skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Coupling of the 4f Electrons in Lanthanide Molecules

Thesis/Dissertation ·
DOI:https://doi.org/10.2172/941061· OSTI ID:941061
 [1]
  1. Univ. of California, Berkeley, CA (United States)

(C5Me5)2LnOTf where Ln = La, Ce, Sm, Gd, and Yb have been synthesized and these derivatives are good starting materials for the synthesis of (C5Me5)2LnX derivatives. (C5Me5)2Ln(2,2'-bipyridine), where Ln = La, Ce, Sm, and Gd, along with several methylated bipyridine analogues have been synthesized and their magnetic moments have been measured as a function of temperature. In lanthanum, cerium, and gadolinium complexes the bipyridine ligand ligand is unequivocally the radical anion, and the observed magnetic moment is the result of intramolecular coupling of the unpaired electron on the lanthanide fragment with the unpaired electron on the bipyridine along with the intermolecular coupling between radicals. Comparison with the magnetic moments of the known compounds (C5Me5)2Sm(2,2'-bipyridine) and (C5Me5)2Yb(2,2'-bipyridine) leads to an understanding of the role of the SmII/SmIII and YbII/YbIII couple in the magnetic properties of (C5Me5)2Sm(2,2'-bipyridine) and (C5Me5)2Yb(2,2'-bipyridine). In addition, crystal structures of (C5Me5)2Ln(2,2'-bipyridine) and [(C5Me5)2Ln(2,2'-bipyridine)][BPh4](Ln= Ce and Gd), where the lanthanide is unequivocally in the +3 oxidation state, give the crystallographic characteristics of bipyridine as an anion and as a neutral ligand in the same coordination environment, respectively. Substituted bipyridine ligands coordinated to (C5Me5)2Yb are studied to further understand how the magnetic coupling in (C5Me5)2Yb(2,2'-bipyridine) changes with substitutions. In the cases of (C5Me5)2Yb(5,5'-dimethyl-2,2'-bipyridine) and (C5Me5)2Yb(6-methyl-2,2'-bipyridine), the valence, as measured by XANES, changes as a function of temperature. In general, the magnetism in complexes of the type (C5Me5)2Yb(bipy.-), where bipyo represents 2,2'-bipyridine and substituted 2,2'-bipyridine ligands, is described by a multiconfiguration model, in which the ground state is an open-shell singlet composed of two configurations: Yb(III, f13)(bipy.-) and Yb(II, f14)(bipyo). The relative contributions of the two configurations depends on the substituents on the bipyridine ligand.[(C5Me5)3Ln]2(L) (Ln = Ce, Tb; L = 4,4'-bipyridine, 1,4-benzoquinone) are synthesized in order to study the effect of these ligands on the oxidation states of the metal as well as to study intramolecular coupling between two lanthanides fragments.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
DOE Contract Number:
AC02-05CH11231
OSTI ID:
941061
Report Number(s):
LBNL-1063E; TRN: US200824%%523
Resource Relation:
Related Information: Designation of Academic Dissertation: doctoral thesis; Academic Degree: Doctor of Philosophy; Name of Academic Institution: University of California - Berkeley; Location of Academic Institution: Berkeley, CA, USA
Country of Publication:
United States
Language:
English