBIDITY: 0.55 NTU * PRODUCT OF DUPONT PRODUCT OF DUPONT *SUPPLIER DATA *SUPPLIER DATA
QUALITY CONTROL ACCEPTANCE DATE		SEPTEMBER 2005

Barbara Rajzer, Supervisor
Quality Control
Milwaukee, Wisconsin USA

GFS Chemicals, Inc.
Columbus, Ohio 43223

LOT ANALYSIS
ITEM: 624 ACETIC ACID, GLACIAL, REAGENT (ACS) **LOT#: P780790**

TEST	PASS/FAIL	NUMERICAL RESULT
1. Assay 99.7% min.	PASS	101.3%
2. Color (APHA) 10 max	PASS	< 10
3. Dilution Test Pass test	PASS	Passed Test
4. Residue after evaporation 0.001%	PASS	0.0002%
5. Acetic Anhydride 0.01%	PASS	< 0.01%
6. Chloride 0.0001%	PASS	< 0.0001%
7. Sulfate 0.0001%	PASS	< 0.0001%
8. Heavy metals 0.00005%	PASS	< 0.00005%
9. Iron 0.00002%	PASS	< 0.00002%
10. Substances reducing dichromate-Pass test	PASS	Passed Test
11. Substances reducing permanganate-Pass test	PASS	Passed Test
12. Titrable base 0.0004 meq/g	PASS	< 0.0004 meq/g

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by: Robert Kramer

Date: 2/4/2008

QC Supervisor: Joan Plowman

Retest Date: 2/12/2012

GFS Chemicals, Inc.
Columbus, Ohio 43223

LOT ANALYSIS

ITEM: 681 BUFFER SOLUTION, pH 7.00

LOT#: P678527

TEST	PASS/FAIL	NUMERICAL RESULT
1. pH (@ 25 C) 7.00 +/- 0.01	PASS	7.01
2. NIST Traceable	PASS	As Stated

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by: Robert Kramer

Date: 2/4/2008

QC Supervisor: Joan Plowman

Retest Date: 10/3/2008

GFS Chemicals, Inc.
Columbus, Ohio 43223

LOT ANALYSIS

ITEM: 682 BUFFER SOLUTION, pH 10.00

LOT#: P676271

TEST	PASS/FAIL	NUMERICAL RESULT
1. pH (@ 25 C) 10.00 +/- 0.01	PASS	10.01
2. NIST Traceable	PASS	As Stated

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by: Nicholas E. Dangler

Date: 2/4/2008

QC Supervisor: Joan Plowman

Retest Date: 6/20/2008

ARES Chem

G F S CHEMICALS, INC.
Columbus, Ohio 43222

LOT ANALYSIS

ITEM: 920 ETHYLENE GLYCOL, REAGENT

LOT#: P783656

TEST	PASS/FAIL	NUMERICAL RESULT
1. Boiling range 194-200 C	PASS	194-200 C
2. Specific gravity @ 20 C 1.115-1.116 g/ml	PASS	1.1151
3. Acidity (CH ₃ COOH) 0.01%	PASS	0.00005
4. Water 0.2%	PASS	0.014
5. Residue 0.005%	PASS	<0.005
6. Chloride 0.0005%	PASS	0.00001
7. Iron 0.00002%	PASS	<0.00002

TRACEABLE TO N.I.S.T. (Y/N)? N

Comment:

Reported by: Silaja Nacharaju C/A Print Date: 3/14/08

QC Supervisor: Silaja Nacharaju Quality Assured to Retest Point: 60 months
from shipment

Not for direct use in food, cosmetic or pharmaceuticals.
 Consult warranty limitations at www.gfschemicals.com/terms.asp.
 For resale by GFS authorized distributors only.

G F S CHEMICALS, INC.
Columbus, Ohio 43222

LOT ANALYSIS

ITEM: 658 SODIUM NITRATE, REAGENT (ACS)

LOT#: P786671

TEST	PASS/FAIL	NUMERICAL RESULT
1. Assay 99.0% min.	PASS	100.7%
2. pH of 5% solution 5.5-8.3 @ 25 C	PASS	6.2
3. Insoluble 0.005%	PASS	<0.005%
4. Chloride 0.001%	PASS	<0.001%
5. Iodate 0.0005%	PASS	<0.0005%
6. Nitrite 0.001%	PASS	<0.001%
7. Phosphate 0.0005%	PASS	<0.0005%
8. Sulfate 0.003%	PASS	<0.003%
9. Calcium 0.005%	PASS	<0.005%
10. Magnesium 0.002%	PASS	<0.002%
11. Heavy metals (Pb) 0.0005%	PASS	<0.0005%
12. Iron 0.0003%	PASS	<0.0003%

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by: Robert Kramer C/A Print Date: 3/19/08
 QC Supervisor: Joan Plowman Quality Assured to Retest Point: 60 months
 from shipment
 Not for direct use in food, cosmetic or pharmaceuticals.
 Consult warranty limitations at www.gfschemicals.com/terms.asp.
 For resale by GFS authorized distributors only.

G F S CHEMICALS, INC.
Columbus, Ohio 43222

LOT ANALYSIS

ITEM: 559 SODIUM NITRITE, REAGENT (ACS)

LOT#: P786739

TEST	PASS/ FAIL	NUMERICAL RESULT
1. Assay 97.0% min.	PASS	99.1 %
2. Chloride 0.005%	PASS	< 0.005 %
3. Sulfate 0.01%	PASS	< 0.01 %
4. Calcium 0.01%	PASS	< 0.001 %
5. Heavy metals (as Pb) 0.001%	PASS	< 0.001 %
6. Iron 0.001%	PASS	< 0.001 %
7. Potassium 0.005%	PASS	< 0.001 %
8. Insoluble 0.01%	PASS	< 0.01 %
9. pH of 5% solution 5.5-8.3 @ 25 C	PASS	7.4
10. Appearance - White to pale yellow	PASS	As Stated

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by: Kenneth L. Shafer C/A Print Date: 3/19/08
QC Supervisor: Joan Plowman Quality Assured to Retest Point: 60 months
from shipment

G F S CHEMICALS, INC.
Columbus, Ohio 43222

LOT ANALYSIS

ITEM: 619 SODIUM FORMATE, REAGENT (ACS)

LOT#: P673902

TEST	PASS/FAIL	NUMERICAL RESULT
1. Assay 99.0% min.	PASS	99.6%
2. Insoluble 0.005%	PASS	<0.005%
3. Chloride 0.001%	PASS	<0.001%
4. Sulfate 0.001%	PASS	<0.001%
5. Calcium 0.005%	PASS	<0.0005%
6. Heavy Metals (as Pb) 0.0005%	PASS	<0.0005%
7. Iron 0.0005%	PASS	<0.0005%

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by: Joan Plowman

C/A Print Date: 3/19/08

QC Supervisor: Joan Plowman

Quality Assured to Retest Point: 60 months
from shipment

Not for direct use in food, cosmetic or pharmaceuticals.
 Consult warranty limitations at www.gfschemicals.com/terms.asp.
 For resale by GFS authorized distributors only.

G F S CHEMICALS, INC.
Columbus, Ohio 43222

LOT ANALYSIS

ITEM: 1078 SODIUM CHROMATE, TETRAHYDRATE, REAGENT

LOT#: P568182

TEST	PASS/FAIL	NUMERICAL RESULT
1. Assay 99.0-102.0%	PASS	100.9%
2. Insoluble 0.005%	PASS	<0.005%
3. pH of 5% solution 8.0-9.5	PASS	9.1
4. Chloride 0.005%	PASS	<0.005%
5. Sulfate 0.01%	PASS	<0.01%
6. Aluminum 0.002%	PASS	<0.002%
7. Calcium 0.005%	PASS	<0.005%

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by: Nicholas E. Dangler C/A Print Date: 3/19/08

QC Supervisor: Joan Plowman Quality Assured to Retest Point: 60 months
from shipment

Not for direct use in food, cosmetic or pharmaceuticals.
 Consult warranty limitations at www.gfschemicals.com/terms.asp.
 For resale by GFS authorized distributors only.

ARES Chem

G F S CHEMICALS, INC.
Columbus, Ohio 43222

LOT ANALYSIS

ITEM: 920 ETHYLENE GLYCOL, REAGENT

LOT#: P783656

TEST	PASS/ FAIL	NUMERICAL RESULT
1. Boiling range 194-200 C	PASS	194-200 C
2. Specific gravity @ 20 C 1.115-1.116 g/ml	PASS	1.1151
3. Acidity (CH ₃ COOH) 0.01%	PASS	0.00005
4. Water 0.2%	PASS	0.014
5. Residue 0.005%	PASS	<0.005
6. Chloride 0.0005%	PASS	0.00001
7. Iron 0.00002%	PASS	<0.00002

TRACEABLE TO N.I.S.T. (Y/N)? N

Comment:

Reported by: Silaja Nacharaju C/A Print Date: 3/14/08

QC Supervisor: Silaja Nacharaju Quality Assured to Retest Point: 60 months
from shipment

Not for direct use in food, cosmetic or pharmaceuticals.
 Consult warranty limitations at www.gfschemicals.com/terms.asp.
 For resale by GFS authorized distributors only.

G F S CHEMICALS, INC.
Columbus, Ohio 43222

LOT ANALYSIS

ITEM: 658 SODIUM NITRATE, REAGENT (ACS)

LOT#: P786671

TEST	PASS/FAIL	NUMERICAL RESULT
1. Assay 99.0% min.	PASS	100.7%
2. pH of 5% solution 5.5-8.3 @ 25 C	PASS	6.2
3. Insoluble 0.005%	PASS	<0.005%
4. Chloride 0.001%	PASS	<0.001%
5. Iodate 0.0005%	PASS	<0.0005%
6. Nitrite 0.001%	PASS	<0.001%
7. Phosphate 0.0005%	PASS	<0.0005%
8. Sulfate 0.003%	PASS	<0.003%
9. Calcium 0.005%	PASS	<0.005%
10. Magnesium 0.002%	PASS	<0.002%
11. Heavy metals (Pb) 0.0005%	PASS	<0.0005%
12. Iron 0.0003%	PASS	<0.0003%

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by: Robert Kramer

C/A Print Date: 3/19/08

QC Supervisor: Joan Plowman

Quality Assured to Retest Point: 60 months
from shipment

Not for direct use in food, cosmetic or pharmaceuticals.

Consult warranty limitations at www.gfschemicals.com/terms.asp.

For resale by GFS authorized distributors only.

G F S CHEMICALS, INC.
Columbus, Ohio 43222

LOT ANALYSIS

ITEM: 559 SODIUM NITRITE, REAGENT (ACS)

LOT#: P786739

TEST	PASS/ FAIL	NUMERICAL RESULT
1. Assay 97.0% min.	PASS	99.1 %
2. Chloride 0.005%	PASS	< 0.005 %
3. Sulfate 0.01%	PASS	< 0.01 %
4. Calcium 0.01%	PASS	< 0.001 %
5. Heavy metals (as Pb) 0.001%	PASS	< 0.001 %
6. Iron 0.001%	PASS	< 0.001 %
7. Potassium 0.005%	PASS	< 0.001 %
8. Insoluble 0.01%	PASS	< 0.01 %
9. pH of 5% solution 5.5-8.3 @ 25 C	PASS	7.4
10. Appearance - White to pale yellow	PASS	As Stated

TRACEABLE TO N.I.S.T. (Y/N)? Y

Comment:

Reported by: Kenneth L. Shafer C/A Print Date: 3/19/08

QC Supervisor: Joan Plowman Quality Assured to Retest Point: 60 months
from shipment

Potentiodynamic/Potentiostatic Polarization Test Information Form			
Project Name:	ARES	Project#:	81170134
Test Type:	Cyclic Potentiodynamic Polarization	Date Start:	11/14/07
Specimen ID:	EL1196-54	Time Start:	12:00 pm
Data Files:	OCP: EL1196-54-OCP.DTA CPP: EL1196-54-CPP.DTA		
Solution:	AP105-PSC	Atmosphere:	Nitrogen purging
Temperature:	50 °C	Reference Electrode:	SCE
Initial pH:	>13	Final pH:	PR
Starting Potential:	-0.1	V vs. OCP	
Scan Rate:	0.17	mV/s	
Reverse Current	0.79	mA*	
Sample Length:	3.18	cm	
Sample Area:	4.79	cm ²	
ARES AY102 Solution Batch ID:	AP105-PSC PIH>13 Tracking# 68		
Potentiostat:	Bamny Ref 600		
Potentiostat ID:	1437		
Comments:			
Test Performed by:	Feng Gui	Home Phone:	614-777-9599
Project Manager:	Sean Brossia		
Date end:	11/15/07	Time end:	3:00 pm

* Set a value such that the reversal current density is 1mA/cm²;

QA APPROVED

NAME: Clown

DATE: 9-18-08

Potentiodynamic/Potentiostatic Polarization Test Information Form			
Project Name:	ARES	Project#:	81170134
Test Type:	Cyclic Potentiodynamic Polarization	Date Start:	12/03/07
Specimen ID:	EL1196-60	Time Start:	12:00 PM
Data Files:	OCP: EL1196-60 - OCP- DTA CPP: EL1196-60 - CPP- DTA		
Solution:	API05- PSC	Atmosphere:	Nitrogen purging
Temperature:	50 °C	Reference Electrode:	SCE
Initial pH:	>13	Final pH:	>13
Starting Potential:	-0.1	V vs. OCP	Reversal Potential: 1 V vs. SCE Final Potential: -0.1 V vs. OCP
Scan Rate:	0.1	mV/s	
Reverse Current	4.78	mA*	
Sample Length:	3.17	cm	
Sample Area:	4.78	cm ²	Sample Diameter: 0.68 cm
ARES AY102 Solution Batch ID:	API05- PSC pH >13 Tracking #: 68		
Potentiostat:	Gamry Ref 600		
Potentiostat ID:	1437		
Comments:			
Test Performed by:	Feng Gui	Home Phone:	614-777-9599
Project Manager:	Sean Brossia		
Date end:	12/04/07	Time end:	3:00 PM

* Set a value such that the reversal current density is 1mA/cm²;

QA APPROVED

NAME: Cedun

DATE: 1-18-08

Potentiodynamic/Potentiostatic Polarization Test Information Form			
Project Name:	ARES	Project#:	81170135
Test Type:	Potentiostatic	Date Start:	12/17/2007
Specimen ID:	EL1196-63	Time Start:	12:00pm
Data Files:	OCP: EL1196-63-OCP.mpr CPP: EL1196-63-P.S.mpr		
Solution:	AP105-PSC	Atmosphere:	N ₂ Purging
Temperature:	50 °C	Reference Electrode:	SCE
Initial pH:	>13	Final pH:	>13
Starting Potential:	N/A V vs. OCP	Reversal Potential:	N/A V vs. SCE
Scan Rate:	10 mV/s	Final Potential:	N/A V vs. OCP
Reverse Current	N/A mA*	Applied potential for potentiostatic test:	0 V vs. SCE
Sample Length:	3.18 cm	Sample Diameter:	0.68 cm
Sample Area:	4.79 cm ²	Sample initial/final weight:	N/A g
Solution Batch ID:	AP105-PSC PH >13		
Potentiostat:	VMP3		
Potentiostat ID:	568		
Comments:	AP105-PSC - PH >13		
Test Performed by:	Feng Cui	Home Phone:	777-9399
Project Manager:	Sean Brossia		
Date end:	12/20/2007	Time end:	12:00pm

* Set a value such that the reversal current density is 1mA/cm²;

QA APPROVED

NAME: Clown

DATE: 4-18-08

Potentiodynamic/Potentiostatic Polarization Test Information Form			
Project Name:	ARES 2008	Project#:	81170135
Test Type:	CPP	Date Start:	01/21/2008
Specimen ID:	#EL196-b4	Time Start:	12:00 pm
Data Files:	OCP: #EL196-b4 - OCP.mpr CPP: EL196-b4 - CPP.mpr		
Solution:	API05-PS2	Atmosphere:	Nitrogen purging
Temperature:	50 °C	Reference Electrode:	SCE
Initial pH:	>13	Final pH:	>13
Starting Potential:	-0.1	Reversal Potential:	1 V vs. SCE
Scan Rate:	0.1	Final Potential:	-0.1 V vs. SCE
Reverse Current	4.79 mA*		
Sample Length:	3.18 cm	Sample Diameter:	0.68 cm
Sample Area:	4.79 cm²		
ARES AY102 Solution Batch ID:	API05-PS2 tracking# 76 ptb13		
Potentiostat:	OCP (VMP3)		
Potentiostat ID:	1568		
Comments:	a crevice was formed using a PTFE tubing section		
Test Performed by:	Feng Gui	Home Phone:	614-777-9599
Project Manager:	Sean Brossia		
Date end:	01/22/2008	Time end:	4:50 pm

* Set a value such that the reversal current density is 1mA/cm²;

QA APPROVED

NAME: Oldum

DATE: 4-18-08

Potentiodynamic/Potentiostatic Polarization Test Information Form			
Project Name:	ARES 2008	Project#:	81170135
Test Type:	POTENTIOSTATIC @ 0 mV (SCE)	Date Start:	01/23/2008
Specimen ID:	EL1196-65	Time Start:	12:00 pm
Data Files:	OCP: EL1196-65-ocp.mpr EPP: EL1196-65-ps.mpr		
Solution:	API05 - PSC	Atmosphere:	Nitrogen purging
Temperature:	50 °C	Reference Electrode:	SCE
Initial pH:	>13	Final pH:	?13
Starting Potential:	N/A	Reversal Potential:	N/A V vs. SCE
Scan Rate:	N/A	Final Potential:	N/A V vs. SCE
Reverse Current	mA*		
Sample Length:	3-18 cm	Sample Diameter:	0.48 cm
Sample Area:	4.80 cm ²		
ARES AY102 Solution Batch ID:	API05-PSC pH > 13 Tracking # 76		
Potentiostat:	VMP3		
Potentiostat ID:			
Comments:	potentiostatic test @ 0 mV vs. SCE w/ a PTFE tubing spectrum as crevice former		
Test Performed by:	Feng Gui	Home Phone:	614-777-9599
Project Manager:	Sean Brossia		
Date end:	01/25/2008	Time end:	12:00 pm

* Set a value such that the reversal current density is 1mA/cm²;

APPROVED

NAME: Adam

DATE: 4-18-08

Potentiodynamic/Potentiostatic Polarization Test Information Form			
Project Name:	ARES 2008	Project#:	81170135
Test Type:	Potentiostatic @ 0 mV/SCE	Date Start:	1/31/08
Specimen ID:	EL1196-66	Time Start:	~11:00 AM
Data Files:	OCP: EL1196-66 - OCP - mpc. RPP: EL1196-66 - PS - mpr		
Solution:	AP105 - PSC	Atmosphere:	open air
Temperature:	50 °C	Reference Electrode:	SCE
Initial pH:	> 13	Final pH:	13.45
Starting Potential:	NA	Reversal Potential:	NA
Scan Rate:	NA	Final Potential:	NA
Reverse Current	mA*		
Sample Length:	3.18	Sample Diameter:	0.48
Sample Area:	4.80	cm²	cm
ARES AY102 Solution Batch ID:	AP105 - PSC pH > 13 Tracking # 76		
Potentiostat:	UMP3		
Potentiostat ID:	1568		
Comments:	Potentiostatic test @ 0mV VS. SCE against this interface on CPP Sample		
Test Performed by:	Feng Gui	Home Phone:	614-777-9599
Project Manager:	Sean Brossia		
Date end:	2/1/08	Time end:	9:00 AM

* Set a value such that the reversal current density is 1mA/cm²;

QA APPROVED

NAME: Olden

DATE: 4-14-08

Potentiodynamic/Potentiostatic Polarization			
Test Information Form			
Project Name:	ARES 2008	Project#:	81170135
Test Type:	Potentiostatic @ 0 mV /SCE	Date Start:	8/15/08
Specimen ID:	EL 1196-72 8/15/08 AR	Time Start:	9:00 AM
Data Files:	OCP: EL 1196-72 OCP.mpr		
CPP:			
Solution:	AP 105 - PSC # 80	Atmosphere:	open air
Temperature:	50 °C	Reference Electrode:	SCE
Initial pH:	13.52	Final pH:	13.26
Starting Potential:	0.14 V vs. SCE	Reversal Potential:	NA V vs. SCE
Scan Rate:	mV/s	Final Potential:	NA V vs. SCE
Reverse Current	1.1 A mA*		
Sample Length:	cm	Sample Diameter:	0.48 cm
Sample Area:	0.916 cm²		
ARES AY102 Solution Batch ID:	AP 105 - PSC # 80 pH 13.52		
Potentiostat:	VMP 3		
Potentiostat ID:	1568		
Comments:	Potentiostatic test @ 0 mV /SCE OCP for 18 hrs (1/2 coupon in solution; 1d.5 min expose to open air)		
Test Performed by:	Feng Gui	Home Phone:	614-777-9599
Project Manager:	Sean Brossia		
Date end:	8/19/08	Time end:	11:00 AM

* Set a value such that the reversal current density is 1mA/cm²;

QA APPROVED

NAME: C. Chen

DATE: 4-14-08

Potentiodynamic/Potentiostatic Polarization Test Information Form			
Project Name:	ARES 2008	Project#:	81170135
Test Type:	Potentiostatic @ 0-mV/SCE	Date Start:	2/15/08
Specimen ID:	EL 1196-73 AK 2/15/08	Time Start:	9:00 AM
Data Files:	OCP: EL 1196-73 AK 2/15/08 CPP:		
Solution:	AP 105- PSC #79 pH 13.45	Atmosphere:	Nitrogen purging
Temperature:	50 °C	Reference Electrode:	SCE
Initial pH:	13.45	Final pH:	13.20
Starting Potential:	V vs. SCE	Reversal Potential:	V vs. SCE
Scan Rate:	NA mV/s	Final Potential:	NA V vs. SCE
Reverse Current	mA*		
Sample Length:	1.59 cm	Sample Diameter:	0.48 cm
Sample Area:	38.88 cm ²		
ARES AY102 Solution Batch ID:	AP -105 PSC #79 pH 13.52		
Potentiostat:	VMP3		
Potentiostat ID:	1568		
Comments:	Potentiostatic test @ 0 mV/SCE 1/2 coupon immersion OCP for 18 hrs 16.0 mm expose to air		
Test Performed by:	Feng Gui	Home Phone:	614-777-9599
Project Manager:	Sean Brossia		
Date end:	2/19/08	Time end:	11:00 AM

* Set a value such that the reversal current density is 1mA/cm²;

QA APPROVED

NAME: Cedars

DATE: 4-14-08

Potentiodynamic/Potentiostatic Polarization Test Information Form			
Project Name:	ARES 2008	Project#:	81170135
Test Type:	CPP	Date Start:	4/10/08
Specimen ID:	EL 1196-75	Time Start:	11:00 AM
Data Files:	OCP: EL 1196-75 OCP. mpr CPP: EL 1196-75 CPP. corr		
Solution:	AP 105 - PSC # 79	Atmosphere:	open air
Temperature:	50 °C	Reference Electrode:	SCE
Initial pH:	13.45	Final pH:	13.20
Starting Potential:	-0.1 V vs. SCE	Reversal Potential:	1 V vs. SCE
Scan Rate:	0.17 mV/s	Final Potential:	-0.1 V vs. SCE
Reverse Current	0.41 mA*	ocp	
Sample Length:	1.60 cm	Sample Diameter:	0.48 cm
Sample Area:	0.41 cm ²		
ARES AY102 Solution Batch ID:	AP 105 - PSC # 79 (Tracking #) p14 13.45		
Potentiostat:	OCP VMP 3	CPP	Par 8173
Potentiostat ID:	1568	1347	
Comments: 1/2 coupon immersion OCP on VMP 3 CPP on Par 8173			
Test Performed by:	Feng Gui	Home Phone:	614-777-9599
Project Manager:	Sean Brossia		
Date end:	4/10/08	Time end:	9:00 AM

* Set a value such that the reversal current density is 1mA/cm²;

QA APPROVED

NAME: Clown

DATE: 4-14-08

Potentiodynamic/Potentiostatic Polarization			
Test Information Form			
Project Name:	ARES 2008	Project#:	81170135
Test Type:	Potentiostatic @ 0 mv / SCE	Date Start:	8/28/08
Specimen ID:	EL 1196 - 76	Time Start:	12:00
Data Files:	OCPI: EL 1196 - 76 OCP - MPR		
	CPP:		
Solution:	AP 105 - PSC # 79	Atmosphere:	open air
Temperature:	Room Temperature	Reference Electrode:	SCE
Initial pH:	13.45	Final pH:	13.36
Starting Potential:	NA	V vs. SCE	
Scan Rate:		mV/s	
Reverse Current		mA*	
Sample Length:	3.42	cm	
Sample Area:	3.65	cm ²	
ARES AY102 Solution Batch ID:	AP 105 - PSC # 79 pH 13.45		
Potentiostat:	CCP VMP3		
Potentiostat ID:	1568		
Comments:	Potentiostat @ 0 mv / SCE at Room temperature OCP for 18 hrs 7.6 mm expose to air at room temperature		
Test Performed by:	Feng Gui	Home Phone:	614-777-9599
Project Manager:	Sean Brossia		
Date end:	2/28/07	Time end:	9:00 AM

* Set a value such that the reversal current density is 1mA/cm²;

QA APPROVED

NAME: Cedun

DATE: 4-14-08

Potentiodynamic/Potentiostatic Polarization Test Information Form			
Project Name:	ARES 2008	Project#:	81170135
Test Type:	Potentiostatic @ 100 mV/S OCP	Date Start:	8/25/08
Specimen ID:	EL1196-77	Time Start:	11:00 AM
Data Files:	OCP: EL1196-77 - OCP.mpr. CPP: EL1196-77 - PS.mpr,	open air	
Solution:	AP 105 - PSC #79	Atmosphere:	Nitrogen purging
Temperature:	50 °C	Reference Electrode:	SCE
Initial pH:	13.45	Final pH:	13.30
Starting Potential:	N/A	Reversal Potential:	N/A V vs. SCE
Scan Rate:	mV/s	Final Potential:	N/A V vs. SCE
Reverse Current	N/A mA*	Sample Diameter:	0.48 cm
Sample Length:	1.28 cm		
Sample Area:	1.93 cm²		
ARES AY102 Solution Batch ID:	AP 105 - PSC #79 pH 13.45		
Potentiostat:	VMP 9	AK 25/08	
Potentiostat ID:	1568	Room 50 °C	
Comments:	Potentiostatic at 100 mV VS OCP OCP for 18 hrs at 50 °C 1/2 immersion coupon 19.1 mm expose to air		
Test Performed by:	Feng Gui	Home Phone:	614-777-9599
Project Manager:	Sean Brossia		
Date end:	8/28/08	Time end:	9:00 AM

* Set a value such that the reversal current density is 1mA/cm²;

sent solution for NO₃ NO₂ at DAT

QA APPROVED

NAME: Cedars

DATE: 4-14-08

Potentiodynamic/Potentiostatic Polarization Test Information Form			
Project Name:	ARES 2008	Project#:	81170135
Test Type:	CPP	Date Start:	3/3/08
Specimen ID:	EL1196-81	Time Start:	11:00 AM
Data Files:	OCP: EL1196-81 OCP.mpr CPP: EL1196-81 CPP.COU		
Solution:	AP 105 - PSC # 81	Atmosphere:	open air
Temperature:	Room Temperature	Reference Electrode:	SCE
Initial pH:	13.38	Final pH:	13.20
Starting Potential:	-0.1	OCP	1 V vs. SCE
Scan Rate:	0.17	mV/s	Final Potential: ~0.1 V vs. SCE
Reverse Current	4.716	mA*	OCF
Sample Length:	3.17	cm	
Sample Area:	4.716	cm ²	Sample Diameter: cm
ARES AY102 Solution Batch ID:	AP 105 - PSC pH 13.38 Tracking # 86 AK 3/6/08		
Potentiostat:	VMPS	Pas 273 (CPP)	
Potentiostat ID:	1568	1347	
Comments:	OCP for 18 hrs. open to air full coupon immersion CPP on Pas 273 open air full immersion		
Test Performed by:	Feng Gui	Home Phone:	614-777-9599
Project Manager:	Sean Brossia		
Date end:	3/5/08	Time end:	8:00 AM

* Set a value such that the reversal current density is 1mA/cm²;

QA APPROVED

NAME: Cedric

DATE: 4-14-08

Potentiodynamic/Potentiostatic Polarization Test Information Form			
Project Name:	ARES	Project#:	81170135
Test Type:	CPP	Date Start:	03/24/08
Specimen ID:	#EL1196-89	Time Start:	1:00 pm
Data Files:	OCP: #EL1196-89-OCP.mpr CPP: #EL1196-89-CPD.Cur		
Solution:	SY103-PIL	Atmosphere:	N ₂ purging
Temperature:	50 °C	Reference Electrode:	SCE
Initial pH:	13+	Final pH:	13+
Starting Potential:	~0.1 V vs. OCP	Reversal Potential:	1 V vs. SCE
Scan Rate:	0.17 mV/s	Final Potential:	~0.1 V vs. OCP
Reverse Current	4.77 mA*	Applied potential for potentiostatic test:	N/A V vs. SCE
Sample Length:	3.18 cm	Sample Diameter:	0.48 cm
Sample Area:	4.77 cm ²	Sample initial/final weight:	3.5330 g/ g
Solution Batch ID:	ARES SY103-PIL Tracking # 85		
Potentiostat:	VMP3 (OCP)	PAR 273 (CPD)	
Potentiostat ID:	1568	1347	
Comments:	full immersion		
Test Performed by:	Feng Gui	Home Phone:	777-9599
Project Manager:	Sean Brossia		
Date end:	03/27/08	Time end:	8:40 AM

* Set a value such that the reversal current density is 1mA/cm²;

QA APPROVED

NAME: Cedric

DATE: 4-14-08

Potentiodynamic/Potentiostatic Polarization Test Information Form			
Project Name:	ARES	Project#:	81170135
Test Type:	CPP	Date Start:	03/24/08
Specimen ID:	#ELIM6-90-	Time Start:	1:00 pm
Data Files:	OCP: #ELIM6-90-OCP.mpr CPP: #ELIM6-90-CPP.Cur		
Solution:	AW105 - PIL	Atmosphere:	N ₂ purging
Temperature:	50 °C	Reference Electrode:	SCE
Initial pH:	13+	Final pH:	13+
Starting Potential:	~ -1 V vs. OCP	Reversal Potential:	1 V vs. SCE
Scan Rate:	0.17 mV/s	Final Potential:	~ -1 V vs. OCP
Reverse Current	4.75 mA*	Applied potential for potentiostatic test:	0.1 A V vs. SCE
Sample Length:	3.16 cm	Sample Diameter:	0.68 cm
Sample Area:	4.75 cm ²	Sample initial/final weight:	3.5451 g
Solution Batch ID:	ARES AW105 - PIL Tracking # 86		
Potentiostat:	VMP3 (OCP)	PAR273 (CPP)	
Potentiostat ID:	1568	C1347	
Comments:	full immersion		
Test Performed by:	Feng Gui	Home Phone:	722-9529
Project Manager:	Sean Brossia		
Date end:	03/26/08	Time end:	8:30 AM

* Set a value such that the reversal current density is 1mA/cm²;

QA APPROVED

NAME: Colleen

DATE: 4-14-08

Potentiodynamic/Potentiostatic Polarization Test Information Form			
Project Name:	ARES	Project#:	81170135
Test Type:	Potentiostatic	Date Start:	03/27/08
Specimen ID:	EL1196-91	Time Start:	10:30am
Data Files:	OCP: EL1196-91-oop.mpr CPP.mpr		
Solution:	API05-PSe	Atmosphere:	Quiescent
Temperature:	50 °C	Reference Electrode:	SCE
Initial pH:	13+	Final pH:	13+
Starting Potential:	N/A V vs. OCP	Reversal Potential:	N/A V vs. SCE
Scan Rate:	mV/s	Final Potential:	N/A V vs. OCP
Reverse Current	N/A mA*	Applied potential for potentiostatic test:	0 V vs. SCE
Sample Length:	3.17 cm	Sample Diameter:	cm
Sample Area:	0.48 cm ²	Sample initial/final weight:	3.5230 g
Solution Batch ID:	API05-PSe Tracking #: 82		
Potentiostat:	VMP3		
Potentiostat ID:	1568		
Comments:	Potentiostatic @ 0 mV vs. SCE, quiescent, 50 hours check weight loss, half immersion. 0.81" exposed		
Test Performed by:	Fern Gru	Home Phone:	7779591
Project Manager:	Sean Brossia		
Date end:	03/31/08	Time end:	8:30 am

* Set a value such that the reversal current density is 1mA/cm²;

QA APPROVED

NAME: Cladum

DATE: 4-14-08

Potentiodynamic/Potentiostatic Polarization Test Information Form			
Project Name:	ARES	Project#:	81170135
Test Type:	Potentiostatic	Date Start:	03/27/08
Specimen ID:	EL1196-92	Time Start:	10:30 a.m.
Data Files:	OCP: EL1196-92-OCP.mpr CPP:		
Solution:	AP105-PSC	Atmosphere:	quiescent
Temperature:	20.0°C	Reference Electrode:	SCE
Initial pH:	13.1	Final pH:	13.1
Starting Potential:	N/A V vs. OCP	Reversal Potential:	N/A V vs. SCE
Scan Rate:	0.1 mV/s	Final Potential:	N/A V vs. OCP
Reverse Current	N/A mA*	Applied potential for potentiostatic test:	0.05 ^{+0.05} OCP V vs. SCE (76)
Sample Length:	8.17 cm	Sample Diameter:	0.5 cm
Sample Area:	0.168 cm ²	Sample initial/final weight:	0.5 g
Solution Batch ID:	AP105-PSC Tracking #: 82		
Potentiostat:	VMP3	Comments:	Potentiostatic @ +50 mV vs. OCP. Room T. Quiescent, half immersion, 50 hours 0.77" exposed
Potentiostat ID:	1368		
Test Performed by:	Feng An	Home Phone:	777-1349
Project Manager:	Sean Brossia		
Date end:	03/31/08	Time end:	8:30 a.m.

* Set a value such that the reversal current density is 1mA/cm²;

APPROVED

NAME: Cedric
DATE: 4-14-08

Potentiodynamic/Potentiostatic Polarization Test Information Form			
Project Name:	ARES	Project#:	81170135
Test Type:	CPP	Date Start:	04/01/08
Specimen ID:	#ELI96-93	Time Start:	3:40pm
Data Files:	OCP: #ELI96-93-OCP.mpr CPP:	NO Nitrite, 3.85M Nitrate	
Solution:	AP105-PSC	Atmosphere:	N ₂ Sparging
Temperature:	50 °C	Reference Electrode:	SCE
Initial pH:	+13	Final pH:	
Starting Potential:	-0.1 V vs. OCP	Reversal Potential:	1 V vs. SCE
Scan Rate:	0.17 mV/s	Final Potential:	-0.1 V vs. OCP
Reverse Current	4.76 mA*	Applied potential for potentiostatic test:	0 V vs. SCE
Sample Length:	3.17 cm	Sample Diameter:	0.48 cm
Sample Area:	4.76 cm ²	Sample initial/final weight:	3.5295 g/ g
Solution Batch ID:	AP105-PSC Tracking # 87	NO NO ₂ ⁻ 3.85M NO ₃ ⁻ PRI 13+	
Potentiostat:	VMP3 (OCP)		
Potentiostat ID:	1568		
Comments:			
Test Performed by:	Feng Guo	Home Phone:	777-9599
Project Manager:	Sean Brossia		
Date end:	04/03/08	Time end:	12:00pm

* Set a value such that the reversal current density is 1mA/cm²;

QA APPROVED

NAME: Colleen

DATE: 4-14-08

Potentiodynamic/Potentiostatic Polarization Test Information Form			
Project Name:	ARES CPP	Project#:	81170135
Test Type:	EL 1196-98	Date Start:	4/19/08
Specimen ID:	OCP: EL 1196-98.mpr (ocp) CPP: EL 1196-98 CPP.DAT DTA AK 4/11/08	Time Start:	15:00
Solution:	AP 105 - Mixed Super	Atmosphere:	No Purging
Temperature:	50 °C	Reference Electrode:	SCE
Initial pH:	13+	Final pH:	13+
Starting Potential:	-0.1 V vs. OCP	Reversal Potential:	1 V vs. SCE
Scan Rate:	0.17 mV/s	Final Potential:	-0.1 V vs. OCP
Reverse Current	4.76 mA*	Applied potential for potentiostatic test:	V vs. SCE
Sample Length:	3.017 cm	Sample Diameter:	0.48 cm
Sample Area:	4.76 cm ²	Sample initial weight:	3.5230 g
Solution Batch ID:	AP 105 Mixed Superstrate tracking #89 pH > 13 AK 4/10/08		
Potentiostat:	VMP 3 (OCP)	Pas 213 (CPP)	Gamsy
Potentiostat ID:	1568	1347	1A08
Comments:	Full immersion		
Test Performed by:	Amnoyporn Kelley	Home Phone:	614-889-7980
Project Manager:	Sean Brossia		
Date end:	4/11/08	Time end:	8:30 AM

* Set a value such that the reversal current density is 1mA/cm²;

QA APPROVED

NAME: Cedun
DATE: 8-7-08

Potentiodynamic/Potentiostatic Polarization Test Information Form			
Project Name:	ARES	Project#:	81170135
Test Type:	Potentiostatic @ 0 mV VS SCE	Date Start:	4/11/08
Specimen ID:	EL 1196-99	Time Start:	1:00 PM
Data Files:	OCP: EL 1196-99 OCP.mpr CPP: EL 1196-99 PS.mpr		
Solution:	AP-105 PSC #90	Atmosphere:	N ₂ at head space
Temperature:	50 °C	Reference Electrode:	SCE
Initial pH:	13.18	Final pH:	13.47
Starting Potential:	N/A V vs. OCP	Reversal Potential:	N/A V vs. SCE
Scan Rate:	mV/s	Final Potential:	N/A V vs. OCP
Reverse Current	N/A mA*	Applied potential for potentiostatic test:	0 V vs. SCE
Sample Length:	1.52 cm	Sample Diameter:	0.48 cm
Sample Area:	2.3 cm ²	Sample initial/final weight:	3.513 g
Solution Batch ID:	AP 105 - PSC Tracking #90 pH 13+		
Potentiostat:	OCPP.mpr	PS.mpr	
Potentiostat ID:	1568	1568	
Comments:	<ul style="list-style-type: none"> - 50 °C - N₂ Purging above head space - 18 hrs OCP - Potentiostatic @ 0 mV 50 hrs - Half immersion 16.5 mm expose to air 		
Test Performed by:	Nay Kelley	Home Phone:	44 889-7980
Project Manager:	Sean Brossia		
Date end:	4/18/08	Time end:	7:00 AM

* Set a value such that the reversal current density is 1mA/cm²;

* Corrosion Product pluck logging probe when finished

QA APPROVED

NAME: Colin

DATE: 8-2-08

Potentiodynamic/Potentiostatic Polarization Test Information Form			
Project Name:	ARES	Project#:	81170135
Test Type:	CPP	Date Start:	4/15/08
Specimen ID:	EL 1196-100	Time Start:	1:00 PM
Data Files:	OCP: EL 1196-100 OCP. DTA AK 4/15/08 CPP: EL 1196-100 CPP. DTA		
Solution:	Evaporate Supernat	Atmosphere:	N ₂
Temperature:	60 °C	Reference Electrode:	SCE
Initial pH:	14	Final pH:	14.05
Starting Potential:	-0.1 V vs. OCP	Reversal Potential:	1 V vs. SCE
Scan Rate:	0.17 mV/s	Final Potential:	-0.1 V vs. OCP
Reverse Current	4.76 mA*	Applied potential for potentiostatic test:	N/A V vs. SCE
Sample Length:	3.17 cm	Sample Diameter:	0.48 cm
Sample Area:	4.76 cm ²	Sample initial weight:	3.537 g
Solution Batch ID:	Evaporate Supernate Tracking # 191 pH 14		
Potentiostat:	(OCP) Gamry	(CPP) Gamry	
Potentiostat ID:	1A08	1A08	
Comments:	Full immersion; OCP for 18 hrs. CPP @ ± 0.1 VS EOC		
		QA APPROVED	
		NAME: <u>Cledine</u>	
		DATE: <u>8-7-08</u>	
Test Performed by:	Amnayporn Kelley	Home Phone:	614-889-7980
Project Manager:	Sean Brossia		
Date end:	4/17/08	Time end:	3:00 PM

* Set a value such that the reversal current density is 1mA/cm²;

- Solution cloudy when start experiment but turn clear after run ocp over night (top part)
- when finish run CPP saturated chemical settle down in the bottom of the cell

Potentiodynamic/Potentiostatic Polarization			
Test Information Form			
Project Name:	ARES	Project#:	81170135
Test Type:	CPP	Date Start:	4/17/08
Specimen ID:	EL1196-101	Time Start:	8:00 PM
Data Files:	OCP: EL1196-101 OCP + DTA CPP: EL1196-101 CPP + DTA		
Solution:	AP 105 #86	Atmosphere:	N ₂ in solution
Temperature:	Room °C	Reference Electrode:	SCE
Initial pH:	13.95	Final pH:	13.50
Starting Potential:	-0.1 V vs. OCP	Reversal Potential:	1 V vs. SCE
Scan Rate:	0.17 mV/s	Final Potential:	-0.1 V vs. OCP
Reverse Current	4.71 mA*	Applied potential for potentiostatic test:	V vs. SCE
Sample Length:	3.17 cm	Sample Diameter:	0.48 cm
Sample Area:	4.76 cm ²	Sample initial weight:	3.5393 g
Solution Batch ID:	AP 105 PSC Tracking #87 3.85 M Nitrate pH 13.95		
Potentiostat:	OCP Gamry	CPP	Gamry
Potentiostat ID:	1A08	1A08	
Comments:	<ul style="list-style-type: none"> - Full immersion - OCP 18 hrs. - CPP 		
Test Performed by:	Amnoyporn Kelley	Home Phone:	614-889-7980
Project Manager:	Sean Brossia		
Date end:	4/18/08	Time end:	3:00 PM

* Set a value such that the reversal current density is 1mA/cm²;

No corrosion product

QA APPROVED

NAME: Cedars

DATE: 8-7-08

Potentiodynamic/Potentiostatic Polarization Test Information Form			
Project Name:	ARES	Project#:	81170135
Test Type:	CPP	Date Start:	4/18/08
Specimen ID:	EL 1196-102	Time Start:	10:00 AM
Data Files:	OCP: EL 1196-102 OCP.mpr CPP: EL 1196-102 CPP.DTA		
Solution:	AP 10S PSC	Atmosphere:	open to air
Temperature:	50 °C	Reference Electrode:	SCE
Initial pH:	19.18	Final pH:	13.20
Starting Potential:	-0.1 V vs. OCP	Reversal Potential:	1.0 V vs. SCE
Scan Rate:	0.17 mV/s	Final Potential:	-0.1 V vs. OCP
Reverse Current	mA*	Applied potential for potentiostatic test:	N/A V vs. SCE
Sample Length:	3.17 cm	Sample Diameter:	0.48 cm
Sample Area:	4.76 cm ²	Sample initial weight:	3.524 g
Solution Batch ID:	AP 10S -PSC ; tracking # 90 pH 13.18 AK 4/18/08		
Potentiostat:	OCP MNP3 VMP3	CPP Camry	
Potentiostat ID:	1868	140%	
Comments:	<ul style="list-style-type: none"> - Full immersion - OCP 18 hrs - CPP 		
Test Performed by:	Amnoyporn Kelley	Home Phone:	614-889-7980
Project Manager:	Sean Brossia		
Date end:	4/21/08	Time end:	8:00 AM

* Set a value such that the reversal current density is 1mA/cm²;

QA APPROVED

NAME: Olden

DATE: 8-7-08

Potentiodynamic/Potentiostatic Polarization Test Information Form			
Project Name:	ARES	Project#:	81170135
Test Type:	CPP	Date Start:	5/9/08
Specimen ID:	EL 1196 - 103	Time Start:	9:00 AM
Data Files:	OCP: EL1196-103 OCP.mpr CPP: EL1196-103 CPP.DTA		
Solution:	AZ 102 pH 12	Atmosphere:	N ₂ Purging
Temperature:	77 °C	Reference Electrode:	SCE
Initial pH:	12.25	Final pH:	12.16
Starting Potential:	~0.1 V vs. OCP	Reversal Potential:	1 V vs. SCE
Scan Rate:	0.17 mV/s	Final Potential:	~0.1 V vs. OCP
Reverse Current	4.76 mA*	Applied potential for potentiostatic test:	N/A V vs. SCE
Sample Length:	3.17 cm	Sample Diameter:	0.48 cm
Sample Area:	4.76 cm ²	Sample initial weight:	3.533 g
Solution Batch ID:	AZ 102 Tracking # 93 pH 12 (pH 12.25)		
Potentiostat:	OCP VMP3	CPP Gamry	
Potentiostat ID:	1568	1408	
Comments:	Full immersion; OCP for 18 hrs. and then CCP test at 77 °C		
Not corrode end off CPP			
Test Performed by:	Amnoypon Kelley	Home Phone:	614-889-7980
Project Manager:	Sean Brossia		
Date end:	5/8/08	Time end:	2: PM

* Set a value such that the reversal current density is 1mA/cm²;

QA APPROVED

NAME: Oldew

DATE: 8-2-08

Potentiodynamic/Potentiostatic Polarization Test Information Form			
Project Name:	ARES	Project#:	81170135
Test Type:	CPP	Date Start:	8/18/08 AK 11608
Specimen ID:	EL 1196-104	Time Start:	1:30 PM
Data Files:	OCP: EL 1196-104 OCP.mpr CPP: EL 1196-104 CPP		
Solution:	Evaporate supernatant	Atmosphere:	N ₂ Purging
Temperature:	50 °C	Reference Electrode:	SCE
Initial pH:	14	Final pH:	
Starting Potential:	-0.1 V vs. OCP	Reversal Potential:	1 V vs. SCE
Scan Rate:	0.17 mV/s	Final Potential:	-0.1 V vs. OCP
Reverse Current	4.76 mA*	Applied potential for potentiostatic test:	NA V vs. SCE
Sample Length:	3.17 cm	Sample Diameter:	0.48 cm
Sample Area:	4.76 cm ²	Sample Initial weight:	3.526 g
Solution Batch ID:	Evaporate supernatant; pH 14; Tracking # 94		
Potentiostat:	OCP (VMP3)		
Potentiostat ID:	1568		
Comments:	OCP 18 hrs and CPP sample full immersion; T = 50°C N ₂ Purging * Ran out of N ₂ not beable to complete the test; rerun the test on coupon # EL 1196-105		
Test Performed by:	Amnoyporn Kelley	Home Phone:	614-889-7980
Project Manager:	Sean Brossia		
Date end:		Time end:	

* Set a value such that the reversal current density is 1mA/cm²;

QA APPROVED

NAME: Oduw

DATE: 8-7-08

Potentiodynamic/Potentiostatic Polarization Test Information Form			
Project Name:	ARES	Project#:	81170135
Test Type:	CPP	Date Start:	11/18/08
Specimen ID:	EL 1196 - 105	Time Start:	7:00 AM
Data Files:	OCP: EL 1196 - 105 OCP.mpr CPP: EL 1196 - 105 CPP.DTA		
Solution:	Evaporate Supersat	Atmosphere:	N ₂ Purging
Temperature:	50 °C	Reference Electrode:	SCE
Initial pH:	14	Final pH:	14.16
Starting Potential:	-0.1 V vs. OCP	Reversal Potential:	1 V vs. SCE
Scan Rate:	0.17 mV/s	Final Potential:	0.1 V vs. OCP
Reverse Current	1.75 mA*	Applied potential for potentiostatic test:	NA V vs. SCE
Sample Length:	3.17 cm	Sample Diameter:	0.48 cm
Sample Area:	4.75 cm ²	Sample initial weight:	3.525 g
Solution Batch ID:	Evaporate Supersat; pH 14; tracking #94		
Potentiostat:	OCP (VUMP3) CPP. Damsey		
Potentiostat ID:	1568 1408		
Comments:	<ul style="list-style-type: none"> - Full immersion - OCP for 18 hr. - CPP - 50 °C N₂ Purging. 		
Test Performed by:	Amnayporn Kelley	Home Phone:	614-889-7980
Project Manager:	Sean Brossia		
Date end:	11/18/08	Time end:	8:00 PM

* Set a value such that the reversal current density is 1mA/cm²;

QA APPROVED

NAME: Clayton

DATE: 8-7-08

Potentiodynamic/Potentiostatic Polarization Test Information Form			
Project Name:	ARES	Project#:	81170135
Test Type:	CPP	Date Start:	5/15/08
Specimen ID:	EL 1196-106	Time Start:	9:00 AM
Data Files:	OCP: EL1196-106 OCP.mpr CPP: EL1196-106 CPP	Supernate	
Solution:	AP 105 Mixed	Atmosphere:	N_2 purging
Temperature:	50 °C	Reference Electrode:	SCE
Initial pH:	13 ⁺	Final pH:	13 ⁺
Starting Potential:	-0.1 V vs. OCP	Reversal Potential:	0.1 V vs. SCE
Scan Rate:	0.17 mV/s	Final Potential:	-0.1 V vs. OCP
Reverse Current	4.75 mA*	Applied potential for potentiostatic test:	NA V vs. SCE
Sample Length:	3.17 cm	Sample Diameter:	0.48 cm
Sample Area:	4.75 cm ²	Sample initial weight:	3.028 g
Solution Batch ID:	AP 105 Mixed Supernate tracking #96 pH 13 ⁺		
Potentiostat:	UMP3 (OCP)	CPP (Gamsy)	
Potentiostat ID:	1068	1408	
Comments:	<ul style="list-style-type: none"> - Full immersion; 50 °C; N_2 Purging - OCP and CPP 		
Test Performed by:	Amnoyporn Kelley	Home Phone:	614-889-7980
Project Manager:	Sean Brossia		
Date end:	5/15/08	Time end:	12:00 PM

* Set a value such that the reversal current density is 1mA/cm²;

QA APPROVED

NAME: Claw

DATE: 8-2-08

Potentiodynamic/Potentiostatic Polarization Test Information Form			
Project Name:	ARES	Project#:	81170135
Test Type:	CPP	Date Start:	5/15/08
Specimen ID:	EL 1196-107	Time Start:	11:00 AM
Data Files:	OCP: EL 1196-107 OCP.mpr CPP: EL 1196-107 CPP.DTA AP105		
Solution:	Evaporate Supernatant	Atmosphere:	N ₂ Purging
Temperature:	50 °C	Reference Electrode:	SCE
Initial pH:	11.0	Final pH:	11.47
Starting Potential:	-0.1 V vs. OCP	Reversal Potential:	0.1 V vs. SCE
Scan Rate:	0.17 mV/s	Final Potential:	-0.1 V vs. OCP
Reverse Current	4.76 mA*	Applied potential for potentiostatic test:	NA V vs. SCE
Sample Length:	3.17 cm	Sample Diameter:	0.48 cm
Sample Area:	1.76 cm ²	Sample initial weight:	3.519 g
Solution Batch ID:	APP5 Evaporate Supernatant; Tracing # 95 pH 11.0; No NaOH; Na ₂ AlO ₂ x H ₂ O		
Potentiostat:	VMP3 CPP (Gamry)		
Potentiostat ID:	1568 1A08		
Comments:	<ul style="list-style-type: none"> - Full immersion - OCP and CPP - N₂ Purging - 50 °C 		
Test Performed by:	Amnoyporn Kelley	Home Phone:	614-889-7980
Project Manager:	Sean Brossia		
Date end:	5/16/08	Time end:	9:00 AM

* Set a value such that the reversal current density is 1mA/cm²;

QA APPROVED

NAME: Cedric

DATE: 8-7-08

Potentiodynamic/Potentiostatic Polarization Test Information Form			
Project Name:	ARES	Project#:	81170135
Test Type:	CPP	Date Start:	5/29/08
Specimen ID:	EL 1196-108	Time Start:	3:00 PM
Data Files:	OCP: EL 1196-108 OCP.mpr CPP: EL 1196-108 CPP.DFA		
Solution:	AW 105 Supematant	Atmosphere:	No purging
Temperature:	50 °C	Reference Electrode:	SCE
Initial pH:	13.02	Final pH:	13.14
Starting Potential:	-0.1 V vs. OCP	Reversal Potential:	1 V vs. SCE
Scan Rate:	0.17 mV/s	Final Potential:	-0.1 V vs. OCP
Reverse Current	4.74 mA*	Applied potential for potentiostatic test:	V vs. SCE
Sample Length:	3.19 cm	Sample Diameter:	0.48 cm
Sample Area:	4.74 cm ²	Sample initial weight:	3.543 g
Solution Batch ID:	AW 105 Supematant; fracturing 97 pH 13 ⁺		
Potentiostat:	OCP (NMP3)	CPP (Gamry)	
Potentiostat ID:	1568	1A08	
Comments:	OCP 18 hrs - CPP - 50 °C; No purging solution - full immersion		
Test Performed by:	Amnayporn Kelley	Home Phone:	614-889-7980
Project Manager:	Sean Brossia		
Date end:	5/28/08	Time end:	18:00 PM

* Set a value such that the reversal current density is 1mA/cm²;

No corrosion product

QA APPROVED

NAME: Cedars

DATE: 8-7-08

Potentiodynamic/Potentiostatic Polarization Test Information Form			
Project Name:	ARES	Project#:	81170135
Test Type:	CPP	Date Start:	5/8/08
Specimen ID:	EL1196-109	Time Start:	10:00 PM
Data Files:	OCP: BL1196-109 OCP.mpr CPP: BL1196-109 CPP.DTA		
Solution:	SY101	Atmosphere:	N ₂
Temperature:	50 °C	Reference Electrode:	SCE
Initial pH:	13.30	Final pH:	13.50 AK 5/8/08
Starting Potential:	-0.1 V vs. OCP	Reversal Potential:	0.1 V vs. SCE
Scan Rate:	0.17 mV/s	Final Potential:	AK 0.1 V vs. OCP
Reverse Current	4.76 mA*	Applied potential for potentiostatic test:	V vs. SCE
Sample Length:	3.17 cm	Sample Diameter:	0.18 cm
Sample Area:	4.76 cm ²	Sample initial weight:	3.509 g
Solution Batch ID:	SY101; pH 13+; purging #98		
Potentiostat:	OCP (DMP3)	CPP (Gamsg)	
Potentiostat ID:	1568	1408	
Comments:	- OCP 18 hrs - CPP - at 50°C N ₂ purging - full immersion		
Test Performed by:	Amnayporn Kelley	Home Phone:	614-889-7980
Project Manager:	Sean Brossia		
Date end:	5/8/08	Time end:	10:00 PM

* Set a value such that the reversal current density is 1mA/cm²;

Not corroded

QA APPROVED

NAME: Claw

DATE: 8-7-08

Potentiodynamic/Potentiostatic Polarization Test Information Form			
Project Name:	ARES	Project#:	81170135
Test Type:	CPP	Date Start:	5/30/08
Specimen ID:	EL 1196-110	Time Start:	11:00 AM
Data Files:	OCP: EL 1196-110 OCP.mpr CPP: EL 1196-110 CPP.DTA		
Solution:	AY 101-CSL	Atmosphere:	N ₂ Purging
Temperature:	50 °C	Reference Electrode:	SCE
Initial pH:	11.85	Final pH:	13.10
Starting Potential:	-0.1 V vs. OCP	Reversal Potential:	1.0 V vs. SCE
Scan Rate:	0.17 mV/s	Final Potential:	-0.1 V vs. OCP
Reverse Current	4.76 mA*	Applied potential for potentiostatic test:	1.0 V vs. SCE
Sample Length:	3.07 cm	Sample Diameter:	0.48 cm
Sample Area:	4.76 cm ²	Sample Initial weight:	3.475 g
Solution Batch ID:	AY 101-CSL ; Tracking # 99 pH 11.85		
Potentiostat:	OCPP (VMP3)	CPP (Gamry)	
Potentiostat ID:	1568	1408	
Comments:	<ul style="list-style-type: none"> - OCP 18 hrs. - CPP - Full immersion - 50°C - N₂ Purging solution 		
Test Performed by:	Amnoyporn Kelley	Home Phone:	614-889-7980
Project Manager:	Sean Brossia		
Date end:	5/30/08	Time end:	14:00 PM

* Set a value such that the reversal current density is 1mA/cm²;

QA APPROVED

NAME: Cedun

DATE: 8-7-08

Potentiodynamic/Potentiostatic Polarization Test Information Form			
Project Name:	ARES	Project#:	81170135
Test Type:	CPP	Date Start:	6/16/08
Specimen ID:	EL 1196-111	Time Start:	9:00 AM
Data Files:	OCP: EL 1196-111 OCP.mpr CPP: EL 1196-111 CPP.DTA		
Solution:	AY 101 - CSL	Atmosphere:	<i>N₂ Purging</i>
Temperature:	50 °C	Reference Electrode:	SCE
Initial pH:	11.82	Final pH:	11.90
Starting Potential:	-0.1 V vs. OCP	Reversal Potential:	1.0 V vs. SCE
Scan Rate:	0.17 mV/s	Final Potential:	-0.1 V vs. OCP
Reverse Current	4.76 mA*	Applied potential for potentiostatic test:	NA V vs. SCE
Sample Length:	3.17 cm	Sample Diameter:	0.48 cm
Sample Area:	4.76 cm ²	Sample initial weight:	3.51 g
Solution Batch ID:	AY 101 - CSL pH 11.82 Truck May # 100		
Potentiostat:	OCP VMP3	CPP Gamry	
Potentiostat ID:	1568	1A08	
Comments:	<ul style="list-style-type: none"> - OCP for 18 hrs. - CPP - 50°C - N₂ Purging - full immersion <p style="text-align: right;"><i>* Corrosion on coupon</i></p>		
Test Performed by:	Amnoyporn Kelley	Home Phone:	614-889-7980
Project Manager:	Sean Brossia		
Date end:	6/17/08	Time end:	12:00 PM

* Set a value such that the reversal current density is 1mA/cm²;

QA APPROVED

NAME: Cedun

DATE: 8-7-08

Potentiodynamic/Potentiostatic Polarization Test Information Form			
Project Name:	ARES	Project#:	81170135
Test Type:	CPP	Date Start:	7/10/08
Specimen ID:	EL 1196-11d	Time Start:	7/11/08
Data Files:	OCP: EL 1196-11d OCP. DTA CPP: EL 1196-11d CPP. DTA		
Solution:	AY 101- CSL	Atmosphere:	N ₂ Purging
Temperature:	50 °C	Reference Electrode:	SCE
Initial pH:	18.82	Final pH:	18.90
Starting Potential:	-0.01 V vs. OCP	Reversal Potential:	1 V vs. SCE
Scan Rate:	0.17 mV/s	Final Potential:	-0.1 V vs. OCP
Reverse Current	4.76 mA*	Applied potential for potentiostatic test:	NA V vs. SCE
Sample Length:	3.17 cm	Sample Diameter:	0.48 cm
Sample Area:	4.76 cm ²	Sample Initial weight:	3.338 g
Solution Batch ID:	AY 101- CSL Tracking #103; pH 18.82		
Potentiostat:	OCP Gamry	CPP Gamry	
Potentiostat ID:	1A08	1A08	
Comments:	<ul style="list-style-type: none"> - 18 hrs. OCP then CPP - N₂ Purging - Full immersion 		
Test Performed by:	Amnayporn Kelley	Home Phone:	614-889-7980
Project Manager:	Sean Brossia		
Date end:	7/11/08	Time end:	11:00

* Set a value such that the reversal current density is 1mA/cm²;

coupon not cascade

QA APPROVED

NAME: Adam

DATE: 8-7-08

Potentiodynamic/Potentiostatic Polarization Test Information Form			
Project Name:	ARES	Project#:	81170135
Test Type:	CPP	Date Start:	7/23/08
Specimen ID:	EL 1196-113	Time Start:	10:00 AM
Data Files:	OCP: EL 1196-113 OCP.mpr CPP: EL 1196-113 CPP.DTA		
AK 7/23/08			
Solution:	AY 101-CSL	Atmosphere:	Open to air N ₂
Temperature:	Room Temp	Reference Electrode:	SCE
Initial pH:	11.88	Final pH:	11.97
Starting Potential:	-0.1 V vs. OCP	Reversal Potential:	1.0 V vs. SCE
Scan Rate:	0.17 mV/s	Final Potential:	-0.1 V vs. OCP
Reverse Current	4.76 mA*	Applied potential for potentiostatic test:	V vs. SCE
Sample Length:	3.18 cm	Sample Diameter:	0.48 cm
Sample Area:	4.76 cm ²	Sample initial/final weight:	3.59/3.51 g
AY 101-CSL #100 pH 11.88			
Solution Batch ID:			
Potentiostat:	VMP3 (OCP)	CPP	Gammag
Potentiostat ID:	1568	1408	
Comments:	<ul style="list-style-type: none"> - OCP for 18 hrs. - Room Temperature - CPP - N₂ Purge - Full immersion 		
Test Performed by:	Sean Brossia 7/24/08		Home Phone:
Project Manager:			
Date end:			Time end: 12:00 PM

* Set a value such that the reversal current density is 1mA/cm²;

Coupon not corrode

QA APPROVED

NAME: Oldum

DATE: 8-7-08

Potentiodynamic/Potentiostatic Polarization Test Information Form			
Project Name:	ARES	Project#:	81170135
Test Type:	CPP	Date Start:	7/31/08
Specimen ID:	BL 1196 - 114	Time Start:	9:00 AM
Data Files:	OCP: BL 1196 - 114. mpr. OCP CPP: BL 1196 - 114. CPP. DAT		
Solution:	AY 101 - CSL #100	Atmosphere:	N ₂
Temperature:	50 °C	Reference Electrode:	SCE
Initial pH:	12.34	Final pH:	12.33
Starting Potential:	-0.1 V vs. OCP	Reversal Potential:	1.0 V vs. SCE
Scan Rate:	0.17 mV/s	Final Potential:	-0.1 V vs. OCP
Reverse Current	4.76 mA*	Applied potential for potentiostatic test:	V vs. SCE
Sample Length:	3.17 cm	Sample Diameter:	0.48 cm
Sample Area:	4.76 cm ²	Sample initial/final weight:	g/g
Solution Batch ID:	AY 101 - CSL #100 adjusting pH from 11.84 to 12.30 per (feng)		
Potentiostat:	OCPP (VMP3)	CPP (Gamry)	
Potentiostat ID:	1568	1108	
Comments:	Area solution AY 101 - CSL pH 12.34 - T 50 °C - OCP for 18 hr - CPP - Full immersion - N ₂ purging		
Test Performed by:	Noy Kelley	Home Phone:	889-7980
Project Manager:	Sean Brossia		
Date end:	8/1/08	Time end:	14:00 PM

* Set a value such that the reversal current density is 1mA/cm²;

QA APPROVED

NAME: Cedur

DATE: 8-7-08

Potentiodynamic/Potentiostatic Polarization Test Information Form			
Project Name:	ARES	Project#:	81170135
Test Type:	CPP	Date Start:	8/1/08
Specimen ID:	BL 1196-11S OCP	Time Start:	15:00 PM
Data Files:	OCP: BL 1196-11S x0.PAT AZ 8/5/08 CPP: BL 1196-11S CPP.DAT		
Solution:	AY 101 - CSL	Atmosphere:	Na
Temperature:	50 °C	Reference Electrode:	SCE
Initial pH:	12.30	Final pH:	12.40
Starting Potential:	-0.1 V vs. OCP	Reversal Potential:	1.0 V vs. SCE
Scan Rate:	0.17 mV/s	Final Potential:	-0.1 V vs. OCP
Reverse Current	4.76 mA*	Applied potential for potentiostatic test:	V vs. SCE
Sample Length:	3.17 cm	Sample Diameter:	0.48 cm
Sample Area:	4.76 cm ²	Sample initial/final weight:	3.529 g
Solution Batch ID:	AY 101 - CSL pH 12.30 # 105		
Potentiostat:	OCP (Gamry 1408) 1408		
Potentiostat ID:	408		
Comments:	- Ares solution AY 101 - CSL pH 12.30 Tracking #105 - N ₂ purging - 50 °C - Full immersion - OCP for 18 hrs. - CCP after OCP		
Test Performed by:	Noel Kelley	Home Phone:	889-7480
Project Manager:	Sean Brossia		
Date end:	8/5/08	Time end:	18:00 PM

* Set a value such that the reversal current density is 1mA/cm²;

sample anode after CPP

QA APPROVED

NAME: Cedric

DATE: 8-7-08

Slow Strain Rate
Work Request/Test Information Form

Person Performing Test: JOE GERST Home Phone: 740 548 7747
 Special Hazards: Custic Project Name: ARES 9007
Filled cell Start (Date/Time): 11-2-07 8:15 Finish (Date/Time): 11-5-07 7:15 Project Number: 81170134

TEST PARAMETERS

Material: AART 128 Grade B Test #: 1196-47 SSR System #: 1
 Material ID#: 1196 Extension Rate: 1E-6 in/sec RPM: 694
 Sample #: SCR 1196-47 Strain Rate: 1E-6 sec⁻¹

DATA ACQUISITION

Data File Name: 1196-47.DAT Strip Chart Scale: — Data Acquisition Computer #: 3
 Data Channels: 1+2 Strip Chart Speed: — LVDT or Dial Gage ID#: 181

SAMPLE ENVIRONMENT

Test Solution: AN 107 Gas: None Reference Electrode: SCF
 Initial pH: 11 Temperature: 50 °C Free Corrosion Potential: -315 mV
 Final pH: 10.90 Pressure: 0.00 m Applied Potential: -740 mV

Initial

Overall Length: 8.0 in. Measurement Device: CALIPERS Overall Length: — in.
 Gage Mark Length: 1.819 in. Device ID #: 1497 Gage Mark Distance: 2.038 in.
 Gage Diameter: 0.1255 in. Machined Gage Length: 1.000 in. Gage Diameter: 0.081 in.
 Cross Sectional Area: .012371 in.² Machined Gage Length: 1.000 in. Cross Sectional Area: .005153 in.²

SPECIMEN DIMENSIONS

Final

Pre-Load: 75 lbs. Max. Load 978 lbs. Time to Failure: 62.89 hrs.
 Elongation = 2.038 - 1.819 in. Reduction in Area: .012371 - .005153 in.² Time to Failure: 226405 sec.

$$\% \text{ Elongation} = \frac{\text{Elongation}}{\text{Machined Gage Length}} = \frac{(2.038 - 1.819)}{(1.000)} \times 100 = 21.9 \%$$

$$\% \text{ Reduction} = \frac{\text{Reduction in Area}}{\text{Initial Cross Section Area}} = \frac{(.012371 - .005153)}{(.012371)} \times 100 = 58.3\%$$

$$\text{UTS} = \frac{\text{Max. Load}}{\text{Initial Cross Section Area}} = \frac{(978)}{(.012371)} = 79056 \text{ psi}$$

$$79056 \text{ psi} \times 6.895 \times 10^{-3} = 54509 \text{ MPa}$$

CRACKING

Visual: _____ Crack Mode: _____
 Low Power (30X): _____ Max. Crack Depth: _____ mm
 Metallographic: _____ Crack Velocity: _____ mm/sec

Comments: 100 Ω Resistor

PSTA #2090 Tcontroller #1260 TC #1532

Project Leader's Signature: J. Gerst
 QA 009-SSR Specimens, Tests, & Evaluation
 Revision 2

Page 11

QA APPROVED

Date: 1/7/08
 NAME: C. Durr Approved: September 2004
 DATE: 1-7-08 Written By: J. Gerst & C. Durr

Test Sheet Addendum

Test # 1196-47
Sample # SSR 1196-47
Filar Eye Piece CCT # 0224

Magnification 30 X
inches/graduation .001

Readings
86
85

Avg.
Reading,
graduations * inches/
graduation = Final Diameter,
in.
81 * .001 = .081

Ø -

Comments

Slow Strain Rate
Work Request/Test Information Form

Person Performing Test: JOE GERST Home Phone: 740 548 7747
 Special Hazards: Caustic Project Name: ARES 2007
Filled cell Start (Date/Time): 11-2-07 8:15 Finish (Date/Time): 11-5-07 7:15 Project Number: 81170134

TEST PARAMETERS

Material: AART 128 Grade B Test #: 1196-48 SSR System #: 2
 Material ID#: 1196 Extension Rate: 1E-6 in/sec RPM: 174
 Sample #: SSR 1196-48 Strain Rate: 1E-6 sec⁻¹

DATA ACQUISITION

Data File Name: 1196-48.DAT Strip Chart Scale: — Data Acquisition Computer #: 3
 Data Channels: 15 + 16 Strip Chart Speed: — LVDT or Dial Gage ID#: 432

SAMPLE ENVIRONMENT

Test Solution: AN 107 Gas: NON₂ Reference Electrode: SCF
 Initial pH: 11 Temperature: 50 °C Free Corrosion Potential: -296 mV
 Final pH: 10.88 Pressure: Room Applied Potential: -765 mV

Initial

Overall Length: 9.0 in. Measurement Device: CALIPERS Overall Length: — in.
 Gage Mark Length: 1.772 in. Device ID #: 1497 Gage Mark Distance: 1.997 in.
 Gage Diameter: .1755 ± 0.126 in. Machined Gage Length: 1.000 in. Gage Diameter: .079 ± 0.020 in.
 Cross Sectional Area: .012470 in.²

Final**RESULTS & CALCULATIONS**

Pre-Load: 75 lbs. Max. Load 969 lbs. Time to Failure: 61.57 hrs.
 Elongation = 1.997 - 1.772 in. Reduction in Area: .012470 - .00490 in.² Time to Failure: 221649 sec.

$$\% \text{ Elongation} = \frac{\text{Elongation}}{\text{Machined Gage Length}} = \frac{(.225)}{(.000)} \times 100 = 22.5\%$$

$$\% \text{ Reduction} = \frac{\text{Reduction in Area}}{\text{Initial Cross Section Area}} = \frac{(.007568)}{(.012470)} \times 100 = 60.69\%$$

$$\text{UTS} = \frac{\text{Max. Load}}{\text{Initial Cross Section Area}} = \frac{(969)}{(.012470)} = 77078 \text{ psi} \quad 77078 \text{ psi} \times 6.895 \times 10^{-3} = 535.79 \text{ MPa}$$

CRACKING

Visual: NO Crack Mode: —
 Low Power (30X): NO Max. Crack Depth: — mm
 Metallographic: — Crack Velocity: — mm/sec

Comments: 100 Ω Resistor

PSTAT #2088 Tcontroller #1269 TC #1538

APPROVED

Project Leader's Signature: Ch. St.

QA 009-SSR Specimens, Tests, & Evaluation

Revision 2

Page 11

NAME: claud Date: 1/7/08
 Approved: September 2004
 Written By: J. Gerst & C. Durr
 DATE: 1-7-08

Test Sheet Addendum

Test #	<u>1196-48</u>	Readings	
Sample #	<u>SSR 1196-48</u>		<u>99</u>
Filar Eye Piece	<u>CCT # 0224</u>		<u>20</u>
Magnification	<u>30</u>	Avg.	
inches/graduation	<u>.001</u>	Reading, * inches/	= Final Diameter,
		graduations graduation	in.
		<u>.0779</u>	<u>.001</u> <u>.079</u>

Obj.

Comments

**Slow Strain Rate
Work Request/Test Information Form**

Person Performing Test: JOE GERST Home Phone: 780 548 7747
 Special Hazards: Caustic Project Name: _____
 Start (Date/Time): 11-3-07 8:15 Finish (Date/Time): TAKE DOWN 11-5-07 7:15 Project Number: _____

TEST PARAMETERS
 Material: AART 128 Grade B Test #: 1196-49 SSR System #: 6
 Material ID#: 1196 Extension Rate: 1E-6 in/sec RPM: 174
 Sample #: SSR 1196 - 49 Strain Rate: 1E-6 sec⁻¹

DATA ACQUISITION
 Data File Name: 1196-49.DAT Strip Chart Scale: — Data Acquisition Computer #: 11
 Data Channels: 9 + 15 Strip Chart Speed: — LVDT or Dial Gage ID#: 530

SAMPLE ENVIRONMENT
 Test Solution: AN 107 Gas: None Reference Electrode: SCE
 Initial pH: 11 Temperature: 50 °C Free Corrosion Potential: -274 mV
 Final pH: 10.88 Pressure: 200 in. Applied Potential: -790 mV

<u>Initial</u>	<u>SPECIMEN DIMENSIONS</u>	<u>Final</u>
Overall Length: <u>8.0</u> in.	Measurement Device: <u>CALIPERS</u>	Overall Length: <u>8.2</u> in.
Gage Mark Length: <u>1.808</u> in.	Device ID #: <u>1497</u>	Gage Mark Distance: <u>2.021</u> in.
Gage Diameter: <u>0.126</u> in.	Machined Gage Length: <u>1.000</u> in.	Gage Diameter: <u>.077</u> in.
Cross Sectional Area: <u>.012470 in.²</u>		Cross Sectional Area: <u>.004657 in.²</u>

RESULTS & CALCULATIONS
 Pre-Load: 75 lbs. Max. Load 963 lbs. Time to Failure: 61.13 hrs.
 Elongation = 2.021 - 1.808 = .213 in. Reduction in Area: .012470 - .004657 in.² Time to Failure: 220050 sec.

% Elongation =
$$\frac{\text{Elongation}}{\text{Machined Gage Length}} = \frac{(.213)}{(1.000)} \times 100 = 21.3 \%$$
 % Reduction =
$$\frac{\text{Reduction in Area}}{\text{Initial Cross Section Area}} = \frac{(.06783)}{(.012470)} \times 100 = 62.65\%$$

UTS =
$$\frac{\text{Max. Load}}{\text{Initial Cross Section Area}} = \frac{(963)}{(.012470)} = 77227 \text{ psi}$$

$$77227 \text{ psi} \times 6.895 \times 10^{-3} = 530.48 \text{ MPa}$$

CRACKING

Visual: _____ Crack Mode: _____
 Low Power (30X): _____ Max. Crack Depth: _____ mm
 Metallographic: _____ Crack Velocity: _____ mm/sec

Comments: R 100 Resistor

PSTAT # 2115 Tcontroller # 1325 TC 1534

QA APPROVED

Project Leader's Signature: CDL Date: 1/7/08
 QA 009-SSR Specimens, Tests, & Evaluation Approved: September 2004
 Revision 2 Written By: J. Gerst & C. Durr
 Page 11

Test Sheet Addendum

Test #	<u>1196-49</u>	Readings	
Sample #	<u>SSR 119-49</u>	78	
Filar Eye Piece	<u>CCT # 0224</u>	1	
Magnification	<u>30X</u>		
inches/graduation	<u>.001</u>	Avg. Reading, graduations	* inches/ graduation = Final Diameter, in.
		<u>77</u>	<u>.001</u> <u>.077</u>

Comments

Slow Strain Rate
Work Request/Test Information Form

Person Performing Test: Joe Gerst Home Phone: 7405487747
 Special Hazards: Caustic Project Name: ARES 2007
Filled cell Start (Date/Time): 11-26-07 1:30 Finish (Date/Time): 11-28-07 Project Number: 81170134

Material: AART 128 Grade B TEST PARAMETERS Test #: 1196-50 SSR System #: 6
 Material ID#: 1196 Extension Rate: 1E-6 in/sec RPM: 174
 Sample #: SSR 1196-50 Strain Rate: 1E-6 sec⁻¹

DATA ACQUISITION Data File Name: 1196-50.DAT Strip Chart Scale: — Data Acquisition Computer #: 11
 Data Channels: 9 + 15 Strip Chart Speed: — LVDT or Dial Gauge ID#: 530

Tracking #8 SAMPLE ENVIRONMENT
 Test Solution: AP 105 PSC Gas: None Reference Electrode: SCF
 Initial pH: 13.14 Temperature: 50°C Free Corrosion Potential: -242 mV
 Final pH: 13.77 Pressure: Room Applied Potential: 0 mV

<u>Initial</u>	<u>Final</u>
Overall Length: <u>8.0</u> in.	Overall Length: <u>8.2</u> in.
Gauge Mark Length: <u>1.681</u> in.	Gauge Mark Distance: <u>To corroded</u> in.
Gauge Diameter: <u>.1255</u> in.	Gauge Diameter: <u>To measure</u> in.
Cross Sectional Area: <u>.012371</u> in. ²	Cross Sectional Area: <u>—</u> in. ²

Machined Gauge Length: 1.000 in.

RESULTS & CALCULATIONS
 Pre-Load: 75 lbs. Max. Load 955 lbs. Time to Failure: 41.58 hrs.
 D/A Elongation = .158 in. Reduction in Area: — in.² Time to Failure: 149670 sec.

$$\% \text{ Elongation} = \frac{\text{Elongation}}{\text{Machined Gage Length}} = \frac{(.158)}{1.000} \times 100 = 15.8\%$$

$$\% \text{ Reduction} = \frac{\text{Reduction in Area}}{\text{Initial Cross Section Area}} = \frac{(-)}{(-)} \times 100 = \text{—}\%$$

$$\text{UTS} = \frac{\text{Max. Load}}{\text{Initial Cross Section Area}} = \frac{955}{.012371} = 77196 \text{ psi}$$

$$77196 \text{ psi} \times 6.895 \times 10^{-3} = 532.27 \text{ MPa}$$

CRACKING
 Visual: NO Crack Mode: —
 Low Power (30X): YES Max. Crack Depth: — mm
 Metallographic: — Crack Velocity: — mm/sec
 Comments: 100 JL Resistor PSTAT 2115 Controller 1325 TC 1528

Project Leader's Signature: Glenn QA APPROVED 1/7/08
 QA 009 Name: C. Scott Date Approved: April 2006
 Revision #3 Page 11 Prepared By: C. Scott
 DATE: 1-7-08

Test Sheet Addendum

Test #	<u>1196-50</u>
Sample #	<u>SSR 1196-50</u>
Filar Eye Piece	<u>CCT # 0224</u>
Magnification	<u>30 X</u>
Inches/graduation	<u>.001</u>

Readings
100 corrected
to measure

Avg.
Reading, * inches/ = Final Diameter,
graduations graduation in.

_____ _____ _____

Comments

Slow Strain Rate
Work Request/Test Information Form

Person Performing Test:	Joe Gerst	Home Phone:	740 548 7747
Special Hazards:	CAUSTIC	Project Name:	ARES 2007
Filled cell	TAKE DOWN	Project Number:	81170134
Start (Date/Time): 12-3 740	Finish (Date/Time): 12-7-07 8:00		

TEST PARAMETERS			
Material:	NART 128 GRADE B	Test #:	1196-51
Material ID#:	1196	Extension Rate:	1E-6 in/sec
Sample #:	SSR 1196-51	Strain Rate:	1E-6 sec ⁻¹

DATA ACQUISITION			
Data File Name:	1196-51.DAT	Strip Chart Scale:	—
Data Channels:	15 + 6	Strip Chart Speed:	—

SAMPLE ENVIRONMENT			
Test Solution:	AP 105 PSC	Gas:	None
Initial pH:	13.22	Temperature:	50
Final pH:	13.77	Pressure:	Room

SPECIMEN DIMENSIONS			
<u>Initial</u>	<u>Final</u>		
Overall Length:	8.0	Overall Length:	8.2
Gage Mark Length:	1.638	Gage Mark Distance:	1.847
Gage Diameter:	0.125	Gage Diameter:	0.078
Cross Sectional Area:	0.12273 in. ²	Cross Sectional Area:	0.04779 in. ²
	Machined Gage Length:	1.000	

RESULTS & CALCULATIONS			
Pre-Load:	75	Max. Load	982
Elongation =	1.847 - 1.638	in.	Reduction in Area: 0.12273 - 0.04779 in. ²
% Elongation =	$\frac{\text{Elongation}}{\text{Machined Gage Length}} = \frac{(1.209)}{(1.000)} \times 100 = 20.9\%$	% Reduction =	$\frac{\text{Reduction in Area}}{\text{Initial Cross Section Area}} = \frac{(0.07494)}{(0.12273)} \times 100 = 61.06\%$
UTS =	$\frac{\text{Max. Load}}{\text{Initial Cross Section Area}} = \frac{(982)}{(0.12273)} = 80015$	psi	$80015 \text{ psi} \times 6.895 \times 10^{-3} = 551.71 \text{ MPa}$

CRACKING			
Visual:	Crack Mode:		
Low Power (30X):	YCS	Max. Crack Depth:	mm
Metallographic:		Crack Velocity:	mm/sec
Comments:	PT controller #1325 TC 1528		

Project Leader's Signature:	Joe Gerst	QA APPROVED	Date: 1/7/08
QA 009-SSR Specimens, Tests, & Evaluation		NAME: Cedum	Approved: September 2004
Revision 2		DATE: 1-7-08	Written By: J. Gerst & C. Durr

Test Sheet Addendum

Test # 1196-51
 Sample # SSR 1196-51
 Filar Eye Piece CCT # 0224

Magnification 30X
 Inches/graduation .001

Readings
78
0

Avg.
 Reading, * Inches/ = Final Diameter,
 graduations graduation in.
78 .001 .078

θ

Comments

Slow Strain Rate
Work Request/Test Information Form

Person Performing Test: Joe Gerst Home Phone: 740 548 7747
 Special Hazards: Caustic Project Name: 841 ARES 2007
Filled cell Start (Date/Time): 12-10-07 11:15 Finish (Date/Time): 12-13 8:10 Project Number: 81170134

TEST PARAMETERS

Material: AAAT 128 GMd+B Test #: 1196-52 SSR System #: 2
 Material ID#: 1196 Extension Rate: 1E-6 in/sec RPM: 174
 Sample #: SSR 1196 Strain Rate: 1E-6 sec⁻¹

DATA ACQUISITION

Data File Name: 1196.DAT Strip Chart Scale: — Data Acquisition Computer #: 3
 Data Channels: 15 + 16 Strip Chart Speed: — LVDT or Dial Gage ID#: 434

Tracking #: 68 SAMPLE ENVIRONMENT
 Test Solution: AP105 PSC Gas: None Reference Electrode: SCE
 Initial pH: 13.02 Temperature: 50°C Free Corrosion Potential: -289 mV
 Final pH: 13.75 Pressure: Room Applied Potential: — mV

Initial

Overall Length: 8.0 in. Measurement Device: Calipers Overall Length: 8.2 in.
 Gage Mark Length: 1.628 in. Device ID #: 1497 Gage Mark Distance: 1.844 in.
 Gage Diameter: .125 in. Machined Gage Length: 1.000 in. Gage Diameter: .076 in.
 Cross Sectional Area: .012273 in.² Machined Gage Length: 1.000 in. Cross Sectional Area: .004573 in.²

Final**RESULTS & CALCULATIONS**

Pre-Load: 75 lbs. Max. Load 977 lbs. Time to Failure: 61.24 hrs.
 Elongation = 1.844 - 1.628 in. Reduction in Area: .012273 - .004573 in.² Time to Failure: 220465 sec.

$$\% \text{Elongation} = \frac{\text{Elongation}}{\text{Machined Gage Length}} = \frac{(2.16)}{(1.000)} \times 100 = 21.6 \quad \% \quad \% \text{Reduction} = \frac{\text{Reduction in Area}}{\text{Initial Cross Section Area}} = \frac{(.007736)}{(.012273)} \times 100 = 63.03 \quad \%$$

$$\text{UTS} = \frac{\text{Max. Load}}{\text{Initial Cross Section Area}} = \frac{(977)}{(.012273)} = 79608 \text{ psi} \quad 79608 \text{ psi} \times 6.895 \times 10^{-3} = 548.90 \text{ MPa}$$

CRACKING

Visual: NO Crack Mode: _____
 Low Power (30X): _____ Max. Crack Depth: _____ mm
 Metallographic: _____ Crack Velocity: _____ mm/sec

Comments: TC controller 1203 TC 1528

Project Leader's Signature: Ch. St.

QA 009-SSR Specimens, Tests, & Evaluation
 Revision 2

Page 11

QA APPROVED

NAME: Clayton

DATE: 1-7-08

Date: 1/7/08

Approved: September 2004
 Written By: J. Gerst & C. Durr

Test Sheet Addendum

Test # 1196-52
Sample # SSR 1196-52
Filar Eye Piece CCT # 0224

Magnification 30 X
inches/graduation .001

Readings
80
4

Avg.
Reading,
graduations * inches/
graduation = Final Diameter,
in.
76 .001 .076

07

Comments

Slow Strain Rate
Work Request/Test Information Form

Person Performing Test: Joe Gerst Home Phone: 740 548 7747
 Special Hazards: Caustic Project Name: 84 ARES 2007
Filled cell Start (Date/Time): 12-10-07 11:15 Finish (Date/Time): 12-13 8:00 Project Number: 8/170134

TEST PARAMETERS

Material: AART 128 Grade B Test #: 1196-53 SSR System #: 6
 Material ID#: 1196 Extension Rate: 1E-6 in/sec RPM: 174
 Sample #: SSR 1196 Strain Rate: 1E-6 sec⁻¹

DATA ACQUISITION

Data File Name: 1196-53³.DAT Strip Chart Scale: — Data Acquisition Computer #: 11
 Data Channels: 9 + 15 Strip Chart Speed: — LVDT or Dial Gage ID#:

Test Solution: AP105 PSC SAMPLE ENVIRONMENT
 Initial pH: 13.02 Gas: None Reference Electrode: SCE
 Final pH: 13.75 Temperature: 50°C Free Corrosion Potential: -259 mV
 Pressure: Room Applied Potential: 0 mV

Initial

Overall Length: 8.0 in. Measurement Device: Calipers Overall Length: 8.2 in.
 Gage Mark Length: 1.720 in. Device ID #: 1497 Gage Mark Distance: 1,900 in.
 Gage Diameter: .125 in. Machined Gage Length: 1.000 in. Gage Diameter: .095 in.
 Cross Sectional Area: .012273 in.² Machined Gage Length: 1.000 in. Cross Sectional Area: .007089 in.²

Final**RESULTS & CALCULATIONS**

Pre-Load: 75 lbs. Max. Load 973 lbs. Time to Failure: 49.24 hrs.
 Elongation = 1.900 - 1.720 in. Reduction in Area: .012273 - .007089 in.² Time to Failure: 177274 sec.

$$\% \text{ Elongation} = \frac{\text{Elongation}}{\text{Machined Gage Length}} = \frac{(1.80)}{(1.000)} \times 100 = 18.0 \%$$

$$\% \text{ Reduction} = \frac{\text{Reduction in Area}}{\text{Initial Cross Section Area}} = \frac{(.005184)}{(.012273)} \times 100 = 42.24\%$$

$$\text{UTS} = \frac{\text{Max. Load}}{\text{Initial Cross Section Area}} = \frac{(973)}{(.012273)} = 79282 \text{ psi} \quad 79282 \text{ psi} \times 6.895 \times 10^{-3} = 546.65 \text{ MPa}$$

CRACKING

Visual: YES Crack Mode: _____
 Low Power (30X): YES Max. Crack Depth: _____ mm
 Metallographic: _____ Crack Velocity: _____ mm/sec

Comments: 100 V Resistor PSTAT 2115 Controller 1325 TC 1534

QA APPROVED

Project Leader's Signature: Chris Date: _____

QA 009-SSR Specimens, Tests, & Evaluation
 Revision 2

NAME: Clayton Date: _____
 Approved: September 2004
 Written By: J. Gerst & C. Durr
 DATE: 1-7-09

Test Sheet Addendum

Test #	<u>1196-53</u>	Readings			
Sample #	<u>SSR 1196-53</u>	<u>100</u>			
Filar Eye Piece	<u>CCT # 0224</u>	<u>5</u>			
Magnification	<u>30 X</u>	Avg.			
inches/graduation	<u>.001</u>	Reading, graduations	*	Inches/ graduation	= Final Diameter, in.
		<u>95</u>		<u>.001</u>	<u>.095</u>

Comments

Slow Strain Rate
Work Request/Test Information Form

Person Performing Test: Joe Gersf Home Phone: 740548 7747
 Special Hazards: CAUSTIC H07 Project Name: 81170135
Filled cell Start (Date/Time): 2-1-08 1230 Finish (Date/Time): 7-1-08 715 Project Number: _____

Material: AART 128 Grade B TEST PARAMETERS
 Material ID#: 1196 Test #: 1196-54 SSR System #: 1
 Sample #: SSR 1196-54 Extension Rate: 1E-6 in/sec RPM: 6941
 Strain Rate: 1E-6 sec⁻¹

DATA ACQUISITION
 Data File Name: 1196-54.DAT Strip Chart Scale: _____ Data Acquisition Computer #: 3
 Data Channels: 142 Strip Chart Speed: _____ LVDT or Dial Gauge ID#: _____

SAMPLE ENVIRONMENT
 Test Solution: AP 105 Gas: None Reference Electrode: SCF
 Initial pH: 12.98 Temperature: 50°C Free Corrosion Potential: -287 mV
 Final pH: 13.10 Pressure: Room Applied Potential: 0 mV mV

<u>Initial</u> Overall Length: <u>8.0</u> in. Gauge Mark Length: <u>1.708</u> in. Gauge Diameter: <u>0.1245</u> in. Cross Sectional Area: <u>.012175</u> in. ²	<u>Specimen Dimensions</u> Measurement Device: <u>Calipers 1497</u> Device ID #: <u>1497</u> Machined Gauge Length: <u>1.000</u> in.	<u>Final</u> Overall Length: <u>8.2</u> in. Gauge Mark Distance: <u>To corroded</u> in. Gauge Diameter: <u>To corroded</u> in. Cross Sectional Area: <u>To Corroded</u> in. ²
---	---	--

D/A RESULTS & CALCULATIONS
 Pre-Load: 75 lbs. Max. Load 151 lbs. Time to Failure: 53.78 hrs.
 Elongation = .187 in. Reduction in Area: ? in.² Time to Failure: 183606 sec.
 % Elongation =
$$\frac{\text{Elongation}}{\text{Machined Gage Length}} = \frac{(.187)}{1.000} \times 100 = 18.7\%$$
 % Reduction =
$$\frac{\text{Reduction in Area}}{\text{Initial Cross Section Area}} = \frac{(?)}{.012175} \times 100 = ?\%$$

$$\text{UTS} = \frac{\text{Max. Load}}{\text{Initial Cross Section Area}} = \frac{151}{.012175} = 12450 \text{ psi}$$

$$12450 \text{ psi} \times 6.895 \times 10^{-3} = 84.6 \text{ MPa}$$

CRACKING
 Visual: corroded Crack Mode: _____
 Low Power (30X): _____ Max. Crack Depth: _____ mm
 Metallographic: _____ Crack Velocity: _____ mm/sec

Comments: 100Ω Resistor PSTAT#2090 Tcontroller#1260 TC #1528
Scribed X on end of specimen that will be Top

Project Leader's Signature: C. Scott QA APPROVED Date: 2/5/08
 NAME: C. Scott
 QA 009 Revision #3 SSR Specimens, Tests, & Evaluation Page 11 Date Approved: April 2006
 Prepared By: C. Scott
 DATE: 2-5-08

Slow Strain Rate
Work Request/Test Information Form

Person Performing Test: Joe Gersf Home Phone: 740 548 7747
 Special Hazards: Caustic Project Name: ARES
 Filled Cell Start (Date/Time): 3-25-08 9:10 Finish (Date/Time): 3-28-08 7:20 Project Number: 81170135

Material: AART 128 Grade B TEST PARAMETERS
 Test #: 1196-55 SSR System #: J26
 Material ID#: 1196 Extension Rate: 1E-6 in/sec RPM: J26 173
 Sample #: SSR 1196-55 Strain Rate: 1E-6 sec⁻¹

DATA ACQUISITION
 Data File Name: 1196-55.DAT Strip Chart Scale: — Data Acquisition Computer #: J211
 Data Channels: 9 + 15 Strip Chart Speed: — LVDT or Dial Gauge ID#: 530

SAMPLE ENVIRONMENT
 Test Solution: 54103 PIL Gas: No - C Reference Electrode: SCE
 Initial pH: 14.06 Temperature: 50 °C Free Corrosion Potential: -424 mV
 Final pH: 13 + 0 Pressure: Room Applied Potential: — mV

<i>Initial</i>	SPECIMEN DIMENSIONS	<i>Final</i>
Overall Length: <u>8.0</u> in.	Measurement Device: <u>Calipers</u>	Overall Length: <u>8.2</u> in.
Gauge Mark Length: <u>1.467</u> in.	Device ID #: <u>1497</u>	Gauge Mark Distance: <u>1.888</u> in.
Gauge Diameter: <u>.1255</u> in.	Machined Gauge Length: <u>1.000</u> in.	Gauge Diameter: <u>.075</u> in.
Cross Sectional Area: <u>.012370</u> in. ²		Cross Sectional Area: <u>.004418</u> in. ²

RESULTS & CALCULATIONS
 Pre-Load: 75 lbs. Max. Load: 979 lbs. Time to Failure: 61.18 hrs.
 Elongation = .1888 - 1.667 in. Reduction in Area: .004418 in.² Time to Failure: 220.237 sec.

$$\% \text{ Elongation} = \frac{\text{Elongation}}{\text{Machined Gage Length}} = \frac{(1.221)}{(1.000)} \times 100 = 22.1 \quad \% \quad \% \text{ Reduction} = \frac{\text{Reduction in Area}}{\text{Initial Cross Section Area}} = \frac{(.004418)}{(.012370)} \times 100 = 64.28 \%$$

$$\text{UTS} = \frac{\text{Max. Load}}{\text{Initial Cross Section Area}} = \frac{(979)}{(.012370)} = 79142 \text{ psi} \quad 79142 \text{ psi} \times 6.895 \times 10^{-3} = 545.68 \text{ MPa}$$

CRACKING
 Visual: None Crack Mode: _____
 Low Power (30X): _____ Max. Crack Depth: _____ mm
 Metallographic: _____ Crack Velocity: _____ mm/sec

Comments: Temp Controller #9203 TC #1670

Project Leader's Signature: _____

QA APPROVED

QA 009
 Revision #3

SSR Specimens, Tests, & Evaluation
 Page 11

NAME: Coldren Date Approved: April 2006
 Prepared By: C. Scott
 DATE: 3-28-08

Test Sheet Addendum

Test #	<u>1196-55</u>	Readings	
Sample #	<u>SSR 1196-55</u>		<u>87</u>
Filar Eye Piece	<u>CCT # 0224</u>		<u>12</u>
Magnification	<u>30X</u>		<u>75</u>
inches/graduation	<u>.001</u>	Avg. Reading, graduations	<u>.001</u>
		* inches/ graduation	<u>.075</u>
		= Final Diameter, in.	

Comments

Slow Strain Rate
Work Request/Test Information Form

Person Performing Test: Jer Geist Home Phone: 740 548 7747
 Special Hazards: Caustic Project Name: ARES
 Start (Date/Time): 5-25-08 9:55 Finish (Date/Time): 5-28-08 7:20 Project Number: 81170135

Material: AART 128 Grade B TEST PARAMETERS
 Material ID#: 1196 Test #: 1196-56 SSR System #: 1162
 Sample #: SSR 1196-56 Extension Rate: 1E-6 in/sec RPM: 173
 Strain Rate: 1E-6 sec⁻¹

DATA ACQUISITION
 Data File Name: 1196-56.DAT Strip Chart Scale: — Data Acquisition Computer #: 3
 Data Channels: 15 + 16 Strip Chart Speed: — LVDT or Dial Gauge ID#: 434

SAMPLE ENVIRONMENT
 Test Solution: AW Gas: None Reference Electrode: SCF
 Initial pH: 13.6 Temperature: 50 Free Corrosion Potential: -290 mV
 Final pH: pH 13+ Pressure: Room Applied Potential: — mV

SPECIMEN DIMENSIONS
Initial Overall Length: 8.0 in. Measurement Device: Calipers Final Overall Length: 8.2 in.
 Gauge Mark Length: 1.653 in. Device ID #: 1447 Gauge Mark Distance: 1.870 in.
 Gauge Diameter: .1255 in. Machined Gauge Length: 1.000 in. Gauge Diameter: .076 in.
 Cross Sectional Area: .012370 in.² Machined Gauge Length: 1.000 in. Cross Sectional Area: .004537 in.²

RESULTS & CALCULATIONS
 Pre-Load: 75 lbs. Max. Load 977 lbs. Time to Failure: 62.04 hrs.
 Elongation = 1870 - 1.653 in. Reduction in Area: .012370 -.004537 in.² Time to Failure: 223341 sec.

$$\% \text{ Elongation} = \frac{\text{Elongation}}{\text{Machined Gage Length}} = \frac{(1.217)}{(1.000)} \times 100 = 21.7 \%$$

$$\% \text{ Reduction} = \frac{\text{Reduction in Area}}{\text{Initial Cross Section Area}} = \frac{(1.007833)}{(1.012370)} \times 100 = 63.33\%$$

$$\text{UTS} = \frac{\text{Max. Load}}{\text{Initial Cross Section Area}} = \frac{(977)}{(.012370)} = 78980 \text{ psi} \quad 78980 \text{ psi} \times 6.895 \times 10^{-3} = 544.57 \text{ MPa}$$

CRACKING
 Visual: NO Crack Mode: —
 Low Power (30X): ? Max. Crack Depth: — mm
 Metallographic: — Crack Velocity: — mm/sec

Comments: Temp Controller #1236 TC #1668
fitting in corrosion around in crack like areas
and corrosion product in solution removed from cell

Project Leader's Signature: QA APPROVED

QA 009
Revision #3

SSR Specimens, Tests, & Evaluation
Page 11

Date Approved: April 2006
Prepared By: C. Scott

DATE: 3-28-08

Test Sheet Addendum

Test # 1196-56
Sample # SSR 1196-56
Filar Eye Piece CCT # 0224

Magnification 30X
Inches/graduation .001

Readings
81
5

Avg.
Reading, * inches/ = Final Diameter,
graduations graduation in.
76 .001 .076

Comments

Slow Strain Rate
Work Request/Test Information Form

Person Performing Test: Joe Gerst Home Phone: 740 548 7747
 Special Hazards: Caustic Project Name: ARES 2008
Filled, fett Start (Date/Time): 9/20 4:20 08 Took Down: 4:50 Finish (Date/Time): 6:30 Project Number: 8/170135

Material: AART 128 Grade B Test #: 1196-57 SSR System #: 2
 Material ID#: 1196 Extension Rate: 1E-6 in/sec RPM: 173
 Sample #: SSR 1196-57 Strain Rate: 1E-6 sec⁻¹

Data File Name: 1196-57.DAT Strip Chart Scale: — Data Acquisition Computer #: 3
 Data Channels: 15 + 16 Strip Chart Speed: — LVDT or Dial Gauge ID#: 439

Tracking: 85 SAMPLE ENVIRONMENT
 Test Solution: SY103 PIC Gas: None Reference Electrode: SCE
 Initial pH: 13 + Temperature: 78.000 50 C Free Corrosion Potential: -477 mV
 Final pH: 13 + Pressure: 100 m Applied Potential: 0.0 mV

<u>Initial</u>	SPECIMEN DIMENSIONS	<u>Final</u>
Overall Length: <u>8.0</u> in.	Measurement Device: <u>Calipers</u>	Overall Length: <u>8.2</u> in.
Gauge Mark Length: <u>1.728</u> in.	Device ID #: <u>1497</u>	Gauge Mark Distance: <u>1.945</u> in.
Gauge Diameter: <u>.125</u> in.	Machined Gauge Length: <u>1.000</u> in.	Gauge Diameter: <u>.078</u> in.
Cross Sectional Area: <u>.012272</u> in. ²		Cross Sectional Area: <u>.004779</u> in. ²

RESULTS & CALCULATIONS
 Pre-Load: 75 lbs. Max. Load 964 lbs. Time to Failure: 62.21 hrs.
 Elongation = 1.945 - 1.728 in. Reduction in Area: .007493 in.² Time to Failure: 223.954 sec.

$$\% \text{ Elongation} = \frac{\text{Elongation}}{\text{Machined Gage Length}} = \frac{(1.217)}{(1.000)} \times 100 = 121.7 \%$$

$$\% \text{ Reduction} = \frac{\text{Reduction in Area}}{\text{Initial Cross Section Area}} = \frac{(.007493)}{(.012272)} \times 100 = 61.06\%$$

$$\text{UTS} = \frac{\text{Max. Load}}{\text{Initial Cross Section Area}} = \frac{(964)}{(.012272)} = 78554 \text{ psi}$$

$$78554 \text{ psi} \times 6.895 \times 10^{-3} = 541.63 \text{ MPa}$$

Visual: N CRACKING
 Low Power (30X): _____ Crack Mode: _____
 Metallographic: _____ Max. Crack Depth: _____ mm
 Crack Velocity: _____ mm/sec
 Comments: _____

Project Leader's Signature: Ch. Scott Date: 4/14/08 QA APPROVED

QA 009
 Revision #3

SSR Specimens, Tests, & Evaluation
 Page 11

NAME: Ch. Scott Date Approved: April 2006
 Prepared By: C. Scott
 DATE: 4-14-08

Test Sheet Addendum

Test #	<u>1196-57</u>	Readings
Sample #	<u>SSR 1196-57</u>	<u>98</u>
Filar Eye Piece	<u>CCT # 0224</u>	<u>20</u>
		<u>78</u>
Magnification	<u>30 X</u>	Avg.
inches/graduation	<u>.001</u>	Reading, * inches/ graduation = Final Diameter, in.
		<u>78</u> <u>.001</u> <u>.078</u>

Comments

Slow Strain Rate
Work Request/Test Information Form

Person Performing Test: Joe Gerst Home Phone: 7405487747
 Special Hazards: Caustic Project Name: ARES 2008
Filled Cell Start (Date/Time): 4-7-08 9:40 Finish (Date/Time): 4-7-08 7:20 Project Number: 81170135

Material: AL6052 Grade B Test #: 1196-58 SSR System #: 6
 Material ID#: 1196 Extension Rate: 1E-6 in/sec RPM: 173
 Sample #: SSR 1196-58 Strain Rate: 1E-6 sec⁻¹

Data File Name: 1196-58.DAT DATA ACQUISITION
 Strip Chart Scale: — Data Acquisition Computer #: 11
 Data Channels: 9 + 15 Strip Chart Speed: — LVDT or Dial Gauge ID#: 530

Tracking #: 86 SAMPLE ENVIRONMENT
 Test Solution: AW105 PIL Gas: None Reference Electrode: SCF
 Initial pH: 13 + Temperature: 78.0000 SOC Free Corrosion Potential: -193 mV
 Final pH: 13 + Pressure: Room Applied Potential: 0.0 mV

<i>Initial</i>	SPECIMEN DIMENSIONS	<i>Final</i>
Overall Length: <u>8.0</u> in.	Measurement Device: <u>Calipers</u>	Overall Length: <u>8.2</u> in.
Gauge Mark Length: <u>1.636</u> in.	Device ID #: <u>1497</u>	Gauge Mark Distance: <u>1.838</u> in.
Gauge Diameter: <u>.125</u> in.	Machined Gauge Length: <u>1.000</u> in.	Gauge Diameter: <u>.079</u> in.
Cross Sectional Area: <u>.012272</u> in. ²		Cross Sectional Area: <u>.004902</u> in. ²

RESULTS & CALCULATIONS
 Pre-Load: 75 lbs. Max. Load 988 lbs. Time to Failure: 60.28 hrs.
 Elongation = 1.838 - 1.636 in. Reduction in Area: .012272 - .004902 in.² Time to Failure: 217022 sec.

% Elongation =
$$\frac{\text{Elongation}}{\text{Machined Gage Length}} = \frac{(.202)}{(1.000)} \times 100 = 20.2\%$$
 % Reduction =
$$\frac{\text{Reduction in Area}}{\text{Initial Cross Section Area}} = \frac{(.007370)}{(.004902)} \times 100 = 60.06\%$$

UTS =
$$\frac{\text{Max. Load}}{\text{Initial Cross Section Area}} = \frac{(988)}{(.012272)} = 80509 \text{ psi}$$

$$80509 \text{ psi} \times 6.895 \times 10^{-3} = 555.11 \text{ MPa}$$

Visual: None CRACKING
 Low Power (30X): _____ Crack Mode: _____
 Metallographic: _____ Max. Crack Depth: _____ mm
 Crack Velocity: _____ mm/sec

Comments: _____

Project Leader's Signature: John Scott 4/14/08 QA APPROVED

QA 009
 Revision #3

SSR Specimens, Tests, & Evaluation
 Page 11

Date Approved: April 2006
 Prepared By: C. Scott

DATE: 4-14-08

Test Sheet Addendum

Test #	<u>1196-58</u>	Readings			
Sample #	<u>SSR 1196-58</u>		<u>89</u>		
Filar Eye Piece	<u>CCT # 0224</u>		<u>10</u>		
Magnification	<u>30 X</u>				
inches/graduation	<u>.001</u>	Avg. Reading, graduations	*	Inches/ graduation	= Final Diameter, in.
		<u>79</u>		<u>.001</u>	<u>.079</u>

Comments

Slow Strain Rate
Work Request/Test Information Form

Person Performing Test: Joe Gersf Home Phone: 740548774
 Special Hazards: Caustic Project Name: 81170135
 Filled On: 4-15-08 11:55 Start (Date/Time): TAKE DOWN Finish (Date/Time): 7:50 4-18-08 Project Number:

Material: AART 128 Grade B Test #: 1196-59 TEST PARAMETERS
 Material ID#: 1196 Extension Rate: 1E-6 in/sec RPM: 174
 Sample #: SS R 1196-59 Strain Rate: 1E-6 sec⁻¹

DATA ACQUISITION
 Data File Name: 1196-59 Strip Chart Scale: — Data Acquisition Computer #: 3
 Data Channels: 15 + 16 Strip Chart Speed: — LVDT or Dial Gauge ID#: 434

TEST SOLUTION: EU Aquated Supernate SAMPLE ENVIRONMENT
 Gas: NONP Reference Electrode: SCE
 Initial pH: 14+ Temperature: 50 C Free Corrosion Potential: -510 mV
 Final pH: 14+ Pressure: Room Applied Potential: mV

SPECIMEN DIMENSIONS
Initial Overall Length: 8.0 in. Measurement Device: Calipers Final Overall Length: 8.2 in.
 Gauge Mark Length: 1.667 in. Device ID #: 1497 Gauge Mark Distance: 1.876 in.
 Gauge Diameter: .125 in. Gauge Diameter: .1078 in.
 Cross Sectional Area: .012272 in.² Machined Gauge Length: 1.000 in. Cross Sectional Area: .004779 in.²

RESULTS & CALCULATIONS
 Pre-Load: 75 lbs. Max. Load: 967 lbs. Time to Failure: 58.96 hrs.
 Elongation = 1.876 - 1.667 in. Reduction in Area: .012272 - .004779 in.² Time to Failure: 212265 sec.

$$\% \text{Elongation} = \frac{\text{Elongation}}{\text{Machined Gage Length}} = \frac{(1.209)}{(1.000)} \times 100 = 20.9 \quad \% \quad \% \text{Reduction} = \frac{\text{Reduction in Area}}{\text{Initial Cross Section Area}} = \frac{(.007493)}{(.012272)} \times 100 = 61.06 \quad \%$$

$$\text{UTS} = \frac{\text{Max. Load}}{\text{Initial Cross Section Area}} = \frac{(967)}{(.012272)} = 78798 \text{ psi} \quad 78798 \text{ psi} \times 6.895 \times 10^{-6} = 543.3 \text{ MPa}$$

QA APPROVED

Visual: NO NAME: Oldem Crack Mode:
 Low Power (30X): NO Max. Crack Depth: mm
 Metallographic: DATE: 4-18-08 Crack Velocity: mm/sec

Comments: T controller #1236 TC #1670
one side of Fracture was damaged when I dropped it in
the sink

Project Leader's Signature: Chris Scott Date: 4/18/08

Slow Strain Rate
Work Request/Test Information Form

Person Performing Test: Joe Gerst Home Phone: 7405487747
 Special Hazards: C A U T I O N Project Name: ARES
Electrolyte Start (Date/Time): 11:30 5-5-08 Finish (Date/Time): 5-7-08 7:00 A.M. Project Number: 81170155

Material: AART (28) Grade B TEST PARAMETERS
 Test #: 1196-60 SSR System #: 2
 Material ID#: 1196 Extension Rate: 1E-6 in/sec RPM: 174
 Sample #: SSR 1196-60 Strain Rate: 1E-6 sec⁻¹

DATA ACQUISITION
 Data File Name: 1196-60.DAT Strip Chart Scale: — Data Acquisition Computer #: 3
 Data Channels: 15 + 16 Strip Chart Speed: — LVDT or Dial Gauge ID#: 434

Test Solution: AP105-PSC SAMPLE ENVIRONMENT
 Gas: None Reference Electrode: SCE
 Initial pH: 13 + Temperature: 50 °C Free Corrosion Potential: -277 mV
 Final pH: 13 + Pressure: Room Applied Potential: FCP mV

Initial Overall Length: 8.0 in. SPECIMEN DIMENSIONS Final Overall Length: 8.1 in.
 Gauge Mark Length: 1.702 in. Measurement Device: Calipers Gauge Mark Distance: 1.71816 in.
 Gauge Diameter: .126 in. Device ID #: 1497 Gauge Diameter: .118 in.
 Cross Sectional Area: .012469 in.² Machined Gauge Length: 1.000 in. Cross Sectional Area: .010937 in.²

RESULTS & CALCULATIONS Results

Pre-Load: <u>75</u> lbs.	Max. Load: <u>977</u> lbs.	Time to Failure: <u>38.85</u> hrs.
Elongation = <u>1.816 - 1.702</u> in.	Reduction in Area: <u>.012469 - .010937</u> in. ²	Time to Failure: <u>13.9862</u> sec.

$$\% \text{Elongation} = \frac{\text{Elongation}}{\text{Machined Gage Length}} = \frac{(1.14)}{(1.000)} \times 100 = 11.4 \quad \% \quad \% \text{Reduction} = \frac{\text{Reduction in Area}}{\text{Initial Cross Section Area}} = \frac{(.001532)}{(.012469)} \times 100 = 12.2 \%$$

$$\text{UTS} = \frac{\text{Max. Load}}{\text{Initial Cross Section Area}} = \frac{(977)}{(.012469)} = 78354 \text{ psi} \quad 78354 \text{ psi} \times 6.895 \times 10^{-3} = 540.25 \text{ MPa}$$

Visual: None CRACKING
 Low Power (30X): None Crack Mode: _____
 Metallographic: _____ Max. Crack Depth: _____ mm
 Crack Velocity: _____ mm/sec

Comments: stopped at 38.85 hrs and took down some corrosion at interface APPROVED

TC 1670 TController 1236 NAME: John

Project Leader's Signature: John DATE: 6-18-08

04 009 Revision #3 SSR Specimens, Tests, & Evaluation Page 11 Date Approved: April 2006
 Prepared By: C. Scott

Slow Strain Rate
Work Request/Test Information Form

Person Performing Test: Joe Gerst Home Phone: 740 548 7747
 Special Hazards: CAUSTIC Project Name: AKES 2008
 Filter Set: 54-08 Start (Date/Time): 7:15 Take Down Finish (Date/Time): 5-12-08 7:15 Project Number: 81170135

TEST PARAMETERS
 Material: 316L Grade: B Test #: 1196-6061 SSR System #: 2
 Material ID#: 1196 Extension Rate: 1E-6 in/sec RPM: 1747
 Sample #: SSR 1196-6061 Strain Rate: 1E-6 sec⁻¹

DATA ACQUISITION
 Data File Name: 1196-6061.DAT Strip Chart Scale: — Data Acquisition Computer #: 3
 Data Channels: 15 + 16 Strip Chart Speed: — LVDT or Dial Gauge ID#: 454434

TESTING
 Test Solution: A2102 Gas: none Reference Electrode: SCF
 Initial pH: 12.25 Temperature: 77°C Free Corrosion Potential: -239 mV
 Final pH: — Pressure: Room Applied Potential: FCP mV

SPECIMEN DIMENSIONS
 Overall Length: 8.0 in. Measurement Device: Calipers Overall Length: 8.2 in.
 Gauge Mark Length: 1.593 in. Device ID #: 1497 Gauge Mark Distance: 1.802 in.
 Gauge Diameter: .125 in. Machined Gauge Length: 1.000 in. Gauge Diameter: .078 in.
 Cross Sectional Area: .012272 in.² Reduction in Area: .004779 in.² Cross Sectional Area: .004779 in.²

RESULTS & CALCULATIONS
 Pre-Load: 75 lbs. Max. Load 1000 lbs. Time to Failure: 58.25 hrs.
 Elongation = 1.802 - 1.593 in. Reduction in Area: .012272 - .004779 in.² Time to Failure: 209715 sec.

$$\% \text{ Elongation} = \frac{\text{Elongation}}{\text{Machined Gage Length}} = \frac{(1.209)}{(1.000)} \times 100 = 20.9\% \quad \% \text{ Reduction} = \frac{\text{Reduction in Area}}{\text{Initial Cross Section Area}} = \frac{(.007493)}{(.012272)} \times 100 = 61.06\%$$

$$\text{UTS} = \frac{\text{Max. Load}}{\text{Initial Cross Section Area}} = \frac{(1000)}{(.012272)} = 81487 \text{ psi} \quad 81487 \text{ psi} \times 6.895 \times 10^{-3} = 561.85 \text{ MPa}$$

CRACKING
 Visual: NO Crack Mode: _____
 Low Power (30X): NO Max. Crack Depth: _____ mm
 Metallographic: Crack Velocity: _____ mm/sec

Comments: Test controller #1236 TC#1670 QA APPROVED

NAME: Cedric

DATE: 6-18-08

Date: _____

Project Leader's Signature: Chris Date: _____

Test Sheet Addendum

Test #	<u>1196-61</u>	Readings
Sample #	<u>SSR 1196-61</u>	<u>90</u>
Filar Eye Piece	<u>CCT # 0224</u>	<u>12</u>
		<u>78</u>
Magnification	<u>30X</u>	Avg.
inches/graduation	<u>.001</u>	Reading, * inches/ graduation = Final Diameter, in.
		<u>78</u> <u>.001</u> <u>.078</u>

Comments

Slow Strain Rate
Work Request/Test Information Form

Person Performing Test: Joe Gerst Home Phone: 740 548 7747
 Special Hazards: Custic Project Name: ARES 2008
Filled cell Start (Date/Time): 11/10 5-12-08 Finish (Date/Time): 8/11/08 13:35
 Project Number: 81170135

TEST PARAMETERS
 Material: AART128 Grade B Test #: 1196-62 SSR System #: 2
 Material ID#: 196 Extension Rate: 1E-5 in/sec RPM: 174
 Sample #: SSR 1196-62 Strain Rate: 1E-6 sec⁻¹

DATA ACQUISITION
 Data File Name: 1196-62.DAT Strip Chart Scale: — Data Acquisition Computer #: 3
 Data Channels: 15+16 Strip Chart Speed: — LVDT or Dial Gauge ID#: 434

SAMPLE ENVIRONMENT
 Evaporated Supernate tracking #95
 Test Solution: A2+0 Gas: None Reference Electrode: SCE
 Initial pH: 14.0 Temperature: 50 °C Free Corrosion Potential: -333 mV
 Final pH: 14+ Pressure: Room Applied Potential: FCP mV

Initial Final
 Overall Length: 8.0 in. Measurement Device: Calipers Overall Length: 8.2 in.
 Gauge Mark Length: 1.689 in. Device ID #: 1497 Gauge Mark Distance: 1.933 in.
 Gauge Diameter: .124 in. Machined Gauge Length: 1.000 in. Gauge Diameter: .077 in.
 Cross Sectional Area: .012076 in.² Machined Gauge Length: .004657 in.² Cross Sectional Area: .004657 in.²

RESULTS & CALCULATIONS
 Pre-Load: 75 lbs. Max. Load: 993 lbs. Time to Failure: 64.67 hrs.
 Elongation = 1.933 - 1.689 in. Reduction in Area: .012076 - .004657 in.² Time to Failure: 232813 sec.

$$\% \text{Elongation} = \frac{\text{Elongation}}{\text{Machined Gage Length}} = \frac{(.244)}{(.004657)} \times 100 = 24.4 \quad \% \quad \% \text{Reduction} = \frac{\text{Reduction in Area}}{\text{Initial Cross Section Area}} = \frac{(.007419)}{(.012076)} \times 100 = 61.4\%$$

$$\text{UTS} = \frac{\text{Max. Load}}{\text{Initial Cross Section Area}} = \frac{(993)}{(.012076)} = 82227 \text{ psi} \quad 82227 \text{ psi} \times 6.895 \times 10^{-4} = 566.96 \text{ MPa}$$

CRACKING
 Visual: No Crack Mode: _____
 Low Power (30X): No Max. Crack Depth: _____ mm
 Metallographic: Crack Velocity: _____ mm/sec

Comments: TCo-T1011er #1236 TC #1670 QA APPROVED

NAME: Coldren

DATE: 6-19-08

Date: _____

Project Leader's Signature: Ch. Scott (6/15/08)

QA 009
Revision #3

Test Sheet Addendum

Test #	<u>1196-62</u>	Readings	
Sample #	<u>SSR 1196-62</u>		<u>87</u>
Filar Eye Piece	<u>CCT # 0224</u>		<u>10</u>
			<u>77</u>
Magnification	<u>30X</u>	Avg.	
Inches/graduation	<u>.001</u>	Reading, * inches/ = Final Diameter, graduations graduation in.	
		<u>77</u>	<u>.001</u>
			<u>.077</u>

Comments

Slow Strain Rate
Work Request/Test Information Form

Person Performing Test: Joe Gerst Home Phone: 740 548 7747
 Special Hazards: CAUSTIC Project Name: ARES
 Filled CPT: 5-14-08 1:45 Start (Date/Time): 5-19-08 7:10 Finish (Date/Time): 5-19-08 7:10 Project Number: 81170135

Material: AART 128 Grade B3 TEST PARAMETERS
 Material ID#: 1196 Test #: 1196-63 SSR System #: 5
 Sample #: SSR 1196-63 Extension Rate: 1E-6 in/sec RPM: 644
 Strain Rate: 1E-6 sec⁻¹

DATA ACQUISITION
 Data File Name: 1196-63.DAT Strip Chart Scale: 1 Data Acquisition Computer #: 10
 Data Channels: 9 + 16 Strip Chart Speed: 1 LVDT or Dial Gauge ID#: 1209

Test Solution: Trichloro 96 SAMPLE ENVIRONMENT
AP105 Gas: None Reference Electrode: SCF
 Initial pH: 13.5 Temperature: 50°C Free Corrosion Potential: -300 mV
 Final pH: 13.7 Pressure: Room Applied Potential: FCP mV

SPECIMEN DIMENSIONS
Initial Overall Length: 8.0 in. Measurement Device: Calipers Final
 Gauge Mark Length: 1.656 in. Device ID #: 1497 Overall Length: 8.2 in.
 Gauge Diameter: .124 in. Machined Gauge Length: 1.000 in. Gauge Mark Distance: 1.897 in.
 Cross Sectional Area: .012076 in.² Machined Gauge Length: 1.000 in. Gauge Diameter: .077 in.
 Cross Sectional Area: .004657 in.²

RESULTS & CALCULATIONS
 Pre-Load: 75 lbs. Max. Load 996 lbs. Time to Failure: 64.33 hrs.
 Elongation = 1.897 - 1.656 in. Reduction in Area: .012076 - .004657 in.² Time to Failure: 231595 sec.

$$\% \text{Elongation} = \frac{\text{Elongation}}{\text{Machined Gage Length}} = \frac{(.241)}{(1.000)} \times 100 = 24.1\% \quad \% \text{Reduction} = \frac{\text{Reduction in Area}}{\text{Initial Cross Section Area}} = \frac{(.007419)}{(.012076)} \times 100 = 61.44\%$$

$$\text{UTS} = \frac{\text{Max. Load}}{\text{Initial Cross Section Area}} = \frac{(996)}{(.012076)} = 82476 \text{ psi} \quad 82476 \text{ psi} \times 6.895 \times 10^{-3} = 568.67 \text{ MPa}$$

CRACKING
 Visual: NO Crack Mode: _____
 Low Power (30X): NO Max. Crack Depth: _____ mm
 Metallographic: Crack Velocity: _____ mm/sec

Comments: TController #1264 TC#1301 QA APPROVED

NAME: C. Scott

DATE: 6-18-08

Date: _____

Project Leader's Signature: C. Scott 6/5/08

QA 009
Revision #3

SSR Specimens, Tests, & Evaluation
Page 11

Date Approved: April 2006
Prepared By: C. Scott

Test Sheet Addendum

Test #	<u>1196-63</u>	Readings
Sample #	<u>SSR 1196-63</u>	<u>84</u>
Filar Eye Piece	<u>CCT # 0224</u>	<u>7</u>
		<u>77</u>
Magnification	<u>30X</u>	Avg.
inches/graduation	<u>.001</u>	Reading, * inches/ graduation = Final Diameter, in.
		<u>77</u> <u>.001</u> <u>.077</u>

Comments

Slow Strain Rate
Work Request/Test Information Form

Person Performing Test: Joe Gerst Home Phone: 740 548 7747
 Special Hazards: Caustic Project Name: ARES
Filled Cell Start (Date/Time): 5-16-08 11:25 Finish (Date/Time): 5-19-08 7:20 Project Number: 81170135

Material: AART 128 Grade B Test #: 1196-64 SSR System #: 2
 Material ID#: 1196 Extension Rate: 1E-6 in/sec RPM: 174
 Sample #: SSR 1196-64 Strain Rate: 1E-6 sec⁻¹

Data File Name: 1196-64 Strip Chart Scale: — Data Acquisition Computer #: 3
 Data Channels: 15 + 16 Strip Chart Speed: — LVDT or Dial Gauge ID#: 434

Test Solution: AP105 mixed SAMPLE ENVIRONMENT
 Initial pH: 13.7 Gas: NONE Reference Electrode: SCE
 Final pH: 13.7 Temperature: 50 °C Free Corrosion Potential: -324 mV
 Pressure: Room Applied Potential: FCP mV

<u>Initial</u>	SPECIMEN DIMENSIONS	<u>Final</u>
Overall Length: <u>8.0</u>	Measurement Device: <u>Calipers</u>	Overall Length: <u>8.2</u>
Gauge Mark Length: <u>1.660</u>	Device ID #: <u>1497</u>	Gauge Mark Distance: <u>1.876</u>
Gauge Diameter: <u>.124</u>	Machined Gauge Length: <u>1.000</u>	Gauge Diameter: <u>.076</u>
Cross Sectional Area: <u>.012076</u> in. ²		Cross Sectional Area: <u>.004537</u> in. ²

RESULTS & CALCULATIONS
 Pre-Load: 75 lbs. Max. Load: 989 lbs. Time to Failure: 60.27 hrs.
 Elongation = 1.876 - 1.660 in. Reduction in Area: .012076 - .004537 in.² Time to Failure: 216966 sec.

$$\% \text{Elongation} = \frac{\text{Elongation}}{\text{Machined Gage Length}} = \frac{(.216)}{(1.000)} \times 100 = 21.6 \quad \% \quad \% \text{Reduction} = \frac{\text{Reduction in Area}}{\text{Initial Cross Section Area}} = \frac{(.007540)}{(.012076)} \times 100 = 62.43 \quad \%$$

$$\text{UTS} = \frac{\text{Max. Load}}{\text{Initial Cross Section Area}} = \frac{(989)}{(.012076)} = 81896 \text{ psi} \quad 81896 \text{ psi} \times 6.895 \times 10^{-3} = 564.67 \text{ MPa}$$

CRACKING
 Visual: NO Crack Mode: _____
 Low Power (30X): NO Max. Crack Depth: _____ mm
 Metallographic: _____ Crack Velocity: _____ mm/sec

Comments: T Controller #1236 TC #1670

QA APPROVED

NAME: ceam

DATE: 6-18-08

Project Leader's Signature: Chi Shih

QA 009
 Revision #3

Test Sheet Addendum

Test #	<u>1196-64</u>	Readings
Sample #	<u>SS R 1196-64</u>	<u>91</u>
Filar Eye Piece	<u>CCT # 0224</u>	<u>15</u>
		<u>76</u>
Magnification	<u>30X</u>	Avg.
inches/graduation	<u>.001</u>	Reading, * inches/ graduation = Final Diameter, in.
		<u>.001</u> <u>.076</u>

Comments

Slow Strain Rate
Work Request/Test Information Form

Person Performing Test: Joe GersT Home Phone: 7405487747
 Special Hazards: CAUSTIC Project Name: ARES
 Start (Date/Time): 5-28-07 11:00 Finish (Date/Time): 8/17/07 13:55 Project Number: 81170135

TEST PARAMETERS
 Material: AART 128 Grade B Test #: 1196-65 SSR System #: 2
 Material ID#: 1196 Extension Rate: 1E-6 in/sec RPM: 174
 Sample #: SSR 1196-65 Strain Rate: 1E-6 sec⁻¹

DATA ACQUISITION
 Data File Name: 1196-65.DAT Strip Chart Scale: — Data Acquisition Computer #: 3
 Data Channels: 15 + 16 Strip Chart Speed: — LVDT or Dial Gauge ID#: 434

Tracking #: 90 SAMPLE ENVIRONMENT
 Test Solution: AP105 PSC Gas: None Reference Electrode: SCE
 Initial pH: 13.01 Temperature: 50 °C Free Corrosion Potential: -281 mV
 Final pH: 13 + Pressure: Room Applied Potential: -250 mV

SPECIMEN DIMENSIONS
Initial Overall Length: 8.0 in. Measurement Device: Calipers Final Overall Length: 8.2 in.
 Gauge Mark Length: 1.760 in. Device ID #: 1497 Gauge Mark Distance: 1.888 in.
 Gauge Diameter: .1245 in. Machined Gauge Length: 1.000 in. Gauge Diameter: .1175 in.
 Cross Sectional Area: .012174 in.² Cross Sectional Area: .010844 in.²

RESULTS & CALCULATIONS
 Pre-Load: 75 lbs. Max. Load: 985 lbs. RAN: 41.69 hrs.
 Elongation = 1.888 - 1.760 in. Reduction in Area: .012174 - .010844 in.² Time to Failure: 150.072 sec.
 % Elongation =
$$\frac{\text{Elongation}}{\text{Machined Gage Length}} = \frac{(.128)}{(.080)} \times 100 = 12.8\%$$
 % Reduction =
$$\frac{\text{Reduction in Area}}{\text{Initial Cross Section Area}} = \frac{(.001310)}{(.012174)} \times 100 = 10.92\%$$

 UTS =
$$\frac{\text{Max. Load}}{\text{Initial Cross Section Area}} = \frac{(985)}{(.012174)} = 80411 \text{ psi}$$

$$80411 \text{ psi} \times 6.895 \times 10^{-3} = 557.88 \text{ MPa}$$

CRACKING
 Visual: NO Crack Mode: _____
 Low Power (30X): NO Max. Crack Depth: _____ mm
 Metallographic: _____ Crack Velocity: _____ mm/sec

Comments: I controller 1325 TC 1301 PSTAT 2115
2000 Ω Resistor QA APPROVED
stopped at 7:30 A.M. 985 lbs -250 NAME: C. Scott

Project Leader's Signature: C. Scott Date: 6-18-07
 QA 009 Revision #3 SSR Specimens, Tests, & Evaluation Page 11 Date Approved: April 2006
 Prepared By: C. Scott

Slow Strain Rate
Work Request/Test Information Form

Person Performing Test: Joe Genst Home Phone: 740 548 7747
 Special Hazards: CAUSTIC Project Name: ARES
 Filled Cell Start (Date/Time): 6-3-08 2:30 Finish (Date/Time): 6-6-08 Project Number: 81170135

TEST PARAMETERS
 Material: AART 128 Grade B Test #: 1196-66 SSR System #: 2
 Material ID#: 1196 Extension Rate: 1E-6 in/sec RPM: 174
 Sample #: SSR 1196-66 Strain Rate: 1E-6 sec⁻¹

DATA ACQUISITION
 Data File Name: 1196-66.DAT Strip Chart Scale: — Data Acquisition Computer #: 3
 Data Channels: 15+16 Strip Chart Speed: — LVDT or Dial Gauge ID#: 434

Tracking #: 97 SAMPLE ENVIRONMENT
 Test Solution: AW105 Supernate Gas: None Reference Electrode: SCE
 Initial pH: 13+ Temperature: 50°C Free Corrosion Potential: -235 mV
 Final pH: 13+ Pressure: Room Applied Potential: — mV

Initial Final
 Overall Length: 5.0 in. Measurement Device: Calipers Overall Length: 8.2 in.
 Gauge Mark Length: 1.672 in. Device ID #: 1497 Gauge Mark Distance: 1.885 in.
 Gauge Diameter: .1245 in. Machined Gauge Length: 1.000 in. Gauge Diameter: .577 in.
 Cross Sectional Area: .012174 in.² Machined Cross Sectional Area: .004657 in.²

RESULTS & CALCULATIONS
 Pre-Load: 75 lbs. Max. Load: 987 lbs. Time to Failure: 61.87 hrs.
 Elongation = 1.885 - 1.672 in. Reduction in Area: .012174 - .004657 in.² Time to Failure: 222716 sec.

$$\% \text{ Elongation} = \frac{\text{Elongation}}{\text{Machined Gage Length}} = \frac{(.213)}{(1.000)} \times 100 = 21.3 \%$$

$$\% \text{ Reduction} = \frac{\text{Reduction in Area}}{\text{Initial Cross Section Area}} = \frac{(.007517)}{(.012174)} \times 100 = 61.75 \%$$

UTS =
$$\frac{\text{Max. Load}}{\text{Initial Cross Section Area}} = \frac{(987)}{(.012174)} = 81075 \text{ psi}$$

$$81075 \text{ psi} \times 6.895 \times 10^{-3} = 559.01 \text{ MPa}$$

QA APPROVED

Visual: NO NAME: Olden Crack Mode: —
 Low Power (30X): — Max. Crack Depth: — mm
 Metallographic: — Crack Velocity: — mm/sec

Comments: T controller 1825 TC 1670

Project Leader's Signature: Chad Date: 8/4/08

Test Sheet Addendum

Test #	<u>1196-66</u>	Readings
Sample #	<u>SSR 1196-66</u>	<u>88</u>
Filar Eye Piece	<u>CCT # 0224</u>	<u>11</u>
		<u>27</u>
Magnification	<u>30 X</u>	Avg.
inches/graduation	<u>.001</u>	Reading, * inches/ graduation = Final Diameter, In.
		<u>77</u> <u>.001</u> <u>.077</u>

Comments

Slow Strain Rate
Work Request/Test Information Form

Person Performing Test: Joe Gerst Home Phone: 740 548 7747
 Special Hazards: CAUSTIC Project Name: ARES
 Filled cell Start (Date/Time): 6-4-08 8:10 Take down Finish (Date/Time): 6-7-08 6:30 AM
 Project Number: 81170135

Material: AART128 Grade B TEST PARAMETERS Test #: 1196-67 SSR System #: 4
 Material ID #: 1196 Extension Rate: 1E-6 in/sec RPM: 694
 Sample #: SSR 1196-67 Strain Rate: 1E-6 sec⁻¹

DATA ACQUISITION Data File Name: 1196-67.DAT Strip Chart Scale: — Data Acquisition Computer #: 11
 Data Channels: 11 + 12 Strip Chart Speed: — LVDT or Dial Gauge ID #: 1219

TRACKING #8 SAMPLE ENVIRONMENT Test Solution: SP 101 Gas: None Reference Electrode: SCF
 Initial pH: 13+ Temperature: 50 °C Free Corrosion Potential: -206 mV
 Final pH: 13+ Pressure: Room Applied Potential: — mV

INITIAL SPECIMEN DIMENSIONS Overall Length: 8.0 in. Measurement Device: Calipers FINAL
 Gauge Mark Length: 1.676 in. Device ID #: 1497 Overall Length: 8.2 in.
 Gauge Diameter: .1245 in. Machined Gauge Length: 1.000 in. Gauge Mark Distance: 1.900 in.
 Cross Sectional Area: .012174 in.² Machined Gauge Length: 1.000 in. Gauge Diameter: .075 in.
 Cross Sectional Area: .004418 in.²

RESULTS & CALCULATIONS Pre-Load: 75 lbs. Max. Load: 1000 lbs. Time to Failure: 63.70 hrs.
 Elongation = 1.900 - 1.676 in. Reduction in Area: .012174 - .004418 in.² Time to Failure: 229328 sec.

$$\% \text{Elongation} = \frac{\text{Elongation}}{\text{Machined Gage Length}} = \frac{(.224)}{(.1000)} \times 100 = 22.4 \%$$

$$\% \text{Reduction} = \frac{\text{Reduction in Area}}{\text{Initial Cross Section Area}} = \frac{(.007756)}{(.012174)} \times 100 = 63.71 \%$$

$$\text{UTS} = \frac{\text{Max. Load}}{\text{Initial Cross Section Area}} = \frac{(1000)}{(.012174)} = 82143 \text{ psi} \quad 82143 \text{ psi} \times 6.895 \times 10^{-3} = 566.38 \text{ MPa}$$

QA APPROVED
 Visual: NO NAME: Cedem Crack Mode: —
 Low Power (30X): ? DATE: 8-20-08 Max. Crack Depth: — mm
 Metallographic: — Crack Velocity: — mm/sec
 Comments: Temp Controller 1260 TC 1538

Project Leader's Signature: John Scott Date: 8/4/08

Test Sheet Addendum

Test #	<u>1196-67</u>	Readings
Sample #	<u>SSR 1196-67</u>	<u>77</u>
Filar Eye Piece	<u>CCT # 0224</u>	<u>2</u>
		<u>75</u>
Magnification	<u>30X</u>	Avg.
inches/graduation	<u>.001</u>	Reading, * inches/ graduation = Final Diameter, in.
		<u>75</u> <u>.001</u> <u>.075</u>

Comments

Slow Strain Rate
Work Request/Test Information Form

Person Performing Test: MACK LANDERS / Joe Gerst
 Special Hazards: None
 Start (Date/Time): 6/10/08 Finish (Date/Time): 6/13/08
FILED DATE 10:30
 Home Phone: 614-463-8620
 Project Name: ARES 2008
 Project Number: 81170135

Material: AART 128 Grade B
 Material ID#: 1196
 Sample #: SSR 1196-68
 TEST PARAMETERS
 Test #: 1196-68 SSR System #: 4
 Extension Rate: 1E-6 in/sec RPM: 194
 Strain Rate: 1E-6 sec⁻¹

Data File Name: 1196-68 DATA ACQUISITION
 Data Channels: 11 + R Strip Chart Scale: — Data Acquisition Computer #: 11
 Strip Chart Speed: — LVDT or Dial Gauge ID#: 1019

Tracking #: 94 SAMPLE ENVIRONMENT
 Test Solution: A4101 CSL Gas: None Reference Electrode: SCE
 Initial pH: 11.89 Temperature: 50°C = 122°F Free Corrosion Potential: -180 mV
 Final pH: 12.09 Pressure: Room Applied Potential: — mV

Initial Overall Length: 8.0 in. Measurement Device: Calipers Final Overall Length: 8.2 in.
 Gauge Mark Length: 1.6340 in. Device ID #: 1497 Gauge Mark Distance: 1.860 in.
 Gauge Diameter: .124 in. Machined Gauge Length: 1.000 in. Gauge Diameter: .077 in.
 Cross Sectional Area: .012076 in.² Machined Gauge Length: .004657 in. Cross Sectional Area: .004657 in.²

RESULTS & CALCULATIONS
 Pre-Load: 75 lbs. Max. Load 1004 lbs. Time to Failure: *64.00 hrs.
 Elongation = 1.860 - 1.634 in. Reduction in Area: .012076 - .004657 in.² Time to Failure: 230402 sec.

$$\% \text{Elongation} = \frac{\text{Elongation}}{\text{Machined Gage Length}} = \frac{(.226)}{(1.000)} \times 100 = 22.6 \%$$

$$\% \text{Reduction} = \frac{\text{Reduction in Area}}{\text{Initial Cross Section Area}} = \frac{(.007419)}{(.012076)} \times 100 = \frac{61.44}{83.38} \%$$

$$\text{UTS} = \frac{\text{Max. Load}}{\text{Initial Cross Section Area}} = \frac{(1004)}{(.012076)} = 83138 \text{ psi}$$

$$83138 \text{ psi} \times 6.895 \times 10^{-4} = 573.24 \text{ MPa}$$

Visual: No QA APPROVED
 Low Power (30X): 2 NAME: Adam
 Metallographic: — DATE: 8-20-08
 Crack Mode: —
 Max. Crack Depth: — mm
 Crack Velocity: — mm/sec

Comments: TC controller 1260 TC 1670
*Machine stopped for 1.335 hrs at 44.636 hr

Project Leader's Signature: GLS Date: 8/4/08

Test Sheet Addendum

Test #	<u>1196-68</u>	Readings
Sample #	<u>SSR 1196-68</u>	<u>94</u>
Filar Eye Piece	<u>CCT # 0224</u>	<u>17</u>
		<u>77</u>
Magnification	<u>30X</u>	Avg.
inches/graduation	<u>.001</u>	Reading, * inches/ graduation = Final Diameter, in.
		<u>77</u> <u>.001</u> <u>.027</u>

Comments

Slow Strain Rate
Work Request/Test Information Form

Person Performing Test: Joe Gerst Home Phone: 740 548 7747
 Special Hazards: CAUSTIC Project Name: ARES
filled cell Start (Date/Time): 7:45 6-17-08 Take Down Finish (Date/Time): 7.20.08 Project Number: 81170135

Material: AART128 Grade B TEST PARAMETERS
 Test #: 1196-69 SSR System #: 4
 Material ID#: 1196 Extension Rate: 1E-6 in/sec RPM: 694
 Sample #: SSR 1196-69 Strain Rate: 1E-6 sec⁻¹

DATA ACQUISITION
 Data File Name: 1196-69.DAT Strip Chart Scale: — Data Acquisition Computer #: 11
 Data Channels: 11 + 12 Strip Chart Speed: — LVDT or Dial Gauge ID#: 1219

TRACKING 100 SAMPLE ENVIRONMENT
 Test Solution: AY101 CSL Gas: None Reference Electrode: SCE
 Initial pH: 11.82 Temperature: 50 °C Free Corrosion Potential: -782 mV
 Final pH: 12.16 Pressure: Room Applied Potential: FCP mV

Initial Final
 Overall Length: 8.0 in. Measurement Device: Calipers Overall Length: 8.2 in.
 Gauge Mark Length: 1.656 in. Device ID #: 1497 Gauge Mark Distance: 1.860 in.
 Gauge Diameter: .1245 in. Machined Gauge Length: 1.000 in. Gauge Diameter: .075 in.
 Cross Sectional Area: .012174 in.² Machined Cross Sectional Area: .004418 in.²

RESULTS & CALCULATIONS
 Pre-Load: 75 lbs. Max. Load: 988 lbs. Time to Failure: 59.45 hrs.
 Elongation = 1.860 - 1.656 in. Reduction in Area: .012174 - .004418 in.² Time to Failure: 215807 sec.

$$\% \text{Elongation} = \frac{\text{Elongation}}{\text{Machined Gage Length}} = \frac{(1.204)}{(1.000)} \times 100 = 20.4\%$$

$$\% \text{Reduction} = \frac{\text{Reduction in Area}}{\text{Initial Cross Section Area}} = \frac{(.00756)}{(.012174)} \times 100 = 63.7\%$$

$$\text{UTS} = \frac{\text{Max. Load}}{\text{Initial Cross Section Area}} = \frac{(988)}{(.012174)} = 81157 \text{ psi}$$

$$81157 \text{ psi} \times 6.895 \times 10^{-3} = 559.58 \text{ MPa}$$

QA APPROVED
 Visual: None Crack Mode: _____
 Low Power (30X): ? Max. Crack Depth: _____ mm
 Metallographic: _____ Crack Velocity: _____ mm/sec
 Comments: T controller 1264 TC 1538

Project Leader's Signature: Chris Date: 8/4/08

Test Sheet Addendum

Test #	<u>1196-69</u>	Readings
Sample #	<u>SSR 1196-69</u>	<u>78</u>
Filar Eye Piece	<u>CCT # 0224</u>	<u>3</u>
		<u>75</u>
Magnification	<u>30 X</u>	
inches/graduation	<u>.001</u>	
		Avg. Reading, graduations * inches/ graduation = Final Diameter, in.
	<u>75</u>	<u>.001</u> <u>.075</u>

Comments

Slow Strain Rate
Work Request/Test Information Form

Person Performing Test: Joe Gerst Home Phone: 740 548 7747
 Special Hazards: Caustic Project Name: ARES
 Start (Date/Time): 7/13/08 9:00 Finish (Date/Time): 7/13/08 9:00 Project Number: 81170135

TEST PARAMETERS

Material: <u>AART 128 Grade B</u>	Test #: <u>1196-70</u>	SSR System #: <u>2</u>
Material ID#: <u>1196</u>	Extension Rate: <u>1E-6</u> in/sec	RPM: <u>173</u>
Sample #: <u>SSR 1196-70</u>	Strain Rate: <u>1E-6</u> sec ⁻¹	

DATA ACQUISITION

Data File Name: <u>1196-70.DAT</u>	Strip Chart Scale: <u>—</u>	Data Acquisition Computer #: <u>3</u>
Data Channels: <u>15 + KG</u>	Strip Chart Speed: <u>—</u>	LVDT or Dial Gauge ID#: <u>434</u>

SAMPLE ENVIRONMENT

Test Solution: <u>AW105 Supernat</u>	Gas: <u>None</u>	Reference Electrode: <u>SCF</u>
Initial pH: <u>13.17</u>	Temperature: <u>50 °C</u>	Free Corrosion Potential: <u>-269</u> mV
Final pH: <u>13 +</u>	Pressure: <u>Room</u>	Applied Potential: <u>-100</u> mV

SPECIMEN DIMENSIONS

Initial	Final
Overall Length: <u>8.0</u> in.	Overall Length: <u>8.2</u> in.
Gauge Mark Length: <u>1.733</u> in.	Gauge Mark Distance: <u>1.953</u> in.
Gauge Diameter: <u>.124</u> in.	Gauge Diameter: <u>.077</u> in.
Cross Sectional Area: <u>.012076 in.²</u>	Cross Sectional Area: <u>.004657 in.²</u>
Machined Gauge Length: <u>1.000</u> in.	

RESULTS & CALCULATIONS

Pre-Load: <u>75</u> lbs.	Max. Load <u>1074</u> lbs.	Time to Failure: <u>67.78</u> hrs.
Elongation = <u>1.953 - 1.733</u> in.	Reduction in Area: <u>.012076 - .004657 in.²</u>	Time to Failure: <u>244019</u> sec.

$$\% \text{ Elongation} = \frac{\text{Elongation}}{\text{Machined Gage Length}} = \frac{(2.20)}{(1.000)} \times 100 = 22.0 \%$$

$$\% \text{ Reduction} = \frac{\text{Reduction in Area}}{\text{Initial Cross Section Area}} = \frac{(.007419)}{(.012076)} \times 100 = 61.4\%$$

$$\text{UTS} = \frac{\text{Max. Load}}{\text{Initial Cross Section Area}} = \frac{(1074)}{(.012076)} = 89348 \text{ psi}$$

$$89348 \text{ psi} \times 6.895 \times 10^{-3} = 616.06 \text{ MPa}$$

QA APPROVED

Visual: <u>No</u>	Crack Mode: <u>—</u>
Low Power (30X): <u>NO</u>	Max. Crack Depth: <u>—</u> mm
Metallographic: <u>—</u>	Crack Velocity: <u>—</u> mm/sec
Comments: <u>1000 N T controller 1325 PSTAR 2115 TC 1670</u>	
<u>Bad Test did not analyze</u>	
<u>Cliff. Temperature control failure 03.</u>	
Project Leader's Signature: <u>Cliff.</u>	Date: <u>8/4/08</u>

Test Sheet Addendum

Test #	<u>1196-70</u>
Sample #	<u>SSR 1196-70</u>
Filar Eye Piece	<u>CCT # 0224</u>
Magnification	<u>30 X</u>
inches/graduation	<u>.001</u>

Readings	<u>79</u>
	<u>2</u>
	<u>77</u>

Avg.
Reading, * inches/
graduations graduation = Final Diameter,
77 .001 .077 in.

Comments

Slow Strain Rate
Work Request/Test Information Form

Person Performing Test: Joe Gerst Home Phone: 740 548 7747
 Special Hazards: Croftic Project Name: ARES
Filled cell Start (Date/Time): 7-14 11:10 Finish (Date/Time): 7-17 Project Number: 87170135

Material: 1196 TEST PARAMETERS
 Material ID#: 1196 Test #: 1196-71 SSR System #: 2
 Sample #: SSR 1196-71 Extension Rate: 1E-6 in/sec RPM: 174
 Strain Rate: 1E-6 sec⁻¹

DATA ACQUISITION
 Data File Name: 1196-71.DAT Strip Chart Scale: — Data Acquisition Computer #: 3
 Data Channels: 15 + 10 Strip Chart Speed: — LVDT or Dial Gauge ID#: 434

Test Solution: AW105 Superat SAMPLE ENVIRONMENT
 Initial pH: 13.17 Gas: No no Reference Electrode: SCE
 Final pH: 13.41 Temperature: 50 °C Free Corrosion Potential: -362 mV
 Pressure: Room Applied Potential: -100 mV

<u>Initial</u>	SPECIMEN DIMENSIONS	<u>Final</u>
Overall Length: <u>8.0</u> in.	Measurement Device: <u>Calipers</u>	Overall Length: <u>8.2</u> in.
Gauge Mark Length: <u>1.665</u> in.	Device ID #: <u>1497</u>	Gauge Mark Distance: <u>1.895</u> in.
Gauge Diameter: <u>.1295</u> in.	Machined Gauge Length: <u>1.000</u> in.	Gauge Diameter: <u>.078</u> in.
Cross Sectional Area: <u>.012174</u> in. ²		Cross Sectional Area: <u>.004779</u> in. ²

RESULTS & CALCULATIONS
 Pre-Load: 75 lbs. Max. Load 100.6 lbs. Time to Failure: 65.08 hrs.
 Elongation = 1.895 - 1.665 in. Reduction in Area: .007395 in.² Time to Failure: 234298 sec.

$$\% \text{ Elongation} = \frac{\text{Elongation}}{\text{Machined Gage Length}} = \frac{(230)}{(1.000)} \times 100 = 23.0\% \quad \% \text{ Reduction} = \frac{\text{Reduction in Area}}{\text{Initial Cross Section Area}} = \frac{(.007395)}{(.012174)} \times 100 = 60.75\%$$

$$\text{UTS} = \frac{\text{Max. Load}}{\text{Initial Cross Section Area}} = \frac{(650.8)}{(100.6)} = 82636 \text{ psi} \quad 82636 \text{ psi} \times 6.895 \cdot 10^6 = 569.7 \text{ MPa}$$

QA APPROVED
 Visual: No NAME: Cladur Crack Mode: _____
 Low Power (30X): No Max. Crack Depth: _____ mm
 Metallographic: _____ DATE: 8-20-08 Crack Velocity: _____ mm/sec
 Comments: 1000 N PSTAT 2115 Controller 1325 TC 1670

Project Leader's Signature: Cladur Date: 8/4/08

Test Sheet Addendum

Test #	<u>1196-71</u>	Readings	
Sample #	<u>SSR 1196-71</u>		<u>81</u>
Filar Eye Piece	<u>CCT # 0224</u>		<u>3</u>
			<hr/>
Magnification	<u>30X</u>	Avg.	
inches/graduation	<u>.001</u>	Reading, * inches/graduation	= Final Diameter, in.
		<u>78</u>	<u>.001</u> <u>.078</u>

Comments

Slow Strain Rate
Work Request/Test Information Form

Person Performing Test: Joe Gerst Home Phone: 740-548-7747
 Special Hazards: CAUSTIC Project Name: ARES
Filled cell Start (Date/Time): 7-22-08 9:00 Finish (Date/Time): 7-25-08 2:10 Project Number: 81170135

Material: AART 128 Grade B TEST PARAMETERS
 Material ID#: 1196 Test #: 1196-72 SSR System #: 2
 Sample #: SSR 1196-72 Extension Rate: 1E-6 in/sec RPM: 174
 Strain Rate: 1E-6 sec⁻¹

DATA ACQUISITION
 Data File Name: 1196-72.DAT Strip Chart Scale: — Data Acquisition Computer #: 3
 Data Channels: 15 + 16 Strip Chart Speed: — LVDT or Dial Gauge ID#: 434

Tracking #: 102 SAMPLE ENVIRONMENT
 Test Solution: AW105 Supernt Gas: None Reference Electrode: SCF
 Initial pH: 13.7 Temperature: 40-50°C Free Corrosion Potential: -210 mV
 Final pH: 13.37 Pressure: Room Applied Potential: -50 mV

SPECIMEN DIMENSIONS
Initial
 Overall Length: 8.0 in. Measurement Device: Calipers Overall Length: 9.2 in.
 Gauge Mark Length: 1.637 in. Device ID #: 1497 Gauge Mark Distance: 1.862 in.
 Gauge Diameter: 0.125 in. Machined Gauge Length: 1.000 in. Gauge Diameter: .077 in.
 Cross Sectional Area: .012272 in.² Final Cross Sectional Area: .004657 in.²

RESULTS & CALCULATIONS
 Pre-Load: 75 lbs. Max. Load 977 lbs. Time to Failure: 60.79 hrs.
 Elongation = 1.862 - 1.637 in. Reduction in Area: .007517 in.² Time to Failure: 218846 sec.
 % Elongation = $\frac{\text{Elongation}}{\text{Machined Gage Length}} = \frac{(.225)}{(.000)} \times 100 = 22.5\%$ % Reduction = $\frac{\text{Reduction in Area}}{\text{Initial Cross Section Area}} = \frac{(.007517)}{(.012272)} \times 100 = 61.5\%$
 $UTS = \frac{\text{Max. Load}}{\text{Initial Cross Section Area}} = \frac{(977)}{(.012272)} = 78613 \text{ psi} \quad 78613 \text{ psi} \times 6.895 \times 10^6 = 548.93 \text{ MPa}$

QA APPROVED
 Visual: NO NAME: Olden Crack Mode: _____
 Low Power (30X): ? DATE: 8-20-08 Max. Crack Depth: _____ mm
 Metallographic: _____ Crack Velocity: _____ mm/sec
 Comments: 1000 ohm Resistor BSTAT #2115 Controller #1325
TC

Project Leader's Signature: Chris Date: 8/4/08

Test Sheet Addendum

Test #	<u>1196-72</u>	Readings
Sample #	<u>SSR 1196-72</u>	<u>82</u>
Filar Eye Piece	<u>CCT # 0224</u>	<u>5</u>
		<u>77</u>
Magnification	<u>30X</u>	Avg.
Inches/graduation	<u>.001</u>	Reading, * inches/ = Final Diameter, graduations graduation in.
		<u>77</u> <u>.001</u> <u>.077</u>

Comments

Slow Strain Rate
Work Request/Test Information Form

Person Performing Test: Joe Gerst
 Special Hazards: CAUSTIC
Filled cell
 Start (Date/Time): 7-25-08 8:30 Finish (Date/Time): 7-27 7:00
 Home Phone: 740 548 7747
 Project Name: ARES 2008
 Project Number: 81170135

Material: 1196-73 Grade: B
 Material ID#: 1196
 Sample #: SSR/1196-73
 TEST PARAMETERS
 Test #: 1196-73, Extension Rate: 1E-6 in/sec, Strain Rate: 1E-6 sec⁻¹
 SSR System #: 2, RPM: 174

Data File Name: 1196-73.DAT
 Data Channels: 15+16
 TRACKING 103 .032MNITATE SAMPLE ENVIRONMENT
 Test Solution: 1196-3 AW105 super pure
 Initial pH: 13.32, Temperature: 50 °C, Pressure: Room
 Final pH: 13, Reference Electrode: SCE
 Strip Chart Scale: —, Strip Chart Speed: —, LVDT or Dial Gauge ID#: 434
 Free Corrosion Potential: -217 mV, Applied Potential: -100 mV

Initial Overall Length: 8.0 in. Measurement Device: Calipers
 Gauge Mark Length: 1.634 in. Device ID #: 1497
 Gauge Diameter: .127 in. Machined Gauge Length: 1.000 in.
 Cross Sectional Area: .012668 in.² Final Overall Length: 8.2 in.
 Gauge Mark Distance: 1.835 in. Gauge Diameter: .077 in.
 Cross Sectional Area: .004657 in.²

75 RESULTS & CALCULATIONS
 Pre-Load: 75 lbs. Max. Load 1010 lbs. Time to Failure: 62.43 hrs.
 Elongation = 1.885 - 1.634 in. Reduction in Area: .012668 - .004657 in.² Time to Failure: 224741 sec.

$$\% \text{ Elongation} = \frac{\text{Elongation}}{\text{Machined Gage Length}} = \frac{(1.201)}{(1.000)} \times 100 = 20.1 \%, \quad \% \text{ Reduction} = \frac{\text{Reduction in Area}}{\text{Initial Cross Section Area}} = \frac{(.008011)}{(.012668)} \times 100 = 63.24\%$$

$$\text{UTS} = \frac{\text{Max. Load}}{\text{Initial Cross Section Area}} = \frac{(1010)}{(.012668)} = 79730 \text{ psi} = 78230 \text{ psi} \times 6.895 \times 10^3 = 549.74 \text{ MPa}$$

QA APPROVED
 Visual: _____
 Low Power (30X): _____
 Metallographic: _____
 NAME: Clayton
 DATE: 8-20-08
 Crack Mode: _____
 Max. Crack Depth: _____ mm
 Crack Velocity: _____ mm/sec
 Comments: 1000 JR Resistor PSTAT #2115 / controller #1825 TC 1620

Project Leader's Signature: Ch. St. Date: 8/20/08

Test Sheet Addendum

Test #	<u>1196-73</u>	Readings	
Sample #	<u>SSR 1196-73</u>		<u>85</u>
Filar Eye Piece	<u>CCT # 0224</u>		<u>8</u>
			<u>77</u>
Magnification	<u>.30</u>	Avg.	
inches/graduation	<u>.001</u>	Reading, * inches/ graduation	= Final Diameter, in.
		<u>77</u>	<u>.001</u> <u>.077</u>

Comments

Slow Strain Rate
Work Request/Test Information Form

Person Performing Test: Joe Gerst Home Phone: 740 548 7747
 Special Hazards: CAUSTIC Project Name: ARES
Filled cell Start (Date/Time): 8-7-08 10:15 Finish (Date/Time): 8-11-08 730 Project Number: 81170135

TEST PARAMETERS
 Material: AART 128 Grade B Test #: 1196-74 SSR System #: 2
 Material ID#: 1196 Extension Rate: 1E-6 in/sec RPM: 174
 Sample #: SSR 1196-74 Strain Rate: 1E-6 sec⁻¹

DATA ACQUISITION
 Data File Name: 1196-74.DAT Strip Chart Scale: — Data Acquisition Computer #: 3
 Data Channels: 15 + 16 Strip Chart Speed: — LVDT or Dial Gauge ID#: 434
 AW105 FG E TRACK 5103 SAMPLE ENVIRONMENT
 Supematite 500 g/m² Gas: None Reference Electrode: SCF
 Test Solution: 500 g/m² salt Temperature: 50 °C Free Corrosion Potential: -257 mV
 Initial pH: 13.32 Pressure: Room Applied Potential: -100 mV
 Final pH: 13.4

SPECIMEN DIMENSIONS
Initial
 Overall Length: 8.0 in. Measurement Device: Calipers Overall Length: 8.2 in.
 Gauge Mark Length: 1.625 in. Device ID #: 1497 Gauge Mark Distance: 1.834 in.
 Gauge Diameter: .126 in. Machined Gauge Length: 1.000 in. Gauge Diameter: .075 in.
 Cross Sectional Area: .012469 in.² Cross Sectional Area: .004418 in.²

RESULTS & CALCULATIONS
 Pre-Load: 75 lbs. Max. Load 1012 lbs. Time to Failure: 61.28 hrs.
 Elongation = 1.834 - 1.625 in. Reduction in Area: .012469 - .004418 in.² Time to Failure: 220.620 sec.

$$\% \text{ Elongation} = \frac{\text{Elongation}}{\text{Machined Gage Length}} = \frac{(1.209)}{(1.000)} \times 100 = 20.9 \%$$

$$\% \text{ Reduction} = \frac{\text{Reduction in Area}}{\text{Initial Cross Section Area}} = \frac{(.008051)}{(.012469)} \times 100 = 64.57\%$$

$$\text{UTS} = \frac{\text{Max. Load}}{\text{Initial Cross Section Area}} = \frac{(1012)}{(.012469)} = 81161 \text{ psi} \quad 81161 \text{ psi} \times 6.895 \cdot 10^{-9} = 559.61 \text{ MPa}$$

QA APPROVED
 Visual: ND NAME: Clayton Crack Mode: _____
 Low Power (30X): _____ Max. Crack Depth: _____ mm
 Metallographic: _____ Crack Velocity: _____ mm/sec
 DATE: 8-20-08

Comments: 1000 ohm Resistor Controller 1325 PSTAT 2115 TC 1670

Large amount of corr. material at interface and crevice corr. at fittings
 Project Leader's Signature: Clayton Date: 8/20/08

Test Sheet Addendum

Test #	<u>1196-74</u>	Readings
Sample #	<u>SSR1196-74</u>	<u>77</u>
Filar Eye Piece	<u>CCT # 0224</u>	<u>2</u>
		<u>75</u>
Magnification	<u>30X</u>	Avg.
inches/graduation	<u>.001</u>	Reading, * inches/ graduation = Final Diameter, in.
		<u>75</u> <u>.001</u> <u>.075</u>

Comments

Slow Strain Rate
Work Request/Test Information Form

Person Performing Test: MARK / JOE Home Phone: 614-403-8620
 Special Hazards: CAUSTIC Project Name: ARES 2008
 Filled Sett Start (Date/Time): 1/200 8-14-08 Finish (Date/Time): 8-15-08 4:45 Project Number: 81170135

Material: AART 128 Grade B TEST PARAMETERS
 Material ID#: 1196 Test #: 1196-75 SSR System #: BLT 42
 Sample #: SSR 1196-75 Extension Rate: 1E-6 in/sec RPM: 174
 Strain Rate: 1E-6 sec⁻¹

DATA ACQUISITION
 Data File Name: 1196-75.DAT Strip Chart Scale: — Data Acquisition Computer #: 3
 Data Channels: 15 + 16 Strip Chart Speed: — LVDT or Dial Gauge ID#: 434

Test Solution: AW 105 Superwite Gas: None Reference Electrode: SCF
 Initial pH: 13 + Temperature: 50 °C Free Corrosion Potential: -270 mV
 Final pH: 13 + Pressure: Room Applied Potential: -50 mV

Initial SPECIMEN DIMENSIONS Final
 Overall Length: 8.0 in. Measurement Device: Calipers Overall Length: 8.1 in.
 Gauge Mark Length: 1.645 in. Device ID #: 1497 Gauge Mark Distance: To corroded in.
 Gauge Diameter: .125 in. Machined Gauge Length: 1.000 in. Gauge Diameter: To measure in.
 Cross Sectional Area: .012272 in.² Machined Cross Sectional Area: — in.²

RESULTS & CALCULATIONS
 Pre-Load: 75 lbs. Max. Load 782 lbs. Time to Failure: 23.63 hrs.
 D/A Elongation = .074 in. Reduction in Area: — in.² Time to Failure: 85080 sec.
 % Elongation =
$$\frac{\text{Elongation}}{\text{Machined Gage Length}} = \frac{(.074)}{(.0000)} \times 100 = 7.4\%$$
 % Reduction =
$$\frac{\text{Reduction in Area}}{\text{Initial Cross Section Area}} = \frac{(.—)}{(.012272)} \times 100 = 0\%$$

$$\text{UTS} = \frac{\text{Max. Load}}{\text{Initial Cross Section Area}} = \frac{(782)}{(.012272)} = 63723 \text{ psi} \quad 63723 \text{ psi} \times 6.895 \times 10^{-9} = 439.37 \text{ MPa}$$

QA APPROVED

Visual: _____ NAME: Adam Crack Mode: _____
 Low Power (30X): _____ Max. Crack Depth: _____ mm
 Metallographic: _____ DATE: 8-20-08 Crack Velocity: _____ mm/sec

Comments: 100 Ω Resistor Controller 1325 P/N 2115 TC 1670
SEVERE CORROSION AT BREAK AND ON LOWER 1/2
NO FINAL DIAMETER OR ENDING GAUGE MARK

Project Leader's Signature: John Date: 8/20/08

Page 1

ARES AN 107 Crack Growth Testing	192	Do. T need	Test #	1196 CT-17	Project Name	ARES 2008					
Specimen	1196 CT-17	PSTAT #2115	Lab Computer	11	Project Number	81170135					
Frame	4	T controller #1325	File Name	1196 CT17.DAT	Run at FCP						
		T C # 1538	Setup File	ARES 2008							
Load Cell	2181	Test Solution 5M NaNO ₃	Starting pH	6.5 pH Paper	Material	AART128 Grade B					
LVDT	1219	Batch 2-12-08	Ending pH	6.5 pH Paper	Material ID #	1196					
Date	Time	Temp. C	Load, lbs.	Disp. In	Current Amps	Pot Drop V	Control PD V	PSTAT Pot V SCE	V Drop across ohm Resistor V	Specimen Isolated and All Leads	Comments
2-12-08	9:00	Room	328	—	20.01	000317	000298	—	FCP	Dry	
2-12-08	1250	50	210	2707	19.98	000312	000290	—	+ 10.7mv	Filled cell 9:30	
2-14-08	950	50	478	2799	19.97	000312	000289	—	— 48		
2-15-08	400	50	671	2843	19.96	000311	000289	—	+ 22		
2-18-08	655	50	1118	2908	19.98	000304	000284	—	- 69		
2-19-08	230	50	1367	2948	19.99	000311	000285	—	- 70		
2-20-08	305	50	1560	2979	19.99	000315	000287	—	- 85		
2-21-08	715	50	1690	3001	19.98	000315	000286	—	- 72	QA APPROVED	
2-22-08	730	50	1890	3033	19.98	000318	000285	—	- 78		
2-29-08	715	50	1834	3033	20.01	000336	000286	—	- 112	NAME: CEDAR	
3-3-08	825	50	1831	3032	20.04	000350	000287	—		DATE: 8-25-08	
3-5-08	740	50	1795	3032	20.03	000359	000285	—	- 110		
3-7-08	715	50	1789	3032	20.03	000371	000287	—	- 96		
3-10-08	1100	50	1766	3032	20.03	000387	000285	—	- 112	Added H ₂ O to lube	
3-13-08	200	50	1736	3031	20.03	000408	000289	—	- 125		
3-18-08	925	50	1685	3030	20.02	000446	000288	—	- 128		
3-20-08	110	50	1652	3028	20.02	000461	000285	—	- 131		
3-24-08	930	50	1565	3027	20.03	000506	000289	—			
3-27-08	650	50	1481	3025	20.03	000543	000286	—	- 122	D/A PD's were not reading	
3-28-08	230	50	1436	3025	20.02	000566	000287	—	- 111		
3-31-08	715	50	1322	3021	20.03	000611	000287	—	- 073		
4-3-08	945	50	137	3016	20.02	000675	000292	—	- 096		

Project Manager Ch. S.Date 8/21/18

40 ksi = 2783 Lbs

Page 1

ARES AN 107 Crack Growth Testing				Test #	CT-18	Project Name			ARES 2008
Specimen	1196 CT-18	PSTAT #	2090	Lab Computer	#3	FCP	Project Number	81170135	
Frame	1144 #1	Tcontroller #	1260	File Name	1196 CT-18.DAT	-328 mV SCE	Applied Potential	0 mV	
		TC	#1201	Setup File	ARES 2008				
Load Cell	2178	Test Solution A4101		Starting pH	13.4	Material			AART 128 Grade B
LVDT	181	Batch	Tracking #78	Ending pH	13.7	Material ID #	Material ID #		
Date	Time	Temp. C	Load, lbs.	Disp. In	Current Amps	Pot Drop V	PSTAT Pot V SCE	V Drop across 100 ohm Resistor, V	Specimen Isolated All Leads conductive Comments
2-12-08	7:40	Room	304	.3787	20.00	.000289	.000230	-	Dry
2-12-08	12:55	50	182	.5645	20.00	.000307	.000242	0.0	Filled cell 8:05
2-14-08	8:35	50	177	3.757	20.00	.000309	.000241	0	.0042 cell leaked had to
REMOVE INSULATION, AND HEAT TAPE AND RE APPLY had PSTAT off Temporarily SOLUTION LEVEL WAS NOT SO LOW specimen, added more solution Restarted									
2-14-08	9:25	58	252	.3474	20.00	.000319	.000244	0	.0042 Controller overshot
2-15-08	9:00	50	463	.3486	20.01	.000314	.000241	0	.0056
2-18-08	6:55	50	10241	3586	20.00	.000312	.000241	0	.0060
2-19-08	2:30	50	1233	3634	19.99	.000312	.000241	0	.0032
2-20-08	3:10	58	1435	3665	19.99	.000312	.000241	.001	.0037
2-21-08	7:15	50	1559	3683	20.00	.000312	.000241	0	.0028
2-22-08	7:30	50	1768	3714	20.00	.000312	.000240	0	.0025
2-26-08	4:30	50	2677	4129	20.00	.000315	.000241	0	.0015 added solution to lugen
2-28-08	8:57	50	3068	3874	20.00	316	241	0	.0012 stopped unloaded to 2783
2-29-08	7:15	50	2827	3856	20.00	.000318	.000242	0	.0012
3-2-08	8:25	50	2836	3858	20.00	.000315	.000241	0	.0012
3-5-08	7:40	50	2810	3856	20.00	.000315	.000240	0	.0012 added 200ml of solution
3-7-08	7:15	50	2819	3856	19.99	.000316	.000240	0	.0009 on 3-4
3-10-08	11:00	50	2825	3858	19.99	.000316	.000240	0	.0008
3-13-08	2:00	50	2817	3856	19.99	.000314	.000238	0	.0008
3-14-08	7:25	50	2821	3856	19.99	.000317	.000241	0	.0008

Project Manager Ch. S.

Date 8/21/08

Page 2

ARES AN 107 Crack Growth Testing				Test #	CT-18	Project Name		ARES 2008		
Specimen 1196 CT 18				Lab Computer		Project Number		81370135		
Frame 1				File Name						
				Setup File						
Load Cell		Test Solution			Starting pH	Material				
LVDT		Batch			Ending pH	Material ID #				
Date	Time	Temp, C	Load, lbs.	Disp. In	Current Amps	Pot Drop V	Control PD V	PSTAT Pot V SCE	V Drop across 100 ohm Resistor, V	Comments
3-11-08	Re Load	70	3068	1.3878	19.99	.000318	.000242	0	.0007	Added solution
3-18-08	930	50	3041	1.3877	19.99	.000318	.000242	0	.0012	
3-20-08	110	50	3022	1.3875	19.99	.000316	.000241	0	.0012	
3-24-08	930	50	3000	1.3879	20.00	.000318	.000242	0	.0021	
3-27-08	650	50	3000	1.3879	19.99	.000319	.000238	0	.0016	
3-31-08	715	50	3017	1.3878	20.00	.000319	.000242	0	.0015	Added solution
3-31-08	1005	3188	1.3873	20.00	.000307	.000230	0	.0012	Controller F. Malfunction	
Replaced Temperature Controller				Controller #1260 w/ #1204		43				
4-1-08	330	29	3297	1.3870	20.00	.000299	.000223	0	.0031	
Temperature controller Failed				Replacing cable + TC NEW TC #1669						
4-3-08	945	49	2983	1.3880	20.00	.000318	.000238	0	.0014	
4-4-08	720	49	3007	1.3881	19.99	.000317	.000236	0	.0019	
4-7-08	730	49	3003	1.3876	19.99	.000317	.000241	0	.0013	
4-9-08	755	49	3010	1.3877	20.01	.000318	.000241	0	.0017	NAME: <u>John</u>
4-11-08	105	49	3019	1.3878	20.01	.000318	.000240	0	.0013	DATE: 4-25-08
4-14-08	855	49	2964	1.3883	20.01	.000318	.000240	0	.0010	
4-15-08	1200	49	2978	1.3884	20.02	.000318	.000241	0	.0010	Added 6C m/s
4-17-08	150	49	2970	1.3881	20.00	.000320	.000239	0	.0028	
4-21-08	740	49	2972	1.3882	20.00	.000317	.000239	0	.0011	computer down
4-22-08	925	49	2994	1.3882	20.00	.000319	.000241	0	.0013	computer down Again
4-23-08	200	50	3008	1.3881	20.01	.000317	.000239	0	.0014	computer down
4-25-08	730	50	2986	1.3883	20.01	.000319	.000240	0	.0009	

Project Manager ChrisDate 8/21/18

PAGE 3

ARES AN 107 Crack Growth Testing				Test #	CT-18		Project Name			ARES 2008
Specimen				Lab Computer			Project Number			81170135
Frame				File Name						
Load Cell				Setup File						
LVDT				Test Solution			Starting pH		Material	
				Batch			Ending pH		Material ID #	
Date	Time	Temp, C	Load, lbs.	Disp. In	Current Amps	Pot Drop V	Control PD V	PSTAT Pot V SCE	V Drop across ohm Resistor, V	Comments
5-1-08	715	50	2954	3884	20.00	.000319	.000241	0	.0008	
5-2-08	855	50	2989	3883	20.00	.000319	.000241	0	.0011	Added 80 ml of solution
5-5-08	705	50	2956	3883	20.00	.000319	.000241	0	.0009	
5-6-08	330	50	2997	3882	20.00	.000319	.000236	0	.0010	
5-8-08	850	50	3003	3882	20.00	.000318	.000239	0	.0046	QA APPROVED
5-13-08	720	50	2955	3883	20.00	.000320	.000236	0	.0005	NAME: C. D. L.
5-14-08	805	50	2991	3883	20.01	.000320	.000236	0	.0014	DATE: 8-25-08
5-16-08	100	49	3003	3882	20.01	.000319	.000239	0	.0006	
5-19-08	350	50	2977	3885	20.01	.000320	.000240	0	.0007	
5-27-08	700	50	3018	3883	20.01	.000321	.000241	0	.039	Added 200 ml solution
5-27-08	710	50	3066	3880	20.01	.000310	.000235	0	.37	
5-30-08	730	50	2962	3885	20.00	.000322	.000241	0	.0007	A
6-3-08	755	50	3006	3882	20.00	.000322	.000241	0	.0012	
6-9-08	820	50	3010	3886	20.02	.000323	.000241	0	.0007	
6-13-08	720	50	3018	3888	20.00	.000323	.000241	0	.0008	Added solution
6-17-08	740	50	2976	3889	20.01	.000324	.000242	0	.0005	
6-18-08	655	50	2959	3889	20.00	.000324	.000241	0	.0004	
6-23	705	50	2981	3891	20.01	.000322	.000240	0	.0004	
6-24	730	50	2979	3891	20.01	.000324	.000241	0	.0005	
6-27	705	50	3014	3887	20.01	.000323	.000240	0	.0013	Power outs on 25 + 26 + 4
6-30	610	50	3019	3890	20.02	.000323	.000241	0	.0005	
7-1	1100	50	3001	3888	20.02	323	240	0	.0005	

Project Manager John S.

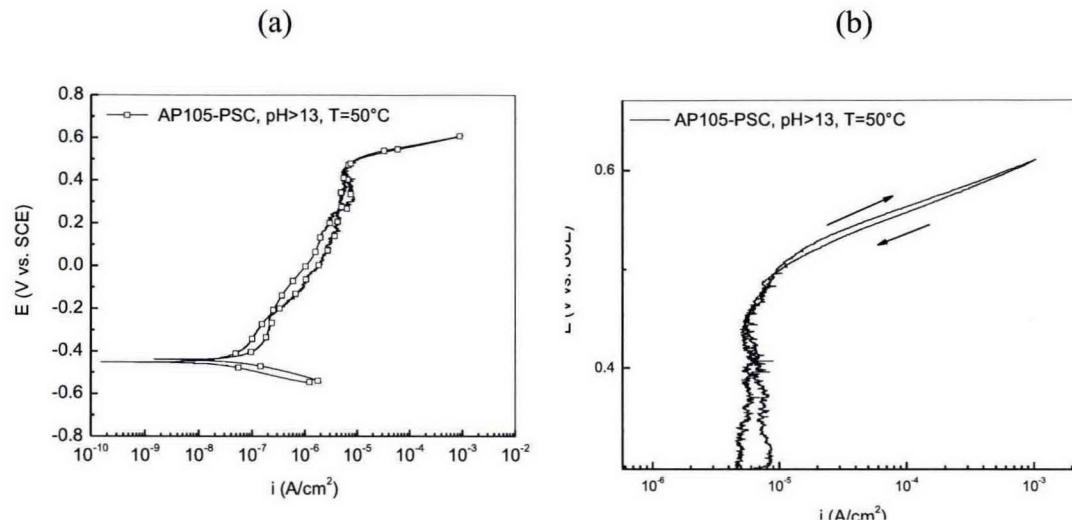
Date 8/21/18

Page 4

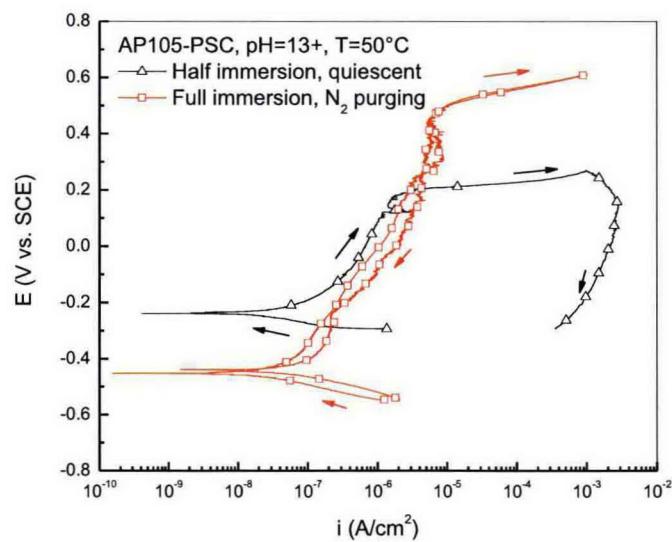
Project Manager

Date 8/21/18

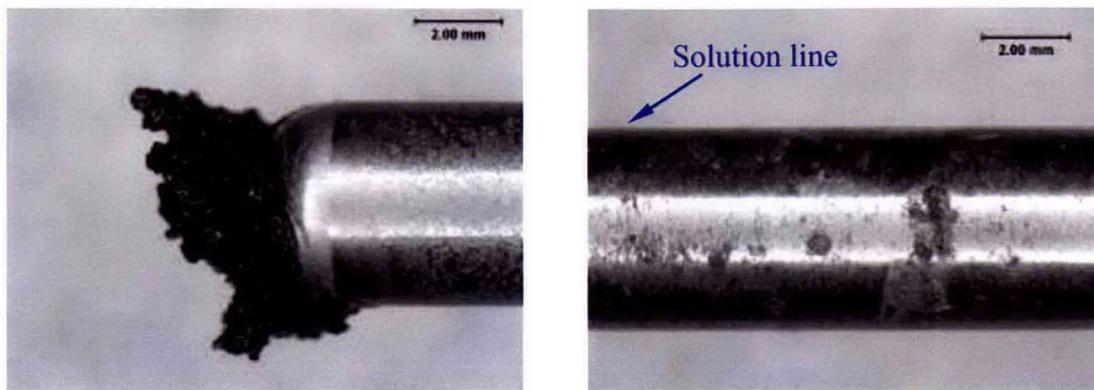
RPP-RPT-37505, Rev. 0


APPENDIX B

CYCLIC POTENTIODYNAMIC POLARIZATION (CPP) TESTING DATA


Table B-1. A Summary of Electrochemical Tests Performed in AP105-PSC Based Simulants.

Base Chemistry	pH	NO ₂ ⁻ (M)	NO ₃ ⁻ (M)	TIC (M)	OH ⁻ (M)*	Cl ⁻ (M)	F (M)	T (°C)	Aeration condition	Testing type	Visual	Sample ID (#EL1196-)
AP105-PSC	>13	0.27	3.58	0.326	0.176	0.03	0.009	50	N ₂ sparging	CPP Full immersion	No pitting	54
AP105-PSC	>13	0.27	3.58	0.326	0.176	0.03	0.009	50	N ₂ sparging	CPP Full immersion	No pitting	60
AP105-PSC	>13	0.27	3.58	0.326	0.176	0.03	0.009	50	N ₂ sparging	Potentiostatic at 0 mV	No pitting	63
AP105-PSC	>13	0.27	3.58	0.326	0.176	0.03	0.009	50	N ₂ sparging	CPP Full immersion	Crevice corrosion	64
AP105-PSC	>13	0.27	3.58	0.326	0.176	0.03	0.009	50	N ₂ sparging	Potentiostatic at 0 mV	Crevice corrosion	65
AP105-PSC	>13	0.27	3.58	0.326	0.176	0.03	0.009	50	Quiescent air	Potentiostatic at 0 mV, half immersion	Severe attack at solution/vapor interface	66
AP105-PSC	>13	0.6	3.58	0.326	0.176	0.03	0.009	50	Quiescent air	Potentiostatic at 0 mV, half immersion	Corrosion**	72
AP105-PSC	>13	0.27	3.58	0.326	0.176	0.03	0.009	50	N ₂ sparging	Potentiostatic at 0 mV, half immersion	Corrosion**	73
AP105-PSC	>13	0.27	3.58	0.326	0.176	0.03	0.009	50	Quiescent air	CPP Half immersion	Corrosion	75
AP105-PSC	>13	0.27	3.58	0.326	0.176	0.03	0.009	Room	Quiescent air	Potentiostatic at 0 mV, half immersion	Corrosion**	76
AP105-PSC	>13	0.27	3.58	0.326	0.176	0.03	0.009	50	Quiescent air	Potentiostatic at 100 mV vs. OCP, half immersion	Corrosion**	77
AP105-PSC	>13	0.27	3.58	0.326	0.176	0.03	0.009	Room	Quiescent air	CPP Full immersion	No pitting	81
AP105-PSC	>13	0.27	3.58	0.326	0.176	0.03	0.009	50	Quiescent air	Potentiostatic at 0 mV Half immersion	Minor corrosion	91
AP105-PSC	>13	0.27	3.58	0.326	0.176	0.03	0.009	Room	Quiescent air	Potentiostatic at 50 mV vs. OCP Half immersion	Corrosion	92
AP105-PSC	>13	0	3.85	0.326	0.176	0.03	0.009	50	N ₂ sparging	CPP Full immersion	Pitting	93


Figure B-1. The CPP Curve in Deaerated AP105-PSC Simulant (T= 50°C and pH>13).

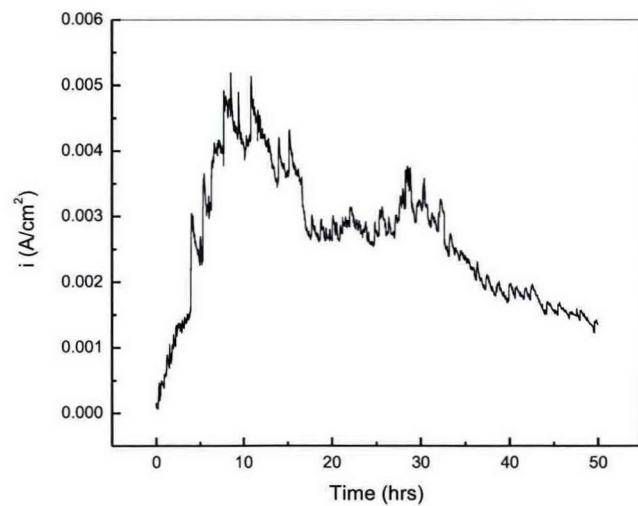
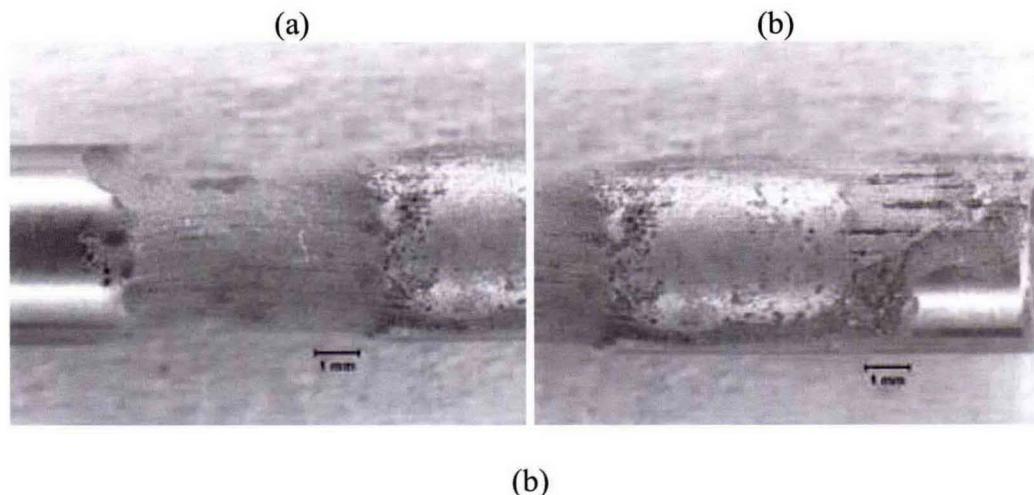
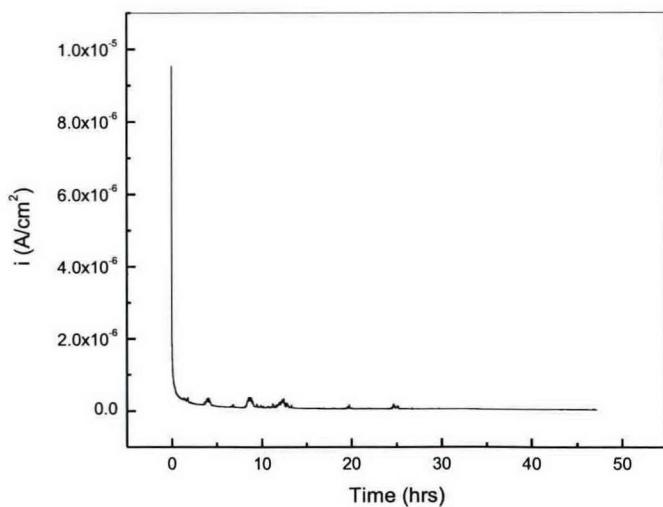
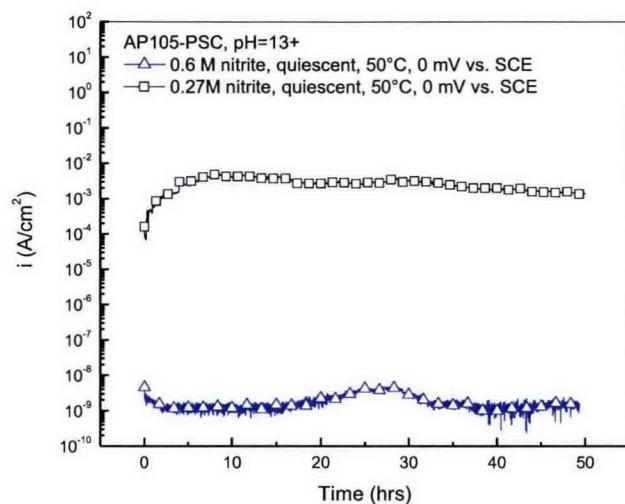

Figure B-2. A Comparison of CPP Curves in Deaerated AP105-PSC Simulant at Different Nitrite and Nitrate Concentrations (pH=13+, T=50°C)

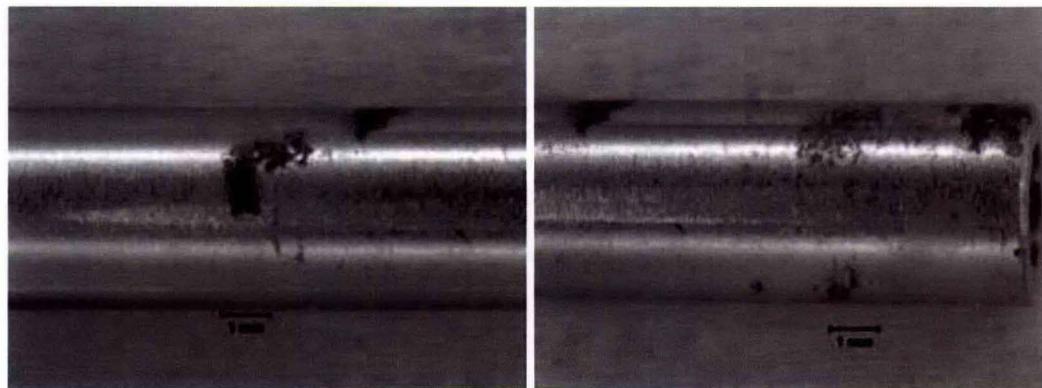
Figure B-3. Sample Appearance after CPP Testing in AP105-PSC Simulant at Quiescent Condition (pH=13+, T=50°C)

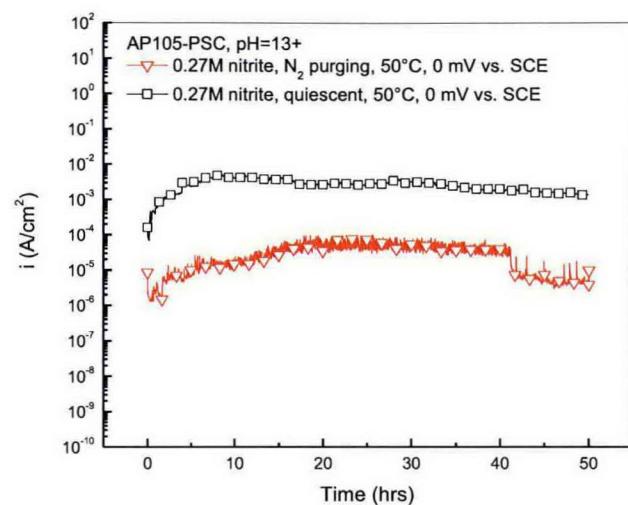

Figure B-4. The Current Density as a Function of Time when the Partially Immersed Sample Was Held at 0 mV vs. SCE (AP105-PSC, pH>13, T=50°C, Quiescent Condition).

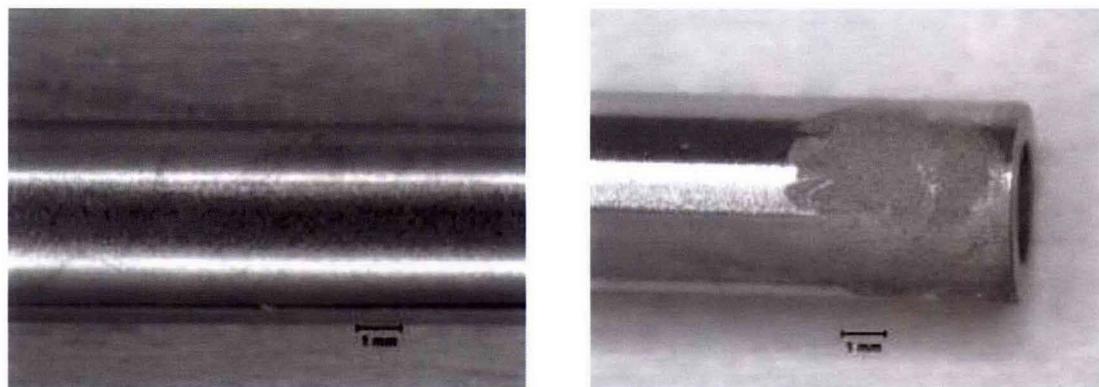

Figure B-5. The Sample Appearance after 50 Hours of Potentiostatic Testing at 0 mV vs. SCE in the AP105-PSC Simulant (pH>13, T=50°C, Quiescent Condition).

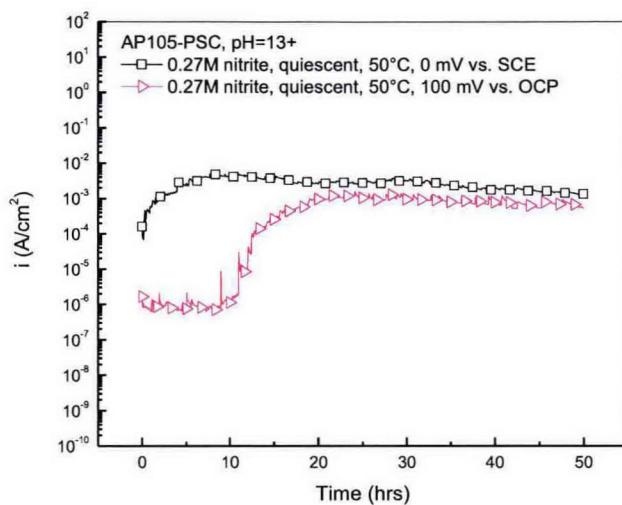
(a) Corrosion at Solution/Vapor Interface;

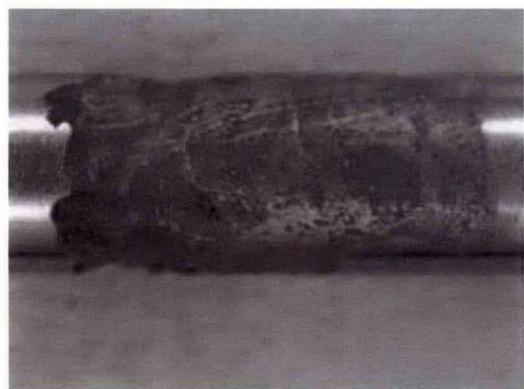

(b) Corrosion on the Portion above the Solution/vapor Interface.

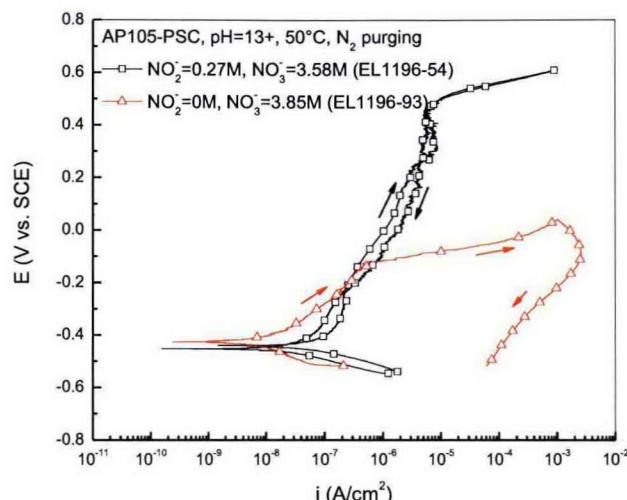

Figure B-6. The Current Density as a Function of Time When the Fully Immersed Sample Was Held at 0 mV vs. SCE in AP105-PSC Simulant (T=50°C, pH>13).


Figure B-7. A Comparison of the Current Density as a Function of Time in the Potentiostatic Tests Conducted in AP105-PSC Simulants with Different Nitrite Concentrations at 50°C and Quiescent Conditions.


Figure B-8. The Sample Appearance After Potentiostatic Test at 0 mV (vs. SCE) in the AP105-PSC Simulant with 0.6 M Nitrite for 50 hours (Sample Partially Immersed) at 50°C.


Figure B-9. A Comparison of the Current Density as a Function of Time in the Potentiostatic Tests Conducted at 0 mV (vs. SCE) in Quiescent and Nitrogen Purged AP105-PSC Simulants at 50°C.


Figure B-10. The Sample Appearance after Potentiostatic Test at 0 mV (vs. SCE) in Daeerated AP105-PSC Simulant for 50 hours (Sample Partially Immersed) at 50°C.


Figure B-11. A Comparison of the Current Density as a Function of Time in the Potentiostatic Tests Conducted in AP105-PSC Simulants at 0 mV (vs. SCE) and 100 mV (vs. OCP) (50°C, Quiescent Condition).

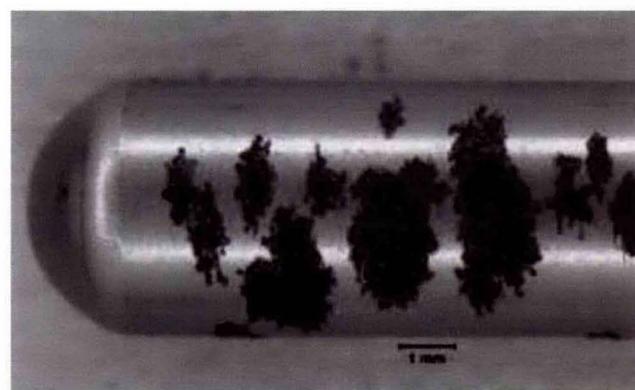

Figure B-12. The Sample Appearance after Potentiostatic Test at 100 mV (vs. OCP) in the AP105-PSC Simulant for 50 Hours (Sample Partially Immersed) at 50°C.

Figure B-13. A Comparison of CPP Curves in Daeaerated AP105-PSC Simulant at Different Nitrite and Nitrate Concentrations (pH=13+, T=50°C).

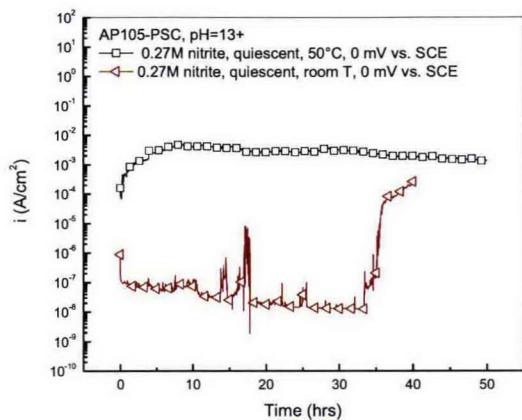


Figure B-14. The Sample Appearance after CPP Testing in Daeaerated AP105-PSC with 0 M Nitrite and 3.85 M Nitrate (pH=13+, T=50°C).

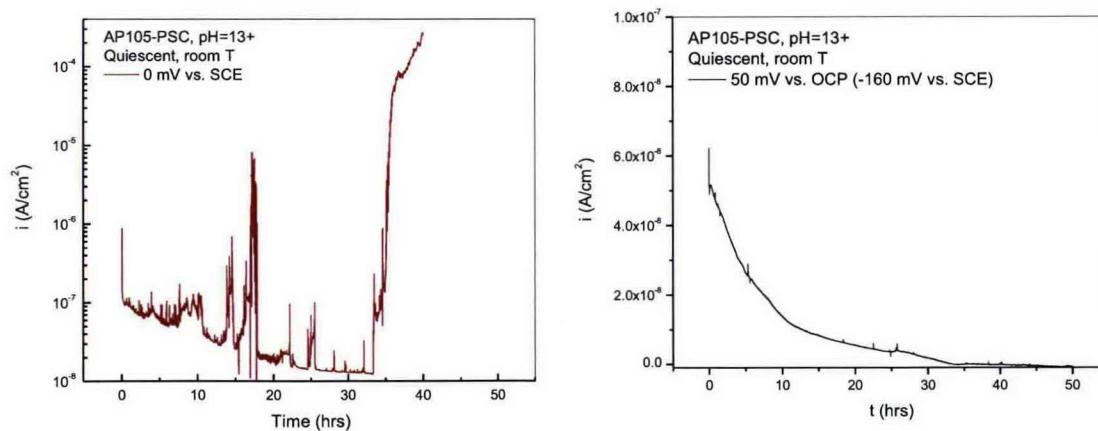
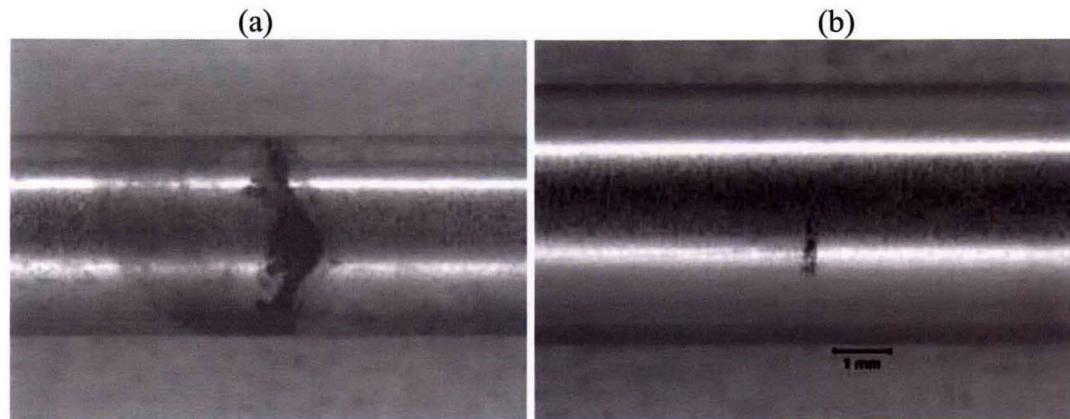
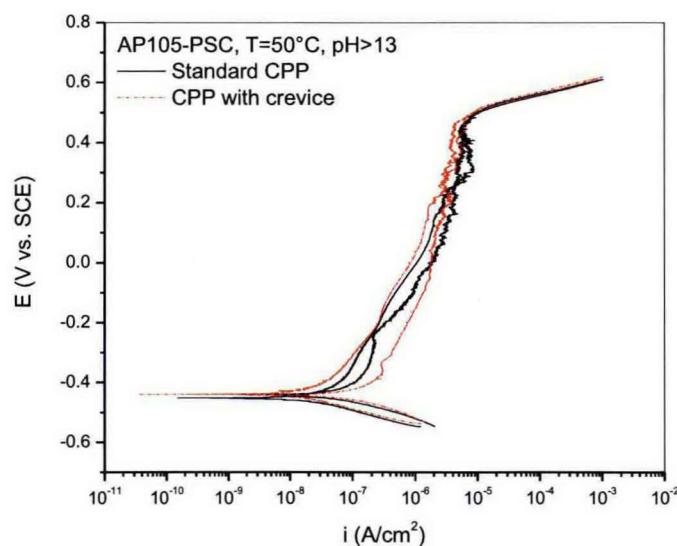
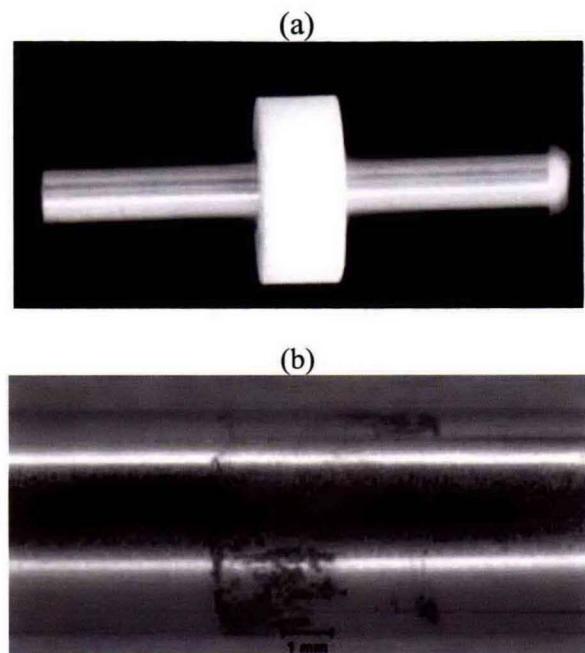
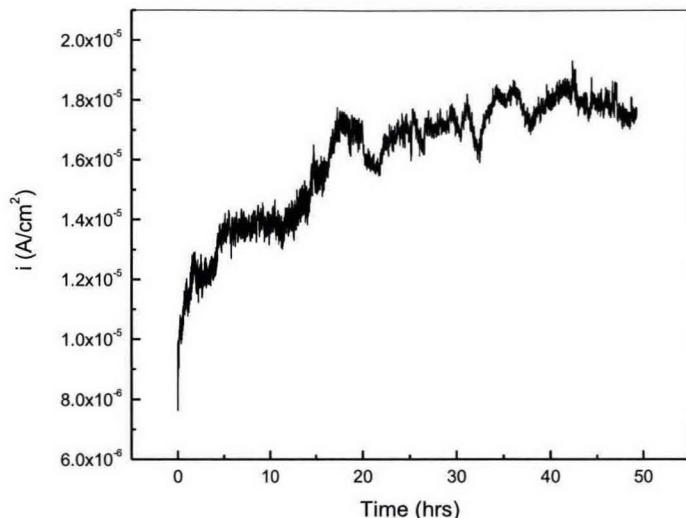


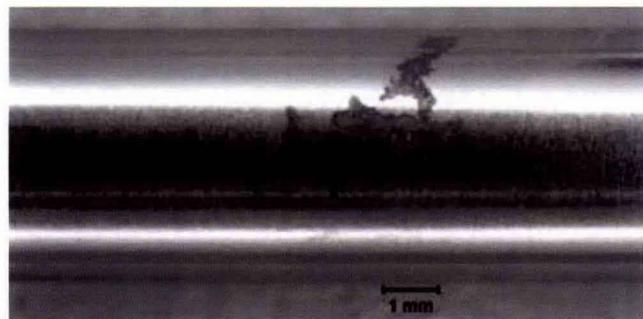
Figure B-15. A Comparison of the Current Density as a Function of Time in the Potentiostatic Tests Conducted in Different Conditions. (a) Room T vs. 50°C; (b) 0 mV (vs. SCE) vs. 50 mV (vs. OCP) at Room T.

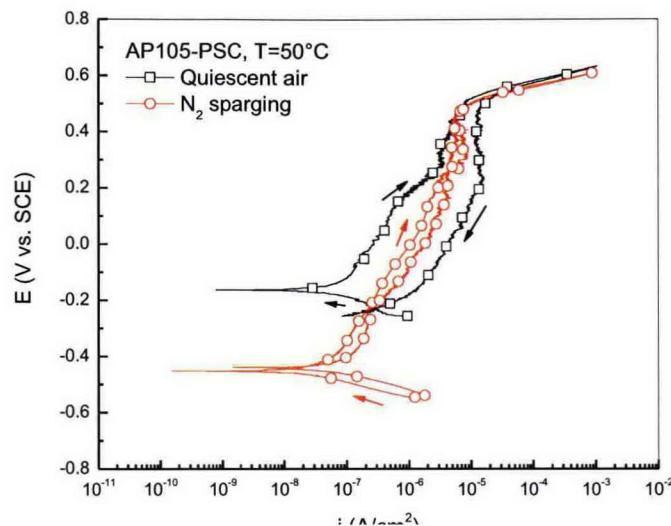

(a) Temperature effect

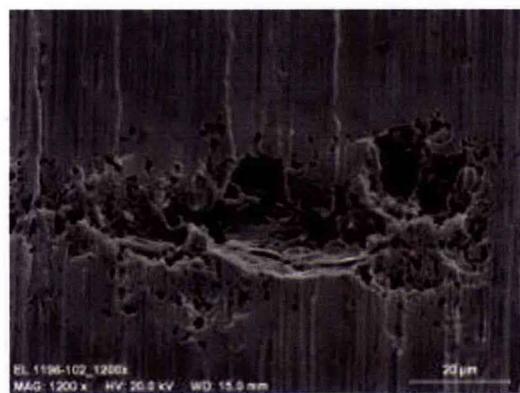

(b) Potential effect

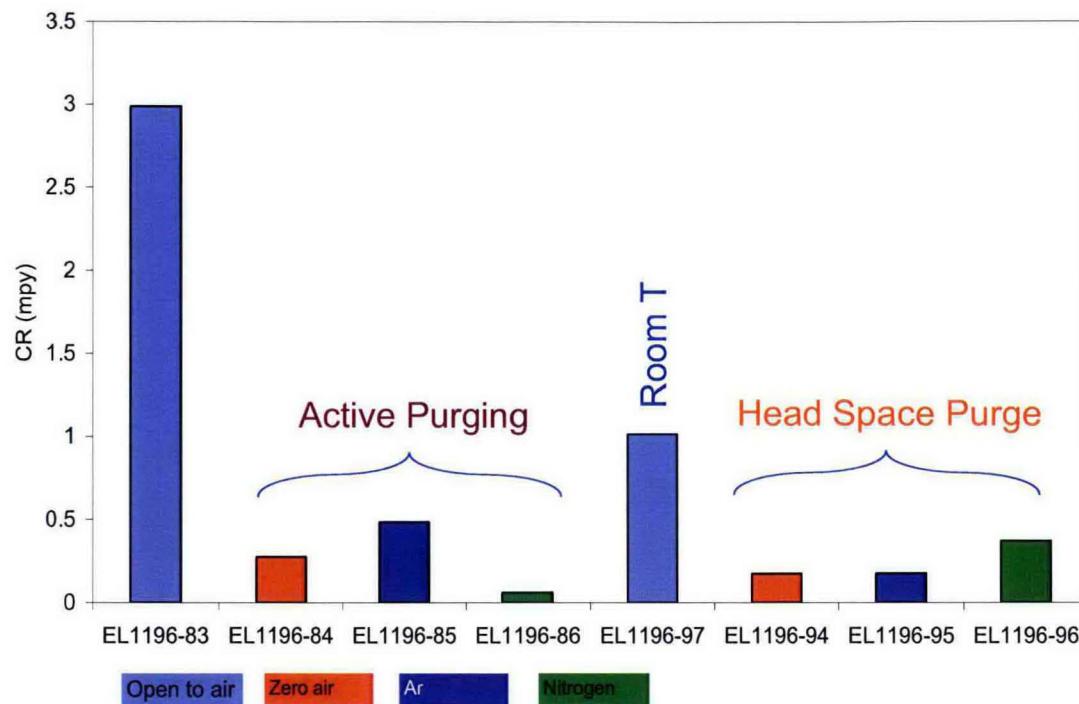

Figure B-16. A Comparison of the Sample Appearance after Potentiostatic Testing in AP105-PSC Simulant at Different Potentials (Under Quiescent Condition, Room Temperature). (a) 0 mV vs. SCE; (b) 50 mV vs. SCE (-160 mV vs. SCE).

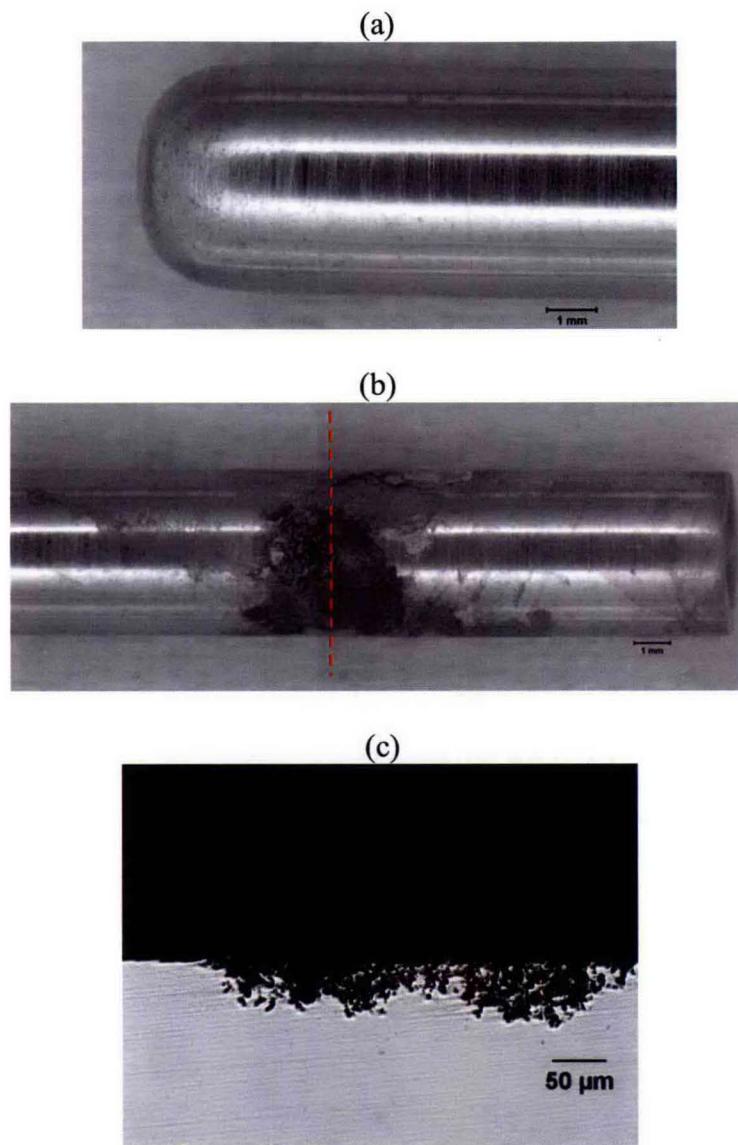

Figure B-17. A Comparison of the CPP Curves Obtained with and without Using a Crevice Former (AP105-PSC, pH>13, T=50°C)

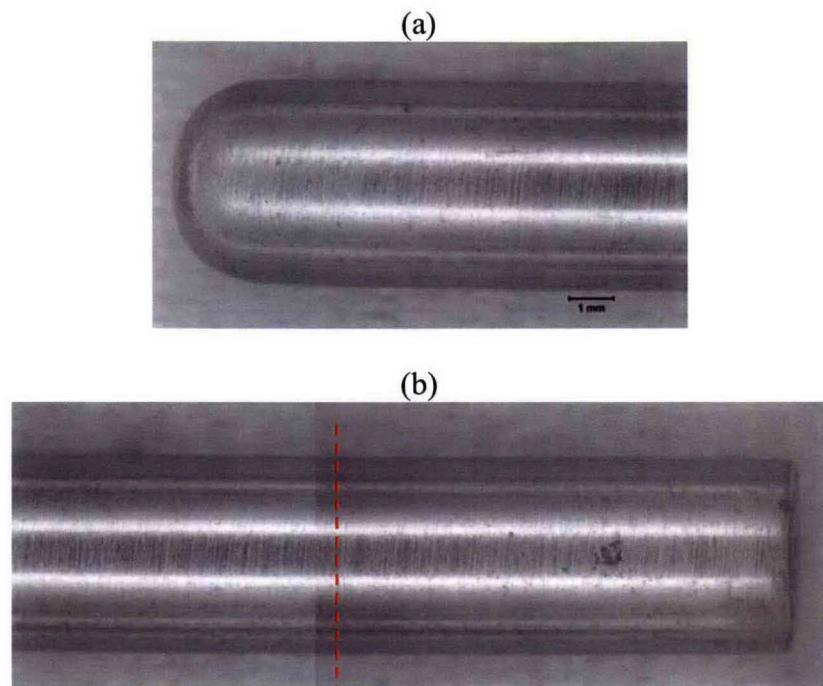

Figure B-18. The Crevice Assembly of the CPP Sample (a) and the Sample Appearance at the Crevice Section after CPP Testing in AP105-PSC Simulant (b) (pH>13, T=50°C).

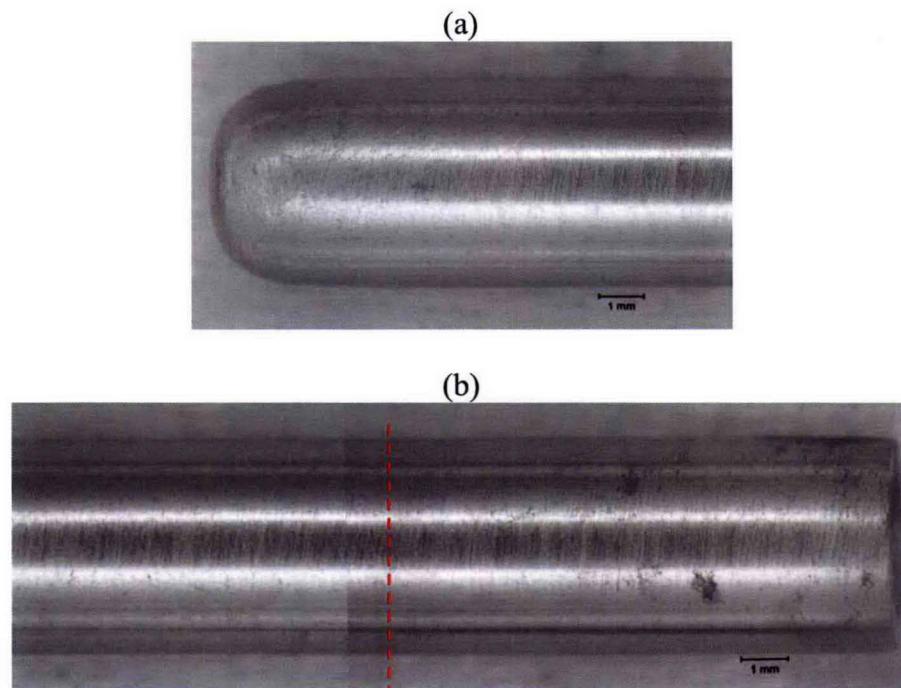

Figure B-19. The Current Density as a Function of Time When the Sample with a Crevice Former Was Polarized to 0 mV vs. SCE (AP105-PSC, pH>13, T=50°C, Daeaerated Condition).

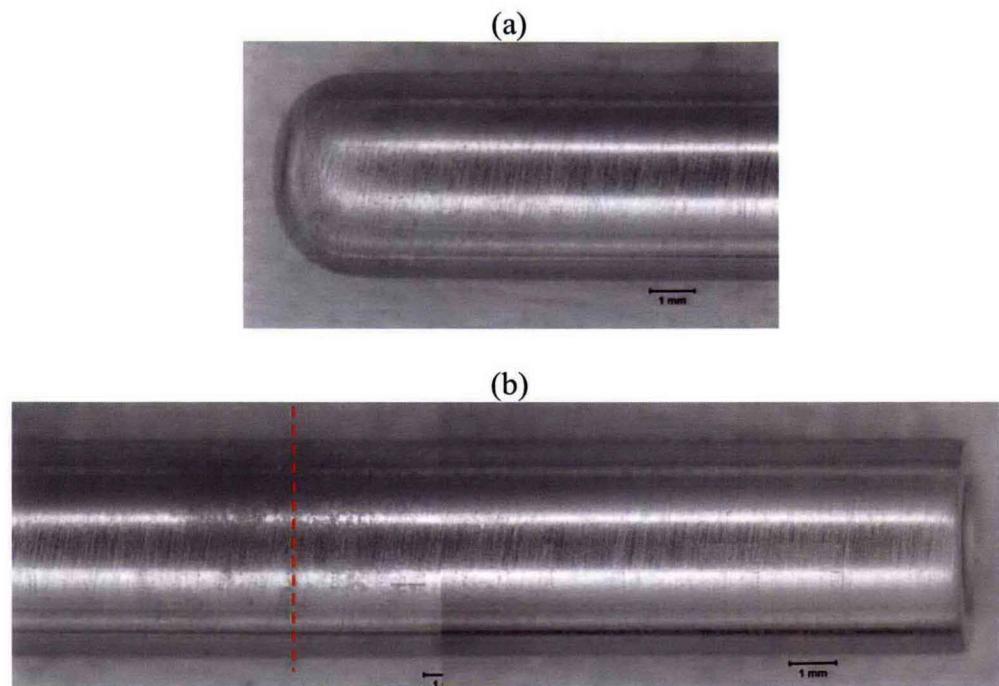

Figure B-20. The Sample Appearance at the Crevice Section after Potentiostatic Test at 0 mV vs. SCE in AP105-PSC Simulant for 50 Hours (pH>13, T=50°C, Daeaerated Condition).


Figure B-21. A Comparison of the CPP Curves Obtained in the AP105-PSC Simulant under Different Aeration Conditions Using Fully Immersed Samples.


Figure B-22. The Pits on the Samples Tested in the AP105-PSC Simulant under Quiescent Conditions and at 50°C (Ph=13+).


Figure B-23. The Corrosion Rate of the Samples Exposed to AP105-PSC at Different Conditions to Investigate the Interface Corrosion.


Figure B-24. The Appearance of the Sample (a, b) and the Cross Section of a Corroded Site (c) after Exposed in AP105-PSC at Quiescent Condition (Sample Partially Immersed, T=50°, EL1196-83).


Figure B-25. The Appearance of the Sample after Exposed in AP105-PSC Purged with Zero Air (Sample Partially Immersed, No CO₂, T=50°, EL1196-84)

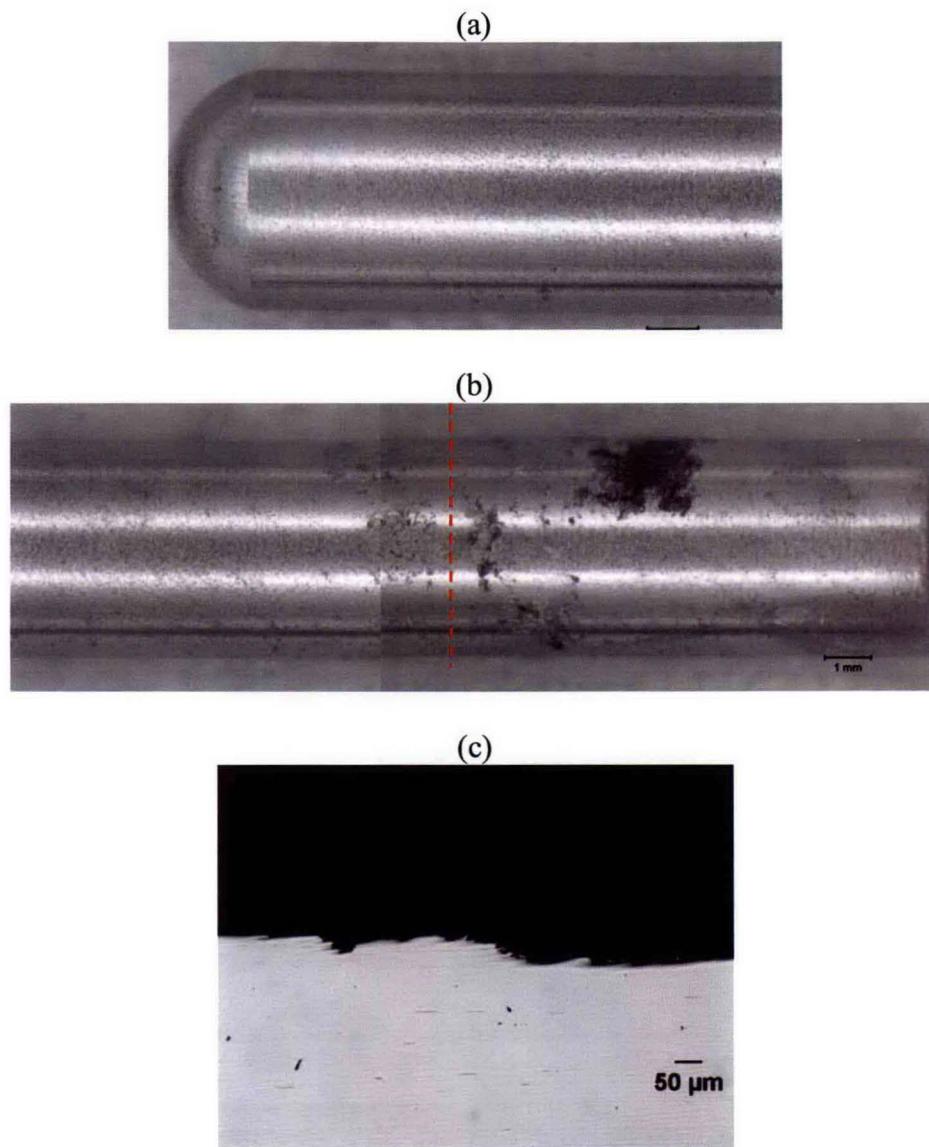
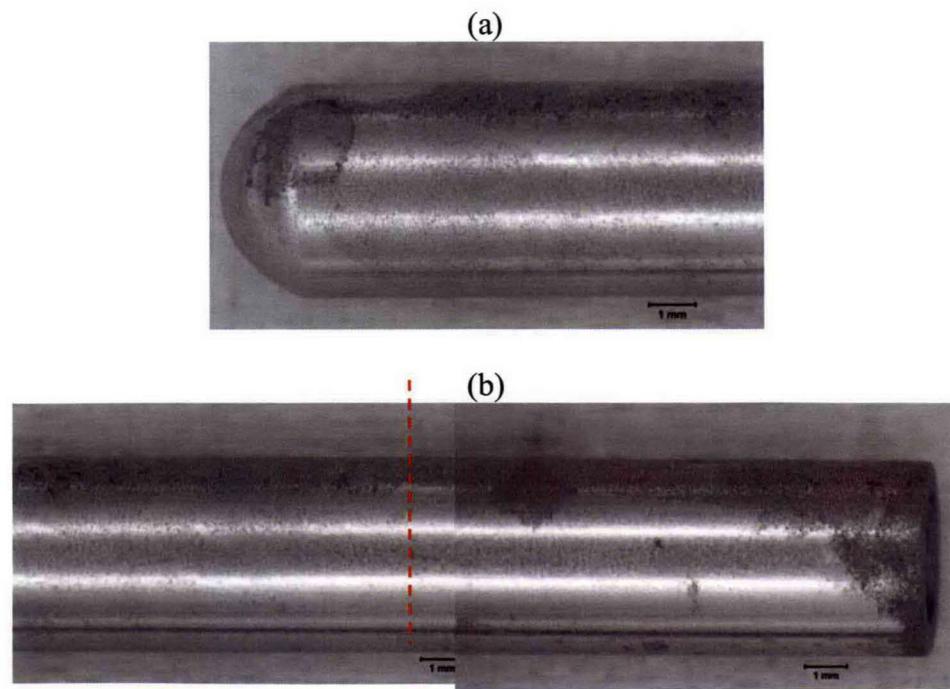

Figure B-26. The Appearance of the Sample after Exposed in AP105-PSC Purged with Ar (Sample Partially Immersed, T=50°, EL1196-85).

Figure B-27. The Appearance of the Sample after Exposed in AP105-PSC Purged with N₂ (Sample Partially Immersed, T=50°, EL1196-86).


Figure B-28. The Appearance of the Sample (a, b) and the Cross Section of a Corroded Site (c) after Exposed in AP105-PSC at Quiescent Condition (Sample Partially Immersed, Room T, EL1196-97).

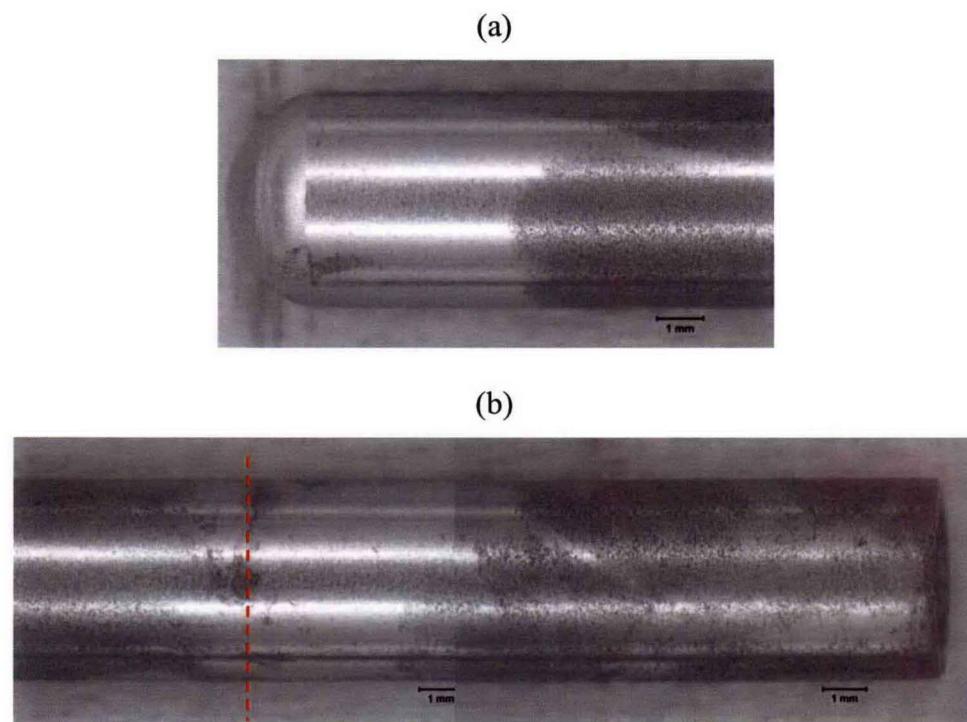

Figure B-29. The Appearance of the Sample after Exposed in AP105-PSC. The Head Space of the Cell Was Purged with Zero Air (No CO₂, Sample Partially Immersed, T=50°, EL1196-94).

Figure B-30. The Appearance of the Sample after Exposed in AP105-PSC. The Head Space of the Cell Was Purged with Ar (Sample Partially Immersed, T=50°, EL1196-95).

Figure B-31. The Appearance of the Sample after Exposed in AP105-PSC. The Head Space of the Cell Was Purged with N₂ (Sample Partially Immersed, T=50°, EL1196-96).

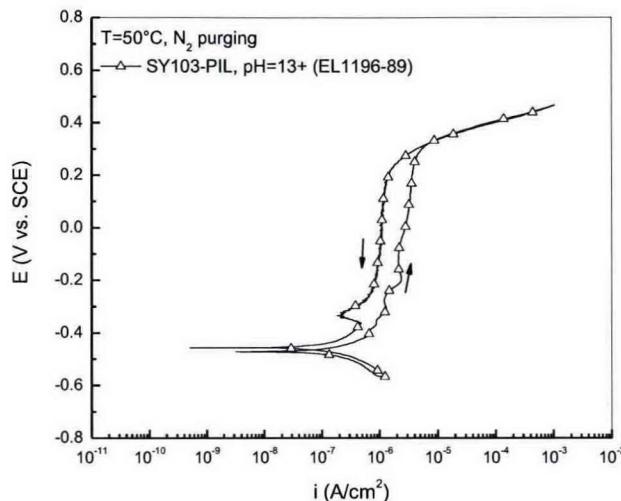


Table B-2. The pH Values of the Simulant after the Long Term Immersion Tests.

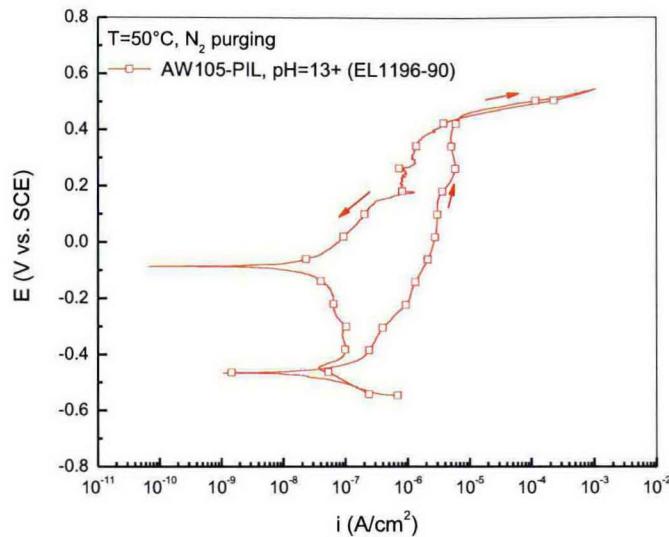
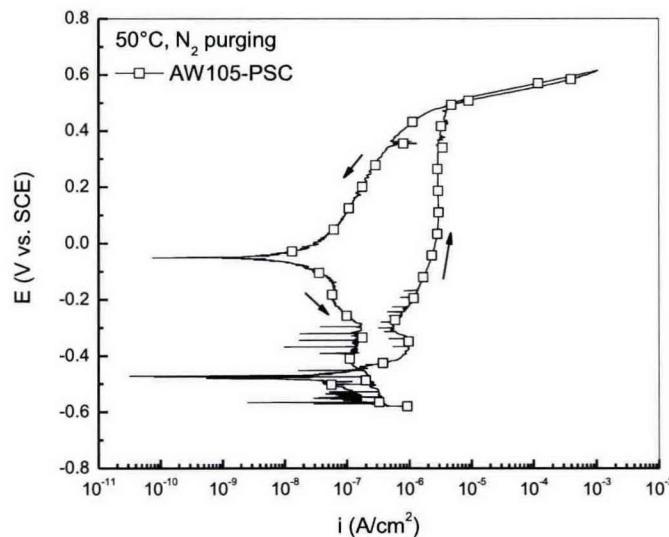


Exposed sample	Solution pH after test
EL1196-83	13.28
EL1196-84	13.23
EL1196-85	13.32
EL1196-86	13.21
EL1196-97	13.32
EL1196-94	13.4
EL1196-95	13.44
EL1196-96	13.38

Table B-3. A Summary of Electrochemical Test Performed in SY103-PIL Based Simulant.

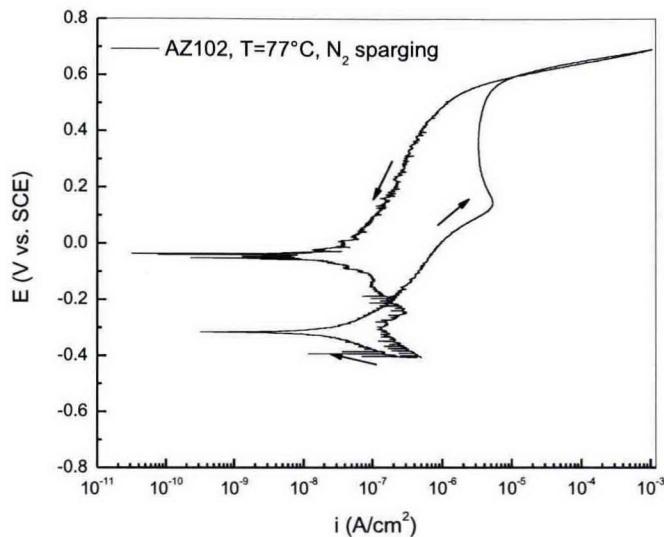

Base Chemistry	pH	NO_2^- (M)	NO_3^- (M)	TIC (M)	OH^- (M)*	Cl^- (M)	F^- (M)	T (°C)	Aeration condition	Visual	Sample ID (#EL1196-)
SY103-PIL	>13	2.91	1.97	0.123	2.43	0.5	0	50	N_2 sparging	No pitting	89

Figure B-32. A CPP Curve in Daeaerated SY103-PIL Simulant (pH>13 and T=50°C).**Table B-4. A Summary of Electrochemical Test Performed in AW105 Based Simulant.**

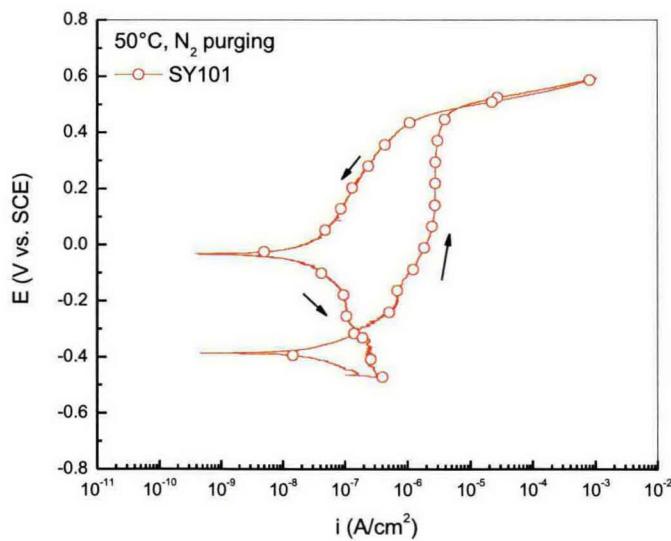

Base Chemistry	pH	NO_2^- (M)	NO_3^- (M)	TIC (M)	OH^- (M)*	Cl^- (M)	F^- (M)	T (°C)	Aeration condition	Testing type	Visual	Sample ID (#EL1196-)
AW105-PIL	>13	0.124	0.419	0.097	0.4502	0.01	0.58	50	N_2 sparging	CPP Full immersion	No pitting	90
AW105-PSC	>13	0.0638	0.44	0.1076	0.2630	0.0083	0.156	50	N_2 sparging	CPP Full immersion	No pitting	108

Figure B-33. A CPP Curve in Deaerated AW105-PIL Simulant (pH>13 and T=50°C).**Figure B-34. A CPP Curve in Deaerated AW105-PSC Simulant (pH>13 and T=50°C).****Table B-5. A Summary of Electrochemical Test Performed in AZ102 Based Simulant.**

Base Chemistry	pH	NO_2^- (M)	NO_3^- (M)	TIC (M)	OH^- (M)*	Cl ⁻ (M)	F ⁻ (M)	T (°C)	Aeration condition	Testing type	Visual	Sample ID (#EL1196-)
AZ102	>12	0.883	0.105	0.619	-	-	0.052	77	N_2 sparging	CPP Full immersion	No pitting	103

Figure B-35. A CPP Curve in Daeaerated AZ102 Simulant (pH>12 and T=77°C).**Table B-6. A Summary of Electrochemical Test Performed in SY101 Based Simulant.**

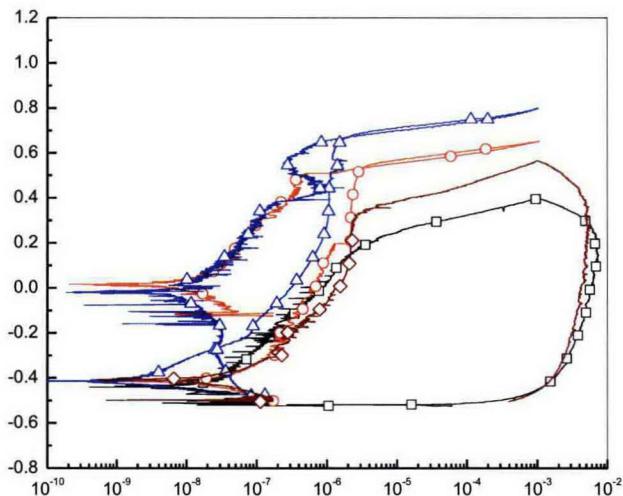
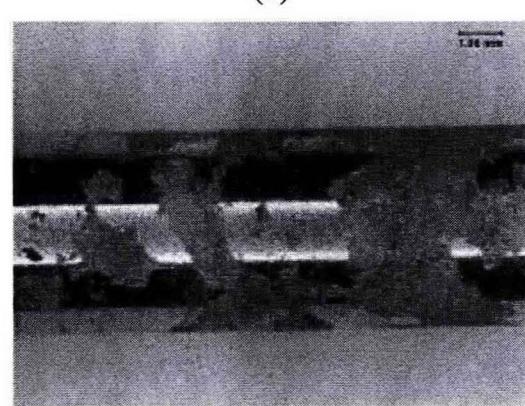
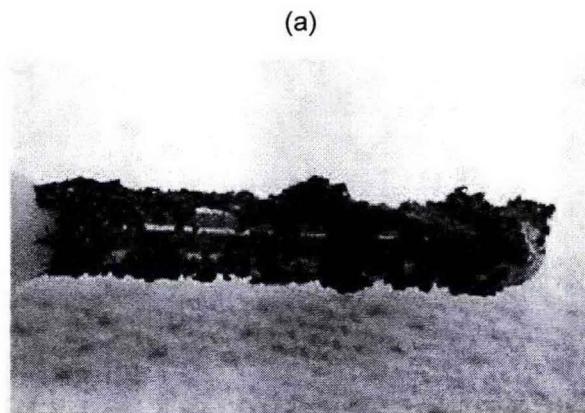

Base Chemistry	pH	NO_2^- (M)	NO_3^- (M)	TIC (M)	OH^- (M)*	Cl^- (M)	F^- (M)	T (°C)	Aeration condition	Testing type	Visual	Sample ID (#EL1196-)
SY101	>13	0.2027	0.9313	0.1328	0.6555	0.0228	0.0277	50	N ₂ sparging	CPP Full immersion	No pitting	109

Figure B-36. A CPP Curve in Daeaerated SY101 Simulant at pH 13+ and 50°C.



Table B-7. A Summary of Electrochemical Test Performed in AY101-CSL Based Simulant.

Base Chemistry	pH	NO_2^- (M)	NO_3^- (M)	TIC (M)	OH^- (M)*	Cl^- (M)	F (M)	T (°C)	Aeration condition	Testing type	Visual	Sample ID (#EL1196-)
AY101-CSL	11.82	0.0368	0.181	0.1474	0.0051	0.0064	0.0015	50	N_2 sparging	CPP Full immersion	Pitting	111
AY101-CSL	12.82	0.0368	0.181	0.1474	0.0051	0.0064	0.0015	50	N_2 sparging	CPP Full immersion	No Pitting	112
AY101-CSL	11.82	0.0368	0.181	0.1474	0.0051	0.0064	0.0015	Room	N_2 sparging	CPP Full immersion	No Pitting	113
AY101-CSL	12.3	0.0368	0.181	0.1474	0.0051	0.0064	0.0015	50	N_2 sparging	CPP Full immersion	Pitting	115

Figure B-37. A Comparison of CPP Curves in the Daeerated AY101-CSL Simulant at Different pH and Temperature Levels.

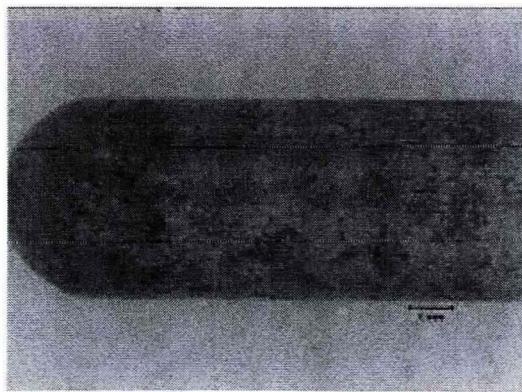


Figure B-38. The appearance of the sample after CPP test in the deaerated AY101-CSL simulant at 50°C and pH 11.82. (a) before cleaning; (b) after cleaning

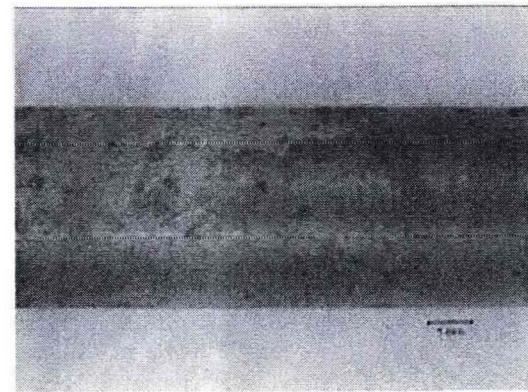
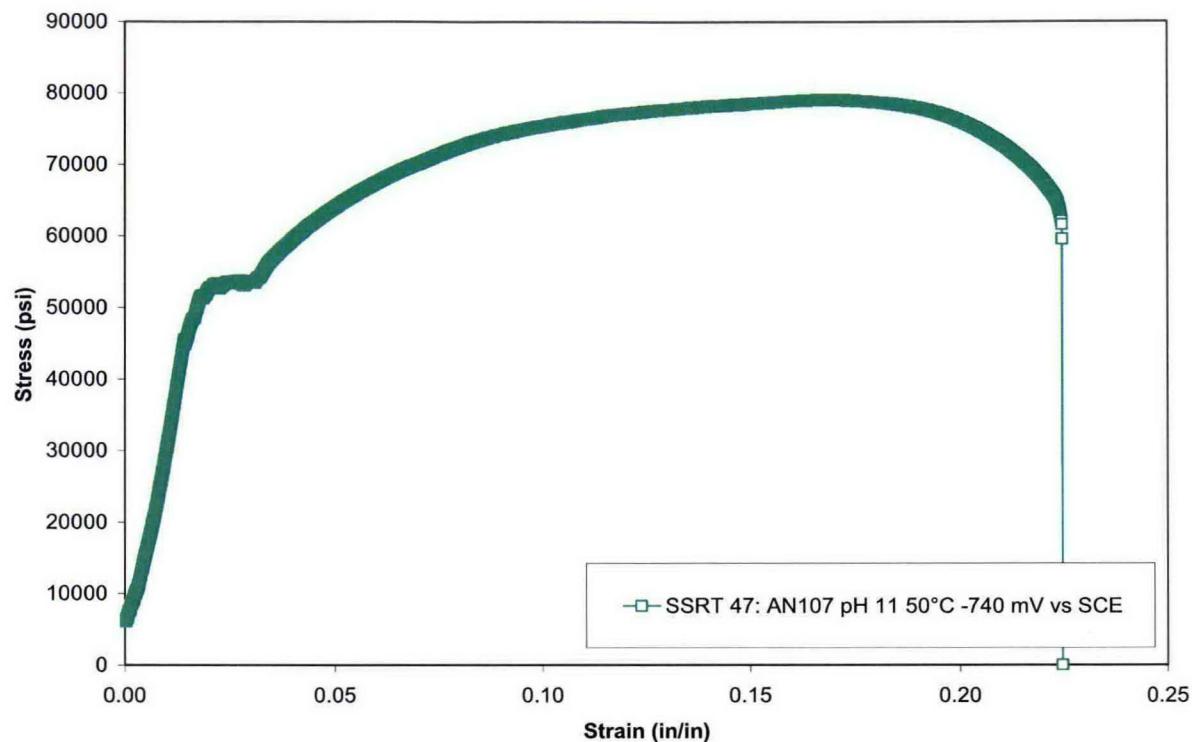


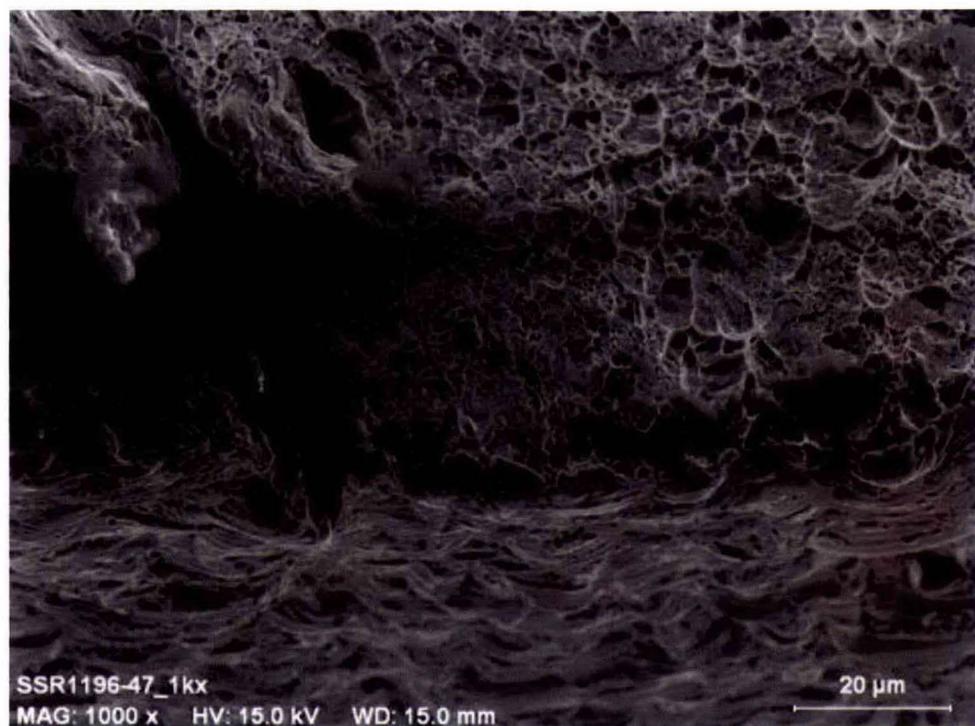
Figure B-39. The appearance of the sample after CPP test in AY101-CSL at pH 12.3 and 50°C.

(a)


(b)

APPENDIX C

SLOW STRAIN RATE TEST DATA AND MICROGRAPHS


Figure C-1. The Stress-Strain Curve from SSRT 47 Performed in AN107 Standard Simulant at 50°C, pH 11 and at -740 mV vs. SCE.

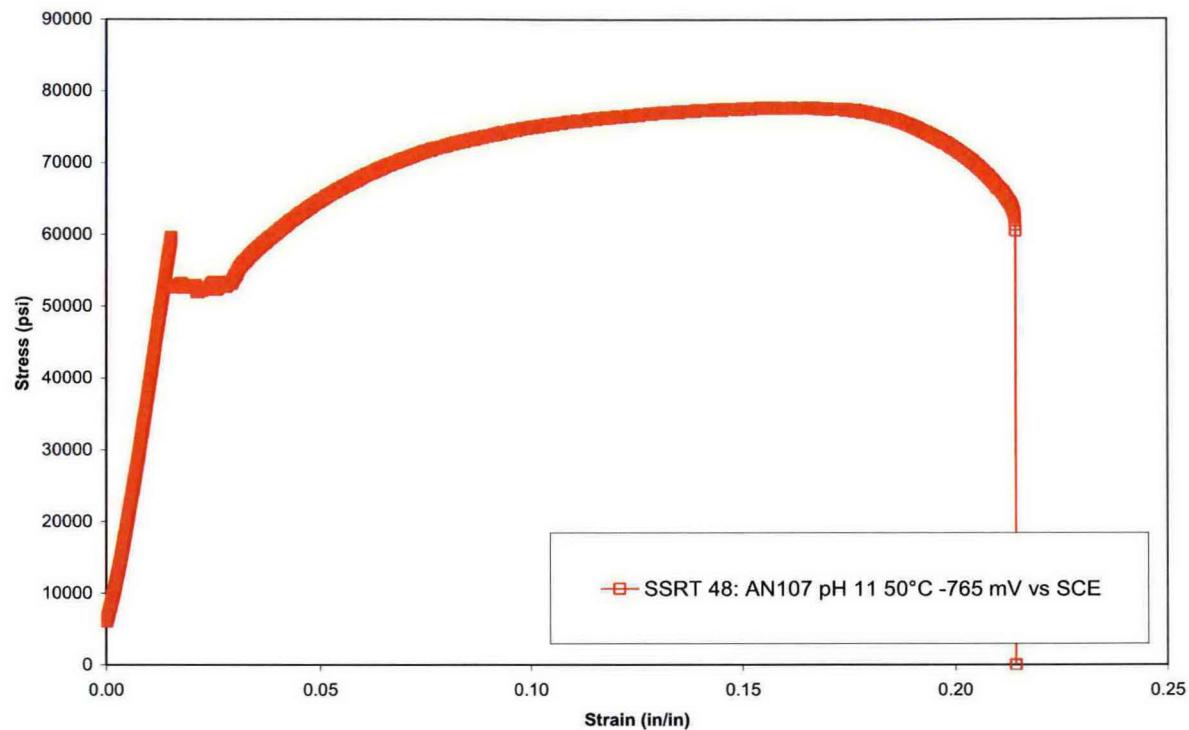
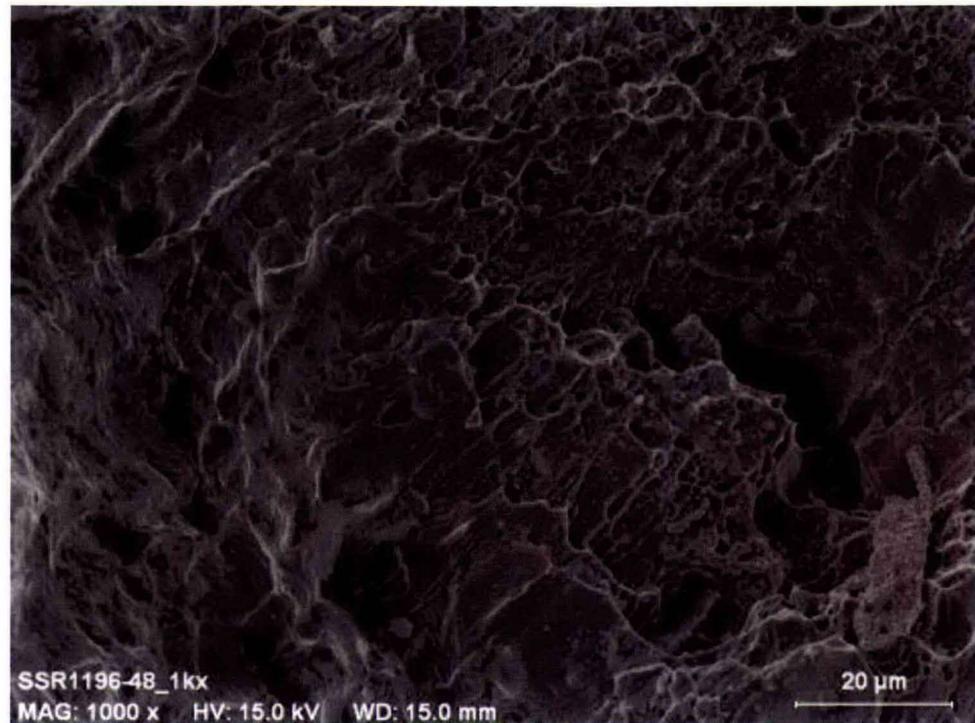

Figure C-2. A Stereo-Micrograph of the Sample from SSRT 47 Performed in AN107 Standard Simulant at 50°C, pH 11 and at -740 mV vs. SCE.

Figure C-3. An Electron-Micrograph of the Fracture Surface from SSRT 47 Performed in AN107 Standard Simulant at 50°C, pH 11 and at -740 mV vs. SCE.


Figure C-4. The Stress-Strain Curve from SSRT 48 Performed in AN107 Standard Simulant at 77°C, pH 11 and at -765 mV vs. SCE.

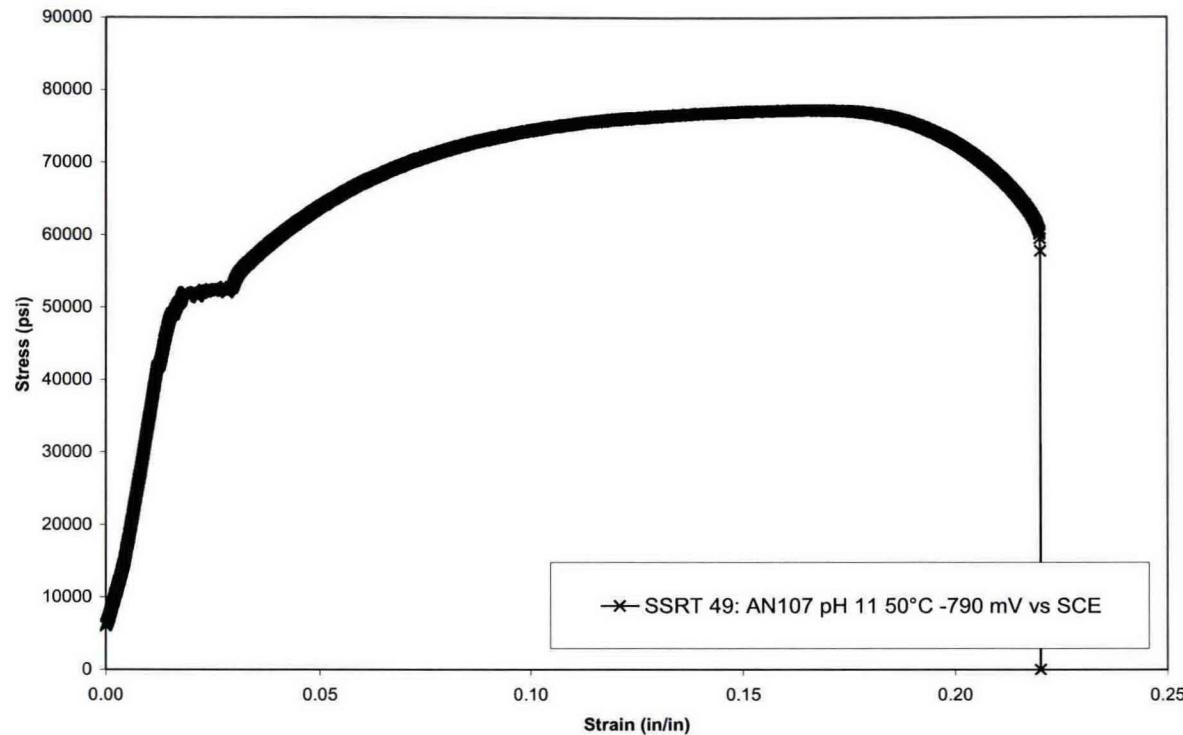
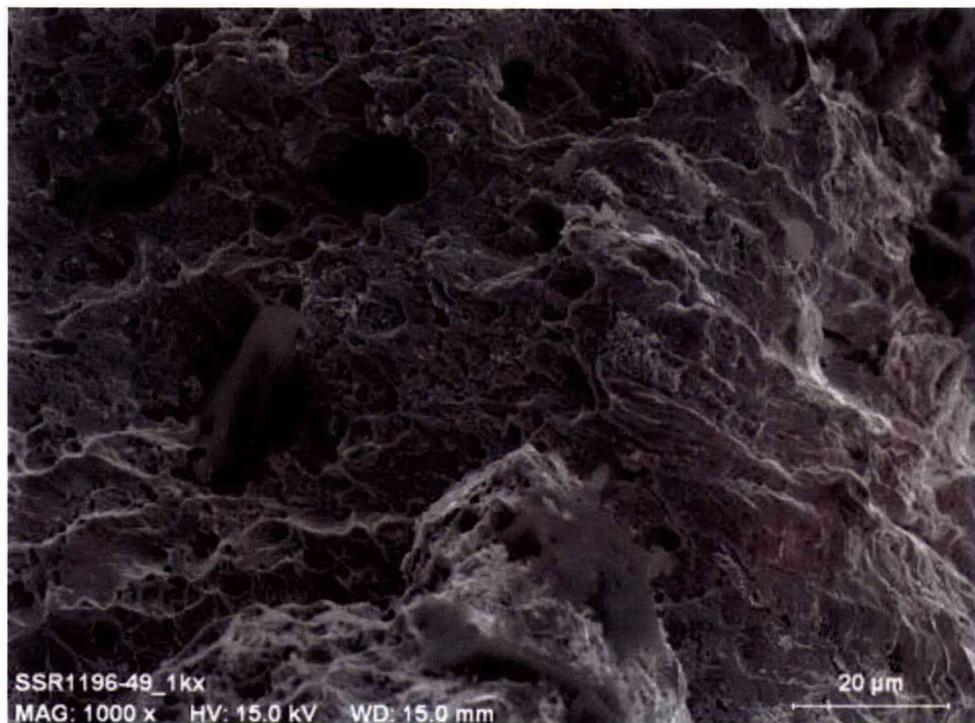

Figure C-5. A Stereo-Micrograph of the Sample from SSRT 48 Performed in AN107 Standard Simulant at 77°C, pH 11 and at -765 mV vs. SCE.

Figure C-6. An Electron-Micrograph of the Fracture Surface from SSRT 48 Performed in AN107 Standard Simulant at 77°C, pH 11 and at -765 mV vs. SCE.


Figure C-7. The Stress-Strain Curve from SSRT 49 Performed in AN107 Standard Simulant at 77°C, pH 13+ and at -790 mV vs. SCE.

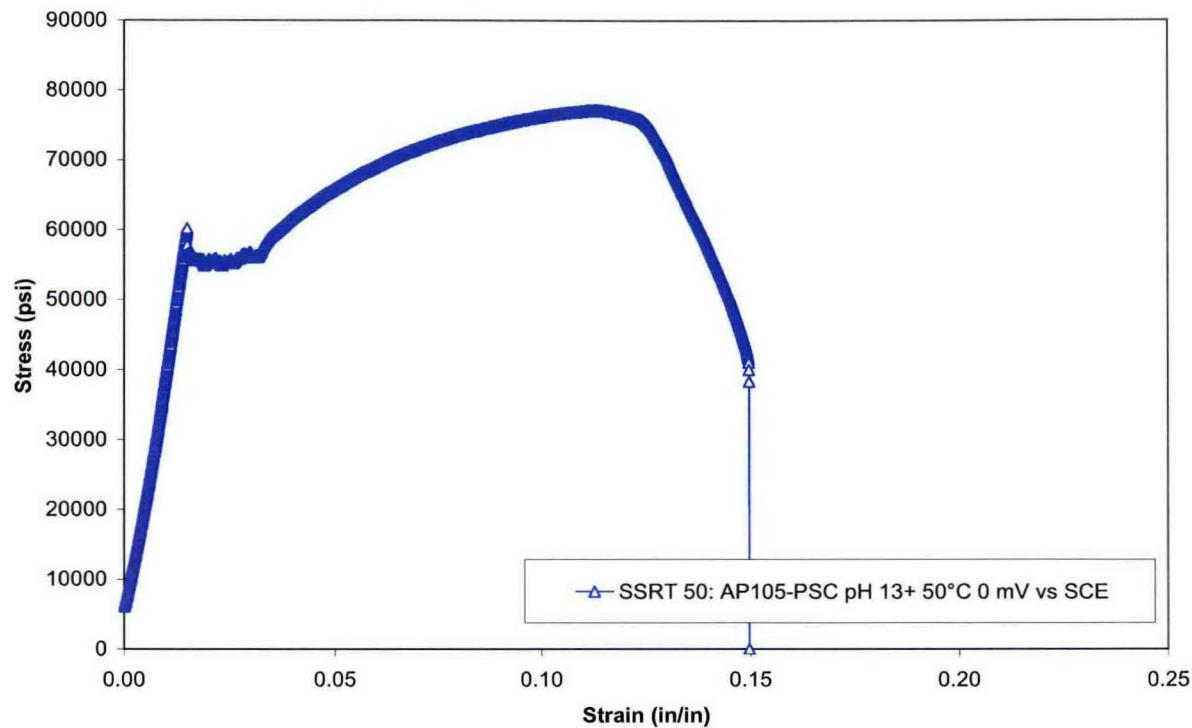
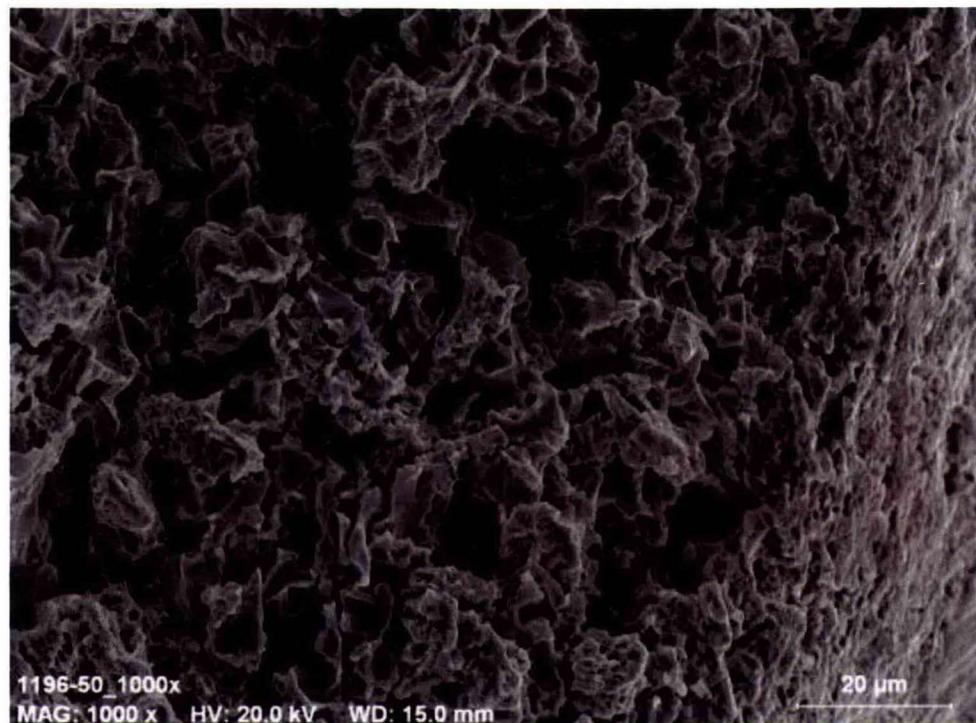
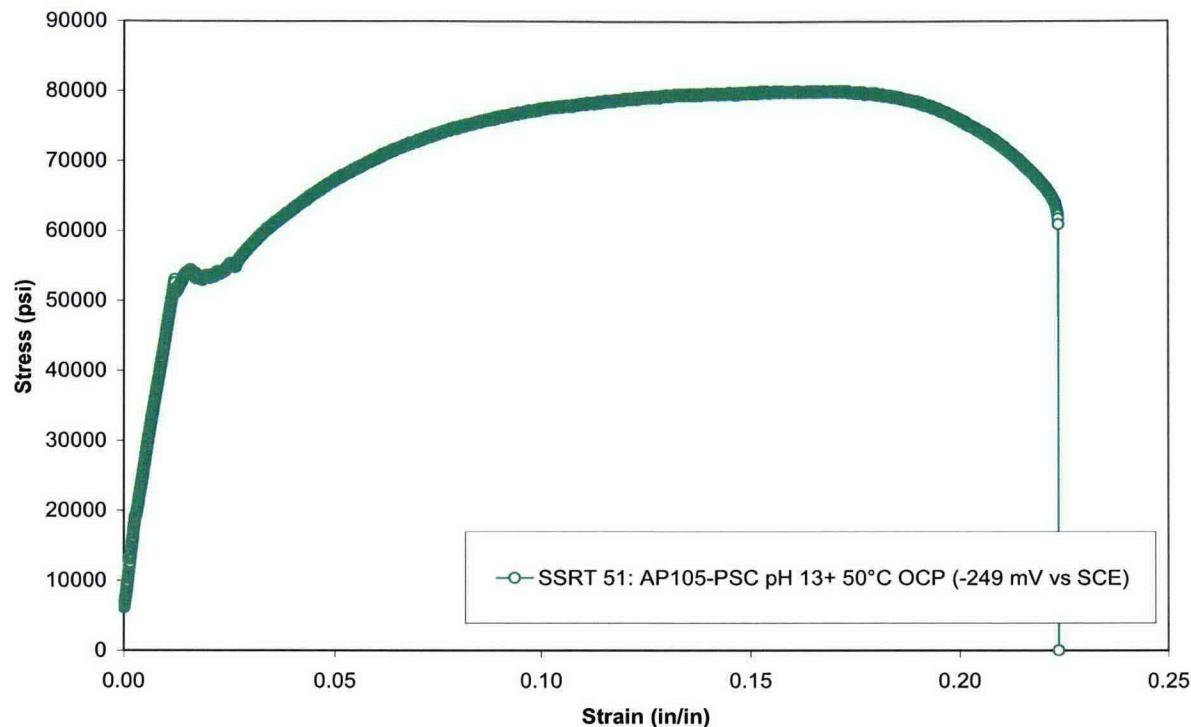
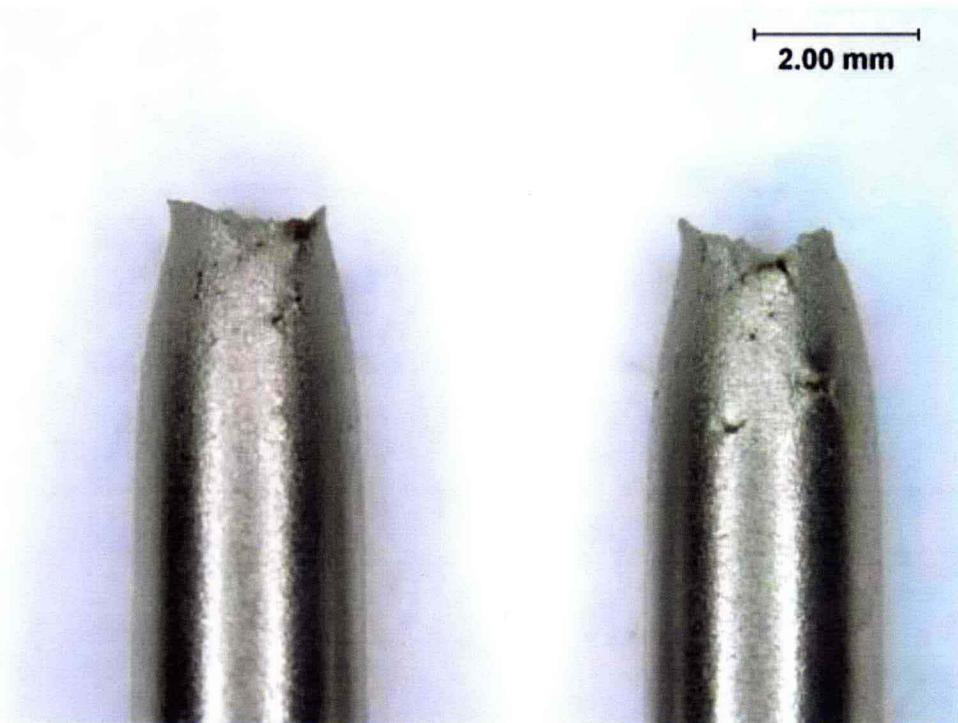
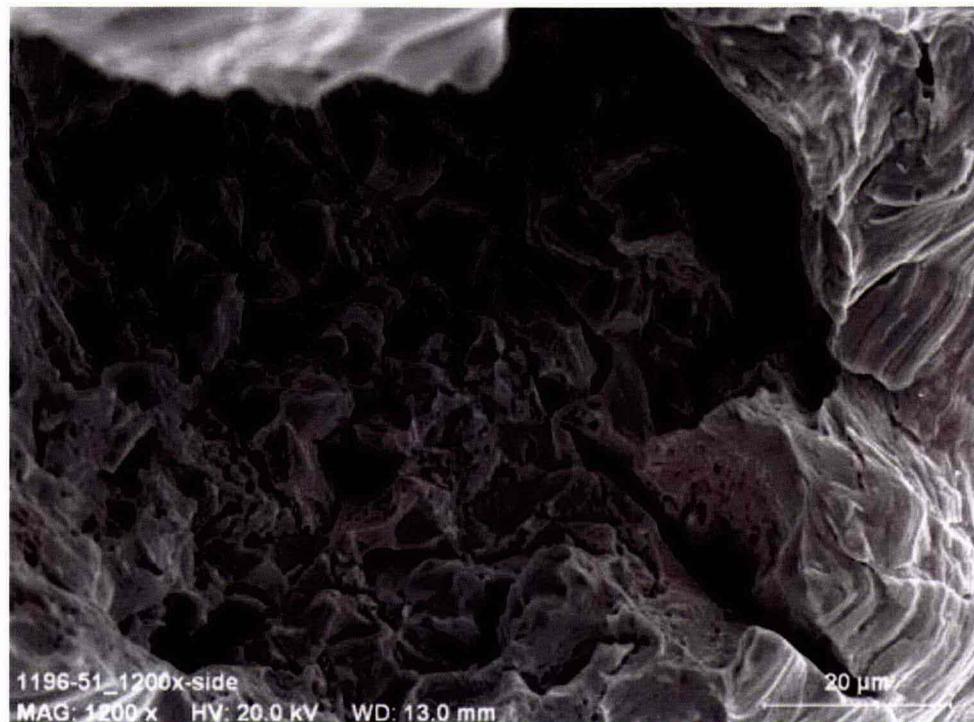

Figure C-8. A Stereo-Micrograph of the Sample from SSRT 49 Performed in AN107 Standard Simulant at 77°C, pH 13+ and at -790 mV vs. SCE.

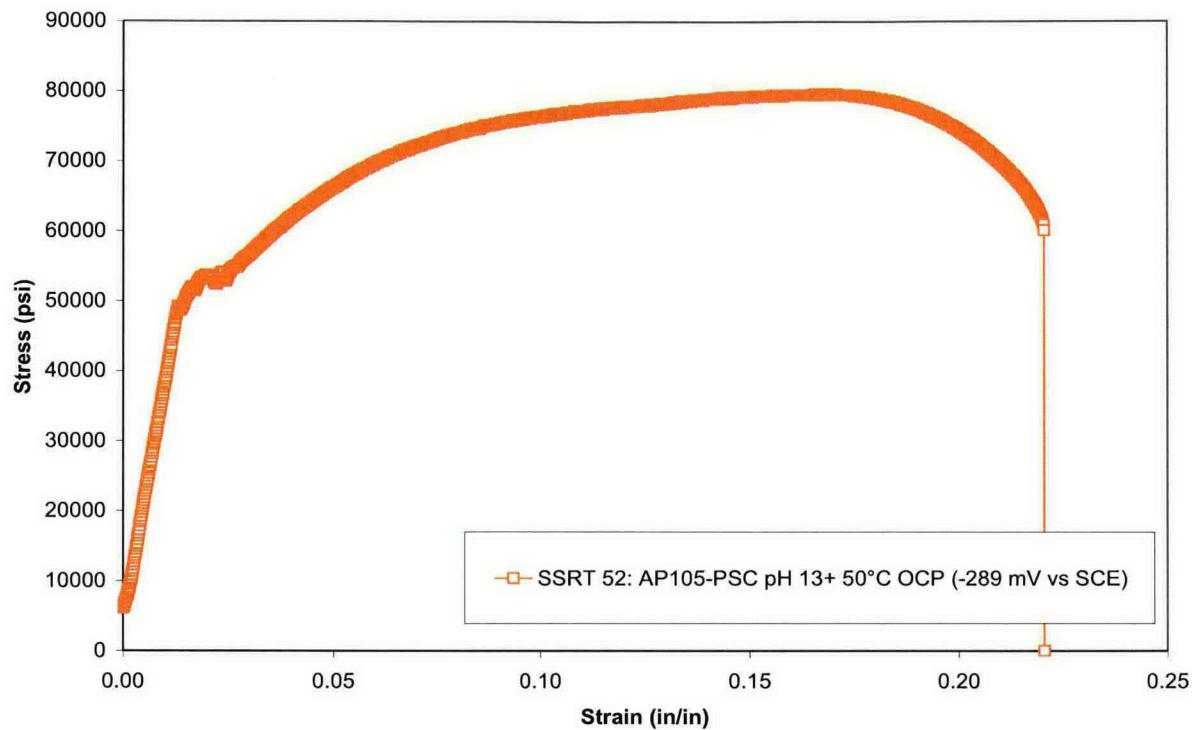
Figure C-9. An Electron-Micrograph of the Fracture Surface from SSRT 49 Performed in AN107 Standard Simulant at 77°C, pH 13+ and at -790 mV vs. SCE.

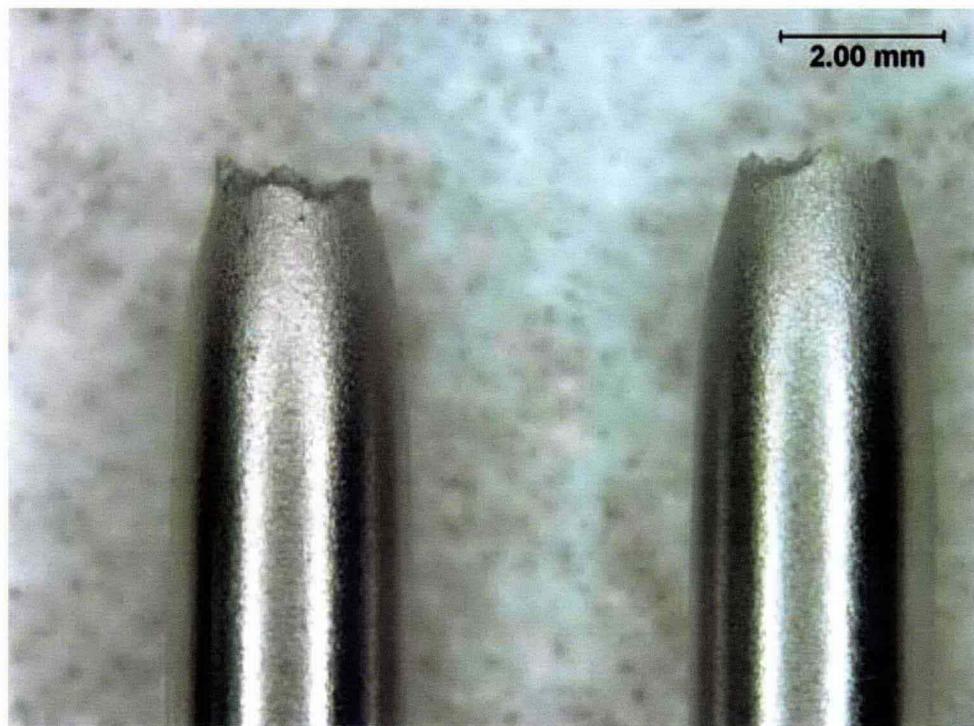

Figure C-10. The Stress-Strain Curve from SSRT 50 Performed in AP105-PSC Standard Simulant at 50°C, pH 13+ and at 0 mV vs. SCE.

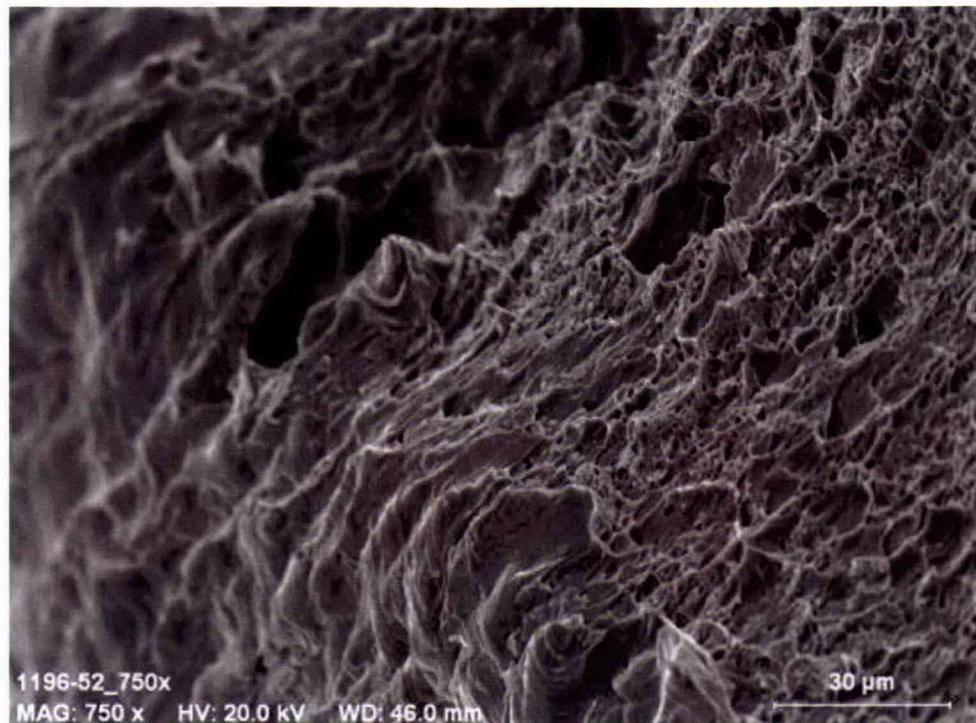

Figure C-11. A Stereo-Micrograph of the Sample from SSRT 50 Performed in AP105-PSC Standard Simulant at 50°C, pH 13+ and at 0 mV vs. SCE.

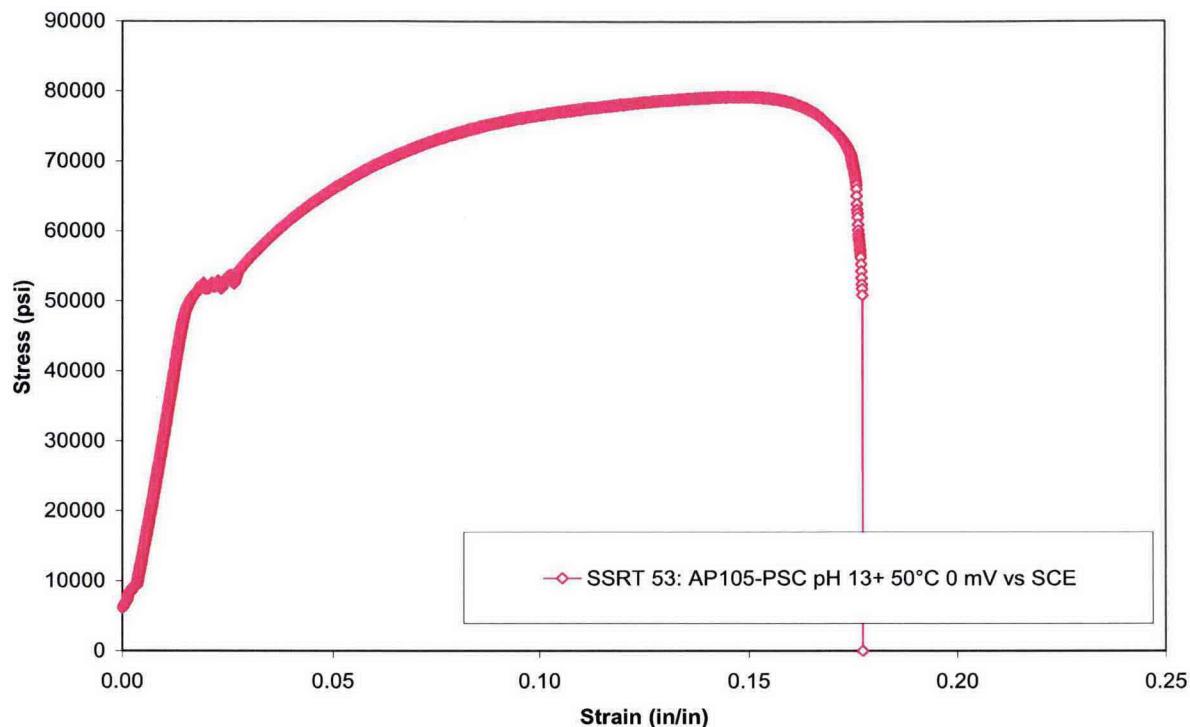

Figure C-12. An Electron-Micrograph of the Fracture Surface from SSRT 50 Performed in AP105-PSC Standard Simulant at 50°C, pH 13+ and at 0 mV vs. SCE.

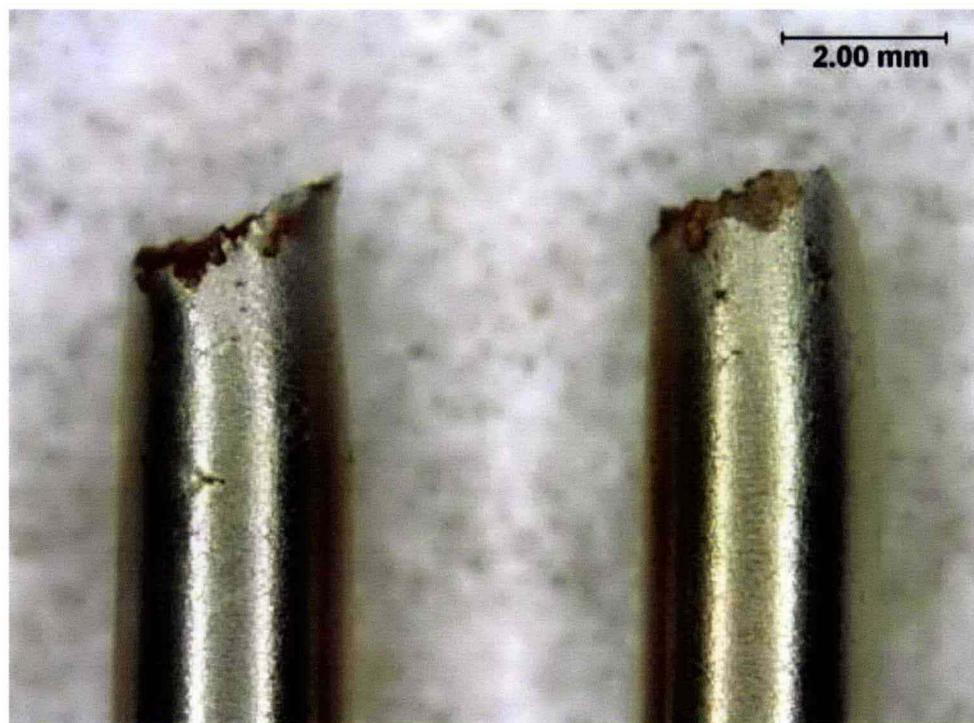

Figure C-43. The Stress-Strain Curve from SSRT 51 Performed in AP105-PSC Standard Simulant at 50°C, pH 13+ and at OCP (-249 mV vs. SCE).

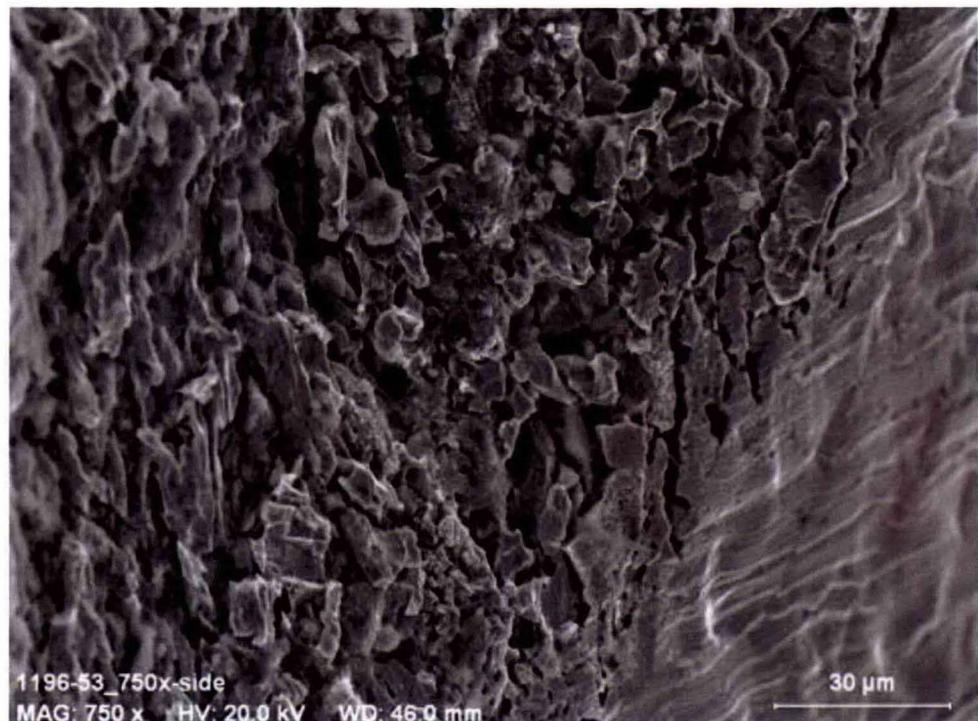

Figure C-14. A Stereo-Micrograph of the Sample from SSRT 51 Performed in AP105-PSC Standard Simulant at 50°C, pH 13+ and at OCP (-249 mV vs. SCE).

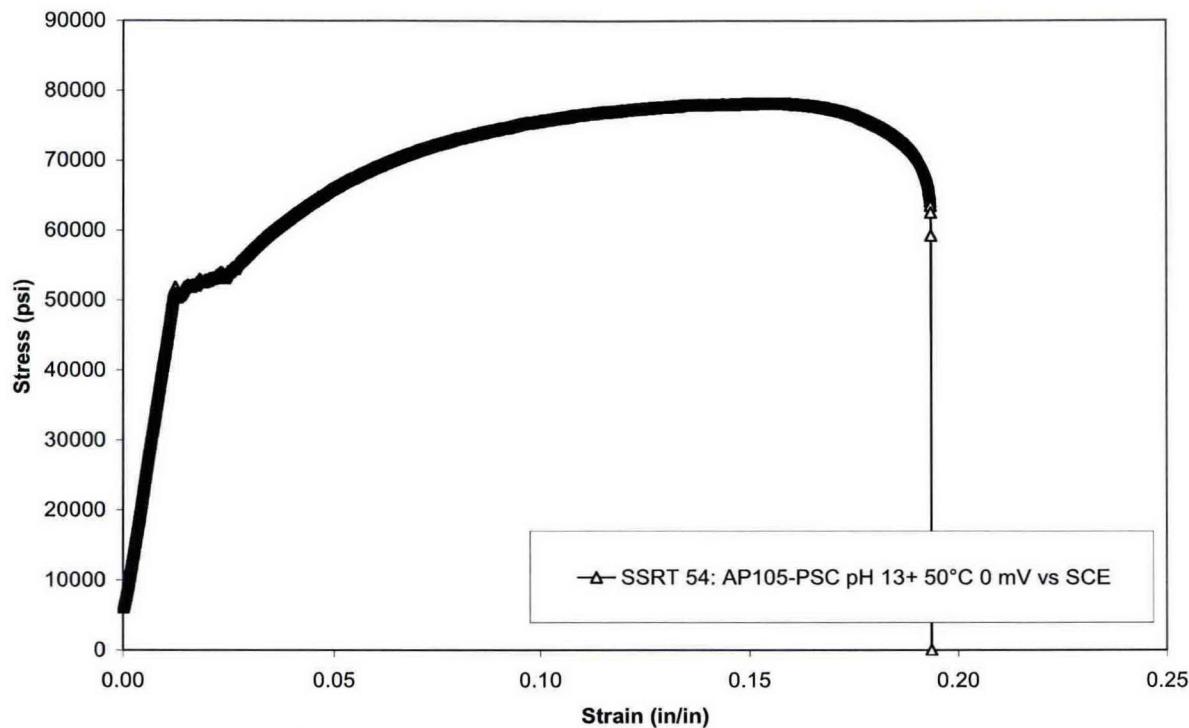

Figure C-15. An Electron-Micrograph of a Secondary Crack in the Shaft of SSRT 51 Performed in AP105-PSC Standard Simulant at 50°C, pH 13+ and at OCP (-249 mV vs. SCE).

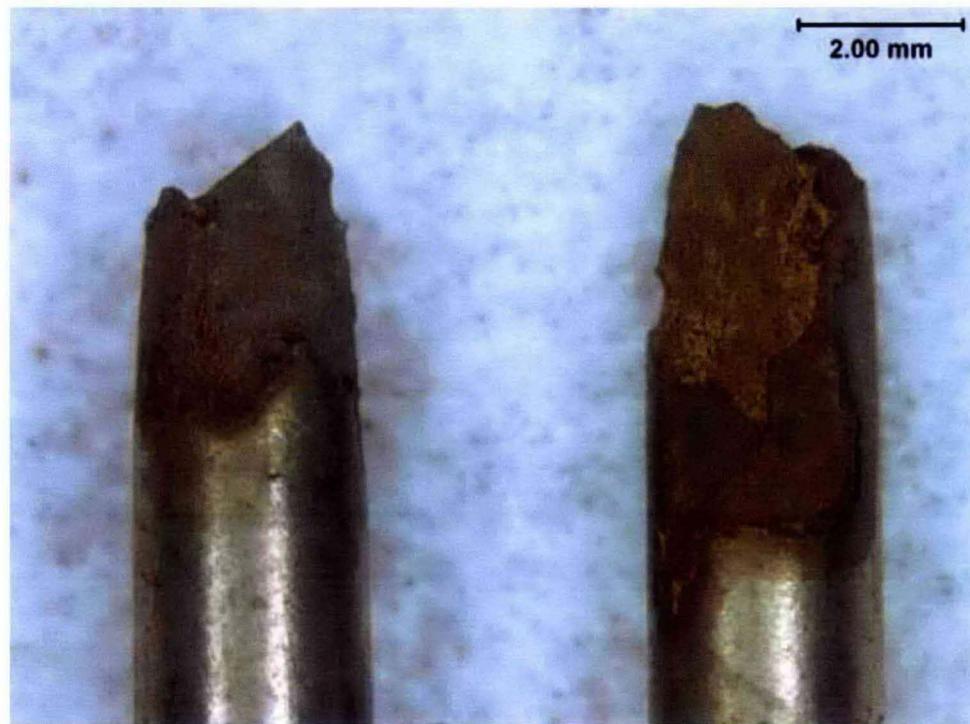

Figure C-16. The Stress-Strain Curve from SSRT 52 Performed in AP105-PSC Standard Simulant at 50°C, pH 13+ and at OCP (-289 mV vs. SCE).

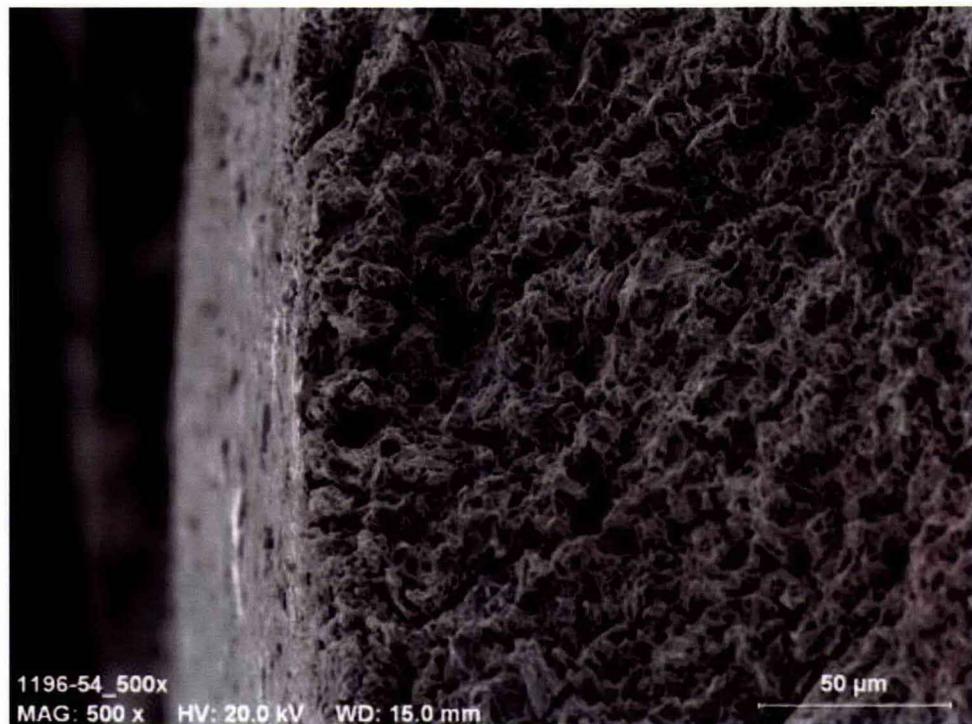

Figure C-17. A Stereo-Micrograph of the Sample from SSRT 52 Performed in AP105-PSC Standard Simulant at 50°C, pH 13+ and at OCP (-289 mV vs. SCE).

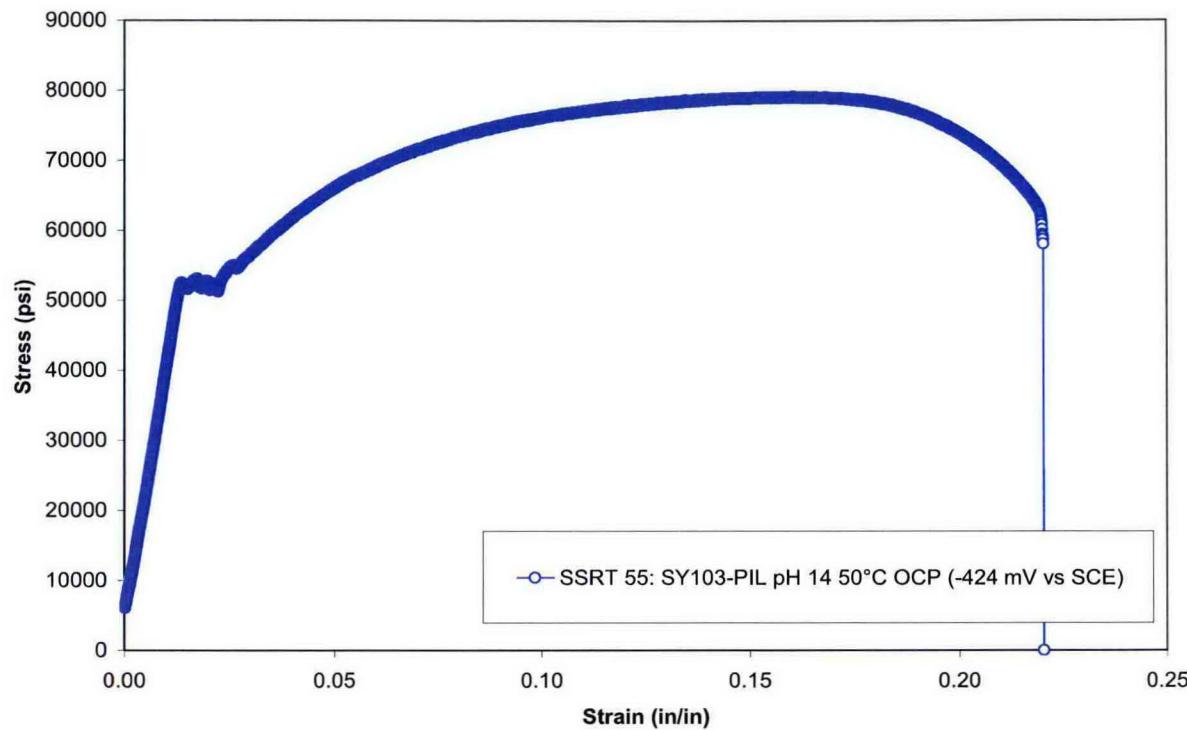

Figure C-18. An Electron-Micrograph of the Fracture Surface from SSRT 52 Performed in AP105-PSC Standard Simulant at 50°C, pH 13+ and at OCP (-289 mV vs. SCE).

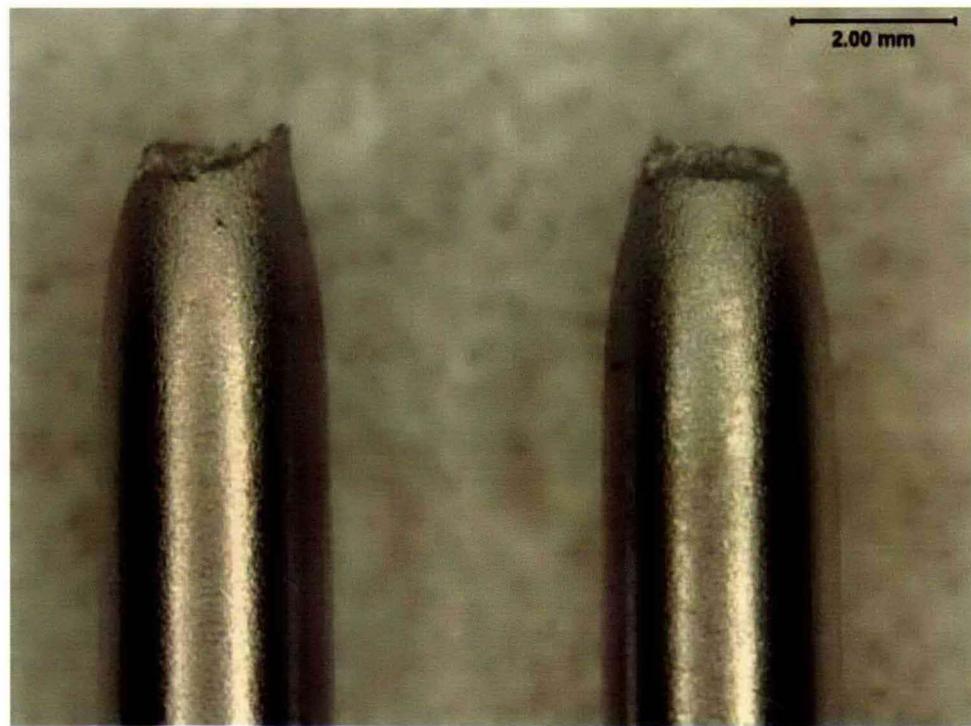

Figure C-19. The Stress-Strain Curve from SSRT 53 Performed in AP105-PSC Standard Simulant at 50°C, pH 13+ and at 0 mV vs. SCE.

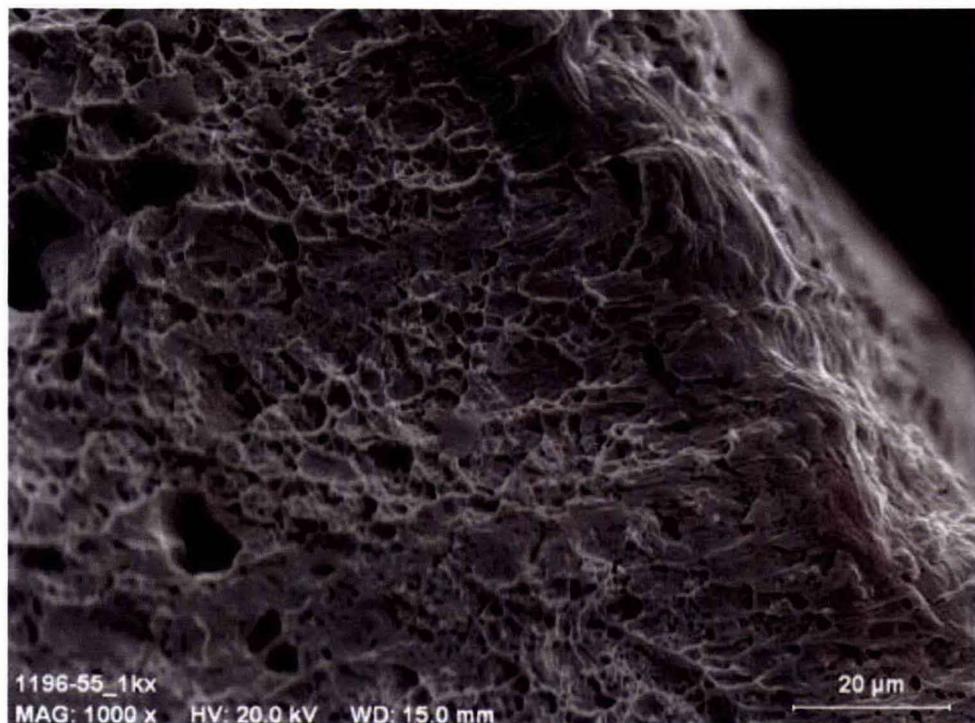

Figure C-20. A Stereo-Micrograph of the Sample from SSRT 53 Performed in AP105-PSC Standard Simulant at 50°C, pH 13+ and at 0 mV vs. SCE.

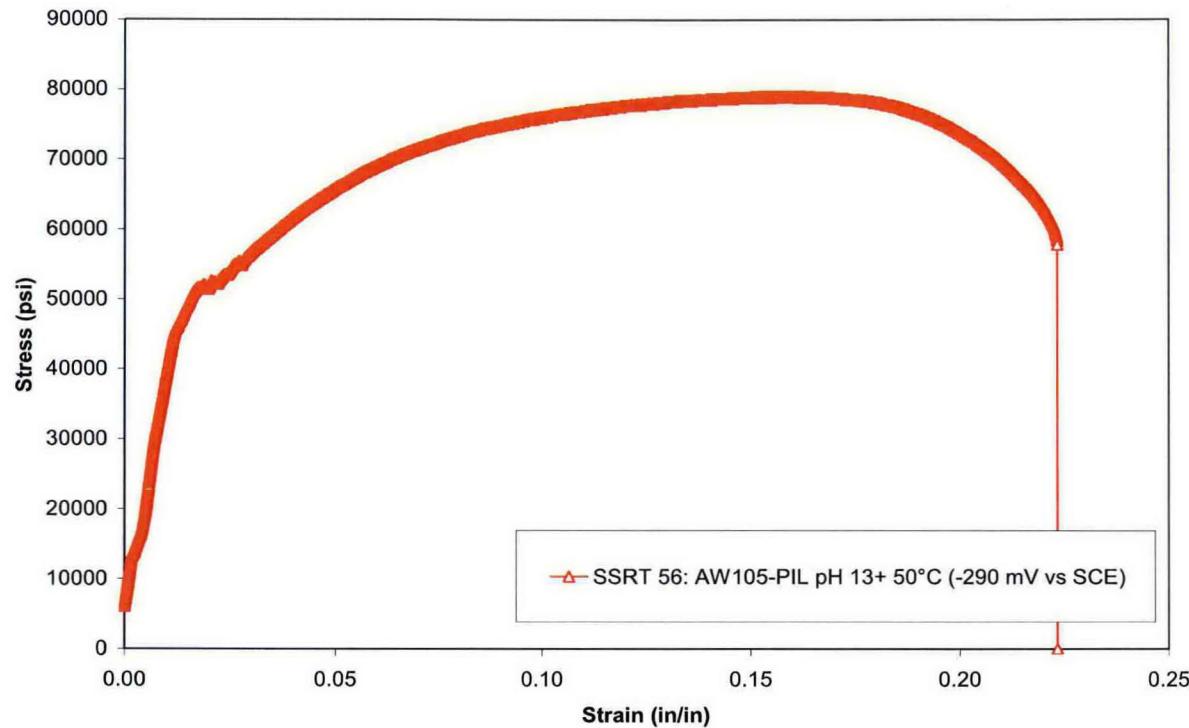

Figure C-21. An Electron-Micrograph of the Fracture Surface from SSRT 53 Performed in AP105-PSC Standard Simulant at 50°C, pH 13+ and at 0 mV vs. SCE.

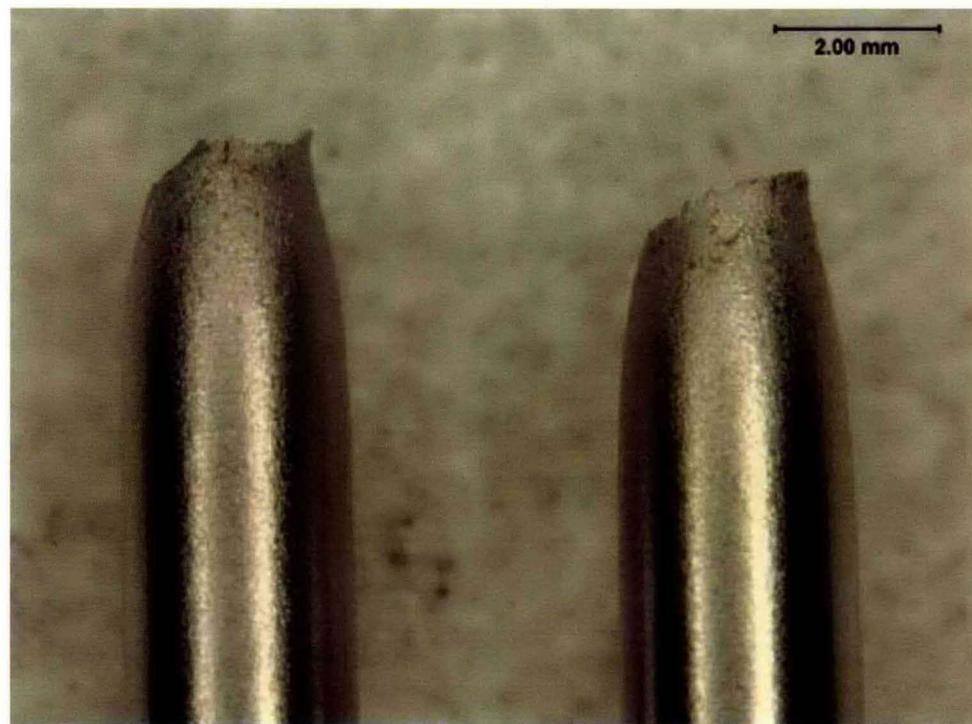

Figure C-22. The Stress-Strain Curve from SSRT 54 Performed in AP105-PSC Standard Simulant at 50°C, pH 13+ and at 0 mV vs. SCE.

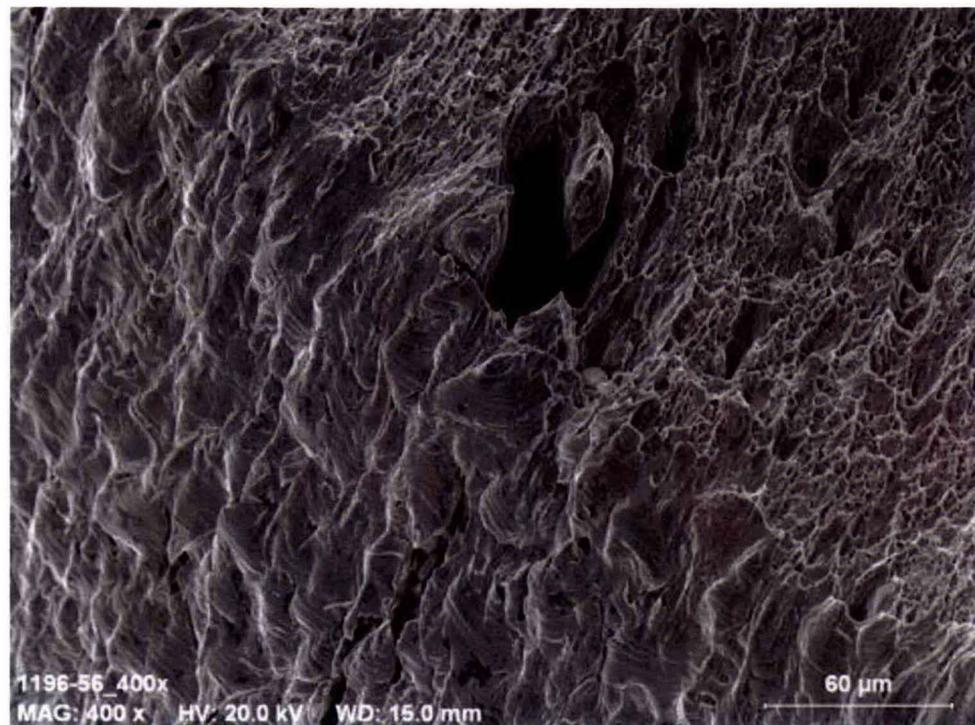

Figure C-23. A Stereo-Micrograph of the Sample from SSRT 54 Performed in AP105-PSC Standard Simulant at 50°C, pH 13+ and at 0 mV vs. SCE.


Figure C-24. An Electron-Micrograph of the Fracture Surface from SSRT 54 Performed in AP105-PSC Standard Simulant at 50°C, pH 13+ and at 0 mV vs. SCE.


Figure C-25. The Stress-Strain Curve from SSRT 55 Performed in SY103-PIL Standard Simulant at 50°C, pH 14 and at OCP (-424 mV vs. SCE).


Figure C-26. A Stereo-Micrograph of the Sample from SSRT 55 Performed in SY103-PIL Standard Simulant at 50°C, pH 14 and at OCP (-424 mV vs. SCE).


Figure C-27. An Electron-Micrograph of the Fracture Surface from SSRT 55 Performed in SY103-PIL Standard Simulant at 50°C, pH 14 and at OCP (-424 mV vs. SCE).


Figure C-28. The Stress-Strain Curve from SSRT 56 Performed in AW105-PIL Standard Simulant at 50°C, pH 13+ and at OCP (-290 mV vs. SCE).

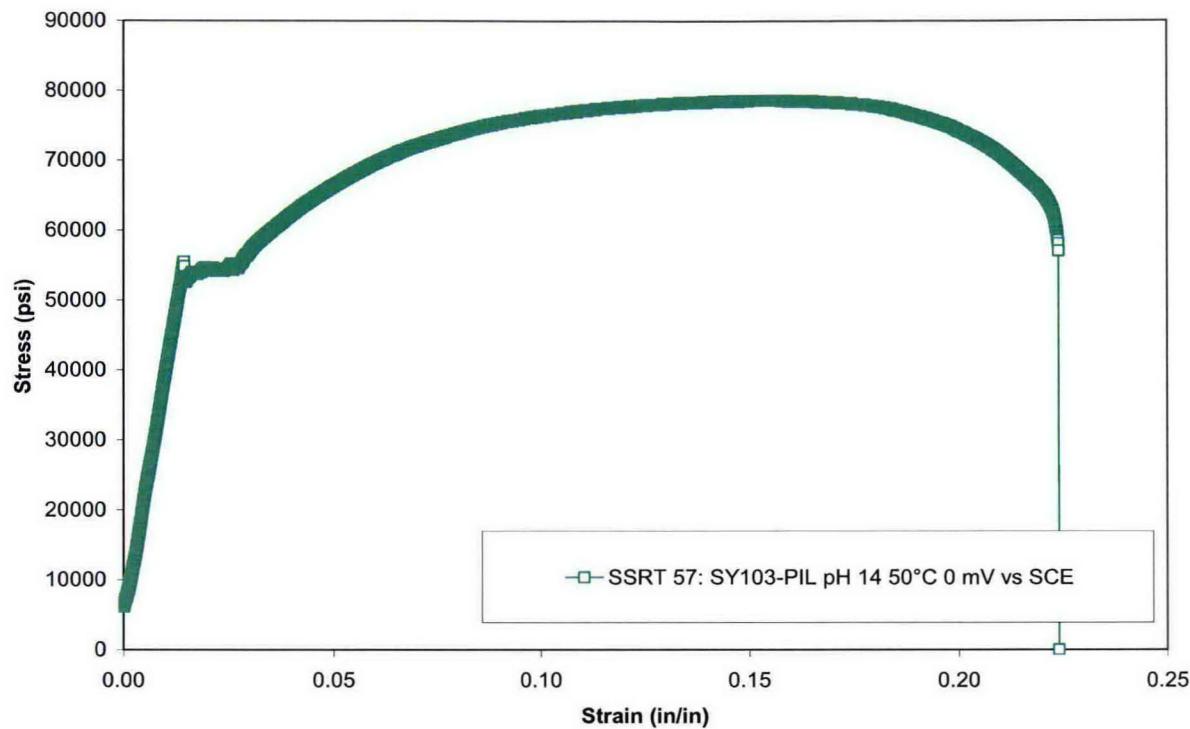

Figure C-29. A Stereo-Micrograph of the Sample from SSRT 56 Performed in AW105-PIL Standard Simulant at 50°C, pH 13+ and at OCP (-290 mV vs. SCE).

Figure C-30. An Electron-Micrograph of the Fracture Surface from SSRT 56 Performed in AW105-PIL Standard Simulant at 50°C, pH 13+ and at OCP (-290 mV vs. SCE).

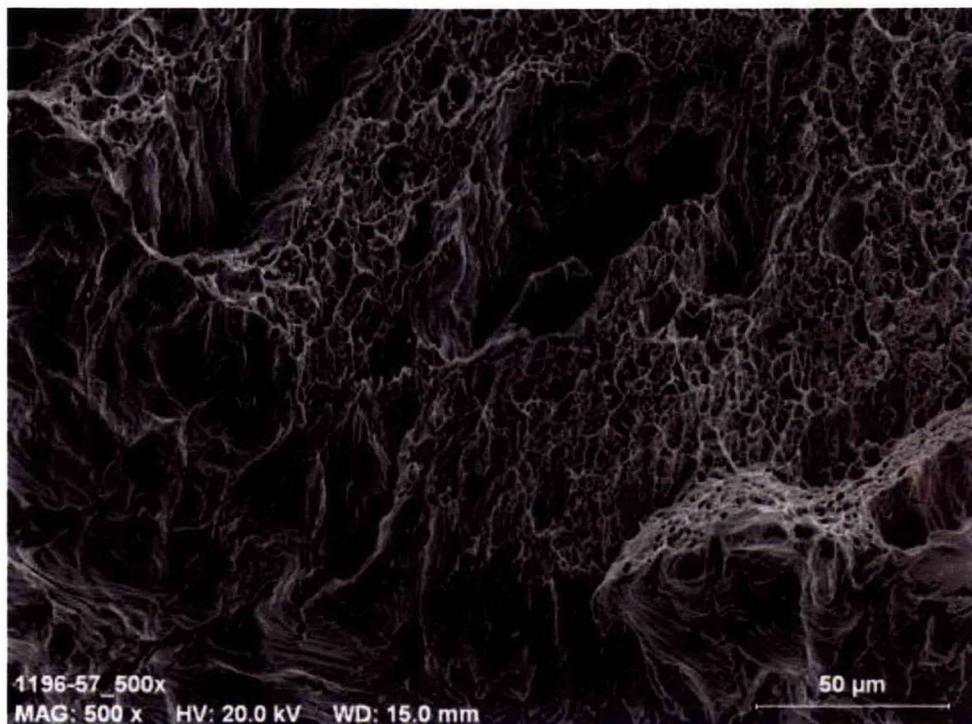
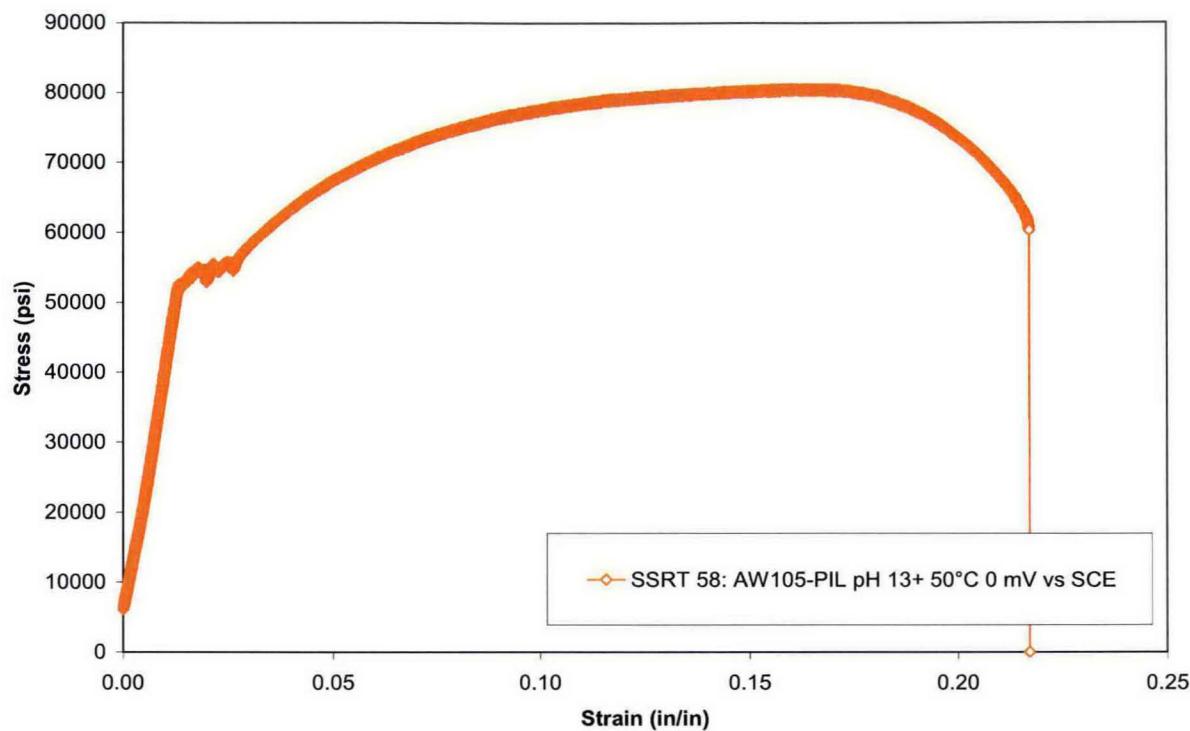
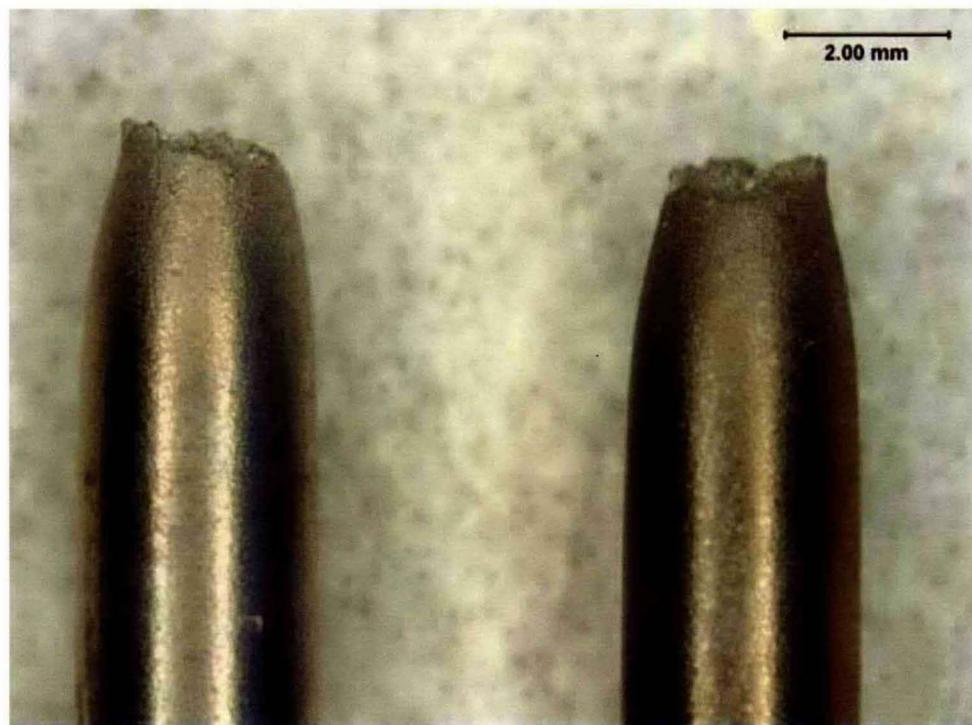

Figure C-31. The Stress-Strain Curve from SSRT 57 Performed in SY103-PIL Standard Simulant at 50°C, pH 14 and at 0 mV vs. SCE.

Figure C-32. A Stereo-Micrograph of the Sample from SSRT 57 Performed in SY103-PIL Standard Simulant at 50°C, pH 14 and at 0 mV vs. SCE.

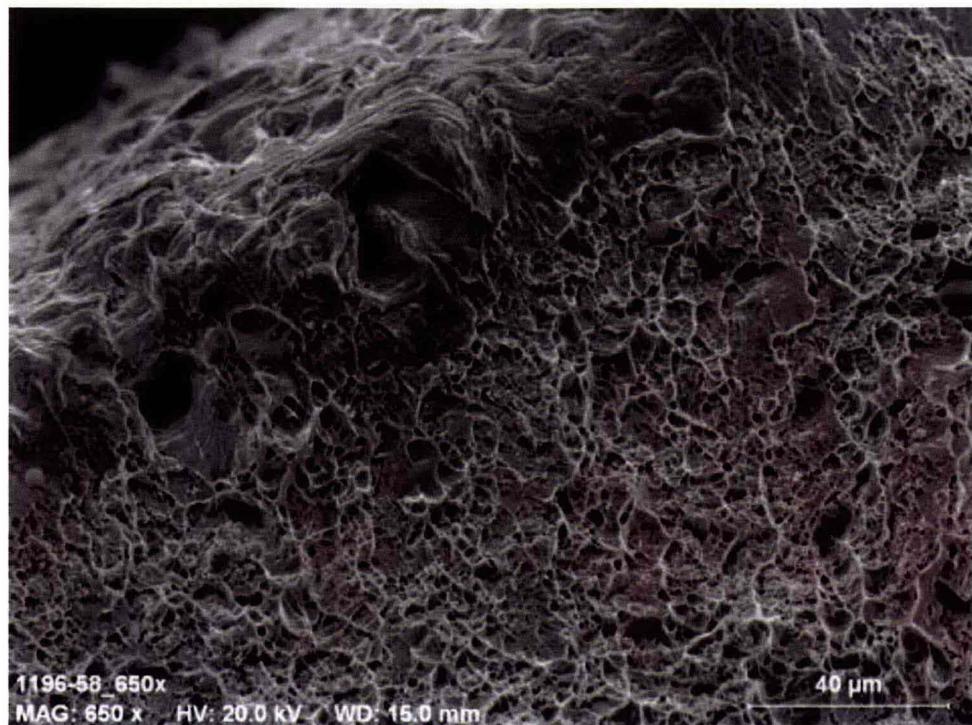
Figure C-33. An Electron-Micrograph of the Fracture Surface from SSRT 57 Performed in SY103-PIL Standard Simulant at 50°C, pH 14 and at 0 mV vs. SCE.

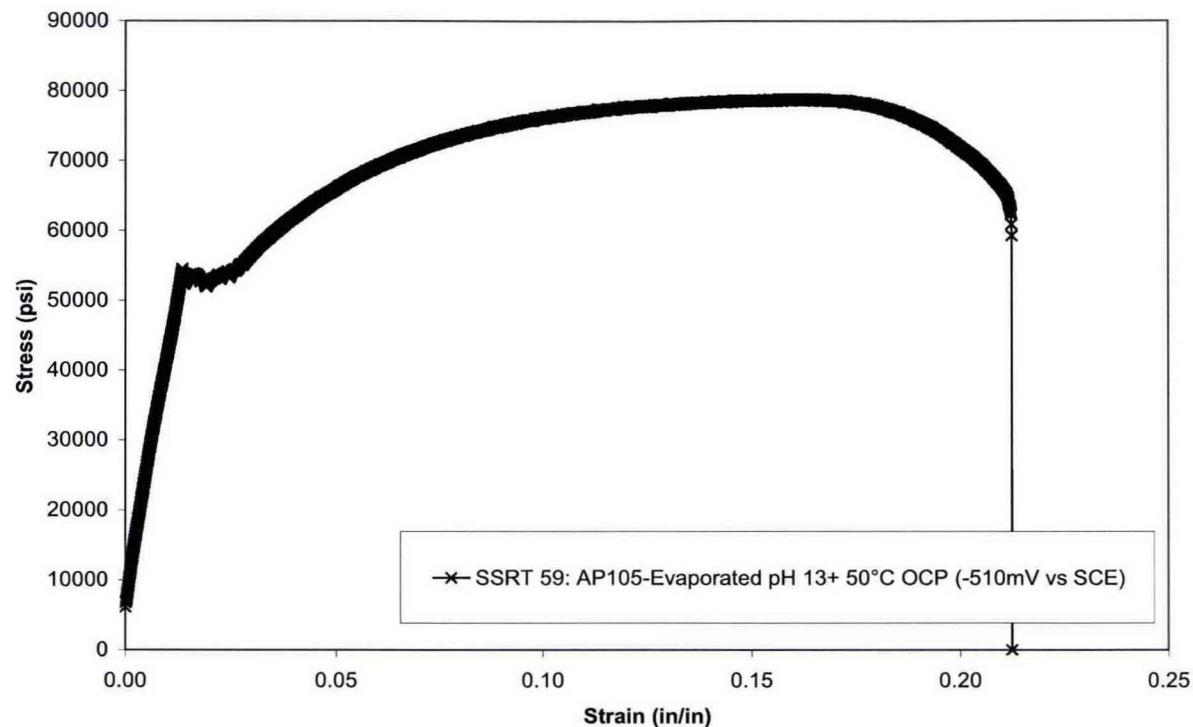


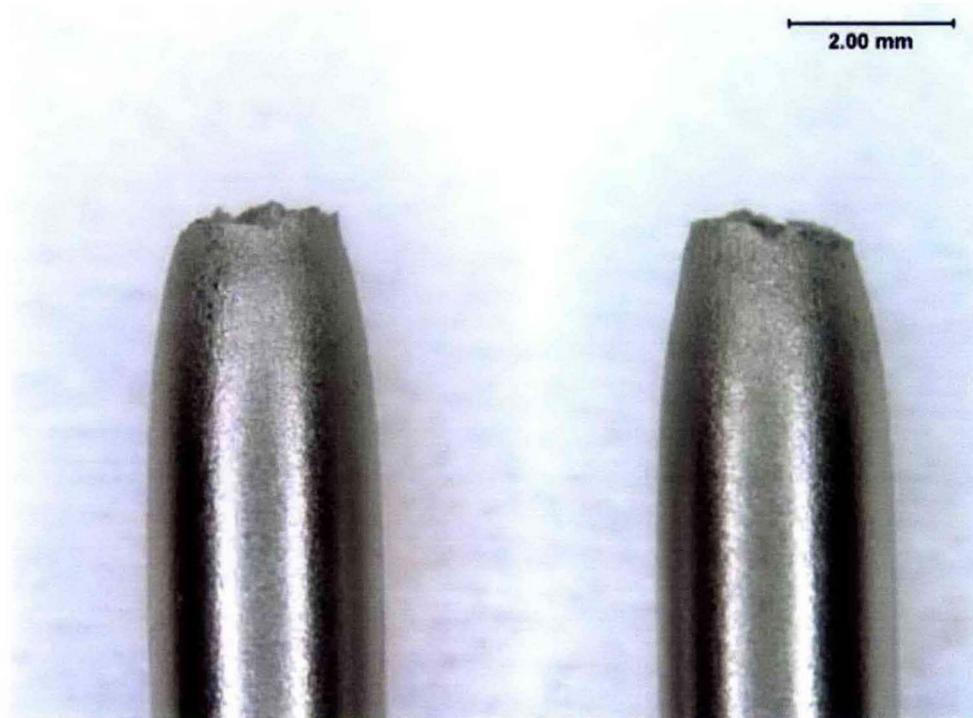
1196-57_500x

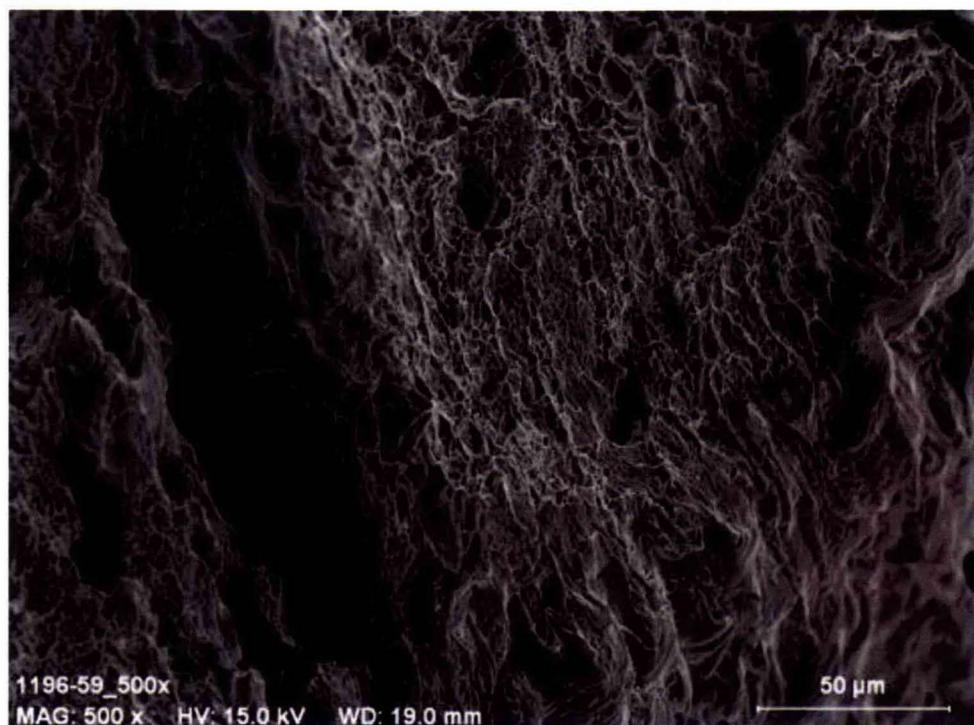

MAG: 500 x HV: 20.0 kV WD: 15.0 mm

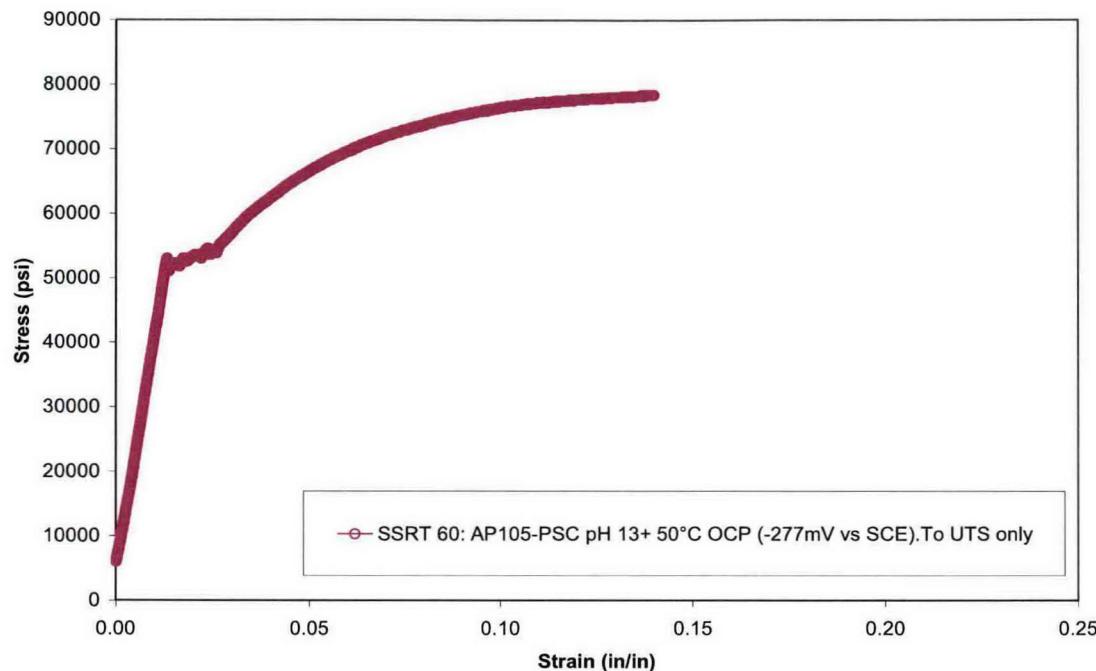
50 μ m

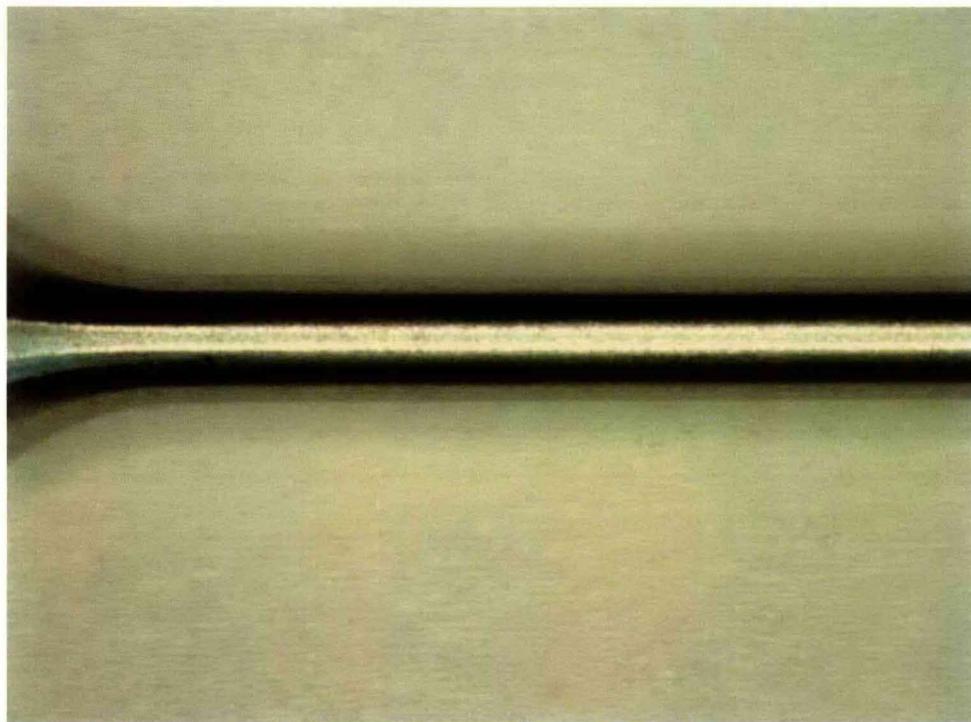

Figure C-34. The Stress-Strain Curve from SSRT 58 Performed in AW105-PIL Standard Simulant at 50°C, pH 13+ and at 0 mV vs. SCE.


Figure C-35. A Stereo-Micrograph of the Sample from SSRT 58 Performed in AW105-PIL Standard Simulant at 50°C, pH 13+ and at 0 mV vs. SCE.


Figure C-36. An Electron-Micrograph of the Fracture Surface from SSRT 58 Performed in AW105-PIL Standard Simulant at 50°C, pH 13+ and at 0 mV vs. SCE.


Figure C-37. The Stress-Strain Curve from SSRT 59 Performed in AP105-Evaporated Simulant at 50°C, pH 13+ and at OCP (-510 mV vs. SCE).


Figure C-38. A Stereo-Micrograph of the Sample from SSRT 59 Performed in AP105-Evaporated Simulant at 50°C, pH 13+ and at OCP (-510 mV vs. SCE).


Figure C-39. An Electron-Micrograph of the Fracture Surface from SSRT 59 Performed in AP105-Evaporated Simulant at 50°C, pH 13+ and at OCP (-510 mV vs. SCE).

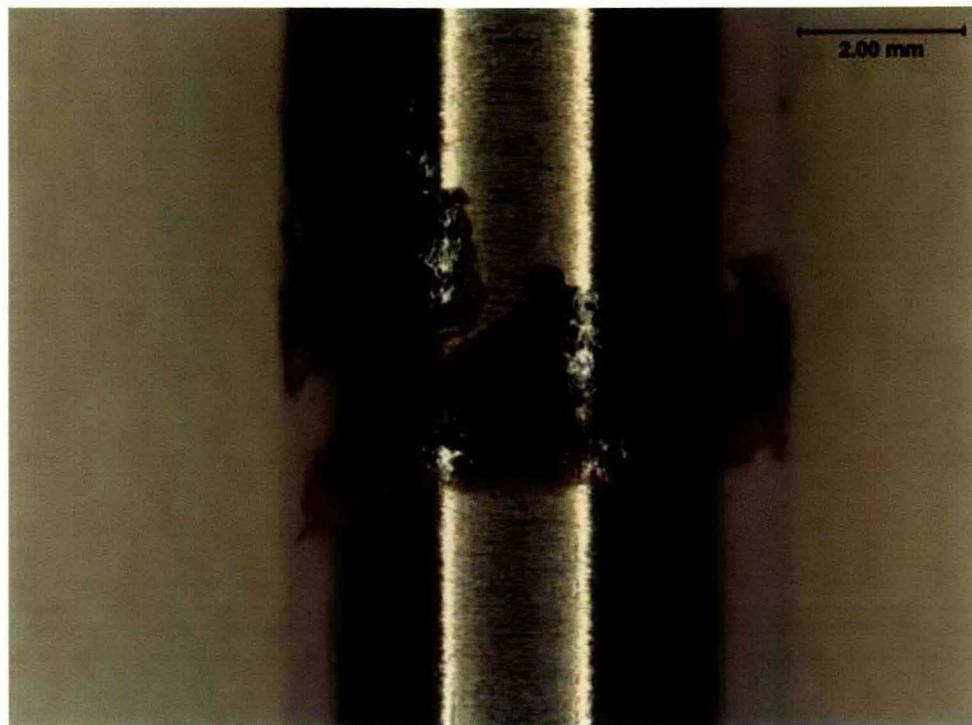
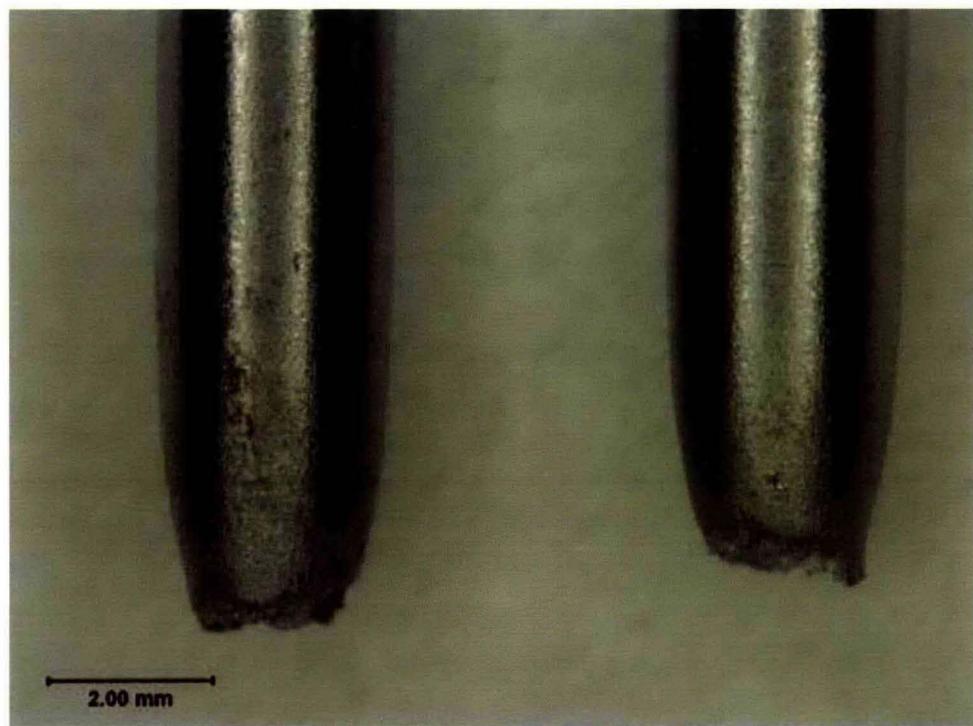
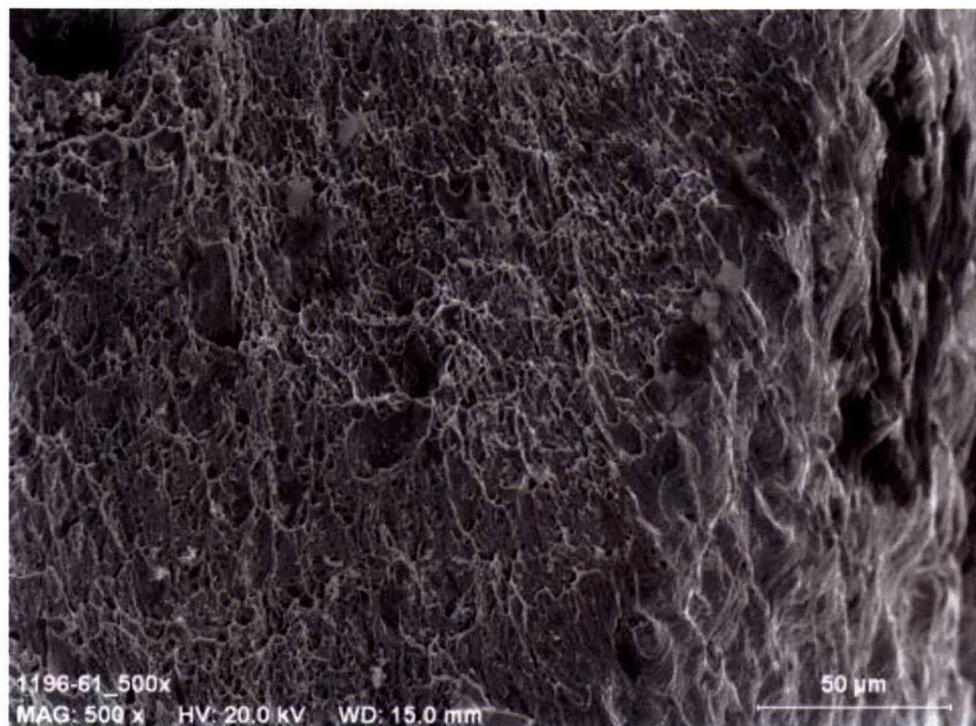
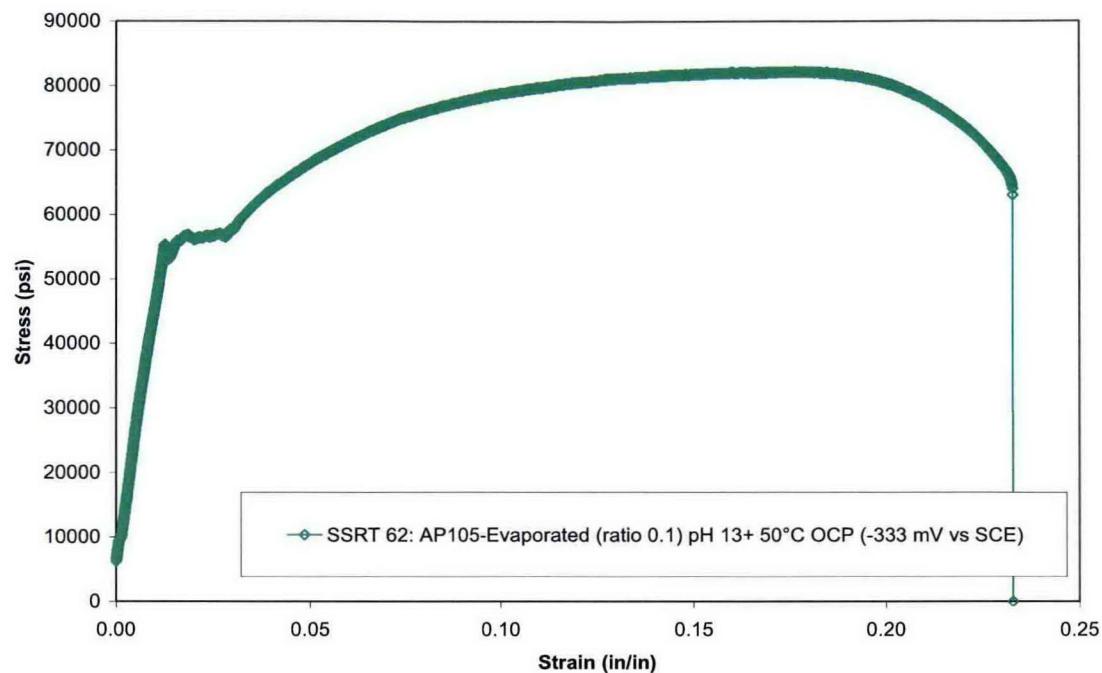
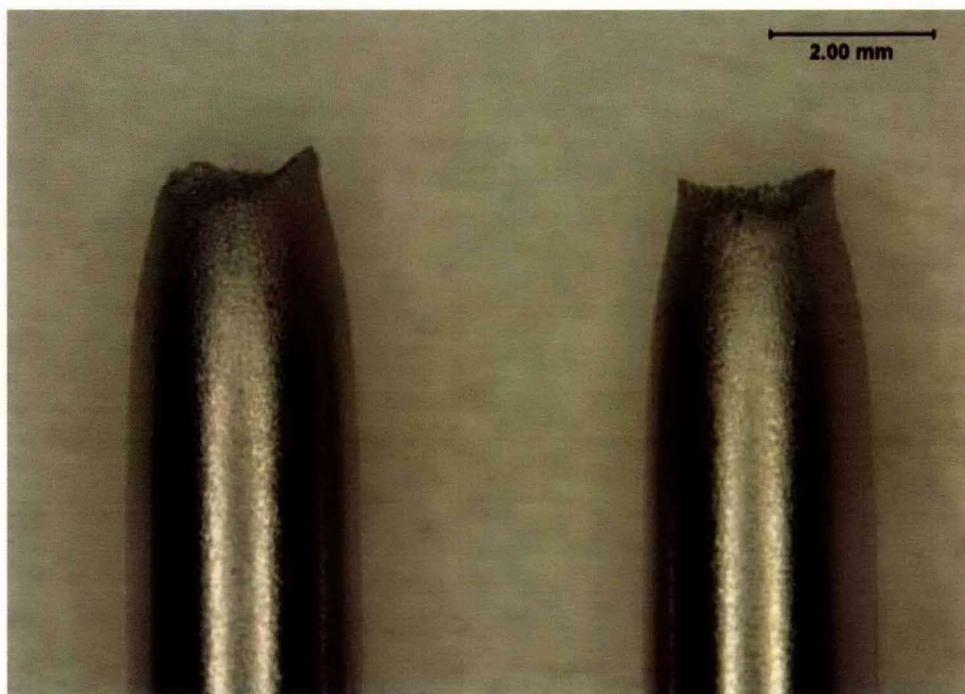

Figure C-40. The Stress-Strain Curve from SSRT 60 Performed in AP105-PSC Simulant at 50°C, pH 13+ and at OCP (-277 mV vs. SCE). Tested to UTS and stopped.

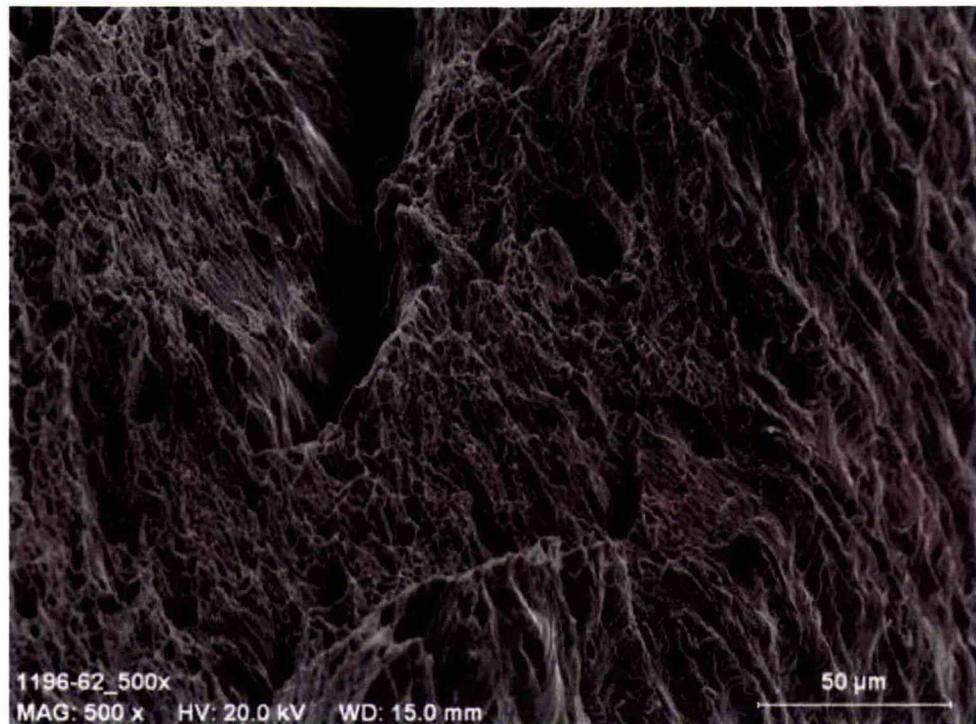

Figure C-41. A Stereo-Micrograph of the Sample from SSRT 60 Performed in AP105-PSC Simulant at 50°C, pH 13+ and at OCP (-277 mV vs. SCE). Tested to UTS and stopped.

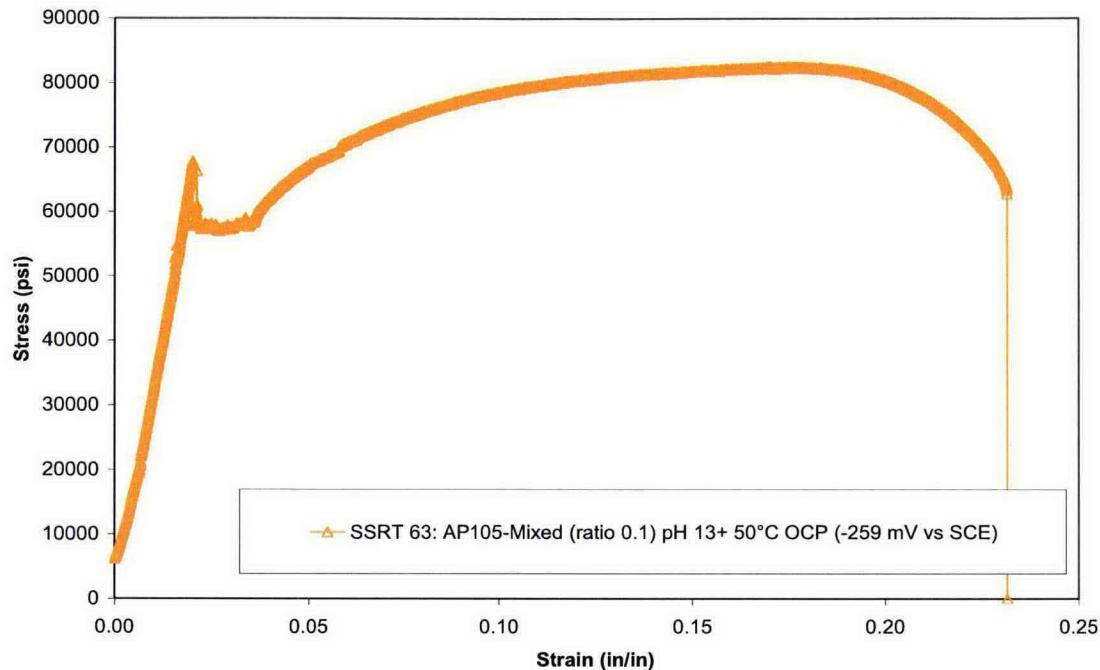

Figure C-42. A Stereo Micrograph of the Liquid / Vapor Interface Region from SSRT 60 Performed in AP105-PSC Simulant at 50°C, pH 13+ and at OCP (-277 mV vs. SCE). Tested to UTS and stopped.

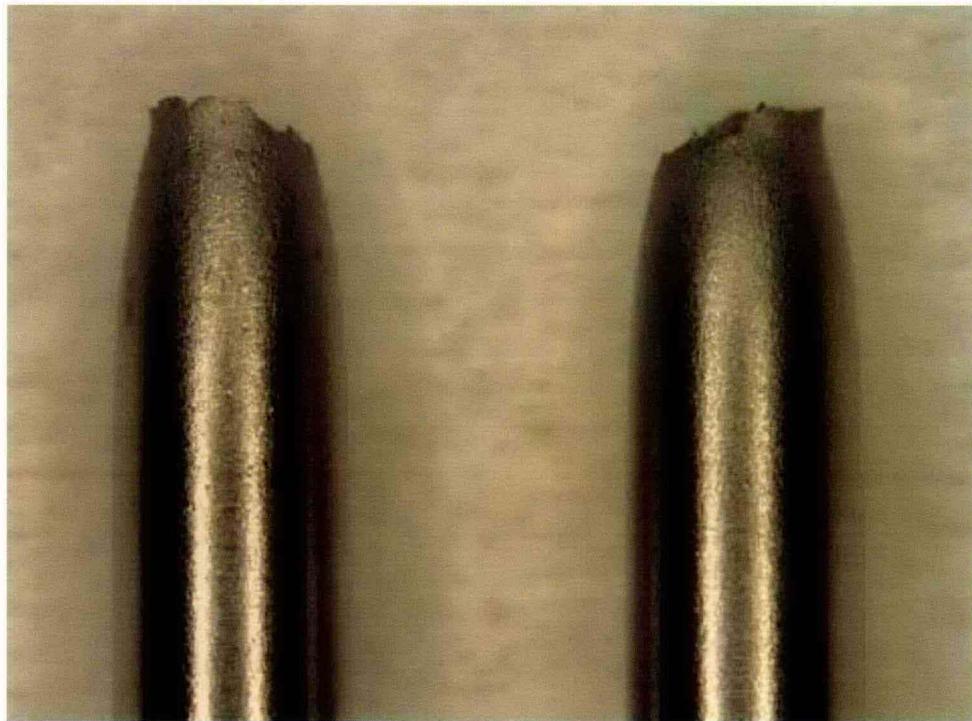

Figure C-43. The Stress-Strain Curve from SSRT 61 Performed in AZ102 Simulant at 77°C, pH 12+ and at OCP (-239 mV vs. SCE).

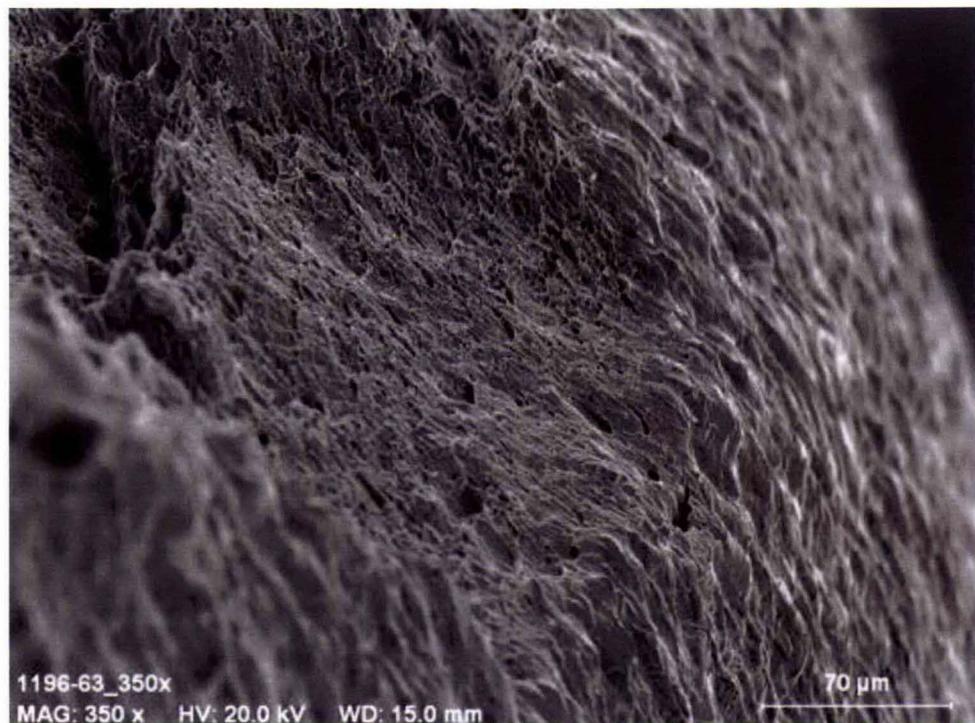

Figure C-44. A Stereo-Micrograph of the Sample from SSRT 61 Performed in AZ102 Simulant at 77°C, pH 12+ and at OCP (-239 mV vs. SCE).

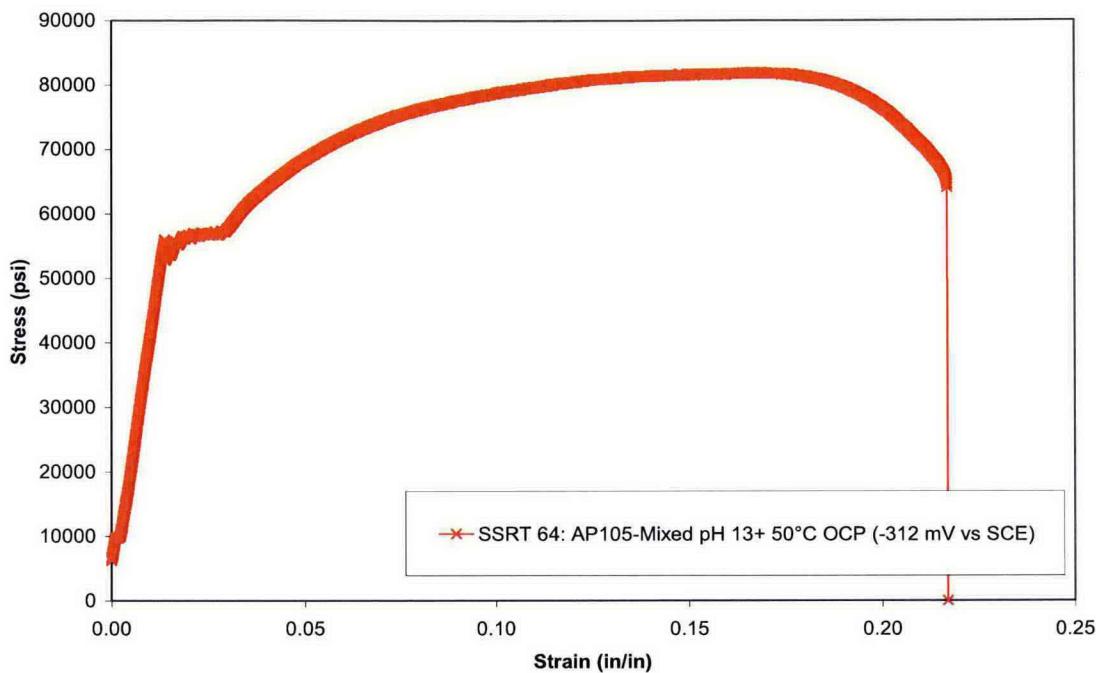

Figure C-45. An Electron-Micrograph of the Fracture Surface from SSRT 61 Performed in AZ102 Simulant at 77°C, pH 12+ and at OCP (-239 mV vs. SCE).

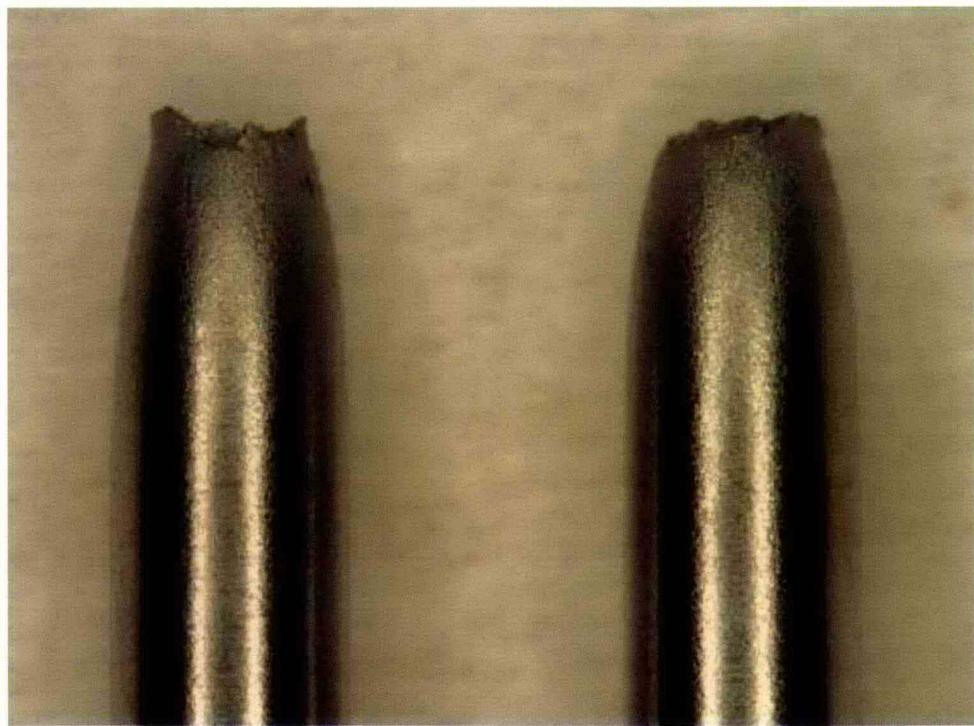

Figure C-46. The Stress-Strain Curve from SSRT 62 Performed in AP105-Evaporated Simulant with Nitrite/Nitrate ratio of 0.1 at 50°C, pH 13+ and at OCP (-333 mV vs. SCE).

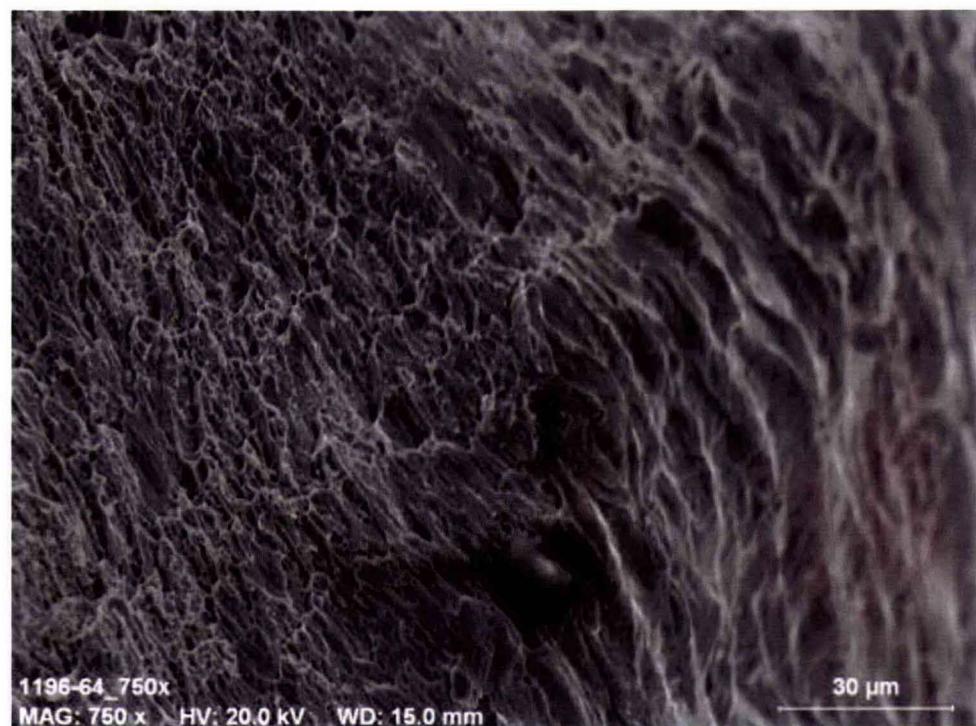

Figure C-47. A Stereo-Micrograph of the Sample from SSRT 62 Performed in AP105-Evaporated Simulant with Nitrite/Nitrate ratio of 0.1 at 50°C, pH 13+ and at OCP (-333 mV vs. SCE).

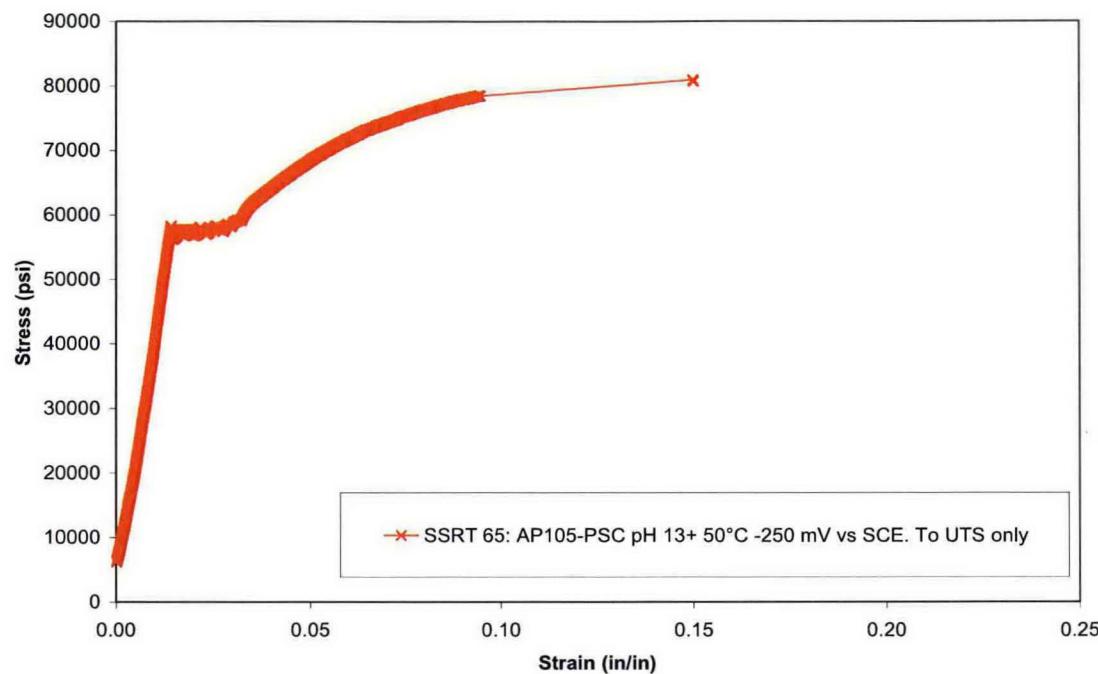

Figure C-48. An Electron-Micrograph of the Fracture Surface from SSRT 62 Performed in AP105-Evaporated Simulant with Nitrite/Nitrate ratio of 0.1 at 50°C, pH 13+ and at OCP (-333 mV vs. SCE).

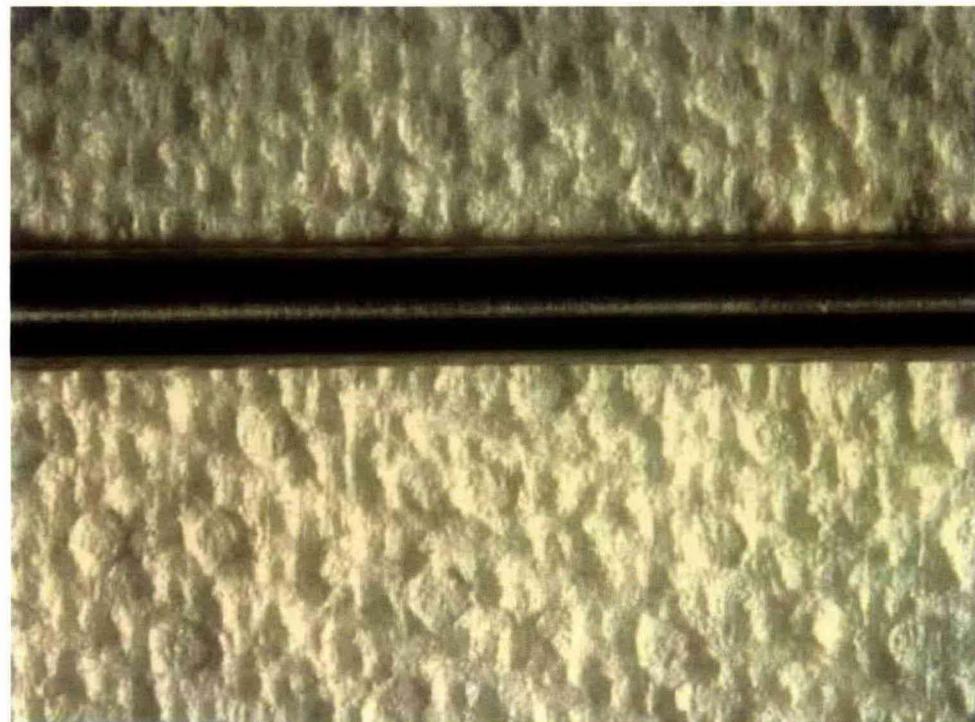

Figure C-49. The Stress-Strain Curve from SSRT 63 Performed in AP105-Mixed Simulant with Nitrite/Nitrate ratio of 0.1 at 50°C, pH 13+ and at OCP (-259 mV vs. SCE).

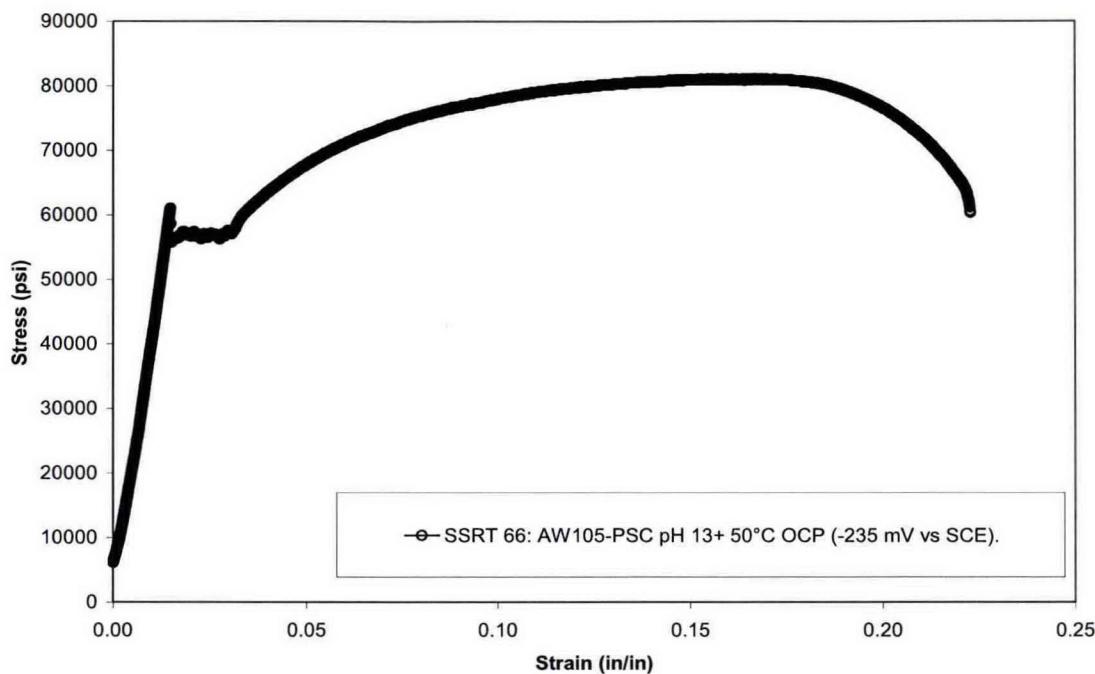

Figure C-50. A Stereo-Micrograph of the Sample from SSRT 63 Performed in AP105-Mixed Simulant with Nitrite/Nitrate ratio of 0.1 at 50°C, pH 13+ and at OCP (-259 mV vs. SCE).

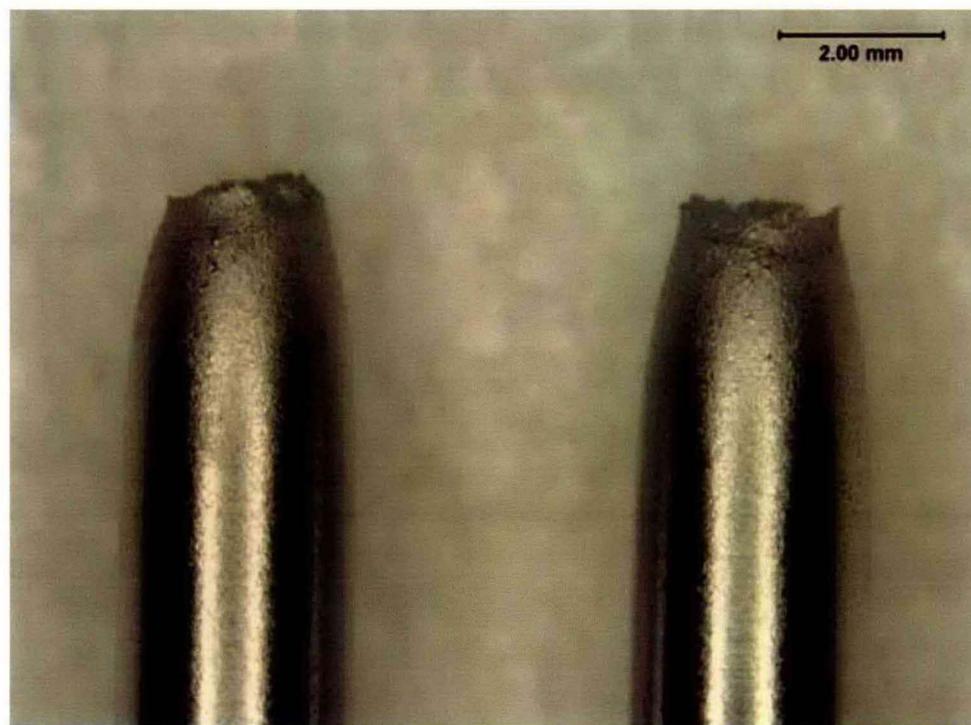

Figure C-51. An Electron-Micrograph of the Fracture Surface from SSRT 63 Performed in AP105-Mixed Simulant with Nitrite/Nitrate ratio of 0.1 at 50°C, pH 13+ and at OCP (-259 mV vs. SCE).

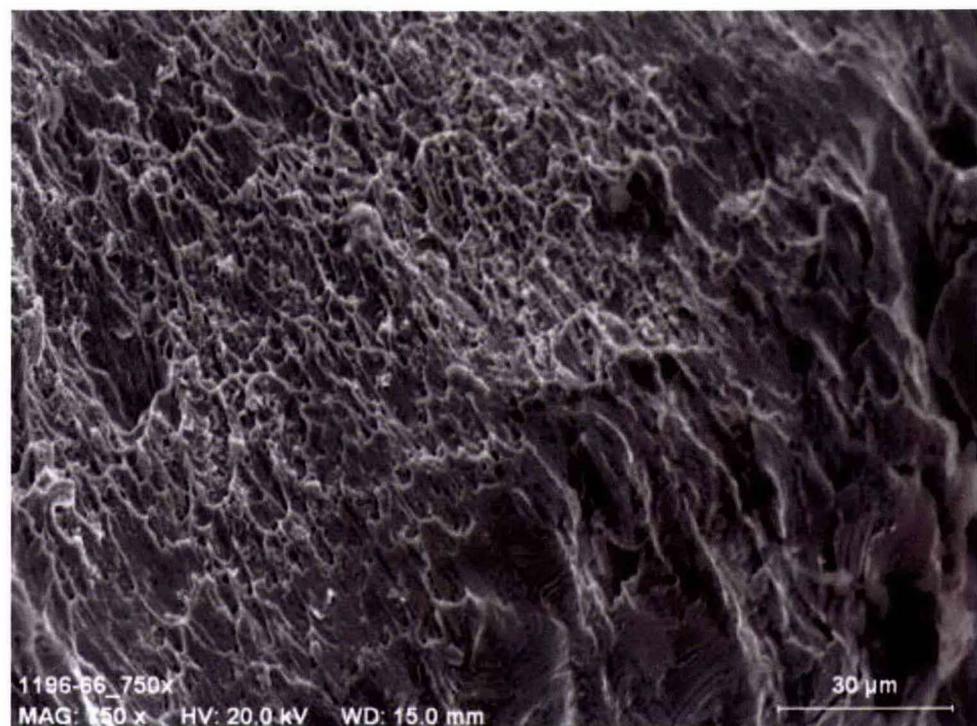

Figure C-52. The Stress-Strain Curve from SSRT 64 Performed in AP105-Mixed Simulant at 50°C, pH 13+ and at OCP (-312 mV vs. SCE).

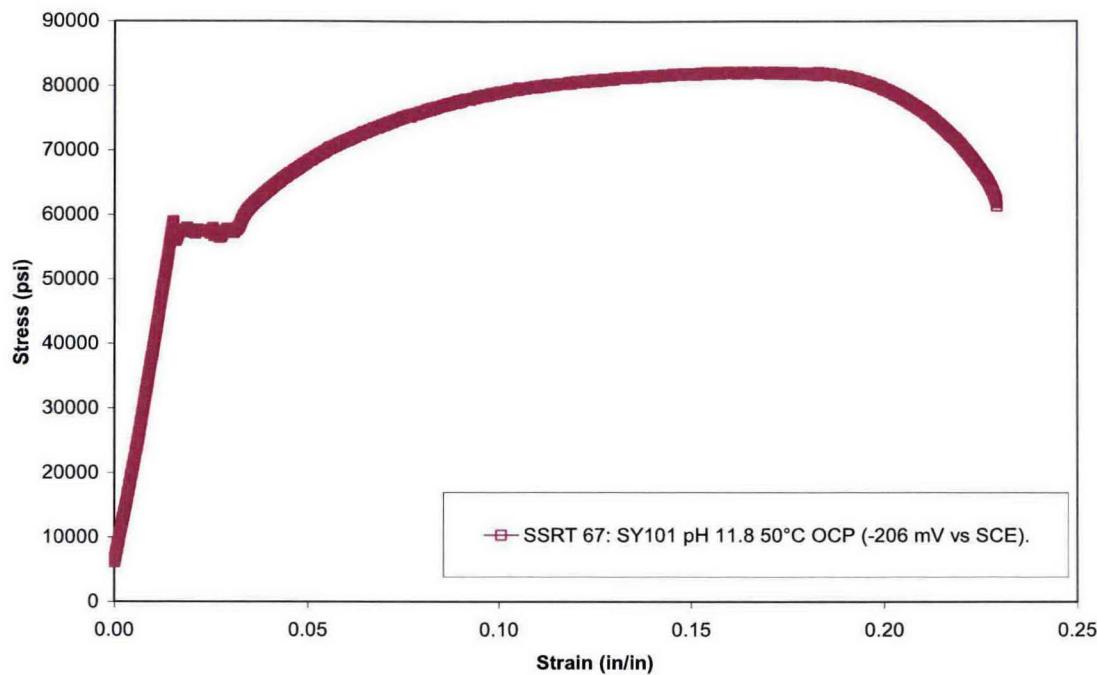

Figure C-53. A Stereo-Micrograph of the Sample from SSRT 64 Performed in AP105-Mixed Simulant at 50°C, pH 13+ and at OCP (-312 mV vs. SCE).

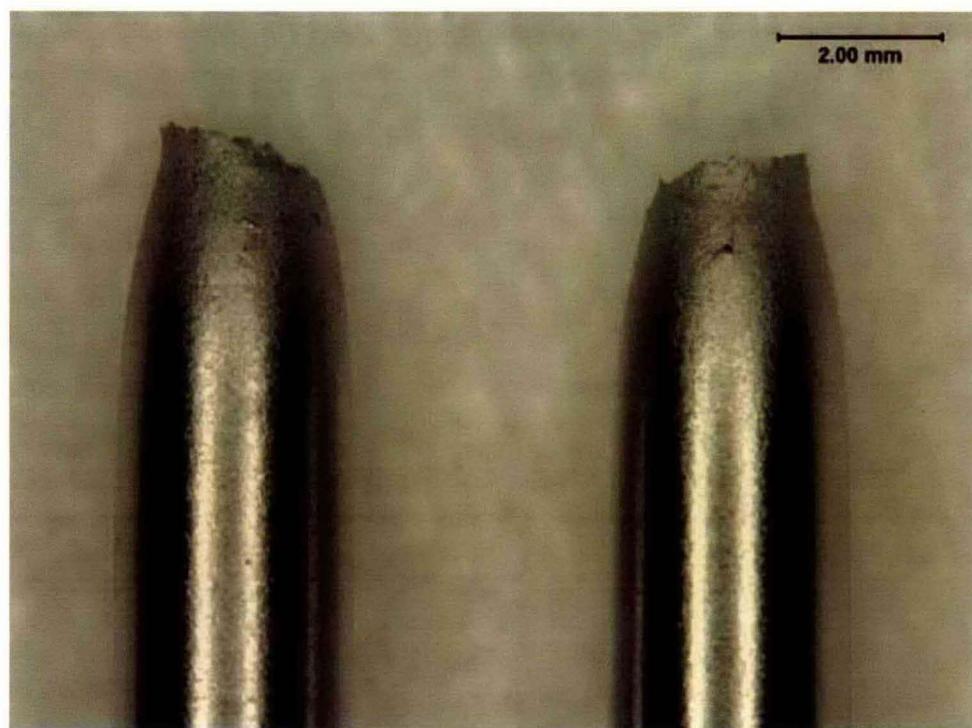

Figure C-54. An Electron-Micrograph of the Fracture Surface from SSRT 64 Performed in AP105-Mixed Simulant at 50°C, pH 13+ and at OCP (-312 mV vs. SCE).

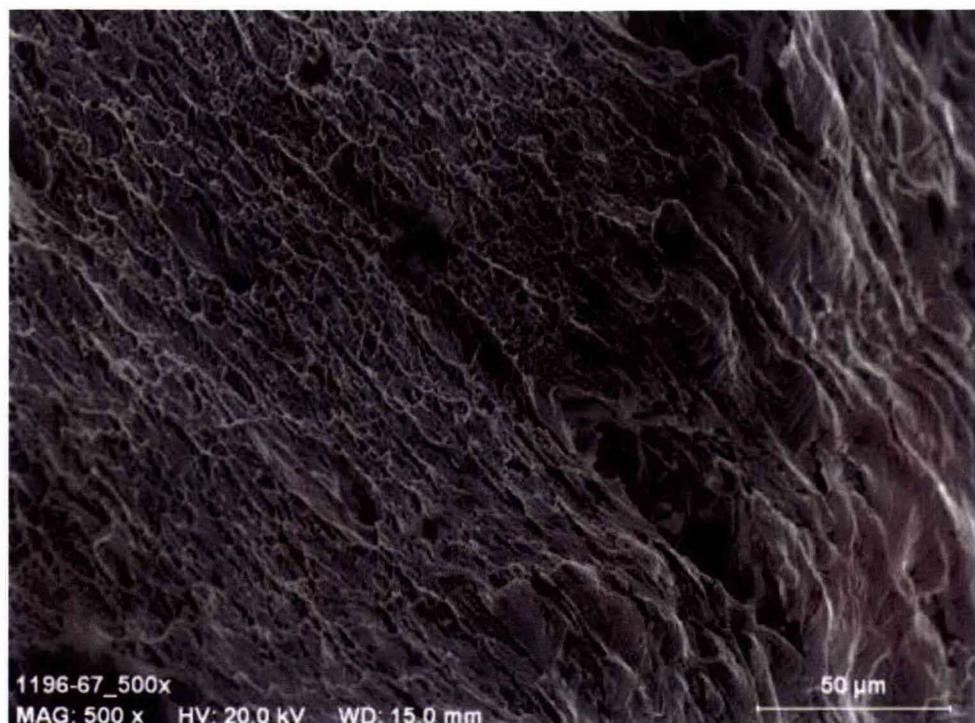

Figure C-55. The Stress-Strain Curve from SSRT 65 Performed in AP105-PSC Simulant at 50°C, pH 13+ and at -250 mV vs. SCE. Test stopped at UTS.

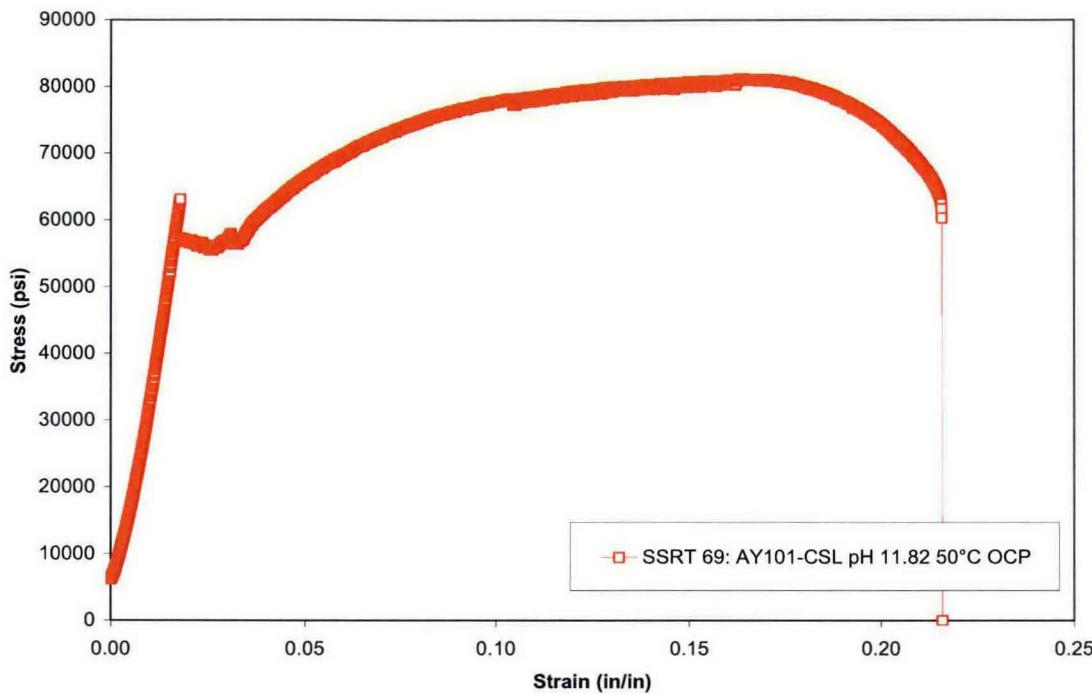

Figure C-56. A Stereo-Micrograph of the Sample from SSRT 65 Performed in AP105-PSC Simulant at 50°C, pH 13+ and at -250 mV vs. SCE. Test stopped at UTS.

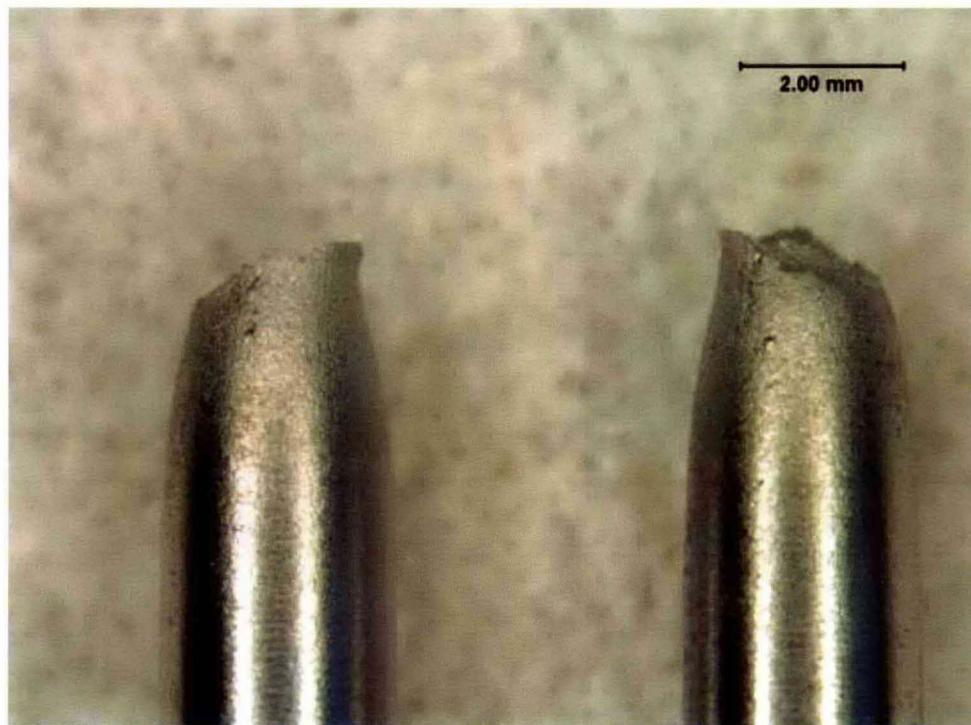

Figure C-57. The Stress-Strain Curve from SSRT 66 Performed in AW105-PSC Simulant at 50°C, pH 13+ and at OCP (-235 mV vs. SCE).

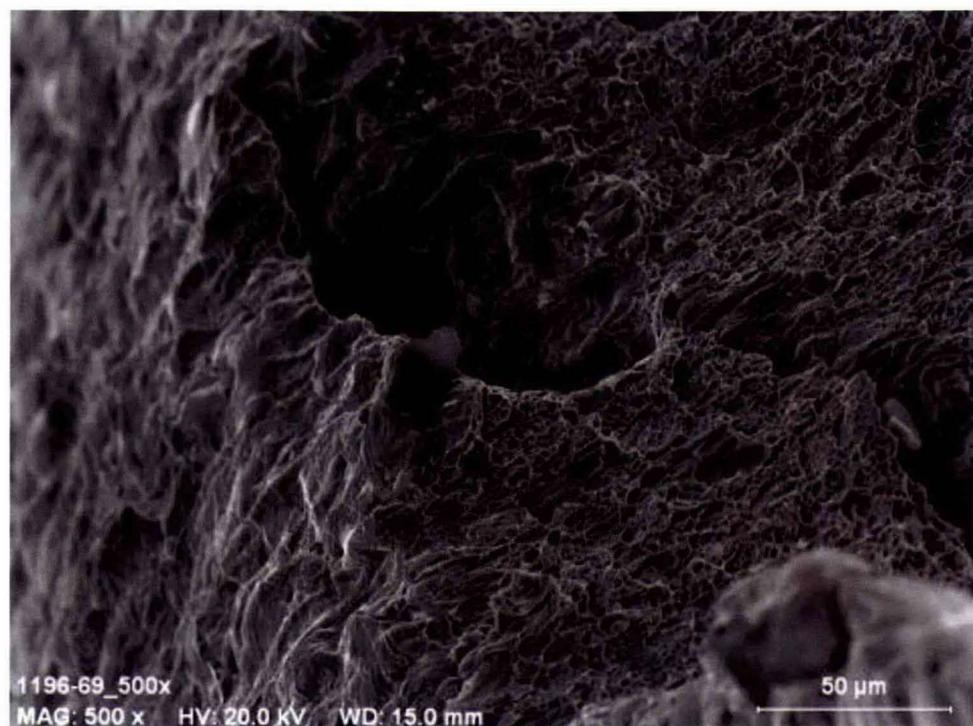

Figure C-58. A Stereo-Micrograph of the Sample from SSRT 66 Performed in AW105-PSC Simulant at 50°C, pH 13+ and at OCP (-235 mV vs. SCE).

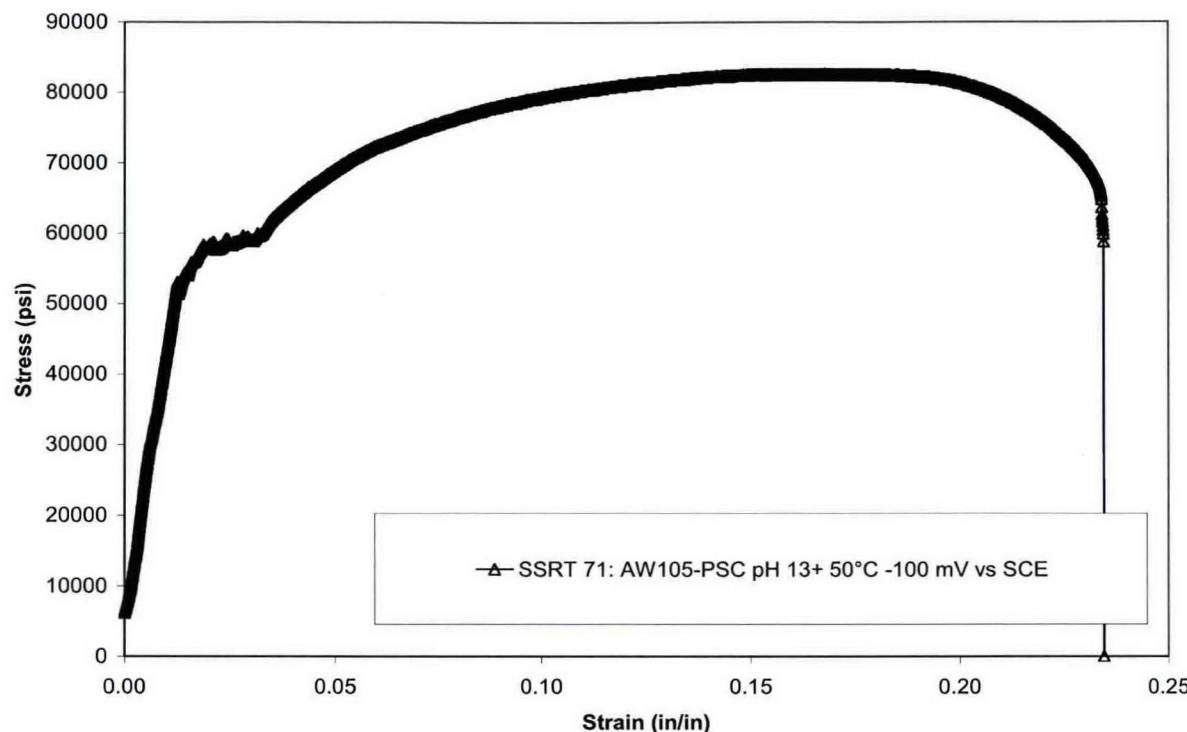

Figure C-59. An Electron-Micrograph of the Fracture Surface from SSRT 66 Performed in AW105-PSC Simulant at 50°C, pH 13+ and at OCP (-235 mV vs. SCE).

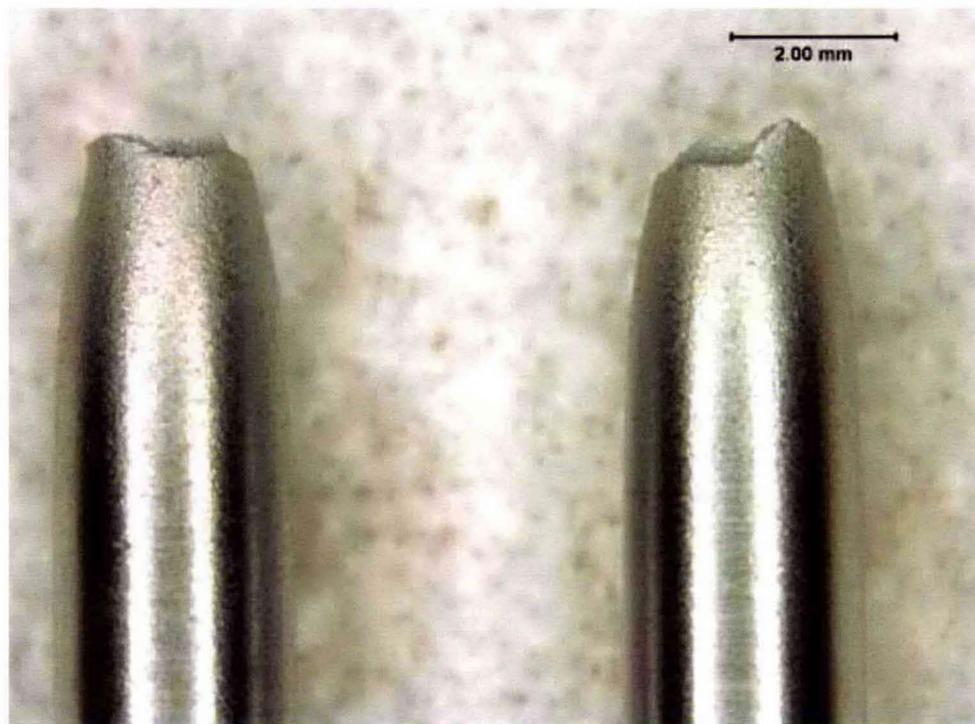

Figure C-60. The Stress-Strain Curve from SSRT 67 Performed in SY101 Simulant at 50°C, pH 13+ and at OCP (-206 mV vs. SCE).

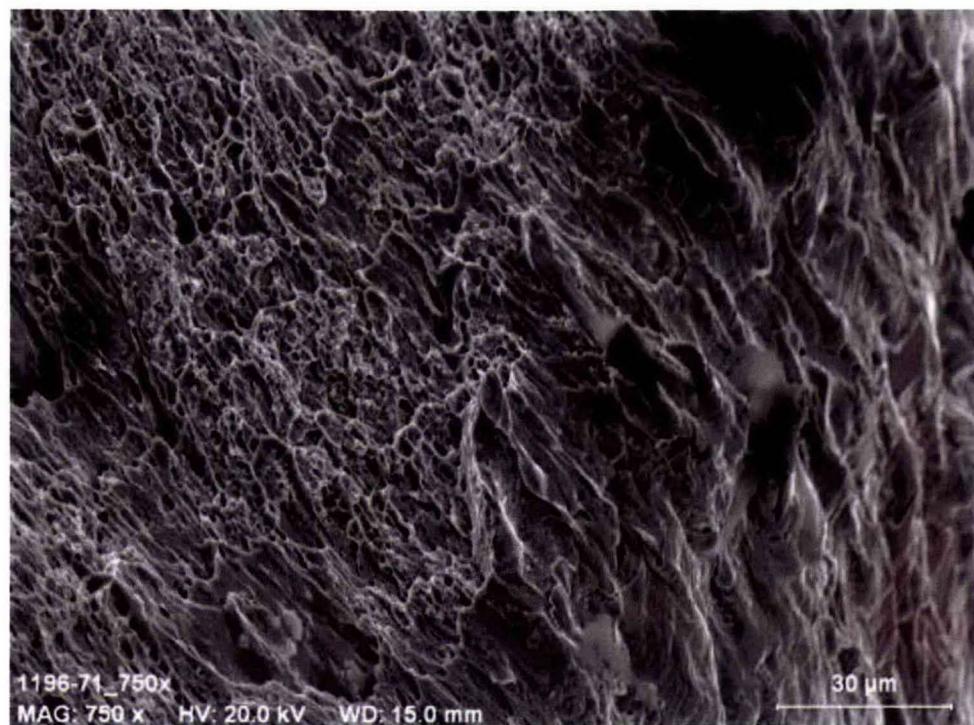

Figure C-61. A Stereo-Micrograph of the Sample from SSRT 67 Performed in SY101 Simulant at 50°C, pH 13+ and at OCP (-206 mV vs. SCE).

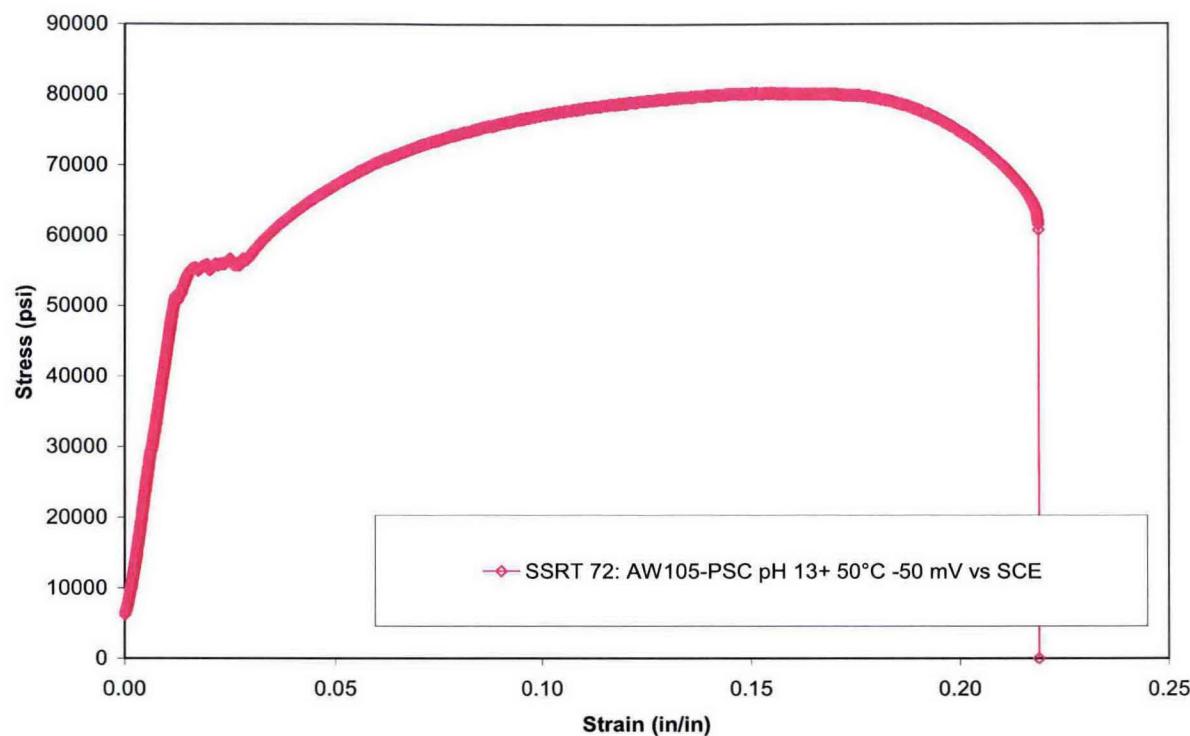

Figure C-62. An Electron-Micrograph of the Fracture Surface from SSRT 67 Performed in SY101 Simulant at 50°C, pH 13+ and at OCP (-206 mV vs. SCE).

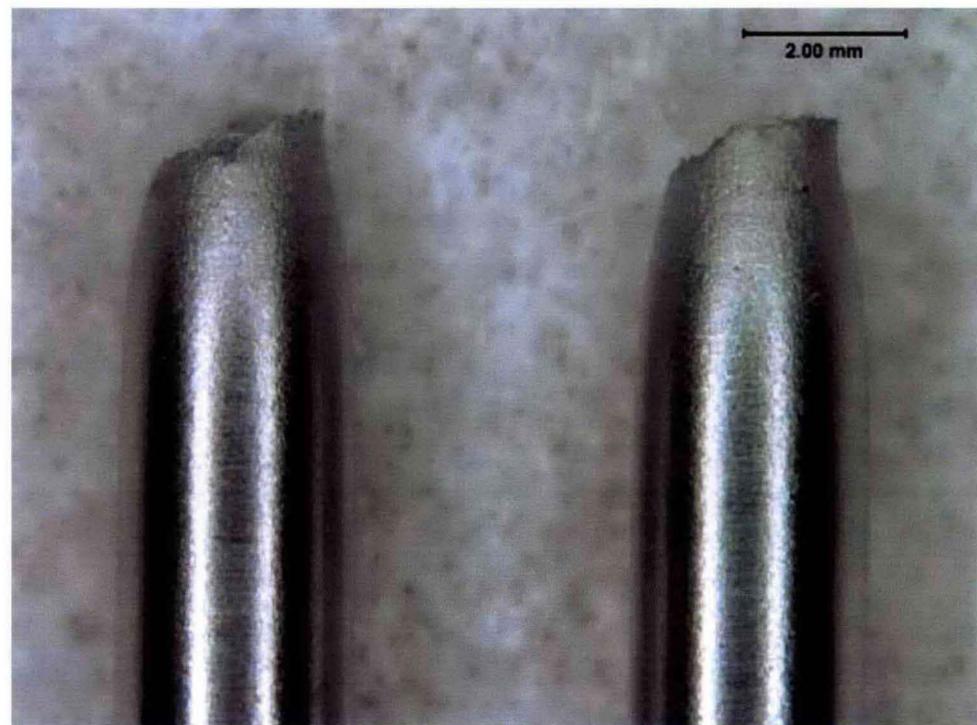

Figure C-63. The Stress-Strain Curve from SSRT 69 Performed in AY101-CSL Simulant at 50°C, pH 11.8 and at OCP (-181 mV vs. SCE).

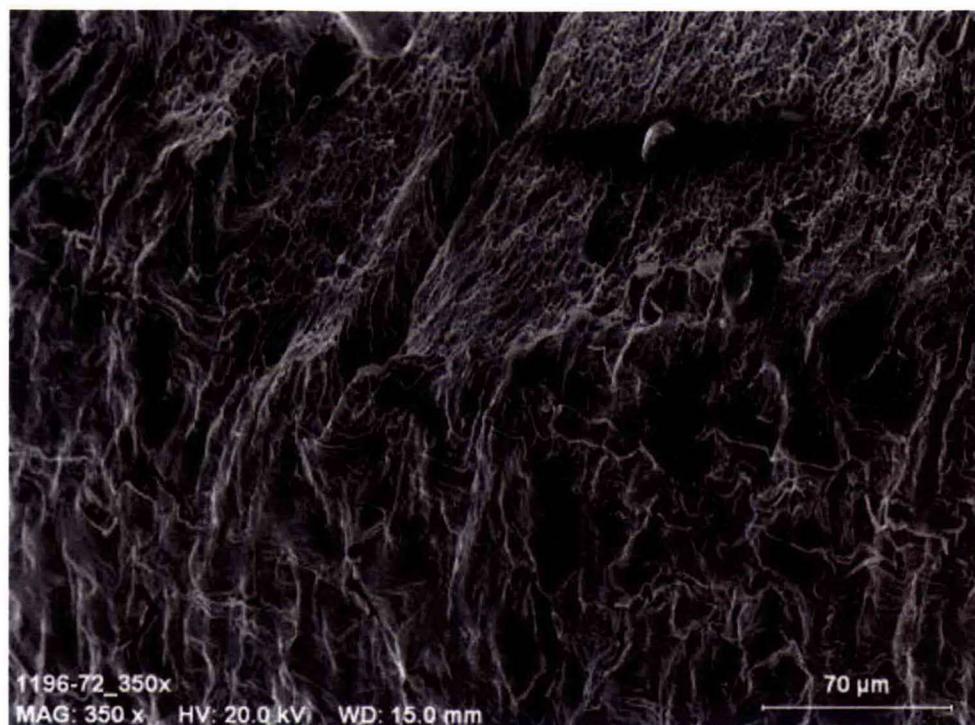

Figure C-64. A Stereo-Micrograph of the Sample from SSRT 69 Performed in AY101-CSL Simulant at 50°C, pH 11.8 and at OCP (-181 mV vs. SCE).

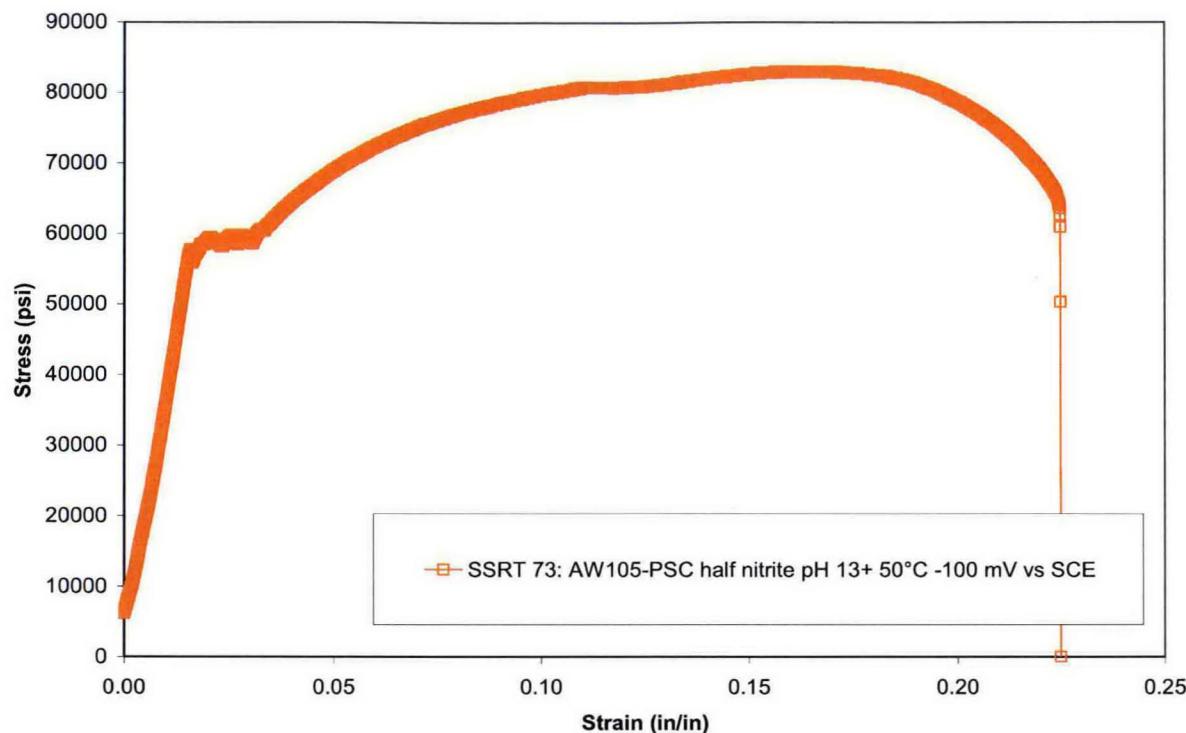

Figure C-65. An Electron-Micrograph of the Fracture Surface from SSRT 69 Performed in AY101-CSL Simulant at 50°C, pH 11.8 and at OCP (-181 mV vs. SCE).

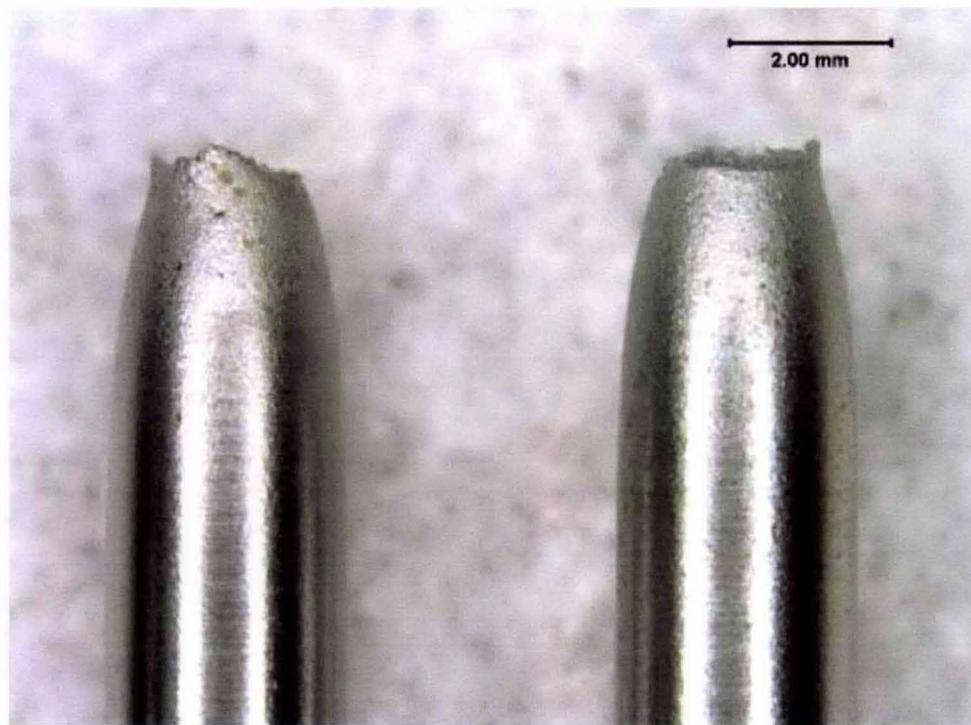

Figure C-66. The Stress-Strain Curve from SSRT 71 Performed in AW105-PSC Simulant at 50°C, pH 13+ and at -100 mV vs. SCE.

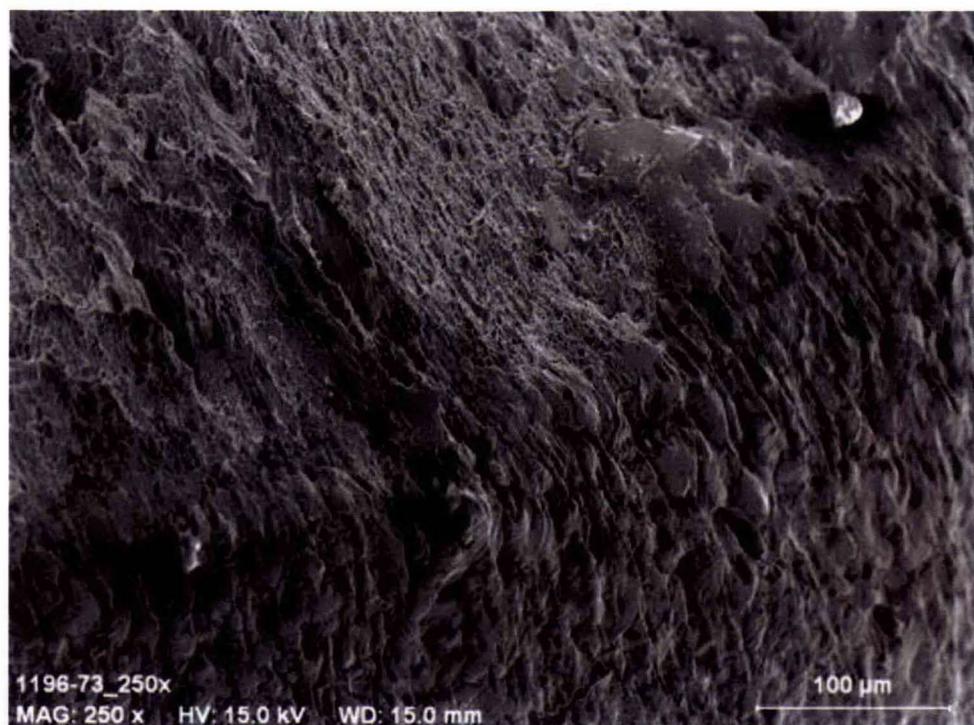

Figure C-67. A Stereo-Micrograph of the Sample from SSRT 71 Performed in AW105-PSC Simulant at 50°C, pH 13+ and at -100 mV vs. SCE.

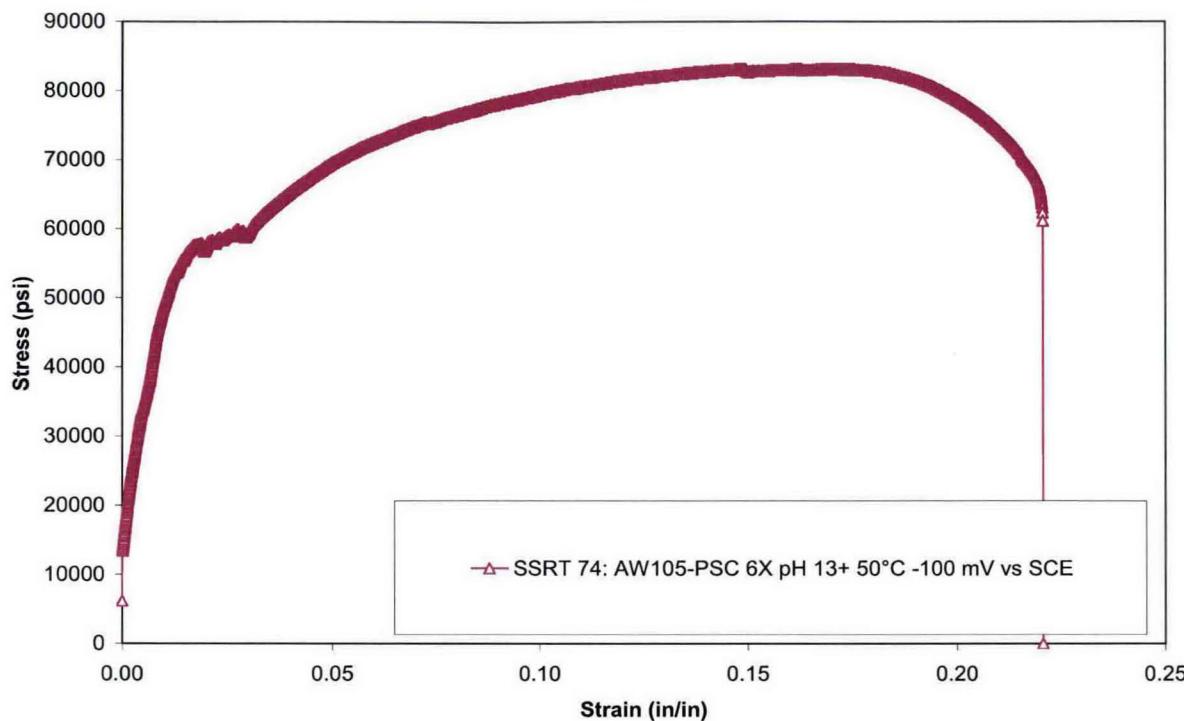

Figure C-68. An Electron-Micrograph of the Fracture Surface from SSRT 71 Performed in AW105-PSC Simulant at 50°C, pH 13+ and at -100 mV vs. SCE.

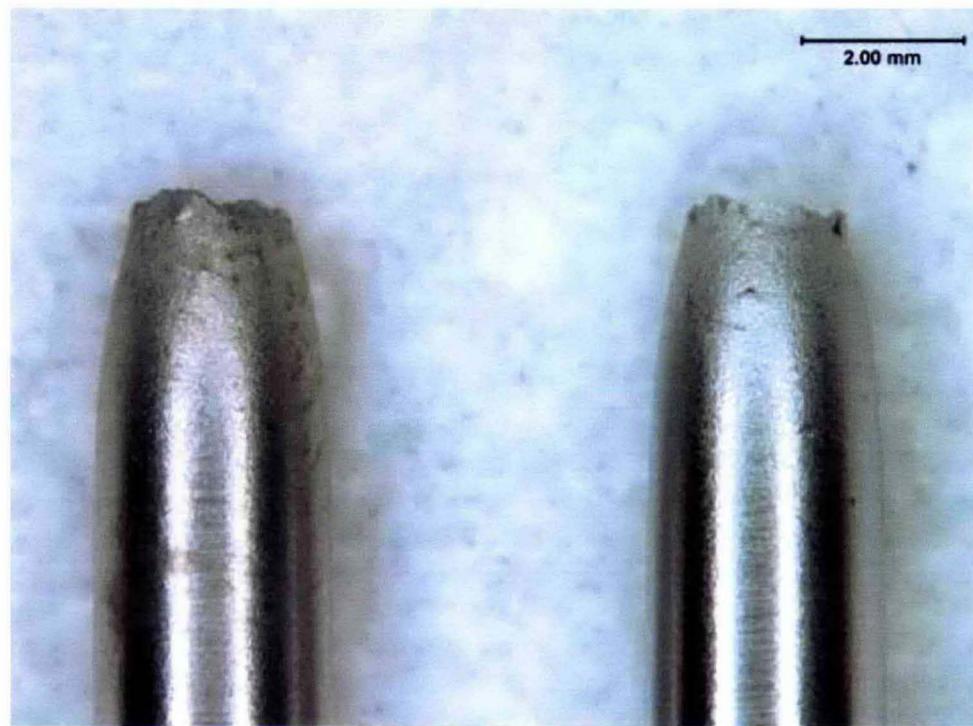

Figure C-69. The Stress-Strain Curve from SSRT 72 Performed in AW105-PSC Simulant at 50°C, pH 13+ and at -50 mV vs. SCE.

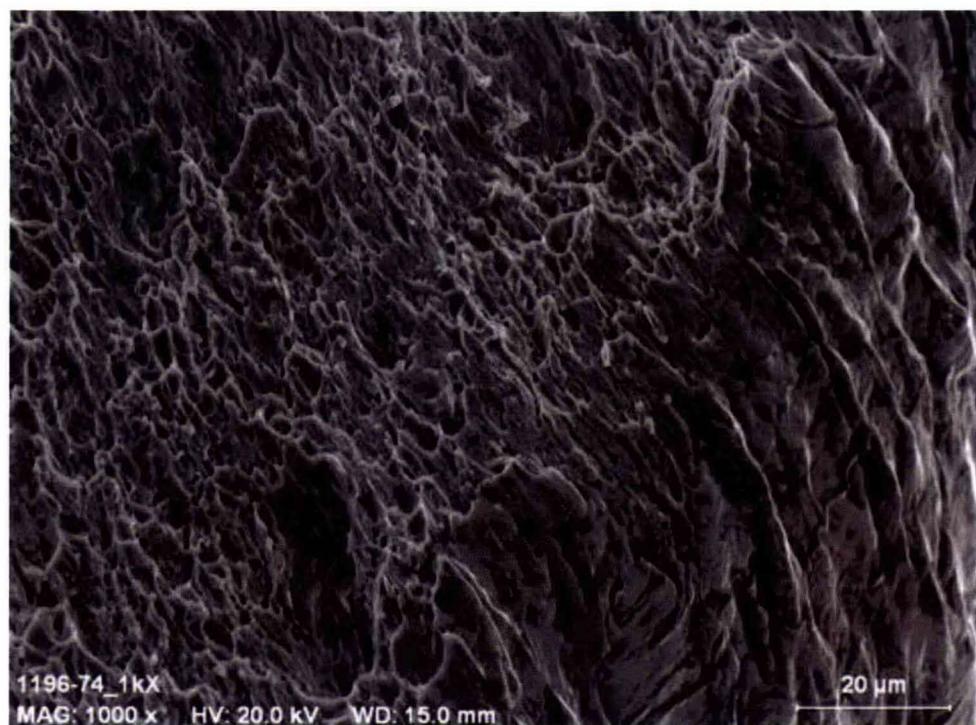

Figure C-70. A Stereo-Micrograph of the Sample from SSRT 72 Performed in AW105-PSC Simulant at 50°C, pH 13+ and at -50 mV vs. SCE.


Figure C-71. An Electron-Micrograph of the Fracture Surface from SSRT 72 Performed in AW105-PSC Simulant at 50°C, pH 13+ and at -50 mV vs. SCE.


Figure C-72. The Stress-Strain Curve from SSRT 73 Performed in AW105-PSC Half Nitrite Simulant at 50°C, pH 13+ and at -100 mV vs. SCE.


Figure C-73. A Stereo-Micrograph of the Sample from SSRT 73 Performed in AW105-PSC Half Nitrite Simulant at 50°C, pH 13+ and at -100 mV vs. SCE.


Figure C-74. An Electron-Micrograph of the Fracture Surface from SSRT 73 Performed in AW105-PSC Half Nitrite Simulant at 50°C, pH 13+ and at -100 mV vs. SCE.


Figure C-75. The Stress-Strain Curve from SSRT 74 Performed in AW105-PSC 6X Simulant at 50°C, pH 13+ and at -100 mV vs. SCE.

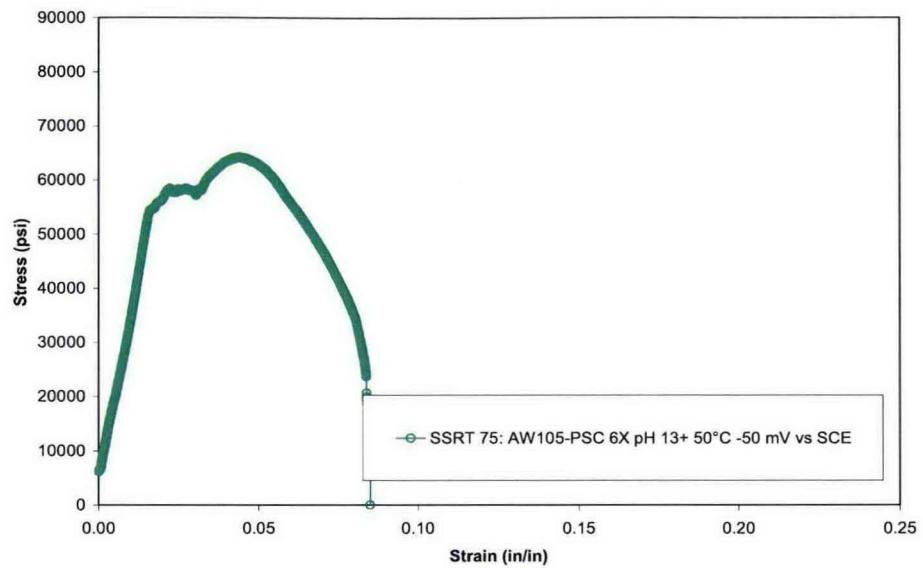
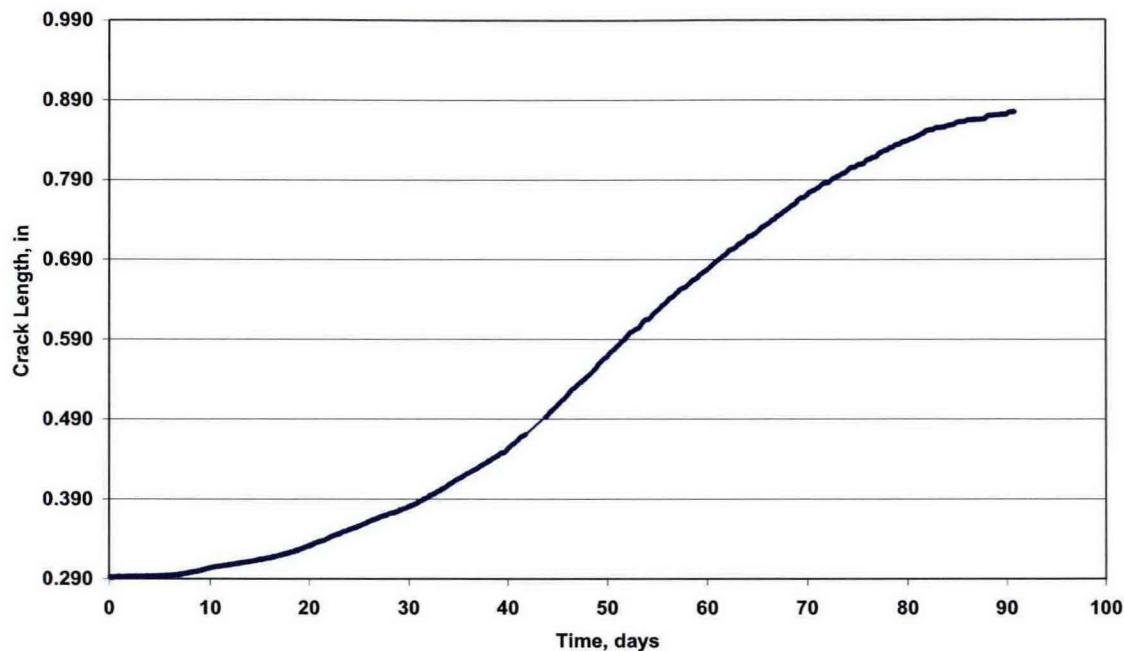
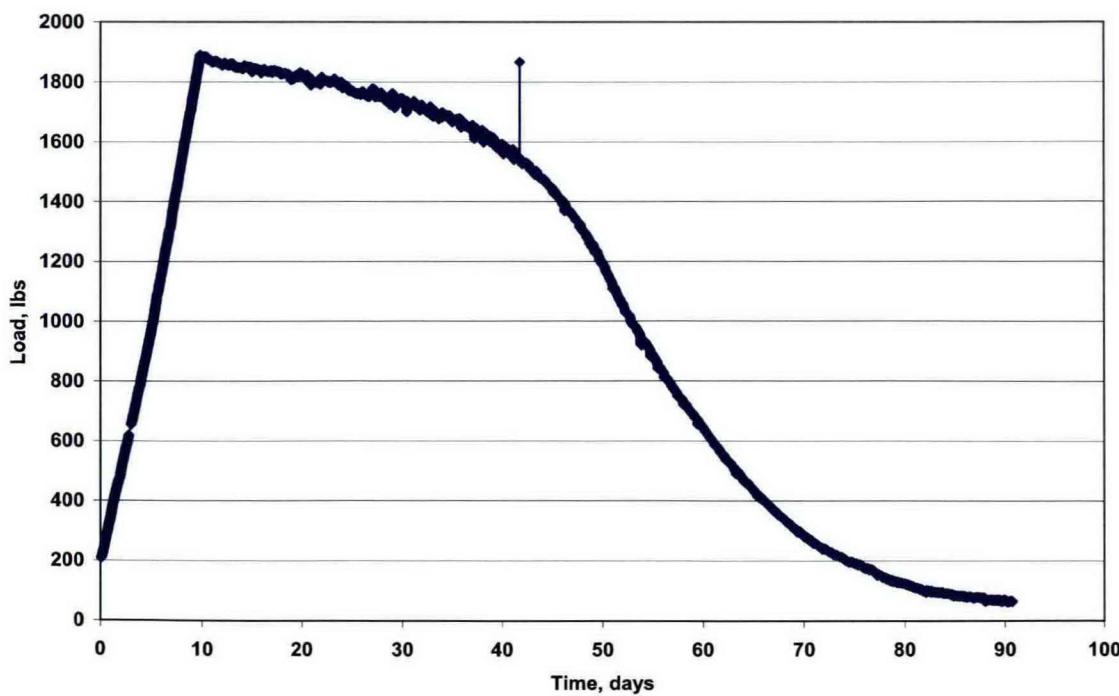

Figure C-76. A Stereo-Micrograph of the Sample from SSRT 74 Performed in AW105-PSC 6X Simulant at 50°C, pH 13+ and at -100 mV vs. SCE.

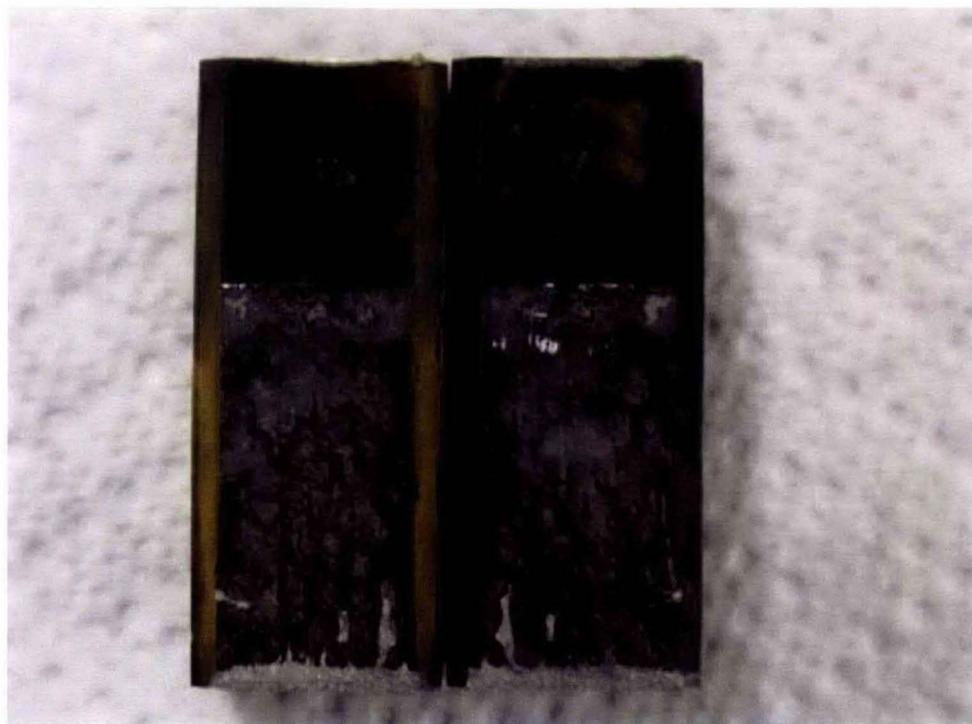
Figure C-77. An Electron-Micrograph of the Fracture Surface from SSRT 74 Performed in AW105-PSC 6X Simulant at 50°C, pH 13+ and at -100 mV vs. SCE.

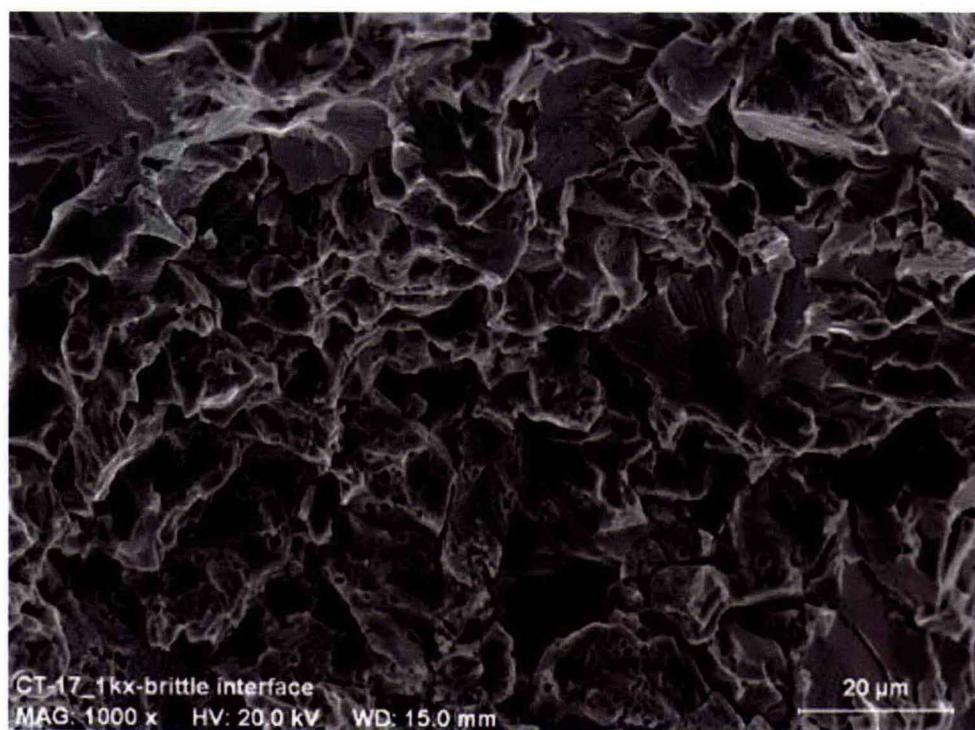
Figure C-78. The Stress-Strain Curve from SSRT 75 Performed in AW105-PSC 6X Simulant at 50°C, pH 13+ and at -50 mV vs. SCE.

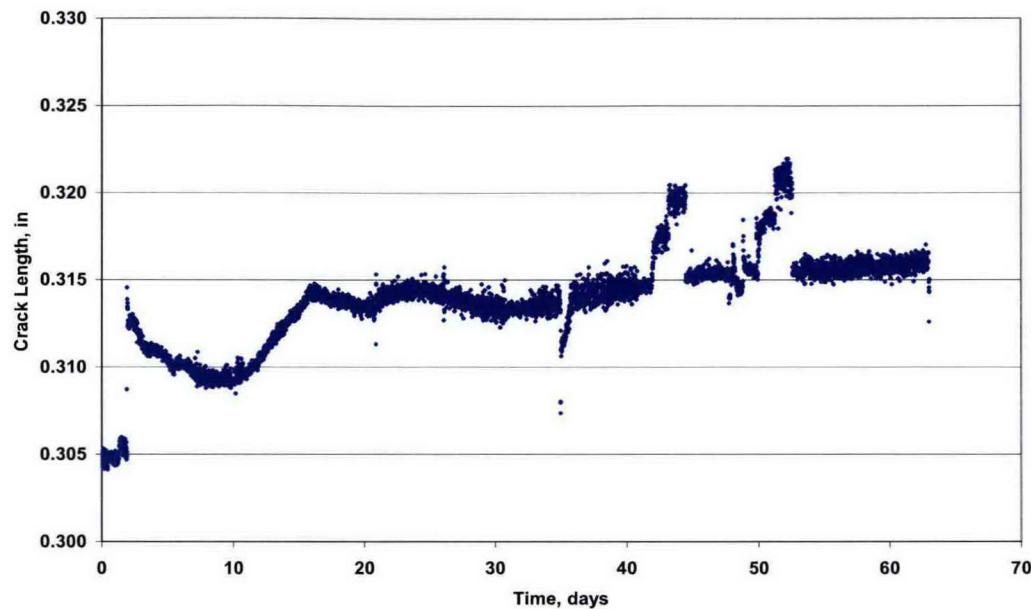

Figure C-79. A Stereo-Micrograph of the Sample from SSRT 75 Performed in AW105-PSC 6X Simulant at 50°C, pH 13+ and at -50 mV vs. SCE.

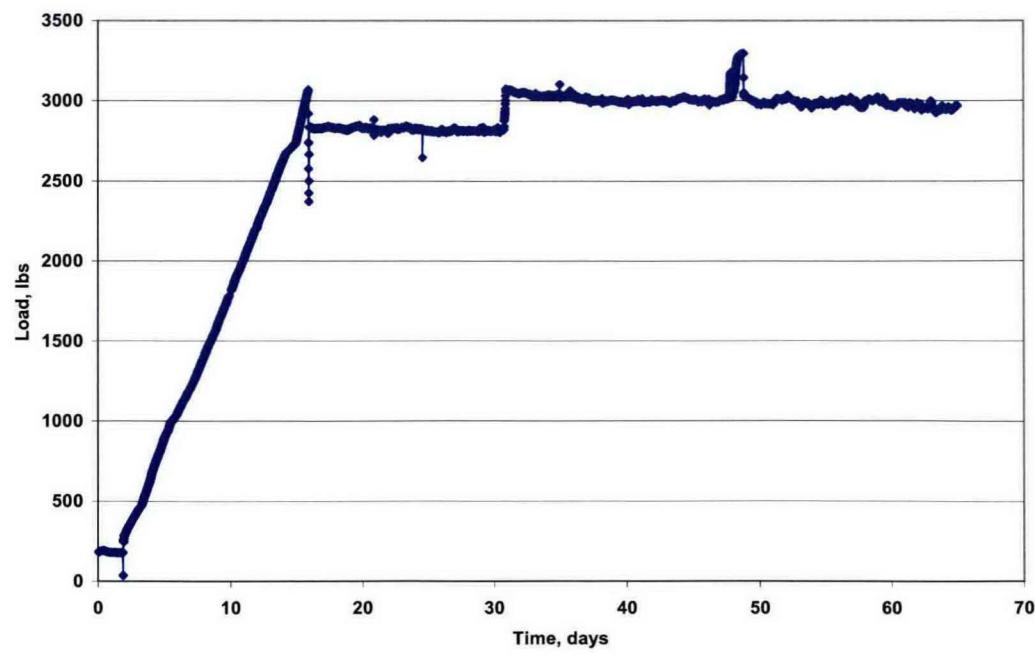

APPENDIX D

CRACK GROWTH RATE TEST DATA


Figure D-1 The DCPD Calculated Crack Length vs. Time Plot from CT-17 Performed in 5M NaNO₃ Solution at 50°C at OCP. Loaded past crack initiation.


Figure D-2. The Load vs. Time Plot from CT-17 Performed in 5M NaNO₃ Solution at 50°C at OCP. Loaded past crack initiation.


Figure D-3. A Stereo-Micrograph of the Test Sample from CT-17 Performed in 5M NaNO₃ Solution at 50°C at OCP. Loaded past crack initiation.


Figure D-4. An Electron-Micrograph of the Test Sample from CT-17 Performed in 5M NaNO₃ Solution at 50°C at OCP. Loaded past crack initiation.

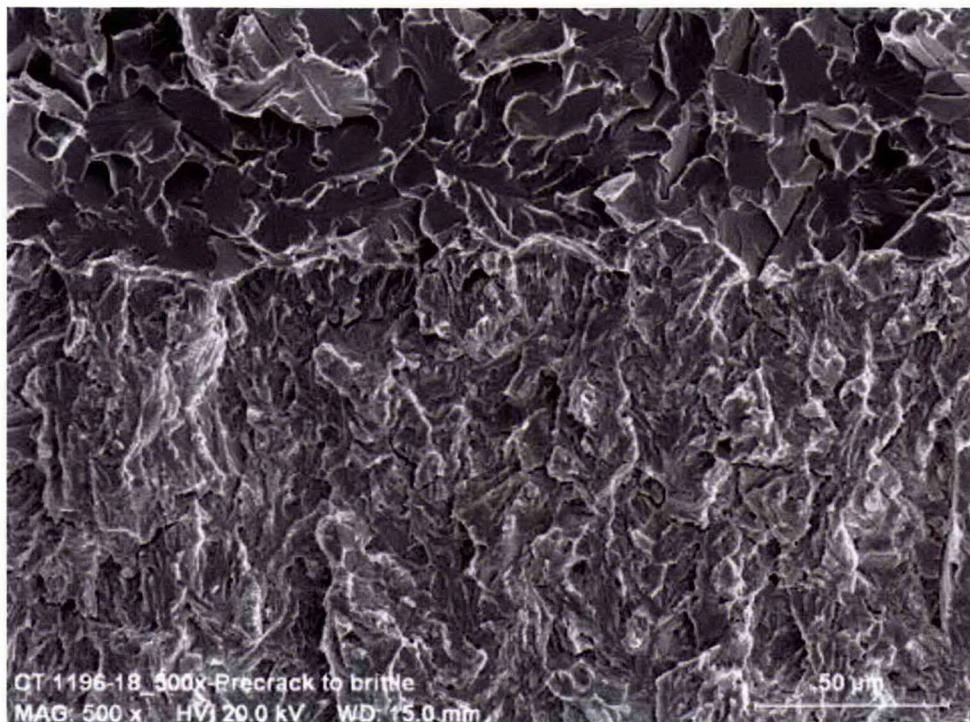

Figure D-3 The DCPD Calculated Crack Length vs. Time Plot from CT-18 Performed in AY101-PSC Standard Simulant at 50°C, pH 11 and at 0 mV vs. SCE. Loaded to $K = 45 \text{ ksi}\sqrt{\text{in.}}$

Figure D-4. The Load vs. Time Plot from CT-18 Performed in AY101-PSC Standard Simulant at 50°C, pH 11 and at 0 mV vs. SCE. Loaded to $K = 45 \text{ ksi}\sqrt{\text{in.}}$

**Figure D-5. An Electron-Micrograph of the Test Sample from CT-18
Performed in AY101-PSC Standard Simulant at 50°C, pH 11
and at 0 mV vs. SCE. Loaded to $K = 45 \text{ ksi}\sqrt{\text{in.}}$**

