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Abstract— With the increase in terrorist activities throughout the
world, the need to develop techniques capable of detecting radioactive
contraband in a timely manner is a critical requirement. The development
of Bayesian processors for the detection of contraband stems from the fact
that the posterior distribution is clearly multimodal eliminating the usual
Gaussian-based processors. The development of a sequential bootstrap
processor for this problem is discussed and shown how it is capable of
providing an enhanced signal for eventual detection.

I. INTRODUCTION

The need to investigate new techniques and technologies that can
provide for more sensitive detection of terrorist threats around the
world demand that meaningful approaches be developed to solving
many critical security problems for protection of valuable resources
and personnel. With the advent of high power computing, Bayesian
techniques have evolved from pure theory and speculation to a viable
approach especially in the radiation detection problem. One of the
major challenges is to develop techniques that can be applied to
time/space dependent problems and provide a timely solution.

Radionuclide detection is a critical technology to detect the trans-
portation of radiological materials by potential terrorists. Detection of
these materials is particularly difficult due to the inherent low-count
emissions produced. These low-count emissions result when sources
are shielded to disguise their existence or, when being transported,
are in relative motion with respect to the sensors. Active interrogation
with a low intensity neutron source, as required by safety consid-
erations, also produces low-count emissions. The basic problem we
propose is to detect, classify and estimate radioactive contraband from
highly uncertain (noisy) low-count, radionuclide measurements using
a statistical approach based on Bayesian inference and physics-based
signal processing. This paper addresses the first step in investigating
the problem of enhancing radionuclide signals from noisy radiation
measurements using a Bayesian approach. Some work has been
accomplished on this problem ([1]-[3]), but unfortunately the physics
models incorporated into the processor do not capture the true essence
of the problem especially from a signal processing perspective.

Our approach is different in that it models the source radionu-
clides by decomposing them uniquely as a superposition (union) of
monoenergetic sources that are then smeared and distorted as they
propagate through the usual path to the output of the detector for
measurement and counting. The problems of interest are then defined
in terms of this unique representation in which solutions based on
extracting this characterization from uncertain detector measurements
can be postulated. Using the recently developed particle filters (PF)
suggested by others [4]-[9], and embedding the physics-based models,
leads to the formulation of critical problems such as detection,
classification and esitmation of threat materials.

We start with the physics-based approach to solving this suite of
problems. In the next section we provide background information

Fig. 1. Gamma-ray evolution and measurement: Radionuclide source
(EMS), medium transport (physics), detector material interaction, detector
temporal response (preamplification/pulse shaping) and A/D conversion with
quantization noise.

on the underlying nuclear process and discuss the monoenergetic
model. In section III we discuss the measurement system employed
to detect radionuclides and show how the mononenergetic approach
leads to a compound Poisson driven Markov process [10] which is
amplified, shaped and digitized for further processing. The processor
is developed in section IV using state-space representations of the
transition probability and associated likelihood. In section V we apply
the processor to synthesized data and evaluate its performance. In the
final section we summarize our results and discuss future work.

II. PHYSICS-BASED MODELS

Radiation detection is the unique characterization of a radionuclide
based on its electromagnetic emissions. It has been and continues to
be an intense area of research and development for well over 50
years ([11]-[13]). It is well-known that a particular radionuclide can
be uniquely characterized by two basic properties: itsenergyemitted
in the form of photons or gamma-rays (γ-rays) and its radioactive
decay rate. Knowledge of one or both of these parameters is a unique
representation of a radionuclide. Mathematically, we define the pair,
[{εi}, {λi}], as the respective energy level (MeV) and decay rate
(probability of disintegration/nuclei/sec) of theith-component of the
elemental radionuclide. Although either of these parameters can be
used to uniquely characterize a radionuclide, only one is actually
necessary—unless there is uncertainty in extracting the parameter.
Gamma ray spectrometry is a methodology utilized to estimate the
energy (probability) distribution or spectrum by creating a histogram
of measured arrival data at various levels (count vs. binned energy)
[12]. It essentially decomposes the test sampleγ-ray emissions into
energy bins discarding the temporal information. The sharp lines are
used to identify the corresponding energy bin detecting the presence
of a particular component of the radionuclide. In the ideal case,
the spectrum consists only of lines or spikes located at the correct
bins of each constituent energy,εi, uniquely characterizing the test
radionuclide sample.

γ-ray interactions are subject to the usual physical interaction
constraints of scattering and attenuation as well as uncertainties



Fig. 2. Monoenergetic Source Decomposition: Individual ConstituentEMS
and Ideal Composite-freeEMS.

intrinsic to the detection process. Energy detectors are designed to
estimate theγ-ray energy from the measured electron current. A
typical detector is plagued with a variety of extraneous measurement
uncertainty that creates inaccuracy and spreading of the measured
current impulse (and thereforeγ-ray energy). The evolution of aγ-ray
as it travels through the medium and interacts with materials, shield
and the detector is shown in Fig. 1. It is important to realize that in the
diagram, the source radionuclide is represented by its constituents in
terms of monoenergetic (single energy level) components and arrival
times asξ(εi, τi). Since this representation of the source radionuclide
contains the constituent energy levels and timing, then all of the
information is completely captured by the sets,[{εi} , {τi}] , i =
1, · · · , Nε. The arrivals can be used to extract the corresponding
set of decay constants,{λi} which are related. Thus, from the
detector measurement of arrivals, or equivalently the so-calledevent
mode sequence(EMS), a particular radionuclide can be uniquely
characterized. The constituent energy levels (spikes),{εi} and arrival
times,{τi}, extracted from theEMS are depicted in Fig. 2 where we
show the union (superposition) of each of the individual constituent
monoenergetic sequences composing the complete radionuclideEMS.
Note that there is no overlapping of arrivals–a highly improbable
event.

So we see that the signal processing model developed from the
propagation of theγ-ray as it travels to the detector is measured and
evolves as a distortedEMS. Next, we develop a representation of the
event mode sequence in terms of its monoenergetic decomposition.
Define ξ(t; εi, τi, λi) as the componentEMS sequence of theith-
monoenergetic source at timet of energy level(amplitude),εi and
arrival time, τi with decay rate, λi —as a single impulse, that is,
ξ(t; εi, τi, λi) = εiδ(t−τi) and rateλi. Thus, we note that the ideal
EMS is composed of sets of energy-time pairs,{εi, τi}. In order to
define the entire emission sequence over a specified time interval,
[to, T ), we introduce the set notation,τ i := { τi(1) · · · τi(Nε(i)) }
at thenth-arrival with Nε(i) the total number ofcountsfor the ith-
source in the interval. Therefore,ξ(t; εi, τ i, λi) results in a unequally-
spaced impulse train given by (see Fig. 2)

ξ(t; εi, τ i, λi) =

Nε(i)∑

n=1

ξ(t; εi, τi(n), λi) =

Nε(i)∑

n=1

εiδ(t − τi(n)) (1)

The interarrival time, is defined by4τi(n) = τi(n) − τi(n −
1) for 4τi(0) = to with the corresponding set definition (above) of
4τi for i = 1, · · · ,Nε(i) − 1.

Extending theEMS model from a single source representation to
incorporate a set ofNε-monoenergetic sources. Suppose we have
a radionuclide source whoseEMS is decomposed into itsNε-
monoenergetic source components,ξ(t; ε, τ, λ). From the composi-

tion of the EMS we know that

ξ(t; ε, τ, λ) =

Nε∑

i=1

Nε(i)∑

n=1

ξ(t; εi, τi(n), λi) =

Nε∑

i=1

Nε(i)∑

n=1

εiδ(t− τi(n))

(2)
Clearly, since theEMS is the superposition of Poisson processes,

then it is also a composite Poisson process [10] with parameters:
λ =

∑Nε

i=1
λi, ε =

∑Nε

i=1
εi, Nξ =

∑Nε

i=1
Nε(i) for λ the

total decay rate,ε the associated energy levels andNξ the total
counts in the interval,[to, T ). Note that the composite decay rate
is the superposition ofall of the individual component rates. This
follows directly from the fact that the sum of exponentially (Poisson)
distributed variables are exponential (Poisson). We note that the
(composite)EMS of the radionuclide directly contains information
about λ, but not about its individual components—unless we can
extract the monoenergetic representation (Eq. 2) from the measured
data.

Statistically, the EMS can be characterized by the following
properties:

• non-uniform arrival time samples,τi(n)
• monoenergetic source components,ξ(t; εi, τi(n), λi) having

their own unique decay rate,λi

• unique energy level,εi

• gamma distributed arrival times,τi(n), Γ(k, τi)
• Poisson distributed counts,Nε(i), P(Nε(n) = m)
• exponentially distributed interarrival times, 4τi(n),

E(λi4τi(n)).
• composite decay rate,λ

Next we consider the measurement of theEMS along with its
inherent uncertainties.

III. GAMMA -RAY DETECTORMEASUREMENTS

Using the mathematical description of theEMS in terms of its
monoenergetic source decomposition model discussed previously, we
show how this ideal representation must be modified because of the
distortion and smearing effects that occur as theγ-rays propagate
according to the transport physics of the radiation process. Typically,
these are quantified in terms ofγ-ray spectral properties of energy
“peak width” and “peak amplitude”. The uncertainties evolve from
three factors inherent in the material and instrumentation: inherent
statistical spread in the number of charge carriers, variations in the
charge collection efficiency and electronic noise [12]. In general, the
energy resolution is defined in terms of a Gaussian random variable,
εi ∼ N

(
ε̄i, σε

2
i

)
.

Next we consider uncertainties created in the associated pulse
processing system that consists of an amplifier and pulse shaping
circuits. Here we concentrate on the amplitude output of the pulse
shaper, since it carries not only the quantifiedγ-ray energy infor-
mation, but also it is used for the detector timing circuits (gating
pulses, logic pulses, etc.). The shaped pulse is converted to a logic
pulse in order to extract precise timing information (arrival times,
interarrival times, etc.). We consider the pulse shaper circuitry capable
of taking the “raw” material pulse amplifying and shaping it to create
a Gaussian pulse shape[12]. Once the Gaussian pulse amplitude,
which is proportional to the originalγ-ray energy, is digitized or
quantized by the analog-to-digital converter (ADC), the criticalEMS
parameters,[{εi}, {τi}, {λi}], energy level, arrival time and decay
rate can be extracted for further analysis and processing. From this
data all other information can be inferred about the identity and
quantity of the test radionuclide.



Next we define asignal processing modelthat captures the major
characteristics of a solid state detector in order to formulate our
model-based approach to the radiation detection problem. Consider
the diagram again of the overall detector system shown in Fig. 1. Here
we see how theEMS is transported through the medium (scattering
and attenuation) to the detector and each photon is deposited in the
detector material, charge is collected and a voltage created which
passes onto pulse shaping electronics that are contaminated with
random measurement noise followed by the quantization to produce
the noisy output measurement. Thus, from theith-monoenergetic
component we have

pmi (t) =

Nε(i)∑

n=1

ξ(t; εi, τi(n), λi) ? r(t) + wτi(t)

=

Nε(i)∑

n=1

εir(t − τi(n)) + wτi(t) (3)

wherer(t) is a rectangular window of unit amplitude defined within
τi(n) ≤ t ≤ τi(n − 1). The uncertain (random) amplitude is
Gaussian,ε ∼ N (εi, σ

2
εi

), with inherent uncertainty representing the
material charge collection process time “jitter” by the additive zero-
mean, Gaussian noise,wτi ∼ N (τ i, σ

2
wτi

) and τ(n) → τi(n);n =

1, · · · , Nε(i). Therefore, the material output pulse train for theith-
source is given bys(t) = HS(t)?pmi (t)+v(t). Extending the model
to incorporate all of theNε-sources composing the radionuclide leads
to the superposition of all of the monoenergetic pulse trains, that is,
pm(t) =

∑Nε

i=1
pmi (t). The uncertain material pulse,pm(t), is then

provided as input to the pulse shaping circuitry. Here the preamplifier
and pulse shaper are characterized by a Gaussian filter with impulse
response,HS(t) with output given by

s(t) = HS(t) ? pm(t) + v(t) (4)

where the uncertainty created by instrumentation noise is mod-
eled through the additive zero-mean, Gaussian noise source,v ∼
N (0, σ2

v). The shaped pulse is then quantized (tk → t) and digitally
processed to extract the energy levels and timing information for
further processing. Due to quantization limitations theADC inher-
ently contaminates the measured pulse with zero-mean, Gaussian
quantization noise,vq(tk) while there exists background radiation
noise,b(tk) that must also be taken into account. At this point, we
could also develop a signal processing model of the background,
but we choose simplicity. We model it as an additive disturbance at
the output of the quantizer given byb(tk) with quantization noise,
vq ∼ N (0, σ2

q ) giving us the final expression as

z(tk) = s(tk) + b(tk) + vq(tk) (5)

So we see that the entireEMS can be captured in a signal
processing model with the key being the monoenergetic source
decomposition representation of radiation transport. Next we start
with this model and convert it to state-space Markovian form directly
for Bayesian processing. In our problem, theEMS is the noisy input
sequence characterized by both input and noise processes, that is,ξ
and wτ → w. The states are part of the preamplifier and Gaussian
pulse shaping system and the output is the quantized measurement,
that is, z(tk) → y(t). To be more specific, we useξ(t; εi, τi, λi),
the ith-monoenergetic source including both amplitude and timing
uncertainties as a Poisson input to our Markovian model above
along with the matrices,A,B,C, specifying the pulse shaping circuit
parameters transformed to state-space form,HS → Markovian.

To see this consider the state-space representation for asingle
monoenergetic source is given by the following set of relations:

ẋi(t) = Aixi(t) + biξ (t; εi, τ i, λi) + wiwτi(t) [Source]

y(t) = c′
ixi(t) + v(t) [Pulse Shaper]

z(tk) = y(tk) + vq(tk); i = 1, · · · ,Nε [ADC]

(6)

Expanding this model over i to incorporate the Nε-
monoenergetic source components gives the extended state vector,
x(t) = [xi(t) | x2(t) | · · · | xNε(t) ]′ where each component
state is dimensionedNx and therefore, x ∈ RNxNε×1.
Thus, the overallradiation detection state-space model forNε

monoenergetic sources is given by:A = diag[Ai], B = diag[Bi],
C =

[
c′
1 | c′

2 | · · · | c′
Nε

]
.

It is interesting to note some of the major properties of this model.
The first feature to note is that themonoenergetic decomposition
of the radionuclide source isincorporateddirectly into the model
structure. For instance, it we are searching for a particular radionu-
clide and we know its major energy lines that uniquely describe its
spectrum, we can choose the appropriate value ofNε and specify
its corresponding mean energy levels and decay rates directly—this
is the physics-based approach. We also note that the corresponding
noise and statistics are easily captured by this structure as well. This
formulation is a continuous-discrete or simply “sampled-data” model,
since theADC in used in the detection scheme.

IV. BAYESIAN PHYSICS-BASED PROCESSOR

In this section we discuss the development of a Bayesian processor
for a problem of enhancing a noisyEMS measurement with all of
the information required “known” a-priori. We demonstrate how a
radiation detector can be modeled (simply) from a physics/statistical
signal processing perspective, develop the mathematical representa-
tions and incorporate them into a Bayesian framework to enhance
the constituent monoenergetic representation. We then demonstrate
the Bayesian framework with an illustrative simulation.

A simple radiation transport synthesizer was developed for signal
analysis purposes [14]. It consists of specifying the radionuclide in
terms of itsEMS and corresponding monoenergetic source decom-
position then transporting this sequence through the medium (shield)
along with its inherent scattering to the detector. At the detector the
“surviving” or escapingγ-ray photons are transported through the
detector material (semiconductor) again being absorbed and scattered
with the final surviving photons providing the current pulse input
to the shaping circuitry as shown in Fig. 1. After initializing the
radionuclide and its corresponding monoenergetic source decomposi-
tion, the simulator transports the “ideal”EMS through the shield that
incorporates both absorption (attenuation) and scattering (Compton)
properties using the prescribed shield parameters. The output of this
step is specified by the percentage of the photons escaping the shield
and those captured or absorbed by the material and converted to
thermal energy. The surviving photons escaping are then transported
to the detector material where they undergo further absorption and
scattering with the survivors converted to charge (electrons) provided
as the input to the detector shaping circuitry.

To illustrate the Bayesian approach using physics-based signal
processing models, we choose a single monoenergetic source se-
quence to represent a radionuclide with parameters,{εo, λo, Nε(o)}
and generate the distortion and Gaussian smearing to synthesize the
noisy detector output as illustrated previously in Fig. 1. Next we



investigate the development of a sequential Bayesian processor for
the following problem which can be stated formally as:GIVEN
a set of noisyγ-ray detector measurements,{z(tk)} and a set of
a-priori parameters{εo, λo,Nε(o)} or equivalently its state-space
representation,Σo = {Ao, Bo, Co}, along with a known (generated)
EMS, {ξo(t)}, FIND best estimate of the underlying radionuclide
EMS, {ŷ(tk)}.

For our problem we assume we have a good synthetic model of
the EMS and we construct the ideal physics-based processor with
known parameters{εo, τ o,Nε(o)} or equivalently known (generated
by model)EMS. Note that we use the simplified notation,ξo(t) →
ξ(t; εo, τo, λo). Therefore, the state-space representation is given by

ẋo(t) = Aoxo(t) + boξo(t) + wτo(t) [Process]

y(t) = c′xo(t) + v(t) [Measurement]

z(tk) = y(tk) + vq(tk) [ADC] (7)

wherewτo ∼ N (0, Rwowo), v ∼ N (0, Rvv) andvq ∼ N (0, Rvqvq).
Under these linear assumptions with additive Gaussian noise pro-
cesses, the optimal processor is the Kalman filter [15].

In order to develop the particle filter for this problem we require
that the transition and likelihood distributions; therefore, under the
modeling assumptions (Gaussian noise, known input, parameters,
etc.), we have that:

A(x(t)|x(t− 1)) ∼ N
(
Aox(t − 1) + Boξo(t), Rwτ owτ o(t − 1)

)

C(y(t)|x(t)) ∼ N
(
Cox(t − 1), Rvv

)

Therefore, thebootstrapparticle filter implementation for this prob-
lem for i = 1, · · · ,Np is:

• Draw: xi(t) ∼ A (x(t)|xi(t − 1)) ; wi ∼ Pr(wi(t));
• Weight: Wi(t) = C(y(t)|x(t));
• Normalize:Wi(t) = Wi(t)/

∑Np

i=1
Wi(t);

• Resample:̂xi(t) ⇒ xi(t);
• Posterior:P̂r(x(t)|Yt) ≈

∑
i
Wi(t)δ(x(t) − x̂i(t));

• Inferences:̂x(t|t), x̂MAP (t).
This completes the formulation and Bayesian processor realizations

both for the Kalman and particle filter designs, next we synthesize a
radiation detection problem and apply the processors.

Suppose we have a nuclide represented by a single monoenergetic
source of energy level,εo = 3.086 keV . Using the transport
simulator with the following Gaussian noise variances:Rww = 10−6

andRvv = 10−2, we generated a realization of the noisyEMSṄext
we construct theEMS signal enhancer and the results are shown in
Fig. 3 where we observe the raw synthesized data illustrated along
with the enhanced Bayesian processor estimates (both conditional
mean and maximum a-posteriori). We see the enhancedEMS signal
in (a) along with a zoomed version to observe the actual enhancement.
Note the zero amplitude level noise has been minimized as part of the
enhancement process. The optimal,Xopt (Kalman filter), and particle
filter inferences for both conditional mean and maximum a-posteriori
are annotated in Fig. 3; however, all of the realizations overlay one
another so they are hard to differentiate. This completes the section,
next we summarize our results and discuss future work.

V. SUMMARY

We have demonstrated the development of Bayesian processing
for the radiation detection problem and shown how the physics-based
signal processing models evolve using theEMS as the foundation for
this approach. The detection process evolved from the physics directly
and was incorporated into a Markovian (state-space) representation
enabling the development of the sequential Bayesian paridigm.

Fig. 3. Bayesian Processor for Radiation Detection Signal Enhancement. (a)
Entire EMS enhancement with box annotating zoom area. (b) ZoomedEMS
with raw and enhanced processor outputs.
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