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ABSTRACT

This project was devoted to a preliminary assessment of the feasibility of designing an
Encapsulated Nuclear Heat Source (ENHS) reactor to have a solid core from which heat is
removed by liquid-metal heat pipes (HP). Like the SAFE 400 space nuclear reactor core, the HP-
ENHS core is comprised of fuel rods and HPs embedded in a solid structure arranged in a
hexagonal lattice in a 3:1 ratio. The core is oriented horizontally and has a square rather
cylindrical cross section for effective heat transfer. The HPs extend from the two axial reflectors
in which the fission gas plena are embedded and transfer heat to an intermediate coolant that

flows by natural-circulation.

The HP-ENHS is designed to preserve many features of the ENHS including 20-year operation
without refueling, very small excess reactivity throughout life, natural circulation cooling, walk-
away passive safety, and robust proliferation resistance. The target power level and specific
power of the HP-ENHS reactor are those of the reference ENHS reactor. Compared to previous
ENHS reactor designs utilizing a lead or lead-bismuth alloy natural circulation cooling system,
the HP-ENHS reactor offers a number of advantageous features including: (1) significantly
enhanced passive decay heat removal capability; (2) no positive void reactivity coefficients; (3)
relatively lower corrosion of the cladding (4) a core that is more robust for transportation; (5)

higher temperature potentially offering higher efficiency and hydrogen production capability.

This preliminary study focuses on five areas: material compatibility analysis, HP performance
analysis, neutronic analysis, thermal-hydraulic analysis and safety analysis. Of the four high-
temperature structural materials evaluated, Mo TZM alloy is the preferred choice; its upper
estimated feasible operating temperature is 1350 K. HP performance is evaluated as a function of
working fluid type, operating temperature, wick design and HP diameter and length. Sodium is
the preferred working fluid and the HP working temperature can be as high as 1300 K. It is
feasible to achieve criticality and to maintain a nearly zero burn-up reactivity swing for at least
20 EFPY with an average linear heat generation rate (LHR) of 90W/cm. The preferred design
utilizes nitride fuel made of natural nitrogen and loaded with depleted uranium and TRU from

LWR spent fuel cooled for approximately 30 years. The preferred intermediate coolant is LiF-



BeF,; its average outlet temperature is ~ 1040K. Effective heat transfer to the intermediate
coolant is obtained with HPs extending out of the core less than 50 cm. The required reactor
vessel height is significantly smaller than that of the reference ENHS: 9 vs. ~20 m. The vessel

diameter is slightly larger: 4 vs. ~ 3.5 m.

In conclusion, it appears feasible to design a HP-ENHS reactor to achieve its primary design
objectives. The resulting HP-ENHS reactor concept is unique in offering sustainable
proliferation-resistant nuclear energy that can be delivered at very high temperatures. A number
of outstanding issues need be addressed, though, before the practicality of the HP design concept
could be asserted. Included among these issues are:

» More thorough reactor safety analysis, including transient analysis

» Fuel-cladding chemical compatibility

» Manufacturability and welding of Mo TZM alloy

» Maximization of the specific power by optimization of fuel/HP diameter and core length

» Economic analysis



1. INTRODUCTION

This project is devoted to a preliminary assessment of the feasibility of designing an

Encapsulated Nuclear Heat Source (ENHS) reactor to have a solid core from which heat is

removed by liquid-metal heat pipes (HP). The HP-ENHS design is intended to preserve many

features of the original ENHS reactor [1] including:

At least 20 full power years without refueling

Small excess reactivity throughout the lifetime of the core

Natural circulation cooling; no pumps or valves in the primary and intermediate loops
Walk-away passive safety

Autonomous load following capability

Simple to construct, operate, and maintain

Reactor module is factory manufactured and fueled

No onsite refueling equipment required

Reactor can be shipped to and from the site as a single sealed module

Specific power and total power.

The HP-ENHS is expected to offer a number of advantages as compared to the original ENHS

reactor, including:

High heat delivery temperature

Higher energy conversion efficiency as it is not subjected to the conventional coolant outlet
temperature limitations. The alkaline HP working fluid is relatively less corrosive and the
HPs can safely and reliably operate for the core lifetime at temperatures significantly higher
than ~550°C, limit of lead alloy primary coolants.

Higher efficiency for converting the fission energy to hydrogen.

Enhanced safety:

0 No positive void coefficient of reactivity

0 No positive coolant temperature coefficient of reactivity

0 The solid core precludes fuel rod bowing or other abnormal changes in core geometry

that could interfere with core heat removal



0 The HPs provide for very effective decay heat removal from the core to the intermediate
coolant or, in case of loss of intermediate coolant to the reactor vessel that provides an
effective heat sink.

0 Low probability for the release of fission products due to low fission gas pressure
buildup, the solid core structure and the lack of contact between the fuel clad and coolant.

e Smaller and simpler module

e No need for a reactor pool

e Smaller friction of intermediate coolant through IHX resulting in shorter riser for natural
circulation cooling.

e No need to embed the fuel in solidified Pb-Bi for transportation, and handling of decay heat
at EOL is considerably simpler.

e Module weight is significantly smaller.

e Robust proliferation resistance:
Decay heat can be more effectively removed compared to other nuclear battery concepts.

This may allow the core module to be removed from the host country immediately at EOL.

This feasibility assessment examined five areas: material compatibility, HP performance,
neutronic performance, thermal-hydraulic performance along with overall HP-ENHS module
layout and dimensions and safety analysis. The studies performed in these five disciplines are
summarized in Sections 3 through 7, following a brief description of the HP-ENHS module

concept (Section 2).



2. CONCEPT OUTLINE

The HP-ENHS core design, illustrated in Figures 1 and 2, adopted elements from the SAFE-400
space reactor core concept [2]. The HP-ENHS core is comprised of fuel rods and HPs embedded
in a solid structure arranged in a hexagonal lattice in a 3:1 ratio. The HPs extend beyond the core
length and transfer heat to an intermediate coolant that flows by natural-circulation. Two heat
pipes are used for every three fuel rods; one extends from the core axial center to one direction
and the other to the other direction; that is each HP serves one half of the core. The space

between fuel rods and HPs is filled by the metallic structure to form a solid core.

Each fuel element consists of an active fuel region and a fission gas plenum region that also
serves as an axial reflector, as illustrated in Figures 2a and 2b. The heat generated in the active
fuel region is deposited along the evaporator section of the HP. The fission gas plenum of the
fuel element accommodates gaseous fission products and corresponds to the adiabatic section of
the heat pipe. The condenser section of the heat pipe extends past the axial reflector region and
makes the intermediate heat exchanger (IHX) region that transfers the core generated heat to the
intermediate coolant. The ends of each heat pipe are embedded in the vessel structure (not shown

in the figures) that provides a heat sink in case of loss of the intermediate coolant accident.

The core and heat pipe assembly is square in cross section in order to minimize the peak-to-
average intermediate coolant temperature at the outlet from the IHX. The layout of the HP-

ENHS module is shown in Figure 3.
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Figure 3 Schematic layout of the HP-ENHS module

The cold intermediate coolant gets from the cavity below the core into the two IHX regions, one
in each axial side of the core, heats as it flows up through the IHX and gets into the rectangular
riser above the core. At the top of this riser are slots through which the hot intermediate coolant
enters the heat exchangers (HX) with the thermodynamic working fluid that are located in the
space between the rectangular riser and the module outer structural wall that is cylindrical. After
getting out through the bottom of these HX, the intermediate coolant enters two downcomers;
one in each side of the core that is not occupied by the HP IHX. At the bottom of the
downcomers, openings in the core support structure allow the cold intermediate coolant to get to
a cavity below the core from which it reenters the HP IHXs. The preferred thermodynamic

working fluid is supercritical CO, although water has been examined for the initial design.



3. MATERIAL SCREENING

3.1 Introduction

The primary issues addressed in this part of the work are:

e Selection of the preferred fuel material

¢ Defining the upper permissible temperature of candidate structural materials for the core

e Selection of the preferred material for the intermediate coolant

e Selection of the preferred structural material for the reactor vessel and other components in
contact with the hot intermediate coolant

Selection of the preferred working fluid for the heat pipes was based, primarily, on the HP

performance analysis. This is because the leading candidates for HP coolant at the temperature

range of interest are all alkaline elements.

Three materials were considered for the intermediate coolant — Na, lead or Pb-Bi eutectic and a
number of molten salts. Drawbacks of sodium are strong chemical reactivity with air and water
as well as relatively low vapor pressure; at the HP-ENHS operating temperatures the reactor
vessel will have to be pressurized in order to eliminate Na boiling. The primary drawback of lead
and its alloy is high corrosion rate with structural materials at the operating temperatures of
interest. Based on the above considerations and on the results from the thermal-hydraulic
analysis (Section 6), the molten salt LiF-BeF, was selected for the preferred intermediate

coolant.

Three material types were considered for the fuel: metallic alloy with 10% zirconium, oxide and
nitride. Nitride was selected as the preferred fuel material due to its high operating temperature,
relatively high heavy metal (HM) density and relatively low fraction of fission gas release.
Uranium nitride is also the fuel of choice for space nuclear reactors that are designed to operate

at comparable temperatures [2].

Four candidate alloys — HT9, Mo-TZM refractory alloy, Nb-1Zr, and oxide dispersion

strengthened (ODS) ferritic martensitic steels, were evaluated for the core structural material.



Operating temperature limits were established for each of these candidate materials by
considering the materials mechanical properties and corrosion behavior in the operating
environment of the HP-ENHS reactor core. In general, the lower temperature limit is determined
by radiation hardening while the upper temperature limit is determined by corrosion effects
and/or by thermal and irradiation creep. The permissible operating temperature of the structural
material depends on a number of core design variables including the clad thickness, ratio of
fission gas plenum length to fuel length, specific power or linear heat generation rate and
discharge burnup. As the preferred value of some of these design variables was not known at the
initiation of the project, part of the material analyses was done parametrically with some of the

design variables.

The properties of the candidate structural materials were obtained from the open literature [3-18],
in particular from databases on materials proposed for high-temperature fusion applications.

Following is a summary of the structural materials analysis.

3.2 Core Mechanical Analysis

According to the available databases [3-10], Mo TZM alloy offers higher mechanical strength
than Nb-1Zr, ODS ferritic martensitic steels, and HT9, particularly at high temperatures. This
material is not thermal creep limited up to 1350K [5]; it retains the highest absolute ultimate
tensile strength (UTS) at temperatures above 1000K; and presents a relatively lower UTS
degradation with increasing temperature [9]. The allowable stress in the structure (cladding and
HPs) is established, at a given displacement per atom (dpa) and temperature, based on the
mechanical properties of the structural material. For this analysis, the maximum allowable stress
is determined as: 1/3 of the UTS; the stress which determines 1% of creep strain; 2/3 of the creep
rupture stress. Having established the temperature dependent allowable stress, a quantitative
analysis is performed to evaluate the dependence of the stress on the design variables. Fission
gas plenum length, cladding thickness, and temperature are treated as design variables. The
analysis is performed at three different Linear Heat Generation Rate (LHR): 75W/cm, 150W/cm
and 240W/cm; the LHR being measured per cm of fuel rod.



Given the fission gas production rate and release in nitride fuel [19-25], the time dependent
pressure inside the cladding is evaluated assuming thermal equilibrium between the fission gas
plenum and cladding. For this analysis, the gas release is calculated as a function of burn up and
fuel temperature according to the semi-empirical relation proposed by Storms [22]; the fuel
theoretical density is assumed to be 95%. The mechanical stress analysis assumes a core design
with free standing fuel rods. The inner and outer pressure acting on the cladding at the BOL at
reactor operating temperatures is assumed to be 0.1 MPa. Stress is conservatively evaluated by

approximating the clad as a thin wall tube rather than evaluating the solid core structure.

Figure 4 shows the EOL equivalent stress in the cladding as a function of plenum length and
cladding thickness at: LHR of 150 W/cm and 240W/cm; cladding temperature of 1300K and
1350K; and fuel average temperature of 1525K and 1830K, respectively. The fuel temperature is
established based on reasonable values published in the open literature [19-25]; the optimization
of this analysis with respect to the design parameters which determine the thermal resistance

between fuel and cladding is considered to be the subject for future design studies.

A creep analysis was also performed as a function of the design variables and time dependent
applied stress. After evaluating several irradiation creep models [26-29], we adopted a model
which assumes the irradiation creep rate to depend linearly on stress and dpa rate at a given
temperature. Irradiation creep coefficients were obtained from the open literature [9, 30].
Information on the effects of irradiation on the mechanical properties of the structural candidate
materials is relatively poor, nevertheless, some preliminary data on the irradiation creep
coefficient exist up to 900K for ODS ferritic martensitic steels [30] and, at relatively higher
temperature, for Mo TZM alloy [9]. Although, the irradiation creep coefficient for both materials
appears to be relatively low at high temperature, as compared to more conventional steels such as
HT-9 [30], and although the stress levels in the ENHS can be relatively low, irradiation creep
could be an issue. This is mainly due to the high dpa levels at EOL in the reactor core. A
preliminary analysis based on the fast neutron flux in the core indicates that the displacements

per atom exceed by far the 100 dpa level.

10



b)

Figure 4 Cladding equivalent stress, after 20 years of reactor operation, as a function of fission
gas plenum length and cladding thickness, at: a) LHR of 150W/cm; cladding inner wall
temperature of 1300K; fuel average temperature of 1525K; b)LHR of 240W/cm; cladding inner
wall temperature of 1350K; fuel average temperature of 1830K. Note: 400um of cladding
thickness are not considered to contribute to the mechanical strength due to corrosion and
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chemical interaction between cladding and fuel.

The dpa rate was calculated given the average fast neutron flux in the ENHS core [31] and the
displacement cross section of a typical steel [26, 32] and of molybdenum [32] for a typical fast

reactor neutron energy spectrum. Based on this preliminary dpa estimate, irradiation creep could

11



be a significant issue when employing ODS ferritic martensitic steels; this does not seem to be
the case for a core featuring Mo TZM as structural material. This result is due mainly to the
following aspects: 1) the displacement cross section of Mo is lower than the displacement cross
section of Fe [31]; 2) the irradiation creep coefficient of Mo seems to be lower than the
irradiation creep coefficient of ODS ferritic martensitic steels [9, 30]; 3) the fast neutron flux
seems to be higher in the core featuring an ODS steel structure rather than a Mo TZM structure

[31].

Based on the preliminary estimate of the fast neutron flux and dpa levels, the EOL irradiation
creep strain in the ODS ferritic martensitic cladding exceeds 1% at a LHR of 150 W/cm and
fission gas plenum length of 100cm. A EOL creep strain lower than 1% is achieved for the Mo
TZM cladding at a LHR of 240W/cm, by providing for adequate fission gas plenum length in
excess of 70cm. A similar irradiation creep analysis performed on the HP, illustrated in Figure 5,
shows that a detailed design optimization study needs to be performed in order to avoid reaching
the 1% irradiation creep strain at EOL when employing ODS ferritic martensitic steels (even at a

relatively low LHR).

3.3 Cladding-Fuel Mechanical Interaction, Some Considerations

Although Mo TZM alloy can be generally employed at elevated temperatures, this result is
coupled with the stress levels in the cladding and HPs. The stress analysis performed for this
feasibility study does not assume fuel-cladding mechanical interaction due to fuel swelling. This
assumption implies: relatively low fuel temperature (i.e. low LHR and thermal resistance
between fuel and cladding, for a given cladding temperature); and/or large gap between fuel and
cladding. If these conditions are not verified, fuel swelling could be an issue. Swelling of the fuel
depends on burn up, fuel temperature and fuel theoretical density. In turn, LHR and thermal

resistance between cladding and fuel affect fuel swelling (for a given cladding temperature).

12
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Figure 5. HP equivalent stress and allowable stress for: a) Mo TZM alloy; b) ODS ferritic
martensitic steels. Allowable stress due to irradiation creep is determined for a fast neutron
fluence corresponding to a LHR of 240W/cm for Mo TZM alloy and to 75W/cm for ODS ferritic
martensitic steels. The equivalent stress is determined assuming HP inner pressure of 3.5 atm and
outer pressure of 1 atm at operating temperature. Note: 400um of wall thickness are not
considered to contribute to the mechanical strength due to corrosion between HP wall and
primary coolant.

Figure 6 shows the fuel radius variation due to swelling of nitride fuel [34]; swelling is assumed
to be isotropic. In order to avoid significant cladding-fuel mechanical interaction, we recommend

considering design options which limit the thermal resistance between fuel and cladding,
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particularly at relatively high LHR and cladding temperature. Liquid metal bonding between fuel

and cladding could be a viable option, topic for further design optimization studies.

Fuel Radius Variation
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Figure 6 Average fuel radius variation due to fuel swelling [33] for an initial fuel radius of
0.65cm and fuel theoretical density of 95%. Fuel is assumed to be free to expand.

3.4 Corrosion of Core Internals

Data on wet corrosion of the candidate structural materials were obtained from the open
literature [12-19]. As a general outcome of this study, alkali metals, such as Na, are found to be
less corrosive than lead-bismuth alloys. In particular, Mo TZM alloy seems to be compatible
with liquid Na based on a corrosion rate of Sum/years [3] at temperature higher than 1350K.
This result however assumes oxygen partial pressure lower than 10" Torr. At relatively high
temperature, Molybdenum forms volatile oxides and erosion of the base metal is an issue if the
oxygen partial pressure is not controlled. Based on the same corrosion rate of Sum/year, a
temperature limit of 900K is identified for ODS ferritic martensitic steels. This value was
obtained from the corrosion data® related to HT9 in contact with flowing liquid Na. No data
were found in the open literature on wet corrosion of ODS materials at relatively high

temperature.
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3.5 Reactor Vessel

Hastelloy is proposed as the preferred structural material to be employed for the outer vessel and
other reactor components that are in contact with the hot intermediate coolant. An advantage of
this material with respect to Mo-TZM and ODS ferritic martensitic steels is its relatively more
mature manufacturing technology. Chemical compatibility of this material with the intermediate
coolant, LiF-BeF,, was evaluated based on data from the open literature [18]. A corrosion rate of
~20um/year is estimated at 1100K. The results of the mechanical preliminary stress analysis are
shown in Figure 7; the materials properties have been obtained from the open literature [35, 36].

The analysis was performed assuming negligible dpa levels in the vessel.
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Figure 7 Outer vessel equivalent stress and Hastelloy XR allowable stress.

3.6 Proposed Materials and Design Guidelines

Based on the above analysis it is proposed to pursue two HP-ENHS reactor designs: a high
temperature design that is based on Mo-TZM structural material and a lower temperature design
that is based on ODS steel. The former presents more challenging neutronic design due to the
relatively high neutron capture cross section of Mo and might require significant engineering

efforts to control the oxygen partial pressure in the core. The latter poses fewer technological
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challenges but is expected to have degraded performance. Table 1 summarizes recommended

design variables for the core of the two designs.

Table 5 Recommended Design Variables

Design variable Mo-TZM ODS
Operating temperature 1000k o

1350K 600K* to 1100K
Hot rod/core average LHR 240/150 W/em  120/75 W/em
Clad thickness 0.lcm 0.lcm
HP wall thickness 0.1cm >0.1cm
Fission gas plenum length >70cm 100cm
Outer vessel radius 2.5m 2.5m
Vessel wall thickness > S5cm ~5cm
Fuel centerline temperature®* < 1830K < 1525K
Fuel/Clad Gap** (BOL; room T) >700um >200um

* Lower temperature limit is due to embrittlement and radiation hardening.

** Values refer to fuel-clad gap closure. The gap closure analysis is based on fuel swelling,
cladding creep and thermal differential contraction. Swelling of cladding is not considered in the
analysis due to lack of data at dpa level of interest. Fuel centerline temperature and BOL gap
thickness are coupled. The higher the fuel temperature, the larger the initial gap needs to be in
order to avoid gap closure.

While from the mechanical point of view, Mo-TZM alloy seems to be the preferable high
temperature material, some engineering issues emerge. Oxidation of this alloy at high
temperature is a concern [4, 16] as well as manufacturability and welding. While oxidation of
ODS steels does not seem to be a particular issue [13], manufacturability and welding presents
similar issues to Mo-TZM alloy. Moreover, ODS steels are to be preferred to Molybdenum due

to the lower absorption cross section which favors neutron economy [31].

There are significant uncertainties in the above recommendations due to the lack of experimental
data. Feasibility issues recommended for further research and development include:
manufacturability and welding of Mo TZM alloy; oxygen partial pressure control in the core
(due to oxidation of Mo at high temperature); characterization and proof-of-principle tests of
irradiation creep properties and swelling of Mo TZM alloy at relatively high displacement per

atom; and fuel-cladding chemical compatibility.
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4. HEAT PIPE PERFORMANCE

4.1 Introduction

The primary feasibility issue addressed in this part of the study is whether or not heat pipes can
be designed to transfer to the intermediate coolant the fission power generated when the core is
designed to operate at a specific power that is comparable to that of the reference ENHS design
in which the fuel is cooled by flowing lead-bismuth coolant. Another objective of this study was
to optimize the HP design and define their performance characteristics while abiding by the

structural material and fuel temperature constraints.

Heat pipes offer a passive mechanism to transport heat from one area to another via the
evaporation and condensation of a working fluid. The key design goal of the heat pipes in this
reactor is to remove the power generated by the core at the highest possible temperature. This
study evaluates the range of power levels that can be removed by heat pipes as a function of
various design variables including working fluid, operating temperature, wick design, diameter,
and length. Based on a rough materials temperature limits, Cs, K, Na, and Li are candidate
working fluids and this study focuses on the use of Na and K Fuel elements dimensions are fixed
at 1.56cm in diameter and 1.5m in length with target linear heat rates (core averaged) of 75W/cm
and 150W/cm. The radial power peaking factor is assumed to be 1.6 based on the design of the
ENHS. For the following analysis, the length of the evaporator and condenser sections of the
heat pipe are set at half the active length of the fuel (75cm), the adiabatic length is set at 50 cm to

accommodate fission product gases.

4.2 Heat Pipe Description

The heat input from the core into a heat pipe causes some of the liquid sodium to evaporate,
while at the other end the pipe is being cooled by the Flibe, causing the vapor to condense. The
higher vapor density in the hot end causes a net flow of vapor to the cool end, and at the same
time, the higher concentration of liquid in the cool end forces flow into the hot end as shown in

Figure 8 [37]. The liquid is contained on the outside of the heat pipe by a wick.
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The ability of a heat pipe to axially transfer heat is limited by five mechanisms: the viscous limit,
the sonic limit, the entrapment limit, the capillary limit, and the boiling limit; all of which will be

examined in the section on heat pipe performance.
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Figure 8 Schematic layout of a heat pipe
4.3 Heat Pipe Performance Review

Heat pipe performance is a critical area because sufficient test data is not currently
available to formally evaluate the reliability of the heat pipe. A design studies report from Los
Alamos National Laboratory [37] summarizes heat pipe performance and failure mechanisms
described below. The modes of performance of the heat pipes are fairly well understood, as
discussed subsequently. They are of critical importance because the associated limits could lead

to heat pipe failure.

Viscous Limit
Normally the pressure in the heated zone is the primary driving force. At low temperatures
(startup) the vapor pressure difference between the condenser and evaporator may be low enough

that the pressure gradients imposed by the temperature field are insufficient to overcome the
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viscous resistance in the vapor flow region. The viscous limit rarely leads to serious problems
and can be avoided by increasing the evaporator temperature during startup (increasing the vapor

pressure). The viscous limit can be described by the following equation

A, 7} by p, P,
16 o, L

Q, =

where p, is the vapor density, P, is the vapor pressure, and A, is the flow area of the vapor
(determined from the inner radius of the wick structure). This equation shows that the viscous
limit is determined primarily by the operating temperature of the heat pipe and the vapor flow

arca.

Sonic Limi

Mass addition in the evaporator and mass removal in the condenser will cause variations
in the vapor velocity along the length of the heat pipe. Vapor velocity at the evaporator exit can
reach the speed of sound. In this case further increases in the heat load will not result in increases
in the mass flow rate. The sonic limit rarely leads to problems as the heat pipes are not asked to
transfer heat as such a high rate during normal operation. It can be described by the following

equation

A, P, V. by

0, = s
J2 (k1)

where Vi is the sonic velocity, py the vapor density, and k is the specific heat ratio. Increasing

the internal area will significantly increase the sonic limit margin.

Entrainment Limit

Since the liquid and vapor flow in opposite directions in the heat pipe, shear stresses that
occur at the liquid-vapor interface may be strong enough to inhibit the return of the liquid to the
evaporator. Operation under these conditions could lead to evaporator dry out and heat pipe
failure. A limited amount of work has been done in this area for alkali-metal heat pipes. The

main parameters of interest for the entrainment limit are the surface tension of the liquid, the
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vapor density, and the hydraulic radius of the wick. There is a relatively incomplete knowledge
of the mechanisms involved in this limit. Thus, a high uncertainty is associated with entrainment

limit data.

Capillary Limit

The difference in the capillary pressure across the liquid-vapor interfaces in the
evaporator and condenser regions governs the operation of heat pipes. Net capillary pressure
difference must be greater than the sum of the friction and inertial pressure drops in the vapor
and liquid phases as shown in the following equation

(AP )

¢ Smax = [‘j'F:f' }1' - [—I\EP ]1 - [‘j'Ff .}u + 1—1& }In
where f and i represent the friction and inertial pressure drops and v and 1 represent the vapor and
liquid phases. If not, the evaporator could dry out. The net capillary difference is approximated

as

where O is the surface tension and r. is the local capillary radius in the evaporator (related to the
wick pore radius). If the maximum pore size is used, a conservative estimate is obtained. Smaller

pore sizes will yield higher capillary limit margins of safety.

Boiling Limit

When the radial heat flux is too high, incipient boiling may occur in the evaporator,
trapping vapor bubbles in the wick. Unlike other performance limits, the boiling limit depends on
the local wall heat flux rather than the axial heat transport. Uncertainties in the boiling limit arise
from the limited knowledge of the size and number of nucleation sites, as well as the theory
explaining the precise mechanics behind bubble formation. Smaller nucleation sites and fewer
sites will delay the occurrence of the boiling limit and increase heat pipe performance. Finishing
techniques for the curved pipe surfaces should be developed to reduce the number of nucleation

sites as much as possible.
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4.4 Design Considerations

As with all nuclear reactors, heat must be removed from the core to prevent the core from
overheating. Though heat pipes passively remove heat from the core, they remain susceptible to
failure due to materials degradation, thermal transients, etc. Should a heat pipe fail, neighboring
heat pipes must be able to transport the power that was removed by the failed heat pipe. Based
on the work of Barnes, Kapica, and Wongsawaeng in a previous student design project, a single
isolated heat pipe failure is expected to increase the heat load on surrounding heat pipes by 17-
33% depending on the location of the failure.[38] Our study assumed that a power safety factor
of two (a power increase of 100%) was sufficient to deal with heat pipe failures i.e. each heat
pipe is designed to remove twice the normal operating power. However, more detailed analysis is
required to establish a stronger basis for this safety factor. While the 17-33% additional heat load
values may be adequate for high reliability heat pipes, a high heat pipe failure rate could
invalidate the assumption of isolated heat pipe failures. The possibility of cascading heat pipe
failures also requires further evaluation. In the event of a single heat pipe failure, the resulting
temperature and power transient on surrounding heat pipes may cause additional heat pipe
failures. For instance, a temperature transient caused by one heat pipe may accelerate materials
degradation in neighboring heat pipe and initiate a cascading failure. The current analysis has not

considered the effects of transient behavior.

4.5 Analysis

Heat pipe performance is conservatively quantified using the iterative process specified by
Silverstein that calculates various heat transport limits (e.g. sonic limit, capillary pumping limit,
entrainment limit, and boiling limit) [39]. The target heat pipe power is based on the
configuration of the core, the target linear heat rates, the power peaking factor, and a power
safety margin. The target heat pipe power is at least 54.4kW per heat pipe corresponding to a
LHR of 75W/cm, a radial power peaking factor of 1.6, and a power safety margin of 2. An
annular wick was selected due to its low frictional resistance to liquid flow. However, this design

is sensitive to disruptions by non-condensable gas that could block the fluid flow channel. Initial
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wick parameters were adopted from the work of Barnes, Kapica, and Wongsawaeng [38] as

specified in Figure 9. Mo TZM was selected for the wick material to limit corrosion by a sodium

working fluid.

HP wall

Fluid \\

Channel
HP parameters:
Wall thickness — 0.6 mm
Fluid channel thickness — 0.7 mm
Wick thickness — 0.6 mm

Wick

Vapor Core

Figure 9 Wick parameters

Heat pipe performance is a strong function of operating temperature and is constrained by the
maximum allowable temperature of the structural material (to control corrosion and mechanical
properties) and by fuel temperature (to maintain a temperature margin to melting, control fuel
expansion, and control gaseous fission product release). Based on these temperature limits, a
finite element heat transfer code was used to determine the temperature profile for an infinite
core to establish the maximum heat pipe operating temperature as specified in Table 2. A typical

temperature profile is shown in Figure 9.

Surl ace: Temper sbure [K] Mae: 1733

1015

Figure 10 Temperature profile in the HP-ENHS core calculated using the finite element heat
transfer code
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Table 6 Selected Core Temperatures

Mo TZM OoDS
75W/cm 150 W/cm 240 W/cm | 75 W/cm 150 W/cm 240 W/cm
Max HP Temp (K) 1320 1290 1255 900 850 670
Max Structure Temp (K) 1350 1350 1350 1100 1100 1100
Max Fuel Temp (K) 1569 1816 2047 1216 1480 1702

Filling the gap between the fuel and the fuel cladding with a liquid metal could be used to reduce
the peak fuel temperature to maintain a higher safety margin and reduce fission gas release.
However, a sodium gap filler reduces the maximum allowable temperature in ODS due to
corrosion. A sodium gap filler is feasible for a Mo structure since Mo-TZM 1is not corrosion
limited. Nevertheless, the horizontal orientation of the core complicates the use of a liquid gap
filler since the liquid would pool at the bottom of the fuel element unless a mechanism could be
developed to retain the gap filler around the fuel while allowing gaseous fission products to
escape the active fuel region into the fission gas plenum. The horizontal orientation of the core
also requires accounting for persistent fuel-cladding interaction and for asymmetric heat flux

from the fuel elements.

Bob Reid at Los Alamos National Laboratory cautions that the approach outlined by Silverstein

is overly conservative [40]. These conservatisms include:

e Sonic limit: Heat transport should not exceed 30-50% of the sonic limit to avoid excessive
temperature and pressure drops

e Wick design: This analysis uses the pore diameter of LANL’s high performance laser screen
wick. The 5 micron pore diameter of the LANL high performance wick is fabricated with
pulses from a femtosecond laser.

e Capillary Pumping: Silverstein’s method limits the vapor pressure drop to 3% to maintain a
nearly isothermal heat pipe. A larger vapor pressure drop might be possible to increase heat
transfer if non-isothermal heat pipe operation can be tolerated. This analysis assumed a 10%
vapor pressure drop along the evaporator which corresponds to a 11K temperature drop. The
vapor pressure drop for the LANL data is unknown.

e Entrainment: the vapor flow is conservatively assumed to be turbulent
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¢ Boiling: Nucleation site radius is assumed to be 3 um. This should be better characterized for
the structural material and working fluid used in the heat pipe. Interface heat transfer

coefficient

Figure 10 gives the expected power that can be removed by high performance heat pipe designs
proposed by LANL as a function of the HP working fluid temperature. Sodium offers greater
heat transport capability for operating temperatures above approximately 1150K while potassium
is a better choice for below 1150K [40]. The figure also shows that the heat transport capability
of the HP strongly depends on the HP radius.

Heat Pipe Output vs. Temperature and Radius

Source: LANL
70000
60000 +
50000 -
—+—Na-0.3"
g 40000 | —=—Na-0.435"
5] —+—Na-0.5"
& 30000 ~ok0
o i ——K-0.435"
——K-0.5"
20000 +
10000 +
0 : : . . . .
800 900 1000 1100 1200 1300 1400 1500

Temperature (K)

Figure 11 Calculated Na heat pipe operating limits (top) and LANL high performance
heat pipe data (left)

The capillary pumping force in the wick must overcome pressure losses in the heat pipe to
circulate the HP working fluid. The largest resistance to flow comes from the vaporized working
fluid in the central vapor core of the HP. Increasing the radius of the vapor core reduces
frictional losses and increases heat transport capability. Figure 12 gives the power output of a
sodium heat pipe using the conservative assumptions in Silverstein (though with a less
conservative 10% vapor pressure drop) and data supplied by Los Alamos for their high

performance heat pipes.
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Capillary Limit
Na, Fixed Wick Geometry, Le=Lc=0.75m, La=0.5m, LANL wick
Variable vapor core & Vapor Pressure Drop
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Figure 12 Capillary pumping force

Varying the length of heat pipe segments (evaporator, adiabatic, condenser) has relatively small
effect on the heat pipe output. This provides little incentive to change the initial length of the
heat pipe and offers some flexibility should other aspects of the design require shorter or longer

heat pipe sections.

4.6 Heat Pipe Lifetime

Corrosion due to the presence of impurities in the heat pipe may limit the heat-pipe lifetime.
Soluble impurities present in the system (including material dissolved from the structure of the
heat pipe) concentrate along the evaporator where they can clog the wick pores, form low
melting point eutectics, or form ternary compounds. Reducing these impurities during heat pipe
fabrication can enable longer lifetimes. According to Reid, alkali metal heat pipes have
successfully operated for longer than 10* hours and 12 year operation appear possible with
proper heat pipe fabrication methods. A Mo HP with a Na working fluid operated for
45,03%hours at 24 W/em? and 1391K. The test ended due to the lack of support and not due to
heat pipe failure [41].
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4.7 Summary

Table 3 summarizes the expected heat pipe performance based on the high performance heat pipe
data provided by Los Alamos.
Table 7 Summary of Heat Pipe Performance

Structural HP Outer
material LHR (W/cm) Working Fluid HP Temp (K) Diameter (cm)

Mo 300 Na ~1200 ~2.4

240 Na ~1200 ~2.2

150 Na ~1300 ~1.8

120 Na ~1300 ~1.65

75 Na ~1300 ~1.5
OoDS 300 K ~550 N/A

150 K ~850 >5

75 K ~900 ~2.8
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5. NEUTRONIC ANALYSIS

5.1 Introduction

The primary feasibility issue addressed by the neutronic analysis is whether or not it is possible
to design a solid core reactor with relatively leaky (neutronically) heat pipes and with relatively
strongly absorbing Mo-TZM alloy to be critical and to have a conversion ratio of approximately

1.0 so as to maintain a nearly constant k¢ over the 20 EFPY of core life.

The core of the HP-ENHS maintains many of the characteristics of the previously designed
ENHS core. Fuel rods external diameter is kept the same (1.56 cm) while the fuel clad is reduced
from 1.3 mm to | mm as found permissible from the stress analysis'. Nitride is selected for the
fuel because of its high operating temperature, high HM density, high thermal conductivity and
low fission gas release; it is also the fuel type preferred for high temperature space nuclear
reactors. The HM is composed of depleted uranium (0.2% **°U), typically more than 80%, and
Pu or TRU of the isotopic composition in which it is found in the spent fuel (SF) from Light
Water Reactors (LWR) after 50 GWd/t burn-up and 10 or more years of cooling. The smear
density of the fuel is 87%. Nitrogen is initially assumed enriched in "N at 100% so as to
minimize the parasitic neutron capture in the fuel; i.e., to maximize the fuel n. The core is
assumed to have an hexagonal lattice with pitch-to-diameter ratio (P/D) of 1.0. The HPs are
assumed to have the same outer diameter as of the fuel rods. This implies that the outer surface
of the fuel rods and HPs are touching. The gap between the rods is filled with the structural

material.

The core is modeled as a homogeneous mixture of all the components obtained conserving their
mass and core volume. The weight percent of Pu (TRU) initially loaded is determined so as to
obtain ks = 1+ at BOL. The 1 dollar excess reactivity is a margin assumed to compensate for
uncertainties in the nuclear data and computational model. The primary and intermediate
coolants are assumed to be sodium, although the preferred intermediate coolant was later

selected to be molten salt.

" The reference ENHS clad thickness of 1.3 mm is a significant overdesign
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5.2 Results

The initial results of the neutronic analysis are presented in Figure 13. They pertain to initial
loading of Pu that was cooled for 10 years. It is found that the materials tested can be divided, in
terms of their neutronic behavior, into two groups: HT-9 and ODS; Mo and Nb1Zr. HT9 and
ODS are less absorbing and are neutronically preferred. A core constructed of these two
materials requires a smaller initial loading of Pu and a higher conversion ratio to guarantee
criticality for the entire core lifetime. These two materials can accommodate a larger P/D (i.e.
larger volume of structural material) since the excess reactivity at EOL is too large. While Mo-
TZM and Nbl1Zr are much stronger absorbers; they require about 4% more Pu at BOL and the

conversion ratio is insufficient to maintain criticality. These materials require a smaller P/D.

— HT9 (11.6 wit% Pu)
—— Nb1Zr (15.7 Wt% Pu)
—— Mo (15.3 wt% Pu)
—— ODS (11.4 wt% Pu)

0
Time [EFPY]

Figure 13 Multiplication factor as a function of exposure time for different structural material
with P/D of 1.0

For a high temperature design, Mo-TZM was found to be the most suitable structural material
(See Section 3). Its peak operating temperature is as high as 1350 K and the HP’s working
temperature is 1300 K. At such temperature the working fluid to use into the heat pipes to
maximize the heat removal is sodium (See Section 4) and the required diameter is on the order of
the diameter of the fuel rods. Since Mo-TZM is a relatively strong absorber, the volume fraction
of the structure must be minimized (P/D 1.0). The LHR is set at 75 W/cm for this study. This
makes the total diameter of the core about 2 m for a total of 11,111 fuel rods and 5,556 heat

pipes.
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Figure 14 shows that despite of the small P/D, nearly zero reactivity swing can not be obtained
for 20 years of full power operation initially loading fuel with only Pu from SF. Criticality can be
guaranteed if the core is started with an excess of reactivity of about 5%, increasing the initial
load of Pu from 14% (required to get kesr = 1+f) up to 15.2%. In this case burnable poisons
should be added to the start up core.

— 14% Pu
— 15.2% Pu
—— 15% Pu
— 18% Pu
—— 20% Pu

1.2

1
Time [EFPY]

Figure 14 Multiplication factor as a function of exposure time for different Pu-to-HM initial load
5.3 Minimizing Reactivity Swing

Alternative solutions to the use of initial excess of reactivity and burnable poisons have been

*'py to decay. The

investigated. One option is to increase the cooling time of spent fuel to allow
resulting isotopic composition of the fed fuel is given in Table 8. The **'Pu has a fairly high
fission cross section and relative short half life. At the relatively low power density of the ENHS

241
core the loss of

Pu via radioactive decay is relatively high and this is a major contributor to the
decline of kegr with burnup. By allowing **'Pu to decay before entering the reactor, the amount of
Pu that needs to be loaded to achieve BOL criticality increases but the initial conversion ratio is
larger and ke evolution is flatter. This trend is confirmed by comparing, in Figure 15, the results
obtained using 30 years versus 10 years cooled Pu: the initial fraction increases from 14% for 10

years cooling to 17.2% and the k. evolution is flatter.
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Table 8 Actinide Composition of LWR Spent Fuel after 50 GWd/MTHM and Different Cooling

Periods
Cooling period (years)

Isotope 10 30 50
“"Np 6.66% 6.93% 7.28%
23¥py 2.76% 3.63% 3.12%
2py 48.81% 49.14% 49.42%
240py 23.06% 23.43% 23.65%
24py 6.95% 2.67% 1.03%
22py 5.05% 5.09% 5.12%
2TAm 4.67% 8.80% 10.21%

22mAm 0.02% 0.02% 0.02%
2Cm 1.48% 0.00004% 0.00004%
2$Cm 0.01% 0.003% 0.002%
2%Cm 0.50% 0.23% 0.11%
Cm 0.04% 0.04% 0.04%
2%6Cm 0.01% 0.006% 0.006%

An alternative solution tried is to load the minor actinides (MA) from the spent fuel along with
the Pu. While the addition of MAs initially absorbs more neutrons and increases the initial
loading of TRU, it increases the conversion ratio. Figure 15 shows that combining a 50 years

cooling periods with loading of all TRU (17.9%) allows reaching nearly zero reactivity swing.

— Pu-10y Cooling (14.0%)
—— Pu-30y Cooling (17.2%)
1.02f —— TRU - 30y Cooling (17.3%) H
—— TRU - 50 y Cooling (17.9%)

0 5 10 15 20 25
Time [EFPY]

Figure 15 Effect of reactivity of LWR spent fuel composition after long cooling time and effect
of only Pu initial load vs. all TRU recycling

30



An alternative approach explored for minimizing the burnup reactivity swing is use of natural
nitrogen in the nitride fuel; it was initially assumed that the nitrogen used is enriched to 100%
>N so as to minimize neutron absorption in "*N. It was found, as shown in Figures 16 and 17,
that natural nitrogen (99.632 at% 14N, 0.368 at% 15N) could, indeed, help flattening the ke
evolution with burnup. This is probably due to relatively high absorption cross section of '*N for
high energy neutrons that causes spectrum softening that results in a conversion ratio increase. A

drawback of using natural nitrogen is the production of the long-life '“C isotope.

1.05

— 100% "°N (14.0% Pu) 1
= Natural N - depleted (15.2% Pu)
— Reactivity Excess (15.2% Pu)

1.04+

1.02

1.01

keff
-
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Figure 16 Effect of using natural nitrogen fuel vs 100% N when using only Pu initial load

1.015- — TRU 30 years cooling - '°N (17.3%) ,
—— TRU 30 years cooling - Natural N (18.6%)

0.99 1
0.985} 1
L L L L
0-98, 5 10 15 20 25
Time [EFPY]

Figure 17 Effect on reactivity swing when of natural nitrogen fuel vs 100% N when using all
TRU initial load
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5.4 More Realistic Core Design

The preliminary neutronic analysis summarized in the preceding sections considered cores

having a circular cross section and sodium reflector. No control elements were taken into

account. A preliminary design of an alternative, more realistic core is undertaken in this and the
following sub-sections. It features the following new ingredients relative to the preliminary
design:

e A square rather than a circular cross-section area so as to provide an IHX design that has the
same number of tubes — the condenser section of the heat pipes, in all the rows. A
disadvantage of this design is increased neutron leakage from the core — by up to 12.21% in
case of a bare core.

e A solid reflector is now used instead of the intermediate coolant.

e Control elements are introduced.

e LiF-BeF; (Flibe) is used rather than sodium as the secondary coolant.

All the results reported in the following subsections are calculated assuming nitride fuel having

natural nitrogen and TRU from LWR that was cooled for 50 years.

5.4.1 Optimal Reflectors

Figure 18 shows a schematic view of the bare and reflected parallelepiped core examined. Two
materials were examined for the reflector: MoTZM and BeO. Both can operate at the elevated

temperature of the Flibe.

Figure 19 compares the ke evolution with burnup of the reference bare core and the two
reflected cores; both reflectors are 20 cm in thickness and all cores are loaded with the same
amount of TRU of identical composition. It is found that the BeO is, neutronically, a better
reflector; it reduces the neutron leakage probability more than the MoTZM reflector and, hence,
enables getting criticality using a lesser amount of TRU. The lower the critical TRU loading is

the larger will be the conversion ratio and the flatter will be the effective multiplication factor.
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Figure 18 Schematic view of the bare (left) and reflected (right) HP-ENHS core
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Figure 19 Comparison between MoTZM and BeO reflectors
(20cm thick reflector, 22.5% TRU)

Figure 20 shows the effect of the BeO reflector thickness on ke, A 40cm thick reflector is
chosen for the final design. The required TRU weight percent is 22.45%.
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Figure 20 Effect of the BeO reflector thickness on ke 22.45% TRU, 50 years cooling

5.4.2 Reactivity Control

The original ENHS reactor uses peripheral control elements for the reactivity control and a
central safety element for scramming the reactor and keeping it sub-critical under any possible
circumstances. Two approaches for shutting the reactor down were investigated — using a
peripheral control and using a central control. The design goal is to be able to shut down the HP-
ENHS core and bring kes to 0.95 or below; that is, to have a shut-down safety margin of at least

5%.

A schematic illustration of the approach to peripheral control is given in Figure 21. It involves
lowering the vertically oriented side reflectors to replace their lower reflective section by the
upper absorbing section. The advantage of this design is lack of the need to “split” the solid heat-

pipe core to provide access to insertion of control elements.

An alternative design considered is illustrated in Figure 22; it involves lifting up the upper
reflector of the core, letting its location be filled with secondary coolant (LiF-BeF,). The
advantage of this design is the larger drop in the multiplication factor due to the removal of the
upper reflector. It is not possible to do a similar design for the downwards configuration since

movement of the lower reflector is constrained by the core support structure.
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Figure 21 Peripheral control system schematics
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Figure 22 Upward moving peripheral control system schematics

Three materials are considered for the control section: B4C, Rhenium, and Flibe. B4C is the
control material used in many reactor designs, including the SAFE-400 space heat-pipe reactor,
whereas using Flibe is the simplest approach — just letting the secondary coolant take the place of

the BeO reflector. The material compositions used are summarized in Tables 5 and 6.
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Table 5 Atom Densities of Non-Fuel Materials Used for MCNP Computations
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Table 6 Actinides Atom Densities Used for MCNP Computations
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Figures 23 and 24 show the results obtained for, respectively, the Downwards and the Upwards

configurations.
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Figure 23 Effect of control slabs — downwards

1,008

1,006 A
1,004 ‘Lgv}m
1,002 ;/\}

A
o
2
o
bl 1
é 0,998 W v BeO
T
= 099 - i —#— B4C down
8 0994 T oS gp g 3 -3 & &
s 7 -~ ~ _7 N\ A - BAC
§ 0,992 - : * % _F F — up
0,99 ideal case
0,988
0,986
0 5 10 15 20 25 30

Years

Figure 24 Effect of control slabs — upwards

These results show that the upper reflector removal is worth a notable fraction of the reactivity
drop (0.003/0.010 = 30%). The maximum reactivity drop to ke = 0.993 gives, however, an
insufficient safety margin of less than 0.8%. The peripheral control approach is therefore not
good enough to guarantee a safe reactor shutdown. Hence, control elements need be introduced

inside the core.

The heat-pipe core configuration prevents installation of control rods parallel to the fuel rods, as
is commonly done in most of the reactors; it is not possible to install mechanisms for horizontal

insertion of control rods without major interference with the HP heat-exchangers and without
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significant increase in the reactor vessel diameter. An alternative approach examined is splitting
the core into two halves and insertion of one or two control elements in the space provided

between the two halves of the core.

Figure 25 shows one of the split core design approach examined. The gap provided is
perpendicular to the heat pipes and fuel rods; its introduction requires splitting the fuel rods into
two, as the heat-pipes are split. To minimize the reactivity loss due to the introduction of a gap at
the core center a slab of BeO, a good reflecting material, is introduced at normal operating
conditions. The control material was taken to be B4C. Figure 26 shows the multiplication factor
obtainable for a central control blade that is 40cm thick. The multiplication factor flatness is
impaired by the greater amount of TRU necessary to attain criticality (22.4%) of the split core.
kesr does not stay sufficiently flat.

Reflectors

Reflectors

Figure 25 Schematic view of the HP-ENHS core having a perpendicular split
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Figure 26 k. time evolution (in years) of the HP-ENHS perpendicularly split core having a

40cm thick BeO blade

Figure 27 describes the impact of the reflector blade thickness on the multiplication factor at

beginning of life, for an initial TRU concentration of 22.5%. The steep drop in keg at low

reflector thicknesses is probably due to spectrum softening to the below the fast fission threshold

of, primarily, ***U and to the upper resonance energy range where 1 of >*Pu and other fissile

isotopes is relatively low. The increase in kess when the BeO reflector thickness increases beyond

approximately 5 cm is probably due to the buildup of a thermal flux component that is

characterized by a higher 2’Pu n value than in the epithermal energy range. Beyond 50 cm the

enhanced leakage probability reduces kesr.
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Figure 27 Effect of BeO reflector blade thickness on the BOL ks of a perpendicularly split core

Figures 28 to 30 show the effect of the BeO reflector blade on the fission rate probability

distribution. The position of the blade is clearly visible at the core center, where the fission

40



probability equals zero. The effect of the reflector blade thickness can be deduced from the
contrast between distributions of the 40 cm versus 10 cm thick designs. Whereas for the thick
blade the fission probability goes up sharply to 8.3 E-07 near the blade at x =-20 cm and x = +20
cm and drops steeply beyond the peak, the thin blade design features a relatively flat fission
probability of 5.2 E-07 in at the central part of the core. These differences are due to the effect of

the blade on the neutron spectrum as discussed above.
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Figure 28 Relative fission rate distribution for a central horizontal section of the core —40cm
thick BeO reflector blade in a perpendicularly split core
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Figure 29 Relative fission rate distribution for a central horizontal section of the core — 20 cm
thick BeO reflector blade in a perpendicularly split core
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Figure 30 Relative fission rate distribution for a central horizontal section of the core — 10cm
thick BeO reflector blade in a perpendicularly split core

It is concluded that a BeO reflector slab at the center of the split core is undesirable on two
counts. First it softens the neutron spectrum and thereby reduces the conversion ratio to the point
that makes it impossible to attain a flat enough ks over the core life. In addition, it can increase

the power peaking factor in the core, depending on its thickness.

5.5 Reference Core Design

An alternative design approach investigated is use of a voided container made of thin MoTZM
walls in the space between the two halves of the core. When lowered, a B4C follower of the same
cross section area is inserted into the core. Figure 31 shows the time evolution of ke of the split
HP-ENHS core with a 10 cm voided blade. The TRU weight percent is 22.87%. ke is not as flat
as in the case without a split. Nevertheless, it is flatter than when using BeO reflector in-between

the core halves and enables 20 years of core life with acceptably small reactivity swing.

Figure 32 compares ke of the scrammed core in which a B4C control blade replaces the voided
container. The shutdown margin obtained is slightly more than 4%; little short of the 5%
constraint. However, by simultaneously scramming also the 40 cm thick side reflectors a
shutdown margin exceeding 5% is achieved, as illustrated in Figure 33. This design, a schematic

view of which is shown in Figure 34, is adopted for the neutronically preferred reference design.
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Figure 31 Evolution of ks of a split HP-ENHS core with a 10 cm voided blade; 22.87% TRU
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Figure 33 ke evolution with and without 10 cm thick central B4C control blade inserted into the
split core. 40 cm thick B4C absorbers replace the BeO side reflectors simultaneously. 22.87%
TRU
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Void Blade

Figure 34 Neutronically preferred reference core design schematics

A drawback of the above design is that it does not have redundant systems for scramming the
reactor. An alternative design is schematically illustrated in Figure 35; it has two central void
blades 10 cm thick, each having a B4C absorber plate on top. The TRU initial concentration
required for establishing criticality is 22.9% and its conversion ratio is slightly smaller. As a
result the variation of kegr with burnup, shown in Figure 36, is somewhat steeper than in case of
the neutronically preferred design (Figure 31). This design is referred to as the safety preferred

reference design.

Void Blades

Reflectors

(BeO)

Figure 35 Schematics of the safety preferred reference design
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One central blade along with the two side reflector slabs replaced by B4C slabs are sufficient to

bring the multiplication factor down to 0.95, as illustrated in Figure 37.
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Figure 37 Multiplication factor in Normal and Shutdown configurations
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6. THERMAL HYDRAULIC ANALYSIS

6.1 Introduction

The first feasibility issue addressed in this part of the work is whether or not it is possible to
remove the core power carried out by the heat-pipes by naturally circulating intermediate coolant
using heat exchanger of reasonable dimensions and riser of reasonable height. The heat
exchanger dimensions of primary interest in the maximum required length of the condenser part
of the heat-pipes (See Figure 2). Additional objectives of this part of the study are to select the
optimal fluid for the intermediate coolant, to minimize the total reactor vessel height, and come
up with an overall HP-ENHS module layout and dimensions when using water that drives a
Rankine cycle for the energy conversion system. This first-round of thermal-hydraulic design
study is summarized in Section 6.3, following a brief review, in Section 6.2, of the candidate
fluids considered for the intermediate coolant. Section 6.4 performs a design optimization of the
intermediate cooling system, including the heat exchanger dimensions, using Flibe for the
intermediate coolant and supercritical carbon dioxide (S-CO;) for the thermodynamic working
fluid. The feasibility for passively removing decay-heat from the HP-ENHS core is addressed in
Section 6.5. The latter two studies are on-going beyond the termination of this NEER project and

will be reported upon separately.
6.2 Candidate Fluids for Intermediate Coolant

Three fluids were considered for the intermediate coolant: lead-bismuth, sodium and the molten-
salt LiF-BeF; (also referred to as Flibe). Table 7 compares selected thermo-physical properties of
the three coolants (the properties of Pb-Bi are very similar to those of Pb) as well as of two other
fluids commonly used or considered as reactor coolants — water and helium. Of these, the Flibe
was preferred because it can operate at significantly higher temperatures than either Na or Pb-Bi
and enables designing a more compact natural circulation system and, hence, the most compact
reactor vessel. The Na maximum acceptable operating temperature is limited by the relatively
low boiling temperature, as we did not want to pressurize the vessel in order to avoid boiling.

The Pb-Bi operating temperature is limited by corrosion of structural materials to around 600°C.
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The water and helium coolants are included in the table for comparison purpose only; they were

not considered as candidate coolants for the HP-ENHS.

Table 7 Selected Thermo-Physical Properties of Reactor Coolants

Material T melt Thoil p pCp K
°C °C | kg/m® | kI/m’C | Wm’C
"Li,BeF, (Flibe) 459 | 1,430 | 1,940 4,540 1.0
Sodium 97.8 883 790 1,000 62.
Lead 328 | 1,750 | 10,540 1,700 16.
Helium (7.5 MPa) — — 3.8 20 0.29
Water (7.5 MPa) 0 100 732 4,040 0.56

Particularly large is the high volumetric heat capacity of Flibe that allows for a more compact
equipment design than is possible with either sodium or Pb. The boiling point of Flibe is greater
than 1300°C allowing operation at very high temperatures leading to high system efficiencies.
Optical inspection is possible with Flibe that is transparent. The heat transfer capabilities of Flibe
make it an excellent coolant as well. Flibe also has a low vapor pressure and offers the possibility
of using redox buffers to maintain a highly reducing environment in the salt leading to a very
low corrosivity of structural materials [9]. Another advantage of Flibe that makes it particularly
useful for the HP-ENHS is its large change in density with temperature allowing for good natural

circulation.

Molten salts usage was first attempted in the United States with the Aircraft Nuclear Propulsion
Program and the Molten Salt Breeder Reactor Program in the 1950s and 1960s. Later, the
Aircraft Reactor Experiment (ARE) showed that the use of Inconel with molten salts was not
viable because of corrosion problems. Hastelloy N is a much better choice for molten salts [9].
The fluorine molten salts such as Flibe are a combination of very electropositive metals and a
very electronegative element (F). Thus, corrosion is not an issue as long as a compatible alloy

such as Hastelloy N is used for the container material.
6.3 Design Optimization With Water as the Thermodynamic Working Fluid

The goal in designing the intermediate coolant loop was to create a system that can: (a) remove

all heat from the core, (b) operate via natural circulation, (c) maximize average coolant outlet
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temperature, and (d) minimize system size. Since coolant temperature and system size depend on

one another there is a tradeoff between satisfying goals (¢) and (d).

6.3.1 Hydraulic Analysis

By first assuming that the intermediate coolant is able to remove all heat from the heat pipe heat
exchanger, it is possible to uniquely determine the coolant flow rate in the system. This is done
by balancing the head losses in the system due to flow resistance with the buoyant head available
[42-48]:

V 2
AP:gH(P(T])_P(Tz))=KLpave%

AP: total head gain/loss

g: acceleration due to gravity (9.81 m/s?)

H: Thermal separation distance (m)

p(T), p(T»): coolant densities at the inlet (cold) and outlet (hot) temperatures (kg/m’)
K;: Loss coefficient for the flow path (unit less)

Pave: coolant density at the average temperature (kg/m’)

Vmax: maximum coolant flow rate in the flow path (m/s)

The coolant temperature change and the coolant flow rate are also related to the core thermal

power by conservation of energy:

AT = 9
paveCpG

AT: coolant temperature change (K)

Q: System thermal power (125 MW)

pave: coolant density at the average temperature (kg/m’)
cp: coolant heat capacity (J/kg-K)

G: coolant volumetric flow rate (m’/s)

By simultaneously solving the above two equations, one can determine the coolant temperature
change and flow rate for a given flow geometry and set of coolant properties. The loss
coefficient K} is estimated by treating the coolant flow path as a series of simpler components.

For our proposed 125 MWt design using a LiF-BeF, coolant, the loss coefficient K is
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conservatively calculated as 33.1, yielding a coolant flow rate of 0.25 m?®/s. This corresponds to a

maximum coolant velocity through the heat pipe heat exchanger of 0.29 m/s.

6.3.2 Flow Rate Optimization

According to the pressure drop equation above, minimizing the system loss coefficient
maximizes the coolant flow rate. This is desirable because it improves heat transfer to the coolant
and reduces the change in coolant temperature. A way to minimize the loss coefficient is to vary
the area available to the riser and steam generator at the top of the module. Having too small a
riser or steam generator area increases the flow velocity and flow resistance in that component,
as illustrated in Figure 38. The optimal flow resistance is achieved for a riser area corresponding
to approximately 14% of the total vessel cross section.

Chart 1. Relative Flow Resistance vs Riser Area
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Figure 38 Relative flow resistance vs. riser area

6.3.3 Thermal Analysis

Given a coolant flow rate it is possible to determine the Nusselt number and heat transfer
coefficient for the coolant in the heat pipe heat exchanger. This is done using the following
correlation, given in Incropera & Dewitt [42]:

PrJ%

Nu=C*Re} .. * Pr(m(
’ Pr,
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The Nusselt number is converted into the heat transfer coefficient using the hydraulic diameter of
the heat exchanger. This coefficient can be combined with the conductive thermal resistance in
the heat pipe wall to yield a total heat transfer coefficient 2. With this heat transfer coefficient, it
is possible to determine that maximum coolant temperature that allows full removal of heat from

a heat pipe, via the relation:

Oyp = haDLy, (T, —T.), in which

Oup: Heat pipe power

D: Heat pipe diameter (1.56 cm)

Ly Heat pipe effective length (must be less than actual heat pipe length)
Typ: Heat pipe operating temperature (1300K)

T¢: Coolant temperature

The maximum coolant temperature can be found by substituting the heat pipe effective length
with its maximum value; the actual length of the heat pipe. This can be taken to be the coolant
exit temperature. Effects due to non-uniform heat transfer along the heat pipe are determined to
increase this maximum temperature, so the result obtained with this method is conservative.
Together with the coolant temperature change determined via AT equation above, this
determines the average temperature of the intermediate coolant. The non-uniform power
distribution of the core introduces some uncertainty that is conservatively treated by adjusting
these temperatures downward by 0.3 times the coolant temperature change. For the proposed
design the average coolant temperature is calculated to be 1040 K and the maximum coolant

temperature is 1096K.

6.3.4 System Volume Optimization

The results of the above calculations depend on the specific geometry assumed, and therefore
depend on the length of the riser and length of the heat pipes. Because the average coolant
temperature is a stronger function of heat pipe length, it turns out that system volume can be
optimized by using the shortest riser possible then adjusting the heat pipe length to produce a
desired coolant temperature or size. Our proposed design uses a thermal separation distance

(distance between the mid-plane of the core and the mid-plane of the active steam generator
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region) of 4.89 meters, and the heat pipes extend 52.5 cm from the core. This heat pipe length

was selected to make the module radius 2 meters, similar to that of the ENHS.

6.3.5 Preferred Design

It was found feasible to effectively transfer the core power from the heat-pipes to the energy
conversion system by natural circulation. The required length of the condenser part of the heat-
pipes is approximately 50 cm and the required riser height is only approximately 5 m. As a
result, the required HP-ENHS reactor vessel height is significantly smaller than that of the
reference ENHS: 9 vs. ~20 m. The vessel diameter is slightly larger: 4 vs. ~ 3.5 m. Figure 40
gives the dimensions of the resulting HP-ENHS design.
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Figure 39 Dimensions of the HP-ENHS reactor
Molten salt, such as LiF-BeF,, was found the preferred intermediate coolant. Using conservative

assumptions it was found that the average intermediate coolant outlet temperature is 1040K. This

is a significantly higher than ~775K intermediate coolant outlet temperature of the reference
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ENHS design, and is achieved using a significantly more compact ENHS module and smaller

reactor volume.

6.4 Design Optimization With S-CO, as the Thermodynamic Working Fluid
This design study is still on-going by graduate student Steven Mullet. It is not funded by the

NEER contract. The summary of this study will be published by the end of 2008.

6.5 Decay Heat Removal Capability

This design study is still on-going by graduate student Steven Mullet. It is not funded by the
NEER contract. The summary of this study will be published by the end of 2008.
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7. ADVANCED ENERGY CONVERSION SYSTEM?

7.1 Introduction

A conventional Rankine steam cycle was assumed (Section 6.3) for the energy conversion
system in the preliminary feasibility assessment of the HP-ENHS reactor concept. A Rankine
steam cycle is, however, not a good fit for a high temperature heat source. A supercritical CO,
(S-CO») cycle is recently being advocated [49, 50] for GENERATION-IV reactors that can
deliver their fission heat at above 500°C.  The HP-ENHS has a high outlet temperature,
approximately 770 °C, which makes it more than sufficient to be coupled with the S-CO, cycle.
The primary advantages of the S-CO, over a Rankine steam cycle are higher energy conversion
efficiency and greatly more compact hardware. The primary disadvantage of the S-CO,

technology is the relatively high pressure it requires — exceeding 20 MPa.

The main advantage of the S-CO, cycle relative to a He Brayton cycle is that it has a reduced
compression work since S-CO, operates near the critical point of CO,, which has lower
compressibility. However, the non-ideality of CO, also brings disadvantages as well — the
specific heat, which affects the recuperator, varies widely. For certain cycle operating conditions
a pinch-point exists in the recuperator. The pinch-point is the location in the recuperator with the
lowest temperature difference between the hot and cold CO; streams, with the limit being zero
[50]. The temperature difference between the hot and cold fluid in the recuperator varies greatly
because of the temperature and pressure dependence of the specific heat. So the minimum
difference in temperature does not always occur at the recuperator inlet or outlet, but sometimes
within the recuperator. The irreversibility of the recuperator, resulting from the pitch-point

phenomenon, causes the largest reduction in the efficiency of the S-CO; cycle [49].

However, the use of a combined cycle improves efficiency greatly. The combined cycle
incorporates either recompression or pre-compression. The most efficient and simple of these

cycles is the recompression cycle. This cycle is now briefly described.

? The work reported in this section was performed by an HP-ENHS design team consisting of Michael Levy, Steve
Mullet, Thien-An Nguyen and David Simon as an NE-167 Nuclear Safety Project taught by Prof. Kastenberg. The
team was co-advised by Prof. Greenspan.
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7.2  Recompression Cycle

Figure 40 is a layout of the recompression cycle and Figure 41 is a T-S diagram of this cycle.
This cycle improves efficiency by decreasing the amount of heat rejected by using a
recompressing compressor before the precooler. The mass flow is split before entering the
precooler, with only part of the heat rejected with the flow. The outlet of the recompressing
compressor is between the high and low temperature recuperator. The working fluid is first
compressed in the main compressor (points 1-2). Then it is preheated in the low temperature
recuperator (point 2-3) to reach the outlet temperature of the recompressing compressor. The
working fluid is then merged with the outlet fluid from the recompressing compressor (point 3).
The merged fluid is heated in the high temperature recuperator (point 3-4), which then enters the
reactor. The fluid emerging from the reactor enters the turbine (points 5-6) at the highest
temperature in the cycle. Fluid expansion in the turbine is doing the work that generates
electricity. The fluid emerges from the turbine and transfers heat to the cooler high pressure fluid
first in the high temperature recuperator (point 6-7) and then in the low temperature recuperator
(point 7-8). The fluid is split before going into the precooler. One part of the fluid is compressed
in the recompressing compressor (point 8-3) and the other part is cooled in the precooler (point

8-1), which then flows into the main compressor [49].
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Figure 40 S-CO; recompression cycle layout [50]
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Figure 41 Temperature vs. entropy diagram of recompression Brayton cycle [49]

Care has to be taken in the layout design such that the minimum cycle operating temperature is
not below 30.98 °C, which is the critical temperature of CO,. Below this temperature,
condensation will occur. In ideal Brayton cycles, decreasing the turbine inlet temperature will
increase the cycle efficiency. However, this is not the case in S-CO; cycle because it operates

near the critical point.
7.3 Indirect Cycle

The cycle shown in Figure 49 and discussed in Section 7.2 is a direct cycle. A direct cycle is the
most efficient from an electricity generation point of view, since there is no enthalpy loss
associated with the transfer of heat from the intermediate to the secondary loop. Indirect cycles
also increase the complexity of the plant layout and the plant’s cost. Nevertheless, an indirect
cycle is selected for the HP-ENHS reactor as it offers several important advantages: (1) The
intermediate Flibe coolant can deliver the high temperature heat at, practically, atmospheric
pressure and by natural circulation, thus greatly simplifying the reactor vessel design and
enhancing the reactor safety. LOCA initiators for reactor vessel depressurization are far less
frequent and severe. (2) Indirect cycle greatly reduces radiological hazards. The turbine plant is
not contaminated by failed fuel or the transport of corrosion products. There are no '°N

contaminations due to '°O(n,p)'°N reactions from CO,. (3) Reheat can be used to enhance the
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indirect cycle efficiency [49]. This option does not exist for a direct cycle because it is
impractical to reheat inside the core. Figure 42 is a layout of the indirect cycle with one stage of

reheat.
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Figure 42 Recompression cycle with one stage of reheat [50]

The S-CO; indirect cycle was studied by Dostal using lead alloy as the primary coolant [49]. The
results from Dostal’s study can be applied to the HP-ENHS reactor that uses molten salt rather
than lead for the intermediate coolant. Reheating was found [49] to be uneconomical because the
efficiency increase it offered, shown in Figure 43, did not compensate the extra costs associated

with the additional required heat exchanger (reheater).
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7.4 Power Control Scheme for Recompression Cycle

The control of power output of the cycle is of major importance to the success of the cycle. Only
control schemes relating to power level changes are considered in this project. Further studies
need to be done on controls of the S-CO,; in the events of accidents. In order for the cycle to
remain as simple as possible, a single shaft is used. With a single shaft, the cycle is more capable
of dealing with the loss of load transient. Further, the generator can be used as a start-up motor in
the case of single shaft layout. However, the system is more constrained because the compressor

can only run at speeds synchronized with the grid.

The goal of power control is to maintain high efficiencies over a wide range of power levels. An
ideal approach to S-CO, cycle power controls can offer a lot of insight. Cycle efficiency is

defined as
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where 1 is the cycle efficiency, Wy is the net work (turbine work minus compressor work), and

Qin 1s the thermal power. The net work W, can be defined as

y—1

i Tn‘n " 1
W;tet = meTcm[(Uz T - 77 )(1_ 7}/1)]

cin c

Ty

The thermal power, Qi, is defined as

: 1
Q,=nm cpT,m (1 _E)

r,’
The recuperator is assumed to be 100% effective. From the second equation, the net work is
dependent on the mass flow rate, turbomachinery efficiency, pressure ratio, inlet turbine
temperature and inlet compressor temperature. The plant efficiency 1 depends on all of the
mentioned parameters except the mass flow rate. This suggests that the control parameter for
power control should be the mass flow rate because efficiency is independent of it while power is
directly proportional to it. Thus, by varying the mass flow rate, the power can be adjusted while
keeping the efficiency the same. Mass flow rate control is the most attractive form of control for

closed gas turbine cycle, even for real systems like S-CO, [49].

One method to control the mass flow rate is by using by-pass control to adjust the mass flow rate
across the turbine. Figure 44 offers possible locations of placing bypass and throttling valves.
Discussion of throttling valves will be visited. The location of bypass valves must be made
carefully to minimize the effect on the cycle operating temperature [50]. There are two possible
locations in the cycle that can accomplish this requirement. One is to place the bypass valve after
the recompressing compressor and merge it to the high temperature recuperator outlet (Valve A
in Figure 44). The second option is to place the bypass valve before the reactor inlet and merge it
with the turbine outlet (Valve B in Figure 44). It is easier to locate the bypass valve at point B
from a plant design point of view, but this is more challenging from a materials viewpoint

because it operates at higher temperature [49].

Bypass control works by forcing the turbine to operate away from its design point, which will

affect its efficiency and pressure ratio. However, bypass controls create complications at the
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compressor. There are two compressors operating in parallel in the cycle and their flow split
must be constant to provide the required pressure ratio. The flow split is a function of high and
low pressure. Real gas properties are different at different pressure, which means that there are
different requirements for recompression. Normally, in an ideal situation, a throttling valve is
placed on the inlet compressor (Valves C and D in Figure 44) to increase pressure ratio across
the compressor through its pressure drop. However, for a realistic S-CO, cycle the throttling
valve location does not work at Point C and D because of the need to keep the flow split
constant. Another option is to place the throttling valve at the high temperature recuperator inlet
and adjust the pressure to the original value (Valve E in Figure 44), which will make the flow

split constant between the two compressors [50].
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Figure 44 Possible locations of bypass and throttling valves [50]

Through the use of bypass control there is a decreasing linear relationship between efficiency
and decreasing power. The S-CO, recompression cycle is best to use for base-load operation,
which is the case for nuclear power plants. Figure 45 shows the relationship between cycle
efficiency and decreasing power through the performance of bypass control [49]. Figure 46
shows the recompressed fraction for both cases of throttling and the bypass mass flow rate as a

function of power level [49].

59



J T T T I
1 1 I D
. : | ¥
__H..m m m |—M a
(i ot
] 1 I =
$ ! ! o2
Q
' i i £
|||||||| I T SRl R T
) 1 | s ©
A\ ! ! o w
1o 1 | 3 W
. 1 | o o
1 Y 1 1 [ 1] o
1 W 1 | i
1 A 1 I E
A i E 8
1 _.. 1 | H C
1 FR ] I
........ S S
1 W |
1 iy |
T U R
1 1 | 1
| AN |
1 Y | 1
1 1 1 1
1 1 I 1
1 1 Y I 1
IIIIIIII L N Ao
" i :
1 1 N\ 1 1
1 1 o 1
1 1 Wl 1
1 1 ] 1
1 1 b, 1
1 1 1", 1
i i P i
1 1 [ 1
1 1 | 1
IR TEEUREURONY SUEPIPRUEON DENP SR SP L
1 1 T LT
1 1 | W
i i i I,m
| | | \
| | | AN
1 1 1 1 ™,
i i i i -
1 1 1 1
t t f t
= =2 = = =
=T o [} —

50

(%) Aouaioyy3 81949

100

80

60

40

20

Percent Full Power

Figure 45 Bypass control performance [49]

0.5

[2;) mo|4 ssedAg

L L L L L
= = @ o NN e e g
= = = = = [s=] = = =] =
1 I 1 1 1 I 1 I I
1 T T I — T T | ———
1 1 1 1 1
1 1 I I I |
A
1 1 1 | | | i
1 1 1 I I | ...___
NG A
1 1 I I I |
B
...... T:L--L::L::+::+HT:
[ 1 1 1 1 1 ...___
| o | “ L)
1 = 1 1 1 1R
| o 1 - | [y
| E “Jﬁff;“ )
" _lm m 1 | e il _1
- IR
Tttt O = 7777777 T-==°7 r——-—¥ % --T
1 - O 1 1 1 1
|1 = 1 1 1 |
el
Lol o 0| | | i
|| f= "] 1 1 1 [
1| = 5 W I | | ]
|1 dm o 1 1 1 1
HET- A L Lo L
||||| ! a1 =0 i A Ht S i
1 |- O, 5| ! I | Il
1] e b= 1 1 1 | 1
N E =] 1 1 1 ! 1
L AT =1 1 | o |
ez i v
| AR I | A I
1| == 1 1 1 1
| = I 1 1 1
..... e T L e e e S
| L] 0w n 1 | N |
1 R mla ] 1 I .‘_ I
-6 55| ! L !
| EOmm 1 1 fo 1
1| 1 I £ I
b bt 4
1 1 | | |
} T } } } }
[ar] L [t} [Ty} — L =
[ ™ o - o =
= = =

0.35

uoljoelq passaidwoosay

0.8

0.6

Percent Full Power

02

Figure 46 Recompress fraction and bypass flow [49]

60



7.5 Drawbacks of the S-CO, Cycle

There are several disadvantages of the S-CO; cycle. In contrast to the helium Brayton cycle,
increasing turbine inlet temperature does not increase efficiency. Attention must be given to the
design of the precooler and heat sink. The S-CO, optimizes around a small difference in
temperature between the small heat source inlet and outlet. Efficient recuperators are required
because of the narrow operating temperature range. The emergence of the printed circuit heat
exchangers (PCHE) from HEATRIC around 1990 made possible highly efficient and compact
recuperators that can be used in the S-CO, cycle. If it were not for this particular technology, the
compact design of the S-CO, would be cumbersome and uneconomical because of bulky heat

exchanger technology [50].

Furthermore, CO, is more corrosive than inert helium, but less corrosive than steam and water.
However, there is operating experience with CO; at the British AGR unit that indicates that the
corrosion of CO; is not harmful to the development of CO, power conversion in the temperature
range of 550 to 650 °C [50]. However, more corrosion studies need to be conducted for

supercritical operating conditions of the S-CO, cycle.

The S-CO, cycle was once criticized for its high pressure operating range, which exceeds
20MPa. However, utilities have had experience with high pressure systems in the form of
supercritical steam units with pressure greater than 25MPa. High pressure does not represent a
challenge to the design of turbomachinery seals, rather it is the high pressure differential across

the turbine stages [50].

In addition, the recompression S-CO, cycle lacks a simple and effective implementation of a
high-efficiency part-load operation. However, nuclear power plants are economical in base load
operation, which makes this S-CO, cycle deficiency not as critical to its potential as a power

conversion unit.
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8. PRELIMINARY SAFETY ANALYSIS®

8.1 Introduction

The preliminary safety analysis addresses the following issues: how does this reactor meet the
advanced reactor policy of the NRC (Sec. 8.2), the design basis accidents (Sec. 8.3), severe
accidents (Sec. 8.4), probabilistic risk assessment (Sec. 8.5), and seismic safety (Sec. 8.6). A
specific objective is to assess the feasibility of licensing the HP-ENHS at the Diablo Canyon site

in California.

8.2 Advanced Reactor Policy

The NPC-issued “Regulation of advanced nuclear power plants; statement of policy” (59 FR
35261) [51] gives guidelines for all advanced nuclear reactors. The HP-ENHS will meet these

guidelines in the following ways:

1. “Highly reliable and less complex shutdown and decay heat removal systems. The use of

inherent or passive means to accomplish this objective is encouraged (negative temperature

coefficient, natural circulation, etc)” [51]

The HP-ENHS shuts down by means of control slabs introduced at the center of the split solid
core (Section 5.5). The control slabs have multiple actuation methods, one of which is gravity.

As long as the control slabs are able to move, the system can shut down safely.

The primary and intermediate loops responsible for the cooling of the HP-ENHS are designed to
function as solely passive systems, with any active systems supplementing the passive systems
but not replacing them. The primary cooling system, which is the heat pipes, contains no moving
parts except for the sodium flowing within them due to natural convection. The intermediate
molten salt loop that transfers heat from the heat pipes to the energy conversion system also
functions by natural convection. Decay heat is removed through these systems, which are both

very reliable and incredibly simple when compared to current reactors.

3 The work reported in this section was performed by an HP-ENHS design team consisting of Michael Levy, Steve
Mullet, Thien-An Nguyen and David Simon as an NE-167 Nuclear Safety Project taught by Prof. Kastenberg. The
team was co-advised by Prof. Greenspan.
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In addition, if the power conversion unit is not active, the reactor vessel auxiliary cooling system
(RVACS) will be able to act as an ultimate heat sink for the decay heat. RVACS has been proven

to be able to remove the decay heat from a similar reactor size [52, 53].

2. “Longer time constants and sufficient instrumentation to allow for more diagnosis and

management before reaching safety systems challenge and/or exposure of vital equipment to

adverse conditions” [51]

The reactor has a negative temperature coefficient of reactivity that enables to shut the reactor
down even if the primary heat sink is lost. In addition, the molten salt has a very high heat
capacity of 0.57 cal/g and a density during operation of roughly twice that of water and is present
in large quantities, which greatly slows the speed of the temperature gain. In the case of loss of
the primary heat sink the reactor temperature and reactivity in the ENHS oscillated slowly and
returned to a steady state value [52, 53]. Further testing will need to be done to see if the HP-
ENHS behaves in the same manner, or if the addition of heat pipes interferes with this accident

moderation ability.

3. “Simplified safety systems that, where possible, reduce required operator actions, equipment

subjected to severe environmental conditions, and components needed for maintaining safe

shutdown conditions. Such simplified systems should facilitate operator comprehension, reliable

system function, and more straightforward engineering analysis” [51]

The moving parts in the HP-ENHS are confined to valves, fans, and control slab actuation. With
the exception of the one-way pressure valves in the molten salt overflow area, all of these parts
are supplementary to a passive system having the same function and operating by natural
circulation. In addition, the intermediate molten salt loop is not pressurized, so equipment that is
in containment will not be subject to harsh environmental conditions if the molten salt were to
heat up. Also, the core is designed to maintain a nearly constant ks breeding as much fissile fuel

as is fissioned. This reduces the usage of the control slabs throughout the life of the reactor.

Heat pipes, control slabs, molten salt, and RVACS are the only systems needed for safe
shutdown. The compressors for the circulation of the S-CO, could all fail to operate without

hampering safe shutdown.
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Since the reactor is designed to operate with very small burnup reactivity swing, operator actions
are very limited. Operators are needed for the initial startup and final shutdown, but have little

required actions between these times while the reactor is functioning correctly.

4. “Designs that minimize the potential for severe accidents and their consequences by providing

sufficient inherent safety, reliability, redundancy, diversity, and independence in safety systems”

[51]

The greatly simplified design of the HP-ENHS reduces potential types of severe accidents. The
intermediate molten salt loop cannot have a LOCA except in the case of a reactor pressure vessel
failure. The loss of the heat sink was discussed above as being handled by the passive systems.

The control slabs can be operated in a number of different ways.

The HP-ENHS has a solid core design and has no positive void coefficient of reactivity. The
solid core avoids reactivity increases due to fuel rod motion during earthquakes, and the negative

temperature coefficients protect the core from going critical due to a failure of heat pipes .

5. “Designs that provide reliable equipment in the balance of plant (BOP) (or safety-system

independence from the BOP) to reduce the number of challenges to the safety systems” [51]

Backup batteries are used to ensure power in the case of a loss of offsite power and plant
generating capabilities. In addition, all of the passive safety systems are independent of the
balance of plant and offsite power so a safe shutdown can occur should all forms of electricity

fail.

6. “Designs that provide easily maintainable equipment and components” [51]

The HP-ENHS generator and core are separate entities. The core is not to be refueled; it is to be
replaced as a whole after its twenty years of life. The feasibility of online maintenance is

undetermined as of yet.

7. “Designs that reduce the potential radiation exposures to plant personnel” [51]

Plant personnel will not be handling fuel in the HP-ENHS. The fuel is to be loaded in the factory

and the core is to be shipped as a whole in a sealed container. Likewise for the discharged core —
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it will be shipped to a spent-fuel processing center in a sealed and shielded shipping cask. As
there are no moving parts inside the reactor vessel, except for the control blades drive
mechanism (that are located at the upper part of the vessel, well shielded from the core by
several meters of liquid salt and structure), and as there are no safety systems (except for the
control blades and their drive mechanism) to maintain, very little exposure to personnel is

expected.

8. “Designs that incorporate defense-in-depth philosophy by maintaining multiple barriers

against radiation release and by reducing the potential for and consequences of severe accidents”

51]

Radioactive materials must go through many barriers to get to the environment. First, they must
leave the solid core and get into the secondary coolant. This is much less probable to happen in
the solid core HP-ENHS than in conventional core designs in which the clad of each fuel rod is
surrounded by the coolant. The HX and the reactor vessel provide additional barrier, as in many

other reactor designs.

9. “Design features that can be proven by citation of existing technology or that can be

satisfactorily established by commitment to a suitable technology development program” [51]

Heat pipes are used currently for a variety of applications related to the movement of thermal
energy, including cooling computer components and transferring solar heat. Work still needs to
be done on heat pipe performance in a reactor environment, but Los Alamos and Argonne
National Laboratories both have heat pipe research programs. As of yet, no reactors exist that use
LiF-BeF, as an intermediate loop. Like the heat pipes, the use of this molten salt is being

explored in various labs around the world.

8.3 Containment/Confinement

The HP-ENHS will use a confinement system in place of the traditional containment system.
High temperature gas-cooled reactor designers have proposed a method of confinement called
the vented lower-pressure containment (VLPC). The VLPC is at ambient pressure and is
approximately two orders of magnitude worse at preventing dose release than a conventional

containment structure. The HTGR designers claim that the construction of the pebble fuel greatly
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decreases the ability of the fission products to escape into the containment structure. The
multiple barriers to fission product release in the HP-ENHS along with the fact that the
intermediate loop is not radioactive, lead us to believe that a confinement structure would be
possible. Such a structure would reduce the cost of the reactor and make it a more viable

competitor in the energy market.

The NRC has developed rough guidelines for dealing with confinement structures, which are

contained in SECY-04-0103 attachment 2 [54]. These guidelines suggest a functional

performance standard that requires that the entire plant system keep the dose under the limits for

release. The functionality of the containment for a non-LWR system is measured by the

following six measures:

1. “Reducing radioactive releases to the environment

2. Preventing or limiting potential core damage

3. Removing heat to mitigate accident conditions and prevent vital equipment from exceeding
design and safety limits

4. Protecting vital equipment from internal and external events

5. Protecting onsite workers from radiation

6. Providing physical protection (i.e., security) for vital equipment” [54].

In addition, there are preliminary metrics in the form of a series of questions for deciding if a

confinement building is acceptable:

e “Does the option adequately accommodate all containment building system functions (e.g.,
are there potential adverse effects on plant safety, event consequences, or other containment

building system functions)?”’ [54]

Function 1: The main barriers to radioactive release are the solid fuel, fuel cladding, heat pipe
cladding, and solid core structure. In addition to these, the molten salt is present in large
quantities and acts as a barrier. The reactor vessel provides an additional barrier. A confinement

structure would not impact these barriers.

Function 2: Neither containment nor confinement building will prevent or limit potential core

damage.
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Function 3: The heat removal capabilities of the RVACS will not be affected by the drop in

internal pressure, as it relies on outside air.

Function 4: The HP-ENHS has much less vital equipment relative to LWRs and even most other
GENERATION-IV reactor designs since its safety depends on passive safety features such as

natural circulation. If needed, the vital equipment could be protected by an additional barrier.

Function 5: Onsite workers do not have to handle fuel and do not have to maintain activated

equipment.

Function 6: Confinement provides complete coverage of the reactor site. The ability to monitor

the personnel entering and leaving the site will not be diminished.

e “Would the option be expected to substantially improve plant safety by:
- preventing certain types of accidents?
- significantly reducing fission product release to the environment?

- addressing known uncertainties?” [54]

The confinement option would improve plant safety in none of these things. However,
confinement would also not worsen safety in any of these ways. Neither type of containment will
prevent any accidents. The fission product release to the environment is handled by the HP-
ENHS through barriers inherent to the fuel, heat pipes, intermediate loop and reactor vessel. The
confinement has less ability to prevent fission products release, but the reactor is designed such
that fission products are greatly reduced or eliminated before reaching this barrier.
Unfortunately, the reactor is not developed enough to define the uncertainties. One goal for

further research will be to develop a plant capable of using confinement.

e “Does the option account for plant risk (e.g., is it risk-informed, does it consider

uncertainties)?”’[54]

The plant will be designed with a confinement structure instead of a containment structure, so the

plant risk should be factored into any dose release calculations.
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e “Does the option provide flexibility to the designer in meeting the event consequence

acceptance criteria (e.g., could it discourage innovation or accident prevention)?” [54]

A confinement structure provides the same or slightly lessened flexibility in meeting the event
consequence acceptance criteria. Keeping dose below a certain limit can be accomplished with
either the containment structure or the multiple fission product barriers. A confinement option
requires that multiple fission barriers be present. However, the HP-ENHS design includes these

barriers, leaving the net flexibility virtually unchanged.

8.4 Site Characterization

The safety analysis is performed for the Diablo Canyon power plant site that is located on the
southwestern part of the San Luis/Pismo structural block. The block is bounded by the San
Simeon fault zone to the northeast, a diffuse zone of minor faults on the southwest, and by the
Hosgri fault zone to the west-northwest. To the east of the site lies the San Andreas Fault. The
site 1s equidistant from Los Angeles and San Francisco. The current minimum exclusion zone
employed by the Diablo Canyon Power Plant is '4 mile in radius. There are no activities within
the exclusion zone, nor public roads or railways. The Low Population Zone (LPZ) as described
by 10 CFR 100 exists immediately surrounding the exclusion zone. The current LPZ used at the
Diablo Canyon site is 6.2 miles. The LPZ has about 80 residents, with protective measures to be
taken in the Emergency Plan in case of severe accidents [55]. The nearest population center is
about 8.3 miles away. Figure 47 is a map showing the location of the Diablo Canyon site and the

surrounding major faults.
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Figure 47 Diablo Canyon location and surrounding major faults

8.5 General design Criteria

The design features of any nuclear plant must follow the general design criteria set forth in 10
CFR 50 Appendix A. These criteria are broken down into overall requirements, protection by
multiple fission product barriers, protection and reactivity control systems, fluid systems, reactor
containment, and fuel and radioactivity control. Before going into these requirements, a

summary of the design features of the plant is provided in Table 8.

69



Table 8 Summary of Design Features of the HP-ENHS

1. Coolant Injection Systems a. Reserve Flibe tank

2. CO, Generator Heat Removal Systems a. Power conversion systems

3. Reactivity Control Systems a. Control slabs

4. Key Support Systems a. DC power provided by 2-hour design

basis station batteries.

5. Containment Structure a. Confinement building

b. Atmospheric pressure

6. Containment Systems a. RVACS air flow

The HP-ENHS is still in the design phase. Many of the criteria in 10 CFR 50 Appendix A are for
a fully designed reactor. As such, some general design criteria do not apply to the HP-ENHS
reactor, and others do not apply to the scope of this report. Systems with applicable criteria are
lacking in data to show compliance. This section will discuss the applicability of the criteria and
what needs to be done to satisfy them. Each criterion mentioned will be in italics, and will be

followed by its identifying number in the 10 CFR 50 Appendix A.

Criteria based around inspections and reports fall outside the scope of this report. This includes
criteria Quality Standards and Records (1), Inspection and Testing of Electrical Power Systems
(18), Protection System Reliability and Testability (21), Inspection of Reactor Coolant Pressure
Boundary (32), Inspection of Containment Heat Removal System (36), Testing of Emergency
Core Cooling System (37), Inspection of Containment Heat Removal System (39), Testing Of
Containment Heat Removal System (40), Inspection of Containment Atmosphere Cleanup
Systems (42), Testing of Containment Atmosphere Cleanup Systems (43), Inspection of Cooling
Water Systems (45), Testing of Cooling Water Systems (46), Capability for Containment Leakage
Rate Testing (52), Provisions for Containment Testing and Inspection (53), Monitoring Fuel and
Waste Storage (63), and Monitoring Radioactivity Releases (64). In addition, only a single
reactor is being licensed here, so Sharing of Structures, Systems, and Components (5) is not
applicable. The control room and instrumentation for this reactor are not developed, so the
following criteria cannot be shown to have been met: Instrumentation and Control (13) and

Control Room (19). Criteria dealing with LWR systems that no longer exist in the HP-ENHS due
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to the replacement of water with heat pipes at the primary coolant are: Reactor Coolant Makeup
(33), Emergency Core Cooling (35), Cooling Water (44), Systems Penetrating Containment (54),

and Reactor Coolant Pressure Boundary Penetrating Containment (55).

Criteria relating to the role of the containment and the containment spray pumps do not directly
apply to the HP-ENHS as the coolants used are not pressurized so confinement will never be
filled with vapors from the primary or intermediate loops. In addition the dose reduction from the
core provides the necessary fission product release barriers, allowing for confinement instead of
containment. The criteria that no longer apply due to the modified confinement are Containment
Design (16) and Containment Heat Removal (38). The design criteria Containment Atmospheric
Cleanup (41), Containment Design Basis (50), Fracture Prevention of Containment Pressure
Boundary (51), Primary Containment Isolation (56), and Closed Systems Isolation Valves (57)

are still valid and will be met in the final design.

Some criteria dealing with the reactor coolant system can be applied to the heat pipes. These are
Reactor Coolant Pressure Boundary (14), Reactor Coolant System Design (15), Quality of
Reactor Coolant Pressure Boundary (30), and Fracture Prevention of Reactor Coolant Pressure
Boundary (31). Section 2.2 covers heat pipes and discuss the probability of heat pipes breaking.
The heat pipes need further testing, but nothing in their design prevents them from achieving
these criteria. Reactor Design (10), Reactor Inherent Protection (11), Suppression of Reactor
Power Oscillations (12), Control of Releases of Radioactive Materials to the Environment (60),
Fuel Storage and Handling and Radioactivity Control (61), and Prevention of Critically in Fuel
Storage and Handling (62) are all related to the core design of the HP-ENHS. In particular, the
modular construction of the core and the molten salt barrier should allow criteria 60 — 62 to be
met, and the large heat capacity of the salt and the negative temperature coefficient of the core

should allow 10-12 to be met.

The control slabs are the protection system in place to control reactivity. The control slabs will
be designed to satisfy Protection System Functions (20), Protection System Independence (22),
Protection System Failure Modes (23), Separation of Protection and Control Systems (24),
Protection System Requirements for Reactivity Control Malfunctions (25), Reactivity Limits (28),

Protection Against Anticipated Operational Occurrences (29). The control slabs are the only
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system in place currently to shut down the reactor. This means that the HP-ENHS does not meet
Reactivity Control System Redundancy and Capability (26), and thus cannot meet Combined
Reactivity Control Systems Capability (27).

The remaining criteria are not as easily grouped by system, so they will be handled one by one.
Design Basis for Protection Against Natural Phenomena (2) will be covered in the seismic
analysis in chapter 6. Fire Protection (3) has not been addressed, as the physical plant layout has
yet to be designed. Environmental and Dynamic Effects Design Basis (4) will be covered under
design basis accidents in chapter 4 and beyond design basis accidents in chapter 5. Electric
Power Systems (17) mandates backup power in case of a loss of offsite power. Station batteries
will handle this power, as a diesel generator was deemed unnecessary. The last criterion is
Residual Heat Removal (54). The heat pipes and the RVACS work together to provide this heat

removal, even in the case of a loss of the ultimate heat sink.

8.6  Design Basis Accidents

Design basis accidents are postulated accidents to which a nuclear plant, its systems, structures,
and components must be designed and built to withstand without releasing a harmful amount of
radioactive materials to the outside environment. Any design basis accident is controlled by the

reactor safety systems with insignificant off-site consequences.

The following sections will cover the three main categories of design basis accidents. Class A
DBAs have no probability of release and can occur multiple times a year. Class B DBAs have a
small probability of release and occur infrequently. Class C DBAs can be severe, but have a very

low probability of occurring.

8.6.1 Class A

Class A DBAs have a high frequency of occurrence and no release of dose. Due to the 20 year
refueling cycle, many DBAs that can be handled by the reactor without dose release occur far
less frequently than a comparable incident in a LWR. In addition, many common DBAs have
been designed out of the HP-ENHS. This includes failures in pumps, valves, and other moving

components, along with LOCAs in the intermediate loop. The remaining Class A accidents are
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categorized as thus because they have no chance of dose release and not because of their

frequency. This class includes loss of heat-sink accidents and heat pipe rupture.

A loss of the heat sink can result from a breach in the supercritical CO; cycle containment or
failure of the turbo-generator. Failure of heat pipes may also cause a loss of heat sink. The

feasibility of this to occur is discussed in the preceding section.

In any case the probability of radioactive release from the HP-ENHS is low even if they will get
out from the fuel into the secondary coolant as a result of some incredible accident because the

S-CO; loop is pressurized to 20MPa.

The loss of heat sink accident is self regulating. The negative temperature coefficients of
reactivity cause the reactor to power down to a much lower steady state power and the Flibe will
carry away excess heat. In addition to the negative temperature coefficient regulating the loss of
heat sink accident, there is an overflow system in place in the HP-ENHS that provides extra
cooling. During the loss of heat sink accident, the molten salt expands due to the excess heat that
it is not able to transfer to the S-CO, loop. The density of the Flibe in the intermediate loop is
very sensitive to temperature, which enables natural convection, but also implies that if the
general temperature of the Flibe should go up, it would expand sufficiently to flow in the overfill
(see Figure 48). There, the Flibe will bypass the CO; heat exchangers and be cooled down by the
RVACS enough for its density to increase. The cold Flibe will then flow back into the main pool
of intermediate coolant through a one-way pressure-dependant valve (see Figure 48). The Flibe
is therefore able to evacuate heat through the RVACS in the case of the loss of the ultimate heat
sink. Since the Flibe is hotter during the entire process, the heat pipes will evacuate a non-
negligible part of their heat through the vessel to the RVACS. The effect on core temperature is
small; thanks to the amount of heat that the heat pipes can remove to the RVACS.
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Figure 48 Overflow cooling of the Flibe

The heat pipe break assumes that the situation is stable and no other heat pipes have ruptured as a
result of the ones currently inoperable. A heat pipe break or leakage has consequences on three
major parameters of the reactor: core reactivity, core temperature, and secondary coolant

temperature.

The reactivity coefficient of the fuel next to the coolant is linked to different parameters, such as
whether Flibe enters and fills the broken heat pipe, the magnitude of the temperature changes
around the fuel (inducing Doppler Effect) and the thermal expansion of materials. According to

different sources, a reasonable postulate for this report is that the reactivity change is negligible.

The core is less efficiently cooled by heat pipes, so heat accumulates around the failing heat pipe
region and lowers the reactivity of the reactor. As the system stabilizes, the surrounding heat
pipes start to heat up until the temperature difference with the Flibe is sufficient to adjust the heat
transfer and stabilize the system. The intermediate coolant has less heat pipes transferring heat

and therefore can cool down slightly under the right conditions.
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The way to regulate the accident itself is passive, as we have seen, the heat pipe heat flow
adjusting to the temperature of the core to stabilize the system. Nonetheless, it is important to set
counter-measures in case of repetitive heat pipe failure accidents. One active measure is to lower
the control slabs in order to reduce power and lower the core temperature. This will affect the
energy production of the reactor and should be used only if a significant number of broken heat
pipes exist. In case too many heat pipes fail and the reactor comes too close to the threshold of

two thirds of failing heat pipes, the reactor should be shutdown.

8.6.2 Class B

Class B accidents have the probability of a small release of radioactive material. Due to the large
amount of barriers preventing radioactive material release, this class of accidents requires
multiple failures. A heat pipe break in conjunction with a fuel cladding rupture must occur to
allow radioactive material to pass into the intermediate loop. The molten salt acts as a barrier as
well, as any radioactive material will be highly diluted. A break between the CO, heat exchanger
is required to get the material into the generator building. From the generator, the radioactive

material could escape into the atmosphere if there were a leak somewhere in the CO, system.

8.6.3 Class C

Class C accidents require many fuel cladding and many heat pipes break, in addition to a breach
in the reactor vessel. This would cause radioactive Flibe to leak into the ground. However, being
subjected to a nearly atmospheric pressure, a break in the vessel is improbable enough to be
designed out of the possible outcomes. This will still be covered in the beyond design basis

accidents section in Section 8.9.

A preliminary assessment of the consequences of a cascade failure of heat pipes is the subject of

the following section.

8.7  Heat Pipes Failure

Heat pipe failure is of critical importance to this reactor design since it is the most likely cause
for any core damage. Among other problems, heat pipe failure could cause fuel swelling due to
higher temperatures inside the core. The failure of heat pipes is similar to any other component

in that they can be categorized by 3 main failure modes: juvenile failures, performance-related
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failures, and age-related failures. In this respect one may visualize a typical component failure

curve (sometimes referred to as a bathtub curve) as shown below in Figure 49.
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Figure 49 Component bathtub curve

The three failure modes are discussed below. The illustrations are taken from a LANL study

[mmm]; they apply to the reference case defined in Table 9 and in Figure 50 below.

Table 9 Reference Heat Pipe Specifications

Parameter Values
Wick Shape Annular
Evaporator Length 0.50m
Adiabatic Length 0.50m
Condenser Length 1.00 m
Container Inside Radius 0.584 cm
Channel Dimension ~0.056 cm
Wick Pore Radius 15 um
Nucleation Site Radins 3 um
Solid Thermal Conductivity | 60 Wm K™
Working Fluid Na
Temperature 1230 K
Design HP Power 8.0
Design Axial Heat Flux 5.123 kWem™
Evaporator Radial Heat Flux | 36.14 Wem™
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Figure 50 Performance limit curves for the reference case in Table 9

Figure 50 shows curves of the various heat pipes limits and the deduced operating point; this HP
can deliver 8 kW at ~1240K. This operating power level is more than a factor of 3 smaller than
the maximum possible axial heat transport rate — shown by the horizontal arrow. That is, a safety

margin of more than 3 is used in this application.

Juvenile Failures Juvenile failures could be caused by a number of factors

including improper design, manufacturing errors, welding errors, heat pipe filling errors,
mechanistic failures, etc. These failures may occur early in a cycle, and can possibly be mitigated

through slow startup procedures.

Performance-Related Failures Performance-related failures occur during the mid-life of a

component and are typically caused by events external to the heat pipe. For example, a
neighboring heat pipe failure will put more of a load on a heat pipe. Such a case is illustrated in

Figure 51 below.
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Figure 51 New operating point caused by neighboring heat pipe failure

Age-Related Failures A number of age-related failures could occur and are usually due

to the gradual degradation in performance of a heat pipe during its design life. The loss of heat
pipe tube integrity caused by the corrosion of the wall due to nonmetallic impurities is a concern.
Similarly, the loss of wick functionality due to corrosion or dissolution poses another problem.

The effective pore radius could also change with time, lowering some of the performance limits.

Cascading Heat Pipe Failure The most important safety issue involved with the HP-
ENHS is a cascading heat pipe failure. The failure of one or more heat pipes would increase the
thermal load on adjacent heat pipes, which increases their likelihood to fail. Several analyses had
been done on a small IMW heat pipe reactor design. The increase in temperatures and heat load

on a heat pipe based on the failure of its neighbors is listed in Table 10 below.

Table 10 Temperature and Heat Load Increases Due to Heat Pipe Failure

Number of Failed Adj. Heat Pipes

1 2 3

Max Increase in T-vapor (K) 28 60 82
Max Increase in P-heat pipe (%) 7.4 16.0 226
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This data gives a relative idea of a heat pipe cascading failure for the HP-ENHS. Figure 52
below gives a similar picture as was provided previously, except here multiple heat pipe failures

are assumed raising the operating point to an even more dangerous level.
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Figure 52 New operating points caused by cascading heat pipe failure

The LANL study assumed a single heat-pipe reliability of 99.5%. Applying the DIPREL Monte
Carlo tool at LANL to account for cascading heat-pipe failure resulted in a probability of success

estimation of 0.99842.
8.8  Reactor Site Criteria
When calculating the suitability of a site to house a reactor, 10 CFR 100 [56] must be followed

to minimize exposure in the case of a DBA. 10 CFR 100 says:

e “(1) An exclusion area of such size that an individual located at any point on its boundary for
two hours immediately following onset of the postulated fission product release would not
receive a total radiation dose to the whole body in excess of 25 rem or a total radiation dose

in excess of 300 rem to the thyroid from iodine exposure.” [56]
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e “(2) A low population zone of such size that an individual located at any point on its outer
boundary who is exposed to the radioactive cloud resulting from the postulated fission
product release (during the entire period of its passage) would not receive a total radiation
dose to the whole body in excess of 25 rem or a total radiation dose in excess of 300 rem to

the thyroid from iodine exposure.” [56]

e “(3) A population center distance of at least one and one-third times the distance from the
reactor to the outer boundary of the low population zone. In applying this guide, the
boundary of the population center shall be determined upon consideration of population
distribution. Political boundaries are not controlling in the application of this guide. Where
very large cities are involved, a greater distance may be necessary because of total integrated

population dose consideration.” [56]

The Exclusion Zone of the HP-ENHS will be much smaller compared to the current boundary of
% miles employed by PG&E at Diablo Canyon. This is because the solid core of the HP-ENHS
reactor provides a more effective fission product barrier than in other reactor concepts and
because of the highly passive safety feature along with nearly zero burnup reactivity swing of the
HP-ENHS. Thus it is likely that the HP-ENHS will have the same or smaller dose release
probabilities when compared to the ENHS. Using this assumption, the Exclusion Zone can be set

as the reactor plant boundary and the Low Population Zone can be set as the site boundary [57].

8.9 Severe Accidents

The NRC has four requirements contained in the “Policy Statement on Severe Reactor Accidents
Regarding Future Designs and Existing Plants” that new reactors must fulfill (50 FR 32138)

[58]. These criteria are:

e “Demonstration of compliance with the procedural requirements and criteria of the current
Commission regulations, including the Three Mile Island requirements for new plants as

reflected in the CP [Construction permit] rule [10 CFR 50.34(f)]” [58]

e “Demonstration of the technical resolution of all applicable Unresolved Safety Issues and the

medium- and high-priority Generic Safety Issues, including a special focus on assuring the
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reliability of decay heat removal systems and the reliability of both AC and DC electrical
supply systems” [58]

e “Completion of a Probabilistic Risk Assessment (PRA) and consideration of the severe
accident vulnerabilities the PRA exposes along with the insights that it may add to the

assurance of no undue risk to public health and safety” [58]

e “Completion of a staff review of the design with a conclusion of safety acceptability using an
approach that stresses deterministic engineering analysis and judgment complemented by the

PRA” [58]

This report can only show completion of the first three requirements, as a staff review is not
possible at this time. The first requirement, that the Three Mile Island conditions be met is
satisfied to the best of the plant’s abilities. As this reactor is not a light water reactor, many of the
criteria outlined in CP rule 10 CRF 50.34(f) are not applicable. Subsection 1 requires a PRA,
which will be provided in chapter 5. The remainder of subsection 1 is LWR-specific and pertains
to core cooling, containment spray, and other features that are not needed in the HP-ENHS.
Subsection 2 deals with the control room and the ability of the containment to hold. The control
room has yet to be finalized; however, a simulation control room can be completed when the
design is ready. The containment will be designed to prevent the leakage of radioactive materials
and to monitor the conditions inside containment in accordance with this subsection, although
certain sections are not applicable to our reactor due to the nature of the molten salt loop.
Subsection 3 requires compliance with procedures and adherence to building codes. This

subsection will be followed in the final design.

8.10 Beyond Design Basis Accidents

Beyond design basis accidents are accidents that could lead to core melt. The HP-ENHS core is
postulated to have two conditions that might lead to core melt. One is a failure of 2/3 of the heat
pipes without a scram, and the other is a reactor vessel break resulting in loss of the intermediate
coolant. The heat pipe condition will be covered in Section 8.11.2. The loss of Flibe accident is

discussed below.

An important safety issue in the case of a Loss of Coolant Accident is the handling of the decay

heat of the fuel. Upon a LOCA, the control slabs will immediately be scrammed in order to shut
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the reactor down. Therefore, only the decay heat of the core would need to be evacuated to a heat

sink without the help of the Flibe.

The heat from the core is carried by the heat pipes to the wall of the reactor vessel that will heat
up. This heating will increase the heat flux from the outer surface of the reactor vessel to the air
flowing in the RVACS by natural circulation. Figures 53 and 54 schematically illustrate this
process — heat from the core (Point 1) is transferred to the heat pipes (Point 2) which deliver this

heat to the vessel wall (Point 3).

Figure 53 Heat transfer in LOCA

The following is a preliminary estimation of the velocity of air needed in the RVACS and the
temperature profile in the vessel. Although a 2D or 3D model is required for accurate analysis of

this heat transfer problem, a simplified model is used to obtain a preliminary assessment of the

aAir flow

Figure 54 LOCA heat transfer model a

feasibility of this cooling system in case of LOCA in the intermediate loop.

Interior of the vessel
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It is assumed that all of the decay heat generated by the core, Q, is evacuated to the heat sink
(air), in a steady-state scenario. The decay heat level is assumed to be 10% of the nominal power
of the core. It is also assumed that the air flow of the RVACS has a laminar boundary layer.
These assumptions are conservative. Finally, it is postulated that the heat coming out of the heat
pipes is spread uniformly over a large band of the vessel wall, corresponding to a section of half

of the height of the vessel (see Figure 53).

)

Figure 55 Heat distribution on reactor pressure vessel

In order to obtain the velocity of air necessary to cool down the vessel and take away Q=12.5

MW of heat, we make use of the Prandtl, Reynolds, and Nusselt numbers of the flow.

i
Nu = hL Re = L
k n
Pr (air) = 0.7

K (Hastelloy N, 1000K) = 30 W/m-K
The Laminar Boundary Layer relation gives : Nu = 0.332 x Pr’ x Re"”

It is therefore possible to estimate V, postulating a linear temperature profile in the vessel wall
(the left side being considered adiabatic since the heat exchanges with the interior of the vessel

are assumed to be negligible)

This model gives an external wall temperature of 1084K and an air velocity of 2.71 m/s.
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According to this study, the RVACS is sufficient with a slight forced convection, and the
temperature of the vessel wall does not exceed the maximum temperature for Hastelloy N. The
reactor can safely accept the decay heat of the core without damage in case of a LOCA accident.

Thus, no confinement modes are needed.

8.11 Risk Assessment, Risk Management and Safety Goals

The NRC policy for the safety goals are stated in 51 FR 30028 [59]. The quantitative goals are:

e “The risk to an average individual in the vicinity of a nuclear power plant of prompt fatalities
that might result from reactor accidents should not exceed one-tenth of one percent (0.1
percent) of the sum of prompt fatality risks resulting from other accidents to which members

of the US population are generally exposed.” [59]

e “The risk to the population in the area near a nuclear reactor of cancer fatalities that might
result from nuclear power plant operation should not exceed one-tenth of one percent (0.1

percent) of the sum of cancer fatality risks resulting from all other causes.” [59]

The number of deaths in the United States from in 2004 from prompt deaths (accidents, murder,
and suicide) was 52.8 people per 100,000 leading to a limit of 5.28E-7 prompt nuclear fatalities
per year. The rate of deaths due to cancer was 187.4 people per 100,000 for an upper limit of
1.87E-6 latent nuclear fatalities per year [60].

8.11.1 Risk Assessment of Inherently Safe Features

The HP-ENHS employ passive safety features to avoid core damage and radioactive isotopic
release. The passive safety systems include the sodium heat pipes, natural convection of the
intermediate Flibe loop, and the Reactor Vessel Air Cooling System (RVACS). Because the

system is inherently safe, is there a way to characterize risk?

Upon initial inspection, it is expected that inherent safe reactors carry no probability of causing
core damage or isotopic release. However, these reactors are dependent on features whose failure
can lead to severe accidents. Thus, to quantify the risk associated with inherently safe reactors,
assessment of the probability of failure of the underlying safety structures that could affect the

assumptions of the passive safety characteristics need to be made [61].
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The structures critical to the inherent safety of the HP-ENHS are the RVACS, reactor vessel, and
heat pipes. The HP-ENHS reactor is small and compact such that decay heat can be removed by
natural convective air flow over the reactor vessel. The decay heat is transferred to the wall of
the vessel by heat pipes. Two potential weaknesses are identified in this passive safety system.
The first weakness is the failure of heat pipes that can lead to a cascade of failure which will
increase core temperature. The second weakness is a failure of structural components inside the

reactor vessel that may reduce the Flibe natural circulation sufficient to cause core damage.

In order to quantify risk associated with passive safety in a reactor, the probability of failure of
critical structures must be determined. However, it is a challenge to quantify the probability of
failure of a structure because it is necessary to have data on the probability distributions for both
load and material strength. If the distributions were normal, then in order to demonstrate that the
probability of failure is of the order 107, the distributions would need to be known accurately out
to 5 or 6 standard deviations [61]. In reality, it is very difficult to predict the probability
distributions for either load or strength to this degree of accuracy. Another challenge is that
different assumptions of the type of distribution can lead to varying values on the probability of
failure [61]. In the case of the HP-ENHS, the operating temperature of the structure is high,
which can lead to creep and fatigue damage. Available data on the probability distribution in

these regimes are only estimates.

Because of the lack of adequate data on materials, detailed information on the vibration and
temperature distribution exposed to critical structures, it is difficult to quantify the probability of
structural failure in inherently safe systems. Even though more information concerning materials
will become available over time as research continues, it is still unlikely possible that low
probability of failure of critical structures in inherently safe systems can be demonstrated. Thus,

the assessment of risk associated with the HP-ENHS will be performed for heat pipes failure.

8.11.2 Probabilistic Risk Assessment of Heat Pipes

From the Beyond Design Basis Accident, it is shown that the greatest threat to core damage is
the loss of heat pipes. Loss of intermediary coolant, Flibe, is highly unlikely since it would entail
the reactor vessel to fail; reactor vessel has low probability of failure. One mode of failure of

heat pipes in the same area can cause more heat pipes to fail in the same vicinity, causing a
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cascade of failing heat pipes. This failure mode of the heat pipe is taken as an initiating condition
that could lead to core melt. A Monte Carlo type simulation was used to predict failure of heat
pipes due to cascading effect. It was found after 100,000,000 runs that the maximum limit on the
probability of a fatal cascade, where over 2/3™ of the heat pipes fail, was 1.0E-5. The probability
that a heat pipe will fail is 5.0E-3 [7]. Using this probability, the probability of three adjacent
heat pipe failing was 1.3E-7. If heat pipes start to fail because of the cascading effect, then
control slabs are used to scram the reactor. Using these events, a simple event tree was
constructed to determine the core damage frequency (CDF), which can be seen in Figure 56. The
component failure rates were taken from sample failure rates given in IAEA general reliability
data [62]. The CDF due to an initial three heat pipes failing is 1.3E-18 per year. This value is
lower than the federal regulation of 1E-4 per year in Regulatory Guideline DG-1145. The event
tree used to calculate the CDF is very crude and does not factor in other possible scenarios that
can lead to core damage. To further reduce uncertainties related to the CDF, further studies need

to be done on the behavior of heat pipe cascade and other scenarios that might lead to core

damage.
e PRA: HP Failure Initiating Event N\
3 HP Cascade SCRAM Core
Failure Damage
1.3E-12 No
1.0E-5
3.9E-6 5.1E-18 Yes
-1.3E-7-
1.3E-7 No
K Total Core Damage Frequency: 1.3E-18 /

Figure 56 Heat pipe failure event tree
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In the event of numerous heat pipes breaking, the control slabs will be engaged to scram the
reactor and shut it down. There are two control slabs in the scram system and only one slab
needs to be dropped onto the core to shut it down. The control slabs employ neutron flux sensors
to trigger the actuators to drop the slabs. Three sensors are used and two out of three positive
signals from the sensors are needed to trigger the actuator. The sensors can either use on/offsite
or station battery power. The value of the failure probability of the sensors, battery, on/offsite
power are taken from industry data. From the probability tree in figure 24, the control slab’s
probability of failure to deploy is 4.5E-10/hr or 3.9E-6/year. The probability of failure

determined is crude and more precise methods will be employed in the future.

/ Probability Tree: Control Slab \
Control Slab
4 5E-10
2
Actuators
3 Sensors
3.5E-10
[18]
Battery On/Offsite
27 5E-6 Power
[18] 1.1E-5
NG ALy

Figure 57 Probability tree of control slab (per hour)
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8.11.3 Loss Of Offsite Power (LOOP)

The loss-of-offsite-power (LOOP) initiating event is investigated to determine whether this will
lead to core damage. LOOP will lead to loosing the tertiary loop, which includes the S-CO,
power conversion unit that serves as the HP-ENHS ultimate heat sink. Loosing the tertiary loop
will not lead to failure of the heat pipes, which is the main reason for causing core damage.
Loosing the tertiary loop will cause temperature in the intermediate loop to rise because the heat
taken to power the conversion units will remain in the Flibe. However, the Flibe and the heat
pipes are capable of transferring the excess heat to the RVACS to cool down. Thus, LOOP will

not lead to core damage because the probability of heat pipes failing is low.

8.12  Seismic Safety

The Nuclear Regulatory Commission (NRC) set forth requirements for proposed sites for nuclear
reactors in “Reactor Site Criteria”, 10 CFR 100 [56]. The HP-ENHS will meet NRC criteria at

the Diablo Canyon site in the following way:

“The geologic, seismic and engineering characteristics of a site and its environs shall be
investigated in sufficient scope and detail to provide reasonable assurance that they are
sufficiently well understood to permit an adequate evaluation of the proposed site, and to provide
sufficient information to support the determinations required by these criteria and to permit
adequate engineering solutions to actual or potential geologic and seismic effects at the proposed

site [56].”

Even though the Diablo Canyon site is surrounded by major faults, the Hosgri Fault zone
dominates seismic hazard because it is the closest fault to the site. The Los Osos and San Luis
Bay faults taken together contribute 3-5% of the total hazard. Other fault contributions are
insignificant. Thus, analysis of seismic study will focus primarily on the Hosgri fault. The
majority of information regarding the Diablo Canyon site is found in Pacific Gas & Electric

Long Term Seismic Program [55].

The Hosgri fault zone is the southernmost part of the San Gregorio/Hosgri fault system, which is
a complex system of faults that is subparallel to the central California coast [55]. To the north of

the Hosgri fault zone are two other major fault zones, namely the San Gregorio and San Simeon.
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The San Gregorio/Hosgri fault zone splits from the San Andreas system to the north, near
Bolinas. The system seems to die out near Point Pedernales, 410 kilometers to the southeast. The
Hosgri fault zone lies offshore throughout its length and is about 110 kilometers long [55]. The
determination of the characterization of the Hosgri fault zone is best determined by using logic

trees.

The characterization of seismic source often carries uncertainty because there is usually no
specific data or recorded history of earthquake activity. Thus, indirect methods are employed to
evaluate the seismic potential of faults by using indirect measurement of size, frequency and
location of earthquakes that the fault may generate. Logic trees can aid in the process of fault
evaluation by incorporating alternative interpretation of data as a measure of uncertainty. Using
logic tree has advantages since it gives complete enumeration of possible states of nature and
ensures all hypothetical situations have been accounted for properly with appropriate weights to
each. Logic trees are made of branches and nodes, with the nodes representing a choice between
different values of a variable. The branches are the particular value leading off particular nodes.
To arrive at the final magnitude distribution, the logic tree goes through different nodes in the

tree that are associated with particular characteristics of the fault.

The maximum quake magnitude for the Hosgri fault zone is estimated using empirical relations
between magnitudes and source characteristics in logic trees. Paths taken through the logic tree
define scenarios that are each associated with a maximum magnitude. By repeating the
calculation for all branches of the trees, a probability distribution for maximum magnitude quake
is developed. The distribution of the maximum magnitude has a mean value of 6.96 and a
standard deviation of 0.27 magnitude units [55]. Figure 60 shows the distribution of the

maximum magnitude earthquake.
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Figure 58 Maximum magnitude distribution for Hosgri fault zone

Figure 59 describes the magnitude distribution for the Hosgri fault zone obtained conditional on
the sense of slip. Sense of slip models modes of deformation. The ratio of horizontal to vertical
components of slip defines the mode of deformation. For strike-slip, the ratio is greater than 2:1;
oblique is less than 2:1; and thrust slip is greater than 1:2 and less than 2:1. The distributions are
similar for each style of slip and the resulting mean estimates are 6.98, 6.93, and 6.98 for strike-
slip, oblique, and thrust faulting, respectively. The total probability of the entire different slip

style is one.
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Figure 59 Maximum magnitude distribution for Hosgri fault zone for several sense of slip

8.12.1 Seismic Isolators

“Where unfavorable physical characteristics of the site exist, the proposed site may nevertheless
be found to be acceptable if the design of the facility includes appropriate and adequate

compensating engineering safeguards [56].”

Seismic isolators are used as added protection for the plant during an earthquake. Isolators work
by preventing the full amount of motion from being transferred to the object being isolated. This
is done by creating a discontinuity in the form of a different material with low motion transfer
properties between the object and the ground [63]. The HP-ENHS will be placed in the ground
with room around the vessel for the RVACS to function. The reactor will be supported at its top,
which is where the seismic isolators will be placed. Figure 60 is a diagram of the placement of

the seismic isolators on an ENHS. The HP-ENHS has the same shape, although the dimensions
differ.
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Figure 60 Location of seismic isolators, represented on an ENHS [57]

Lead rubber isolators were chosen for this purpose, as they have proved successful in preventing
structural damage to the University Hospital in the 1994 Los Angeles earthquake. Lead rubber
isolators also dampen vibrations, making them well suited to this application. Figure 61 shows a

diagram of a lead rubber isolator.
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8.12.2 Seismically Induced Component Failure

The mean failure frequency of key components at discrete acceleration in Table 11 is taken from
the LTSP. These key systems are similar to the ones employed in the HP-ENHS. The loss-of-
offsite-power has the highest probability of failure, while the station batteries and reactor vessel

has low failure fraction. The failure fraction obviously increases as the discrete acceleration of

the ground increases.

Table 11 Failure Fraction of Key Structures (LTSP)

- Steel load plates

Steel remforcing
— plates

— Internal rubber
layers

Conditional Mean Failure Fractions of Key Structures or Components

Component/Structure Discrete Acceleration Range (g)

0.750 [1.500 |1.875 2.250 2.750  |3.500
Batteries 6.10E-08/4.11E-0544.14E-04{2.19E-03/1.11E-02 |4.13E-02
Battery Charger 1.36E-06|1.53E-04(7.44E-042.14E-03|6.64E-03 |1.75E-02
Offsite Power, 230 kV|8.37E-03|3.19E-01|6.23E-01|7.93E-01{9.29E-01 [9.80E-01
Offsite Power, 500 kV|1.61E-01/9.63E-01/9.96E-01/9.99E-01|1.00E+00{1.00E+00
Reactor Vessel 2.50E-08|1.21E-05]|1.05E-04/4.88E-04{2.43E-03 |9.50E-03

The risk assessment regarding seismically induced component failures leading to core damage is
examined. The behavior of heat pipes under seismic conditions has yet to be studied. Fragility

and seismic hazard analysis needs to be determined for heat pipes in order to answer the question
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of whether the HP-ENHS is safe in the event of earthquakes. One concern for heat pipe behavior
is that they can break during earthquakes because the oscillatory motion of the reactor causes the
heat pipes to impact the reactor vessel wall. Furthermore, the behavior of the S-CO, power
conversion unit under seismic events is an important area of research in the future. The issue of
seismic safety for the HP-ENHS is still uncertain since the reactor has major areas that need to
be studied, including the heat pipes and power generation system. However, we know from the
heat pipe analysis that the total failure rate of the heat pipes should be under 35% in order for the

reactor to experience safe shutdown.

8.13 Summary

The HP-ENHS is a concept reactor that is highly dependent on passive safety to prevent and
mitigate accidents. The system employs supercritical carbon dioxide in the tertiary loop to
convert heat to power using the recompression cycle. An indirect cycle is used, where heat is
transferred by the intermediate Flibe coolant to the S-CO, through heat exchangers. The reheat in
the indirect loop was found uneconomical. Heat pipes are used to transport heat from the core to
the intermediate loop. Heat pipes have a 99.5% reliability, with a conservative success
probability of 99.8%. Under normal operation, the Flibe flow rate was found to be .25 m®/s and
ITS average outlet temperature IS 1040 K or 767 °C. Corrosion of the vessel wall due to
interaction with high temperature Flibe is not a concerning issue as long as compatible alloy such

as Hastelloy N is used as the Flibe container material.

The severe accident event of loss-of-intermediate-coolant, Flibe, was investigated. The Flibe
intermediate coolant was assumed lost. In this event, it was postulated that all the heat from the
core is removed by the heat pipes and transferred to the reactor vessel wall to be cooled by
RVACS. It was found that with an air velocity of 2.71 m/s that the vessel wall reached 1084 K or
811 °C. Thus, RVACS alone is sufficient to cool the reactor to temperatures below the maximum
temperature of Hastelloy N. The reactor’s passive safety system is adequate to remove the decay

heat of the core in the event of an intermediate loop LOCA.

Heat pipe failure remains the major concern for core damage. To prevent further nuclear

reactions in the core once the threshold of 2/3™ of the heat pipes failed is reached, the active
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safety system of control slabs are employed. The frequency of failure of the reactor to scram was

found to be 3.9E-6 failure per year.

Probabilistic risk assessment of inherently safe reactors is challenging since it would require
determining the probability of failure distribution of the critical structure underlying the passive
safety systems. Thus it is highly unlikely that the low probability of failure of the critical

structures underlying the inherently safe systems can be verified.

The operating site for the HP-ENHS was chosen to be Diablo Canyon in California, one of the
more stringent site criteria since it is located next to a major fault system, the Hosgri fault. From
the LTSP, the distribution of the maximum magnitude earthquake at the site was found to have a
mean value of 6.96 and a standard deviation of 0.27 magnitude units. Seismic isolators are used
in the HP-ENHS design as added protection for earthquakes. Lead rubbers isolators were chosen
because they can dampen vibrations, which is well-suited for this reactor. The lead rubbers
isolators were also proven to successfully prevent structural damage to the University Hospital in
the 1994 Los Angeles earthquake. Nevertheless, seismic related accidents are still of much
concern. Little is known about how the components of the reactor, including the reactor vessel,

will handle an earthquake.

Although a good deal of research has gone into the HP-ENHS already, more work needs to be
done before it can be licensed at DCPP. Earthquakes are a major danger at Diablo Canyon, and
more tests need to be run on alkali-metal heat pipes before they can be placed into commercial
reactors. A core melt accident due to heat pipe cascading failure is a very real problem in this

design due to the great amount of uncertainty involved.

More types of design basis accidents must be identified. These new types along with the current
DBAs must be characterized with greater certainty than done in this report.. In addition, the dose
release from all of the DBAs must be found. Heat pipe failure and cascading are two of the more
important areas for research since multiple heat pipe failures are the main cause of core damage.
Beyond design basis accidents also require more analysis in the identification of such accidents

and making design modifications to mitigate the consequence of such accidents.
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The HP-ENHS has the potential to be the safest reactor yet. With a high number of fission
product barriers and the ability to operate fully in a passive manner, the HP-ENHS greatly
reduces the dose to plant workers. In addition, decay heat removal through the heat pipes could

one day provide unparalleled core melt protection.

9. CONCLUSIONS

The feasibility assessment performed during the first year of the project found that it is feasible
to design an ENHS-type reactor to have a solid core, to use liquid-metal heat-pipes for the
primary coolant system and to use a naturally circulating intermediate coolant system. The 125
MWy, core is designed to provide the intermediate coolant average outlet temperature of ~
1040K; significantly higher than the ~750K average outlet temperature of the reference ENHS
intermediate coolant. This could be translated into approximately 25% increase in the energy

conversion efficiency — from ~40% of the reference ENHS to over ~50% for the HP-ENHS.

Alternatively, the higher average intermediate coolant outlet temperature can be used to
minimize the HP-ENHS reactor dimensions and weight. For the reference ENHS reactor energy
conversion efficiency, the HP-ENHS vessel height needs be only 9 m versus nearly 20 m of the
reference ENHS. Its vessel diameter is approximately 4 m versus ~ 3.5 m of the reference ENHS
reactor module and versus 4 m to 5m of the reference ENHS reactor pool. No such pool is
required for the HP-ENHS reactor. Not only can the HP-ENHS reactor be significantly smaller
than the reference ENHS reactor of comparable power, but it could also be significantly lighter,
making it easier to transport fueled from the factory. Whereas the reference ENHS module has to
have the fuel embedded in solidified Pb-Bi for safe transportation, the HP-ENHS fuel is

permanently supported by a solid structure.

The preferred design of the HP-ENHS core uses nitride fuel, Mo TZM alloy structure and Na-
filled HPs. The solid core is oriented horizontally to efficiently transfer heat from the core to the
natural circulation intermediate coolant system via the HPs extending from both ends of the core.
The preferred intermediate coolant is LiF-BeF, and preferred reactor vessel and heat-exchanger

structural material is Hastelloy.
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The HP-ENHS offers sustainable energy (CR~1.05) along with fission energy at a very high

temperature (>1000K). In addition it features

= High proliferation resistance

= Very low probability for reactivity insertion accidents

Relative to the reference ENHS reactor design [1, 57], the HP-ENHS design concept offers a

number of advantages including the following:

e higher coolant outlet temperature, potentially offering higher efficiency and hydrogen
production capability;

e significantly enhanced passive decay heat removal capability;

e 1o positive void reactivity coefficient;

e smaller and lighter reactor;

e more robust core for safe transportation.

A disadvantage of the HP-ENHS is that its core averaged specific power is ~10% lower than that
of the reference ENHS core. However, the increased energy conversion efficiency and/or
reduced size and weight of the HP-ENHS are likely to make the HP-ENHS more economically
viable. Optimization of the fuel rod and heat pipe diameters and of the core length and diameter

could possibly result in increased specific power.
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