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Introduction

Smith and Morrison (2006) developed an approximation for the inductive response
of conducting magnetic (permeable) spheroids (e.g., steel spheroids) based on the induc-
tive response of conducting magnetic spheres of related dimensions. Spheroids are axi-
ally symmetric objects with elliptical cross-sections along the axis of symmetry and cir-
cular cross sections perpendicular to the axis of symmetry. Spheroids are useful as an
approximation to the shapes of unexploded ordnance (UXO) for approximating their
responses. Ellipsoids are more general objects with three orthogonal principal axes, with
elliptical cross sections along planes normal to the axes. Ellipsoids reduce to spheroids in
the limiting case of ellipsoids with cross-sections that are in fact circles along planes nor-
mal to one axis. Parametrizing the inductive response of unknown objects in terms of the
response of an ellipsoid is useful as it allows fitting responses of objects with no axis of
symmetry, in addition to fitting the responses of axially symmetric objects. It is thus
more appropriate for fitting the responses of metal scrap to be distinguished electromag-
netically from unexploded ordnance. Here the method of Smith and Morrison (2006) is
generalized to the case of conductive magnetic ellipsoids, and a simplified form used to
parametrize the inductive response of isolated objects. The simplified form is developed
for the case of non-uniform source fields, for the first eight terms in an ellipsoidal har-
monic decomposition of the source fields, allowing limited corrections for source field

geometry beyond the common assumption of uniform source fields.



Ellipsoidal Coordinates

The equation for an ellipsoid with semi-axes a’, b’, and ¢’ in the X, ¥ and 2 direc-

tions is

X
v+ = (1)

The equation for ellipsoidal coordinates &, &,, and &5 is
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with b < a by convention (Morse and Feshbach, 1957, or Hobson, 1931, with roles of X
and z interchanged). Equation (2) is a cubic equation in &> when X, Y, and z are held
fixed, so has three solutions &2. The three coordinates &, &, and &; are such that
-b< & <b<lél<a<liél Solutions in X, Y, and z of Equation (2), for £ > a held fixed,
define surfaces of constant & which are confocal ellipsoids with short axis in the X direc-
tion and long axis in the 2 direction. That is, they give solutions of Equation (1) with
c=¢,da= Ve _—_az, b =Vc¢ _—_bz, where @ < b’ <c¢'. For computations involving a
conducting ellipsoid with semi-axes &, b, and C', the ellipsoidal coordinate & = ¢’ delim-
its the conducting ellipsoid, with &; values a <&l < €' defining interior ellipsoidal sur-
faces and & values C' <&l defining exterior ellipsoidal surfaces. The limiting case ellip-
soid with &; = *a corresponds to a flattened oval in the y-z plane with zero thickness in
the X direction. Holding one of the other two ellipsoidal coordinates &, or &3 constant
defines (hyperboloid) surfaces which are orthogonal to each other and to the ellipsoids of
constant &;. Coordinate &, has two branches joined at &, = @, and &5 two joined at &5 = b
(Hobson, 1931). An ellipsoidal coordinate system is determined by the choice of princi-

pal ellipsoid axes R, ¥, and 2, and parameters a and b. Coordinates X, Yy, and zZ are given

by
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where S, = 1 = sign(X) according to the branch of &,, s, = 1 = sign(y) according to the

branch of &5, and Sign(&;) = sign(z).

Ellipsoidal coordinates are useful in electromagnetic induction problems in ellip-
soidal objects at frequencies (or times) at which currents in the medium containing the
ellipsoid object can be neglected. At these frequencies (times) the magnetic field outside
the object is curl free (as well as divergence free) so can be parametrized as the gradient
of a potential satisfying Laplace’s equation. In ellipsoidal coordinates, solutions of
Laplace’s equation are separable; they can be written in terms of products of functions
EP(&) and FP(&) of the three ellipsoidal coordinates: EP(&) EP(&,) ER(&3), or
FP(&) ER(E) ER(&3), where EP(&) and FP(&) are Lame functions of the first and second
kind, and m and p are indices which distinguish the different Lame functions (e.g., Morse
and Feshbach, 1953). Lame functions of the first kind EP(£) are smooth and bounded for
¢ - a(e.g., at the origin of X, y and Z) and, except Eg(af) which is constant, increase
without bound for & — 00, so they correspond to external sources, and Lame functions of
the second kind F (&) increase without bound for ¢ — a, and vanish as £ — o0, so those

correspond to responses of the ellipsoids.

Sphere Ellipsoid Response Approximation

For axially symmetric objects (e.g., a spheroids), axial and transverse (equivalent
dipole) polarizability responses M, (t) and my(t) give the strength, as a function of time
(t), of magnetic dipole moments in axial and transverse directions, induced by uniform
(primary) magnetic fields of unit nominal amplitude in those directions, with a specified

time function of primary magnetic field variation (e.g., Smith and Morrison, 2004).



Strictly speaking, polarizabilities Mg (t) and my(t) should have dimensions of Amp-m?/
(Amp/m) = m’. However, since induction coils are sensitive to the rate of change of mag-
netic field, we let Mg (t) and m(t) represent the time rate of change of polarizabilities,
which have dimensions m®/s, but will refer to them as ‘polarizabilities’. Smith and Mor-
rison (2006) approximate the axial and transverse equivalent dipole polarizability
responses of conductive magnetic (permeable) spheroids using the polarizability

responses of spheres of related sizes;

Max(1) = VaxMephere(cy) (L) “4)

M(t) = Vi Mgphere(b) (L) -

Letting C' be the axial semi-diameter of the spheroid, and b' be the transverse semi-diam-
eter of the spheroid, the transverse polarizability response of the spheroid is approxi-
mated as proportional to the polarizability response Mgynere(hy)(t) Of @ sphere of the trans-
verse semi-diameter (bg = b'), and the axial response is approximated as proportional to
the response Mgyhere(c,)(t) Of @ sphere of radius Cgt, where for prolate spheroids (¢’ > b'),

Cat = C' and for oblate spheroids (C' < b'), Cgy :V(CTZ_ +_b_'CT)/2, with the latter formula

found empirically. This approximation will be denoted a sphere-spheroid approximation.
Here we have written the approximation in terms of semi-diameters (radii) instead of
diameters to be consistent with semi-axes used to characterize ellipsoids and ellipsoidal
coordinates. Proportionality constants v, and vy are ratios of differences of polarizabili-

ties at high and low frequency limits;

(spheroid) _ ~(Spheroid)
masj() Ia)=oo masf |w=0
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where the high and low frequency limit polarizabilities are given by Smith and Morrison



(2006) and are readily calculated. Generalization to ellipsoids is straight forward. Pro-
late spheroids are the limiting case of ellipsoids with minor semi-axis length approaching
their intermediate semi-axis length (& — b') with 2 as their axis of symmetry. Oblate
spheroids are the limiting case of ellipsoids with major semi-axis approaching their inter-
mediate semi-axis length (C' — b') with X as their axis of symmetry. We approximate the
polarizability response of conducting magnetic ellipsoid to uniform magnetic source

fields (of a given time dependence) in the ellipsoid principal directions as

My(t) = vxMyphere(ag)(D)

My(t) = vy Mgheretbe() (6)

M,(t) = v;Mghere(ce)(t) >
where

(ellipsoid) — m(€lipsoid
My i |a)=oo mﬁ/v i )|w=0

msphere(oeﬂ)la):oo - msphere(oeﬁ)lwzo
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where W stands for one of X, Yy, or z, and Oy stands for the corresponding choice among
aeff, Des, and Cg. For ellipsoids, the appropriate effective sphere dimensions are given

by

)
Eh,z + ar bl |j ' ’
aeﬁ:BTD ’ beff:b» Ceff:C’ (8)
0 N
where, as before, &, b', and C' are the semi-axes of the ellipsoid. Effective sphere semi-
diameters (8) have been chosen to be consistent with those used for prolate and oblate
spheroids, after allowing for the difference in symmetry axis between prolate and oblate

spheroid treated as limiting cases of ellipsoids with @ < b" < ¢'. Formula (7) for vy, vy

and v, requires the zero frequency and high frequency limit uniform source field



polarizabilities for the ellipsoid in source fields oriented in the X, ¥, and 2 directions
respectively. These are derived from solutions of Laplace’s equation in ellipsoidal coor-
dinates for an external field that is the gradient of a potential varying in proportion to X,

y, or Z.

Ellipsoidal Harmonics and the Solution of Laplace’s Equation in Ellipsoidal Coordinates

As noted above, solutions of Laplace’s equation in ellipsoidal coordinates can be

expressed in terms of products of Lame functions of ellipsoidal coordinates,

ERED ER(E) ERE) (9)

for external sources, and

FR(&) ER&) ERE) (10)

for internal sources. Forms (9) and (10) are known as external and internal ellipsoidal
harmonics. The zero frequency limit induction problem is solved using a term of each

form outside the ellipsoid, and a single term of form (9) inside the ellipsoid, that is,

¢ =[aoERED + BoFH(ED ER(E) ER(ES) L outside, & 2 & (1T)

9= aER(&) ER(E) ER) inside, & <¢ .

Letting &; = &, be the &, coordinate of the ellipsoid/exterior interface, the zero frequency
limit problem is to match H X A and B [h at & = &,, where A is the surface normal vector
(in the & direction). Of course B = yH = ullg. Letting magnetic permeabilities be

U = ug outside and g = g inside the ellipsoid, this yields

F&) _, F(&) O
[(E'¢) " EEO

Bolw=0 = ®lw=o (4 = 1) (12)

where ' denotes differentiation, y, = y/uy, and indices p and m have been elided.



The high frequency limit induction problem is the same as the low frequency limit
problem with B[h =0 set at & = &,. Solution of this case results in &l,=o, and Boly=co

obeying Equation (12) in the limit of gz, — 0, that is,

E'(So)

o = 13
7 F'(&o) (1

Bolw=co =~

Equations (12) and (13) solve low frequency and high frequency limit problems for exter-

nal sources arising from a single external ellipsoidal harmonic term.

Lame functions ER(&) and FP(&) depend on coordinate system parameters a and b,
which are constant for a given ellipsoidal coordinate system, so are omitted as arguments

of EP and FP. Following Morse and Feshbach (1957), the first few EP(¢) are

E9) =1 .
E?(f)Ef ) El(f) (f 1/2 , El(é:) (é: b2 12

EX&) =& -a)? , BJO=&E -7, BN = -a) (- | (14)

1 1
Ej(&) =& - §<a2 +b*+d%) ,and EN&) =&%- g(az +b2-d? ,
where
dz = [(az _ b2)2 + a2 b2]1/2.

Products of these form the first few external ellipsoidal harmonics, which can often be

scaled to give simple multiples of coordinates X, Yy and z;

_ —sign(¢,)
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_ isgn(é)

= e, BV EE) B
7= SOV e By B | (15)
= %ﬁ% E(&) BX&) B(&)
Xz = % E3(&) EX(&) E5(&)
vy = SIS i) Bl ElGo)

However, external harmonics based on E(z) and E; are weighted sums of X2, y2, and Z° ;

E5(&) E(&) EX(E) = X + ay Y +a,7 +a (16)
where
ay = (a2 +b? +d¥) (@ -2b*+d%)/9 ,
ay =@ +b*+d>) (b’ -2a>+d*)/9 , (17)
a, =@ +b*+d*) (@ +b*-2d»)/9 ,
ac = (@ + b’ +d)[(@ - b’ -2a’b* + (@ +b*d*/27 ,
and

EX&) EXE) EXE) =o'+ Y+, 7+ al (18)

where o'y, &'y, a',, and &', are given by formulas (17) with &' substituted for & and -d?
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substituted for d*>. Lamé functions of the second kind are more complicated;

© dz
(f)_! (22 - a2)2(22 — ) 2[ER(2)]2

F2(& =2m+1)EP (19)

Ve dx

p
m(f)b[ (1 —a2x2)2(] — b2 x2)1/2[E,ﬁ’1(1/x)]2 .

=2m+1E

The individual FF(&) can, in principal, be expressed in terms of elementary elliptic inte-

grals. Some are given in appendix.

For an external source potential of a single ellipsoidal harmonic
EP(ED) ER(E,) ER(&3), solution of both limiting case boundary problems results in poten-
tials within the ellipsoid of the same functional form [Equations (11)], For uniform
source magnetic fields aligned with one of the ellipsoid axes the limiting case boundary
problem solution has the internal magnetic field aligned with the same axis. For the low
frequency limit boundary problem, the ‘anomalous’ fields outside the ellipsoid due to the
presence of the ellipsoid (the B,FP? term in Equations (11)), are simply the magnetic
fields of the induced static magnetization inside the ellipsoid M| = (y¢; — yp)U¢. Given
Equations (12) and (13), the anomalous fields for the high frequency limit boundary prob-

lem are simply Bl =00/ Bol,=0 times these.

A Simplified Higher Order Sphere Ellipsoid Approximation

For a single external ellipsoidal harmonic source field, the solution on the inside of
an ellipsoid has the same functional form as the source field, for both low frequency and
high frequency limit solutions, hence one is tempted to make a similar approximation to
the sphere-spheroid approximation for higher order ellipsoidal harmonic sources.
Because of symmetry, none of the higher order ellipsoidal harmonics induce any net
dipole moment in an ellipsoid, so their effects first show up in the induced quadrupole

moments of the ellipsoid. In the case of the three linearly polarized source fields (Hy, Hy
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and H,), the limiting ellipsoidal boundary value problems result in uniform magnetic
dipole distributions in the direction of the inducing field throughout the ellipsoid, with net

magnetic dipole density rates of
px=M(ON . py=mUON . p, = MON (20)

per unit nominal inducing field in the X, y, and 2 directions respectively, and
V =4za'b'c'/3 is the volume of the ellipsoid. The computationally simplest approxima-
tion for the response to higher order ellipsoidal harmonic source fields, is that the ellip-
soid response is proportional to the local magnetic field with the same proportionality
factors py, py, and p, as it is for the local magnetic fields in these directions for linearly
polarized source fields. Under this assumption, because of symmetry, Eg(f) (¢ = Vy2),
E%(f) (¢ = X2), Eg(af) (¢ = xy), Eg(f), and E%(f) sources result in no net induced dipole
moment, and E}(f) (¢ = X), E12(§) (¢ =y), and E?(é‘) (¢ = 2) sources result in no net
induced quadrupole moments. The same assumption leads to induced quadrupole

moment rates of

QuAt) = Hy, (Ceqr py + b p)VI5 1)
Q) = Hy (Czeff px Tt a-Zeff pVI5
Quy(1) = Hyy (s px + 8 py) VIS

Quu(t) =2 Hy, (Ozef‘f pwV/5

for source fields H = Hy,, (uW + wQ), with U and W being any of X, y, and z, 0 and W
being unit vectors in the corresponding directions, and, according to the choice of U, Og
being the corresponding choice from ag, Dg, and Cg. Defining the q, quadrupole
polarizability as being the Q,, quadrupole moment per H, for a H = H, (UW + wQ)
source field, then quy = Quv/Huw - So, under the assumption of pointwise consistency

between the ratios of primary fields in the ellipsoid axis direction and induced dipole
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moment densities in those directions within the ellipsoid, one can write the ellipsoid
quadrupole polarizability rates in terms of the ellipsoid dipole polarizability rates, and the

effective sphere dimensions a4, b, and Cg for the ellipsoid;

Oy(t) = (Cogr My() + g M) /5, (22)
Oxel(t) = (CX My(t) + &% ML) /5
Oy (1) = (D3 My(t) + ags my(1) /5

Auu(t) =20% Myt /5 ,

where U, W, and O are as before. Quadrupole polarizability (rates) g have the dimen-
sions of Amp-m*/(s-Amp/m?) = m’/s. If the equivalent dipole polarizabilities of an ellip-
soid are known by any means, quadrupole polarizabilities can be computed (for assumed
or known ellipsoid dimensions &', b" and c') using Equations (22), and corrections can be

made for the effects of quadrupole moments due to source field gradients.

Under the above assumption, that quadrupole responses within the ellipsoid are
proportional to the local source magnetic field with the same proportionalities as the
dipole polarizability responses, the resulting quadrupole moments are linear in the princi-
pal polarizabilities, and the fields of those moments are similarly linear in the principal
polarizabilities. Letting nga) be the anomalous field measured at the i’th sensor for the

(dip)

j’th source, B;, " be the fields at the i’th receiver of a & dipole located at the object cen-

ter, B?ﬂ%ad) be the fields at the i’th receiver of a &,&, quadrupole located at the object cen-
ter (where § =X, & =Y, & =2), B(jsrc) be the fields of the j’th source at signal maximum,
at the object center, DB(jsmt) be the gradient in object principal coordinates of the fields of
the j’th source at the object center, with components DB(kﬁOt), and O be the rotation

matrix from object principal coordinates to field coordinates, then the anomalous fields at

the receiver due to the object can be written as
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B =, 2 BiP0upiOnB ™+ T BOnOy BV Pt /5 . (23)

where P = my(t), p, = my(t), ps = My(t), 17 = ag, r; = by, and rj = C. Expression
(23) has been simplified recognizing that &,&, quadrupoles and &,&,, quadrupoles are

identical and that OBig™ = OBjg*.

Inversion for Ellipsoid Effective Semi-axes

The anomalous magnetic fields given by Equation (23) are linear in principal polar-
izabilities, granted that object center location, orientation (e.g., Euler angles), and effec-
tive semi-axis lengths ag, D, and Cy are known. We invert for these parameters using
a general non-linear optimization method (Smith, et al, 1994, Smith and Morrison, 2005),
at each step fitting the principal polarizabilities using linear methods. We minimize a
robust loss function of the data residuals weighted inversely by their estimated errors,
minimizing squared weighted residuals for absolute weighted residuals less than 1 and
absolute weighted residuals for absolute weighted residuals greater than one (Huber

weights, e.g., Huber, 1981).

The algorithm was tested on data collected at the U.S. Army Yuma Proving Ground
calibration grid, in Arizona. Data from vertical (x90°) and dipping (+45°) 8 1mm (0.49 m
long) and 155mm (0.87 m long) UXO were inverted as these ordnance were sufficiently
large and shallow that source gradient effects were expected. Results using ellipsoidal
quadrupole polarizabilities are compared against results from inversion for object depth
and polarizabilities without including ellipsoidal quadrupole polarizabilities in Tables I,
IT, and III. As azimuth is undefined for a vertical object, azimuth estimates for vertical

UXO have been omitted.
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UXxoO Dip (deg.)  Depth (m) Est. Depth (m) Est. Depth (m)
w/o quadr. Polariz.  w/ quadr. Polariz.
81lmm -45 0.87 0.80 0.96
81mm 45 0.87 0.83 0.83
81lmm -90 0.95 0.74 0.80
81lmm 90 0.95 0.83 0.92
155mm -45 1.26 1.13 1.14
155mm 45 1.26 1.09 1.15
155mm -90 1.39 1.22 1.28
155mm 90 1.39 1.16 1.30

Table I. Estimated depths below the Berkeley UXO Discriminator (BUD), for 8 1mm and

155mm UXO with and without ellipsoid quadrupole polarizabilities.

UXxoO Depth (m)  Dip (deg.) Est. Dip (deg.) Est. Dip (deg.)
w/o quadr. Polariz.  w/ quadr. Polariz.
81mm 0.87 -45 -27.2 -28.0
81mm 0.87 45 533 52.6
81mm 0.95 -90 -83.7 -85.0
81mm 0.95 90 77.5 77.2
155mm 1.26 -45 -22.4 -57.2
155mm 1.26 45 234 30.0
155mm 1.39 -90 -46.9 -84.0
155mm 1.39 90 84.1 85.8

Table II. Estimated dips (£180°) for 81mm and 155mm UXO with and without ellipsoid

quadrupole polarizabilities.



-16-

UXxoO Depth (m) Dip (deg.) Azim. (deg). Est. Azim. (deg.) Est. Azim. (deg.)

w/o quadr. Polariz.  w/ quadr. Polariz.

81mm 0.87 -45 0 4.3 6.8

81lmm 0.87 45 0 -9.3 -12.9
155mm 1.26 -45 0 36.8 17.8
155mm 1.26 45 0 -6.1 -5.7

Table III. Estimated azimuths (¥180°) for 81mm and 155mm UXO with and without

ellipsoid quadrupole polarizabilities.

Depths estimated without ellipsoid quadrupole polarizabilities have a root mean squared
(rms) error of 0.15 m, those estimated with ellipsoid quadrupole polarizabilities have 0.10
m rms error. Dip estimates have a 20.8° rms error without ellipsoid quadrupole polariz-
abilities, and a 11.0° rms error with ellipsoid quadrupole polarizabilities. Azimuth esti-
mates have 19.3° and 11.9° rms errors without and with ellipsoid quadrupole polarizabili-
ties, respectively. In summary, using ellipsoid polarizabilities when estimating position,
dip, azimuth, and polarizabilities, for objects where source gradients are significant along

the length of the object improves the estimates of position, dip and azimuth.

Comparison of polarizability estimates is more difficult as true uniform field polar-
izabilities are not known a priori, but are estimated from measured data. Polarizability
estimates made without ellipsoid quadrupole polarizabilities are shown in Figure 1, for
the 81 mm UXO in the four orientations of Tables I and II, while polarizability estimates
made with ellipsoid quadrupole polarizabilities are shown in Figure 2. Similarly, polariz-
ability estimates made without ellipsoid quadrupole for the 155 mm UXO in the same
orientations are show in Figure 3, those made with ellipsoid quadrupole polarizabilities
are shown in Figure 4. In Figures 1 and 2, and of Figures 3 and 4, the individual curves
are more easily recognized as axially symmetric objects in the curves calculated without

ellipsoid quadrupole polarizabilities (Figures 1 and 3), as there, the two minor
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polarizabilities match each other more closely. However, the polarizability estimates
made with ellipsoid quadrupole polarizabilities match each other better between upward
and downward orientations (negative and positive dips) for both the 81mm UXO and the
155mm UXO, than do the polarizability estimates made without ellipsoid quadrupole
polarizabilities, suggesting that it may be easier to recognize the corrected curves as

being due to the same UXO, so may be preferable for UXO model identification.

Conclusion

The quadrupole polarizabilities we fit here were based on assuming point wise con-
sistency between the ratios of primary fields in the ellipsoid axis direction and induced
dipole moment densities in those directions within the ellipsoid, between the cases of
induction by uniform fields and induction by first order gradient fields. For UXO with
significant source field gradients along their lengths, fitting ellipsoid quadrupole polariz-
abilities under that assumption simultaneous with standard dipole polarizabilities reduced
the errors made in estimating object center position and object orientation, and resulted in
polarizability curves that vary less with object orientation, at the expense of poorer agree-
ment between a particular response’s two minor (transverse) polarizabilities. A more
elaborate ellipsoid sphere approximation for the higher order terms, scaling sphere
responses to Yz, Xz, Xy, and XX -7 gradient fields, in a manner similar to Equations (6),
to approximate ellipsoid responses to Yz, Xz, Xy, Eé(f), and EL(&) gradients, may be more
accurate than the ellipsoid quadrupole polarizabilities estimated using the assumption of

point wise consistency of induced dipole moment densities which were described here.

Acknowledgement

This work was supported by the U.S. Department of Energy Office of Manage-
ment, Budget, and Evaluation under Contract Number DE-AC02-05CH11231 and the
U.S. Department of Defense under the Strategic Environmental Research and Develop-

ment Program Project 1225.



-18-

Appendix: Lame Functions of the Second Kind F P, and Their Derivative

Lame functions of the second kind involve elliptic integrals. Here pertinent F? are
written in terms of elliptic integrals amenable to evaluation using published algorithms

(e.g., Bulirsch, 1965a, 1965b, 1969).

1/¢

2
0 e X“dx
Fl (5) - 35! (1 _ a2x2)1/2(1 - b2)@)1/2 ’ (A_l)
/¢ 2
X“dx
Fl(&) =3 -a)'”? J (1 - 22x2)P2(1 - 222 (A-2)
3@ -y 2 dx e dx B
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0
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Fi(¢) =35 - b)'”? J (1 - a2x2) (1 — b2 X3P (A-3)
3@ -y dx e dx B
= b2 (1 - @2 x2)2(1 — 2 x2 )P J (1 - a2xd) (1 - X220
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3 N e x*dx
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(a2 _ az)(az _ bz)
a’=@+b*+d>3 , by= T , (A-8)

1/&

4
Fi&) =518 - (@ + b7~ d)/3] ﬁ[ i X dx

a2x2)2(1 — B2 x2)2[1 — x2(a2 + b2 — d2)/3]2

(A-9)

1/& /¢

_5(&2- %) Sﬂ 1 g dx L] x> dx
- IB4 2134(;0 DJ (1 — a2X2)1/2(1 — b2X2)1/2 2[3400 J. (1 - a2 X2)1/2(1 - bzxz)l/z
U

b2 Dl/f dx . (52 _ a2)1/2(§2 ~ )

1 a2 12 0
! E? + + 0.
2 ﬁZ — a2 ﬂZ — b2 DII‘: (] — a2X2)1/2(1 — b2X2)1/2(1 — ﬁZ X2) 2a2b2C0(§3 — 1324:) ]
O

where

(B> - a)( B> -b%)
azh? g4 '

pr=@+0*-dHB , ¢ = (A-10)

Derivative F'P(&) can be expressed in terms of derivative E'P(¢) using Equation (19) and
the fundamental theorem of calculus, yielding

FOE) cip @m+1)
ERE " T (@)@ - PERD

Fin(&) = (A-1D)
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Figure (1). Polarizability estimates made without ellipsoid quadrupol e polarizabilities for
a81 mm UXO (top left) oriented vertically, pointed up, centered 0.95 below the Berkeley
UXO Discriminator (BUD), (top right) oriented vertically, pointed down, centered 0.95

below BUD, (bottom left) dipping -45%centered 0.87 below BUD, (bottom right) dipping

45° centered 0.87 below BUD.
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Figure (2). Polarizability estimates made with ellipsoid quadrupole polarizabilities for a 81
mm UXO (top left) oriented vertically, pointed up, centered 0.95 m below BUD, (top right)
oriented verticaly, pointed down, centered 0.95 m below BUD, (bottom left) dipping -45°

centered 0.87 m below BUD, (bottom right) dipping 450, centered 0.87 m below BUD.
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Figure (3). Polarizability estimates made without ellipsoid quadrupol e polarizabilities for

a 155 mm UXO (top left) oriented vertically, pointed up, centered 1.39 m below BUD, (top
right) oriented vertically, pointed down, centered 1.39 m below bud, (bottom left) dipping
-450, centered 1.26 m below BUD, (bottom right) dipping 450, centered 1.26 m below BUD.
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Figure (4). Polarizability estimates made with ellipsoid quadrupole polarizabilities for a 155
mm UXO (top left) oriented vertically, pointed up, centered 1.39 m below BUD, (top right)

time (s)
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oriented verticaly, pointed down, centered 1.39 m below bud, (bottom left) dipping -450,
centered 1.26 m below BUD, (bottom right) dipping 450, centered 1.26 m below BUD.






