
UCRL-JRNL-231442

A Generalized Eigensolver based on
Smoothed Aggregation (GES-SA) for
Initializing Smoothed Aggregation
Multigrid (SA)

M. Brezina, T. Manteuffel, S. McCormick, J. Ruge,
G. Sanders, P. S. Vassilevski

June 4, 2007

Numerical Linear Algebra with Applications

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

A GENERALIZED EIGENSOLVER BASED ON SMOOTHED
AGGREGATION (GES-SA) FOR INITIALIZING SMOOTHED

AGGREGATION MULTIGRID (SA) ∗

MARIAN BREZINA, TOM MANTEUFFEL, STEVE MCCORMICK,

JOHN RUGE, GEOFFREY SANDERS, PANAYOT VASSILEVSKI †

Abstract. Consider the linear system Ax = b, where A is a large, sparse, real, symmetric, and
positive definite matrix and b is a known vector. Solving this system for unknown vector x using
a smoothed aggregation multigrid (SA) algorithm requires a characterization of the algebraically
smooth error, meaning error that is poorly attenuated by the algorithm’s relaxation process. For
relaxation processes that are typically used in practice, algebraically smooth error corresponds to
the near-nullspace of A. Therefore, having a good approximation to a minimal eigenvector is useful
to characterize the algebraically smooth error when forming a linear SA solver. This paper discusses
the details of a generalized eigensolver based on smoothed aggregation (GES-SA) that is designed to
produce an approximation to a minimal eigenvector of A. GES-SA might be very useful as a stand-
alone eigensolver for applications that desire an approximate minimal eigenvector, but the primary
aim here is for GES-SA to produce an initial algebraically smooth component that may be used to
either create a black-box SA solver or initiate the adaptive SA (αSA) process.

Key words. generalized eigensolver, smoothed aggregation, multigrid, near-kernel, GES-SA,
adaptive, SA,

AMS subject classifications.

1. Introduction. In the spirit of algebraic multigrid (AMG; [4, 9, 7]), smoothed
aggregation multigrid (SA; [10, 12]) has been designed to solve linear systems of
equations with little or no prior knowledge regarding the geometry or material coef-
ficients of the problem. Therefore, SA is often well-suited for problems discretized
on unstructured meshes, with varying coefficients, or with no underlying geometry at
all. Consider solving sparse linear systems that arise from discretizing elliptic PDE
problems. The relaxation processes commonly used in multigrid are computationally
cheap, but fail to adequately reduce certain types of error, which we call error that
is algebraically smooth with respect to the given relaxation. If a characterization of
algebraically smooth error is known, in the form of a small set of vectors, the SA
framework is ideally suited for construction of intergrid transfer operators that elimi-
nate such error components. For example, in a three-dimensional elasticity problem,
six such components (the so-called rigid body modes) form a characterization of the
algebraically smooth error. These are often available from discretization packages.
However, for certain problems, such a characterization may not be readily available,
even for scalar problems.

Adaptive SA (αSA [3]) was designed specifically to create a representative set of
vectors in cases where a characterization of algebraically smooth error is not known.
Initially, simple relaxation is performed on a homogeneous version of the problem for
all levels of the multigrid hierarchy being constructed. These coarse-level approxima-
tions are used to achieve a global-scale update that serves as our first algebraically
smooth vector component. Using this one resulting component, the SA framework

∗This work of the last author was performed under the auspices of the U. S. Department of
Energy by the University of California Lawrence Livermore National Laboratory under contract
W-7405-Eng-48
†Department of Applied Math, University of Colorado at Boulder (sandersg@colorado.edu, ,

tmantuef@colorado.edu, stevem@colorado.edu, ruge@colorado.edu) and CASC, Lawrence Liver-
more National Laboratory (vassilevski1@llnl.gov).

1

2 Brezina, Manteuffel, McCormick, Ruge, Sanders, and Vassilevski

is employed to construct a multigrid solver, and the whole process can be repeated
with the updated solver playing the role of relaxation. At each step, the adequacy of
the solver is assessed by monitoring convergence factors, and if the current solver is
deemed adequate, then the adaptive process is terminated and the current solver is
retained.

Adaptive SA has proven successful for a class of problems. However, in certain
difficult cases, an impractically large number of relaxation steps is required to compute
the first algebraically smooth component. The eigensolver presented in this paper is
intended to accurately calculate the initial component for such cases, expanding the
class of problems that αSA successfully solves.

As with any multigrid solver, the success of the method depends on designing
coarse spaces capable of eliminating algebraically smooth error, complementing the
relaxation process. To motivate the use of an eigensolver, we recall the concept of
near-kernel error components. Consider the linear system Ax = b, where A is real,
symmetric, positive definite, and scaled so diagonal entries are all ones. For a given
approximate solution x̃, define the associated error vector to be e := x − x̃. If the
error is such that

‖Ae‖2 << ‖A‖2‖e‖2,(1.1)

we say that e is near-kernel or near-nullspace. Simple relaxation processes that we
consider, such as Richardson, damped-Jacobi, and Gauss-Seidel, are based on residual
correction. If the associated residual vector, r := b− Ax̃ = Ae, is small in the sense
of (1.1), then the error correction is negligible for such methods. Therefore, we use
algebraically smooth and near-kernel synonymously in the context of such simple
relaxation schemes. Because A is usually ill-conditioned, for the eigenvector v1 of A
that corresponds to the smallest eigenvalue, λ1, or minimal eigenvector, we have

‖Av1‖2 = λ1‖v1‖2 << ‖A‖2‖v1‖2.(1.2)

In other words, v1 is a near-kernel component that is algebraically smooth with respect
to a simple relaxation scheme. Ideally, this would be the first vector that an adaptive
SA method computes to produce an SA solver with good performance. Computing
a minimal eigenvector is the goal of the generalized eigensolver based on smoothed
aggregation (GES-SA) that we present in this paper.

It is known from the literature (eg. [1, 2]) that a sufficient condition for optimal
two-level convergence is that, for a given interpolation operator, P , and for any u on
the fine-grid, there exists a v from the coarse-grid, such that

‖u− Pv‖22 ≤
C

‖A‖2
(Au,u),(1.3)

for a constant C. This requirement is known in the literature as the weak approxima-
tion property, and reflects the observation noted in [7, 8] that the minimal eigenvector
needs to be interpolated with accuracy inversely proportional to the size of its eigen-
value. (Note that ‖A‖2 = O(1) due to the scaling requirement on the diagonal of A.)
This emphasizes the need for accurate computation of the minimal eigenvector.

The GES-SA algorithm performs a series of subspace corrections that minimize
the Rayleigh quotient over various subspaces. It uses local subspace corrections that
are analagous to a nonlinear relaxation process, and global subspace corrections that
are analagous to a nonlinear coarse-grid correction. In short, GES-SA is a variant

GES-SA 3

of algebraic Rayleigh quotient multigrid (RQMG [5]) that uses overlapping block-
Rayleigh quotient Gauss-Seidel for its relaxation process and multiplicative smoothed
aggregation corrections for its coarse-grid corrections. Although the actual eigenprob-
lem that we wish to solve on the finest grid is not a generalized one, we phrase GES-SA
as a generalized eigensolver to accommodate recursive application of the eigensolver
on coarse subspaces.

The rest of section 1 gives a simple example and a background on smoothed
aggregation multigrid. Section 2 introduces the components of GES-SA. Section 3
presents how the components introduced in section 2 are put together to form the full
GES-SA algorithm. Section 4 presents a numerical example with results that demon-
strate how the linear SA solvers produced with GES-SA have desirable performance
for particular problems. Finally, section 5 makes concluding remarks.

1.1. The Model Problem. Example 1. Consider the linear problem Ax = b
and its associated generalized eigenvalue problem Ax = λBx. Up to a scaling, A is
the 1D Laplacian with Dirichlet boundaries, discretized with equidistant, linear finite
elements or second order central differences:

A =


2 −1
−1 2 −1

. . .
−1 2 −1

−1 2

 ,(1.4)

an n × n tridiagonal matrix. Matrix B for this example is In, the identity operator
on Rn. The full set of nodes for this problem is Ωn = {1, 2, ... , n}. The problem
size, n = 9, is used throughout this paper to illustrate various concepts regarding the
algorithm. Note that the 1D problem is used merely to display concepts and is not
of further interest, as its tridiagonal structure is treated with optimal computational
complexity using a direct solver. However, the example is useful in the sense that it
captures the concepts we present in their simplest form.

1.2. Smoothed Aggregation Multigrid. In this section we briefly recall the
smoothed aggregation multigrid (SA) framework for constructing a multigrid hierar-
chy. Like any algebraic multilevel method, SA requires a setup phase. Here, we follow
the SA setup phase presented in [10, 12, 11].

At the heart of SA coarsening is a discrete partitioning of fine-level nodes into a
disjoint covering of the full set of nodes. The members of partition are locally grouped
based on their strength of coupling within the graph of the problem matrix. Each of
these groups is called an aggregate. For our purposes, we formally define aggregation
as follows:

Definition 1.1. A sequence of J subsets {Aj}Jj=1 is an aggregation of Ωn =
{1, 2, ..., n} with respect to A, if the following conditions hold.

• Covering:
⋃J

j=1Aj = Ωn.
• Disjoint: For any j 6= k, Aj ∩ Ak = ∅.
• Connected: For any j, if two nodes p, q ∈ Aj, then there exists a sequence of

edges with endpoints in Aj that connects p to q within the graph of A.
Each individual subset Aj within the aggregation is called an aggregate.

4 Brezina, Manteuffel, McCormick, Ruge, Sanders, and Vassilevski

We return to example 1 to explain this concept. An acceptable aggregation of Ω9

with respect to A would be J = 3 aggregates, each of size 3, defined as follows:

A1 = {1, 2, 3}, A2 = {4, 5, 6}, A3 = {7, 8, 9}.(1.5)

It is easily verified that this partitioning satisfies definition 1.1. This aggregation is
pictured in figure 1.2. Two-dimensional examples are present in section 4.

Fig. 1.1. Graph of A from example 1 with n = 9, aggregated into three aggregates. Each
cartouche encloses the group of nodes in the respective aggregate.

A1 A2 A3

The appropriate choice of aggregates can have a dramatic impact on the per-
formance of the resulting method. Numerous approaches for aggregation have been
explored, either using pure graph theory or geometric knowledge.

We find it useful to represent an aggregation {Aj}Jj=1 with an n×m sparse, binary
aggregation matrix, which we denote by [A]. Each column of [A] represents a single
aggregate, with value one in the (i, j)-th entry if point i is contained in aggregate
Aj , and value zero otherwise. In our 1D example, with n = 9, we represent the
aggregation given in (1.5) as

[A] =



1
1
1

1
1
1

1
1
1


.(1.6)

Based on the sparsity structure of [A], the SA setup phase constructs a tentative
interpolation operator, P̂ , with a range that represents a given, small collection of
linearly independent vectors, K. This is done by simply restricting the values of each
vector in K to the sparsity pattern specified by [A]. In practice, K should consist
of prototypical near-kernel vectors. Set K can either be supplied or computed in an
adaptive procedure as in αSA [3] or by way of GES-SA, when the set is only one
vector. Either way, once K is known, the setup phase uses it to construct appropriate
operator hierarchies that form a linear multigrid solver. In this paper, we concentrate
on the case where prototypical set is composed of one vector, specifically K = {k1}.

Under the above construction, prototypical vectors are ensured to be in R(P̂),
the range of the tentative interpolation operator, and are therefore attenuated by a
corresponding coarse-grid correction. However, K is only a small number of near-
kernel components. Other vectors in R(P̂) may actually be quite algebraically oscil-
latory, which can be harmful to the coarsening process because it could lead to an
ill-conditioned coarse-grid operator. Also, some algebraically smooth error compo-
nents may not be well-represented by R(P̂).

GES-SA 5

To remedy the situation, SA does not use P̂ as its interpolation operator directly,
but uses instead an operator P obtained by applying a smoothing operator S to P̂
(P = SP̂). As a result, algebraically oscillatory components are more orthogonal
to its range, while algebraically smooth components are better represented by the
range of interpolation. A typical choice for the smoothing operator, S, is one step of
the error propagation operator of damped-Jacobi relaxation. In this paper, we use
Richardson smoothing under the assumption that the system is diagonally scaled so
that diagonal elements are one.

For symmetric problems, such as those we consider here, SA produces a coarse grid
using a Galerkin restriction operator, R = PT , and variational coarse-grid operator,
Ac = PTAP , as is commonly done in AMG methods. This process is repeated
recursively on all grids, constructing a multigrid hierarchy.

The GES-SA algorithm attempts to produce an accurate near-kernel vector to
be the initial vector in K. If the convergence of the resulting SA solver is slow, then
prototypical near-kernel set, K, may need to be augmented using an approach such
as αSA. The additional vectors should be algebraically smooth with respect to the
current linear solver and not just with respect to relaxation. This is the basic principle
behind αSA and is covered in detail in [3].

2. Subspace Correction Methods for Generalized Eigenvalue Problems.
Consider the generalized eigenvalue problem Av = λBv, where A and B are given
n× n real, symmetric, positive definite (SPD) matrices, v is an unknown eigenvector
of length n, and λ is an unknown eigenvalue. Our target problem is stated as follows:

find an eigenvector, v1 6= 0, corresponding to the smallest
eigenvalue, λ1, in the eigenproblem Av = λBv.(2.1)

For the sake of convenience, v1 is called a minimal eigenvector and the corresponding
eigenvalue, λ1, is called the minimal eigenvalue.

First, we review a well-known general strategy for approximating the solution of
(2.1), an approach that has been used in [5] and [6], to introduce the specific versions
of this method we use. This strategy is to select a subspace of Rn and choose a vector
in the subspace that minimizes the Rayleigh quotient. In GES-SA, we essentially do
two types of subspace selection: one uses local groupings to select subspaces with
local support; the other uses smoothed aggregation to select low-resolution subspaces
with global support. The corrections within the local subspaces are a form of non-
linear relaxation, and those within the global subspaces are a nonlinear coarse-grid
correction. These two subspace correction processes are used together in a typical
multigrid way.

First, we recall the Rayleigh quotient to introduce a minimization principle that
allows us to correct an iterate within a given subspace.

Definition 2.1. The Rayleigh Quotient(RQ) of a vector, v, with respect to
real SPD matrices A and B is the real value

ρA,B(v) ≡ vTAv
vTBv

.(2.2)

Because A and B are SPD, the solution we seek minimizes the RQ:

ρA,B(v1) = min
v∈Rn

ρA,B(v) = λ1 > 0.(2.3)

6 Brezina, Manteuffel, McCormick, Ruge, Sanders, and Vassilevski

If two vectors w and v are such that ρA,B(w) < ρA,B(v), then we say that w is a
better approximate solution to (2.1) than v. Therefore, we may restate problem (2.1)
as a minimization problem:

find v1 6= 0 such that ρA,B(v1) = min
v∈Rn

ρA,B(v).(2.4)

This gives us a minimization principle that we use to construct subspace correction
methods. Generally, we take an iterate, ṽ, or current approximate solution, and then
perform a subspace correction to give an updated approximate minimal eigenvector,
w̃. The updated iterate should be a better approximate solution to (2.1) in the sense
that the subspace correction should lower its RQ from that of ṽ. However, care in
constructing the subspace is needed to ensure that the RQ is indeed lowered.

Given ṽ, we construct a subspace, V ⊂ Rn, such that dim(V) = m << n and V
contains a vector with lower RQ:

min
v∈V

ρA,B(v) ≤ ρA,B(ṽ).(2.5)

If we select the corrected approximation, w̃, to be a vector within V of minimal
RQ, then we have improved our approximate solution. So we must solve a restricted
minimization problem within the subspace of dimension m,

find w̃ 6= 0 such that ρA,B(w̃) = min
v∈V

ρA,B(v).(2.6)

This restricted minimization problem is solved for updated iterate w̃ by restating
the minimization problem within the lower-dimensional vector space, Rm and then
mapping the low-dimensional solution to the corresponding vector in V. To do so, we
construct an n×m matrix, P , whose m column vectors are a basis for V. Matrix P is
called the iterpolation matrix, and it maps Rm onto V. Note that, for any v ∈ V, there
exists a unique y ∈ Rm such that v = Py. Moreover, the RQ of v with respect to A
and B and the RQ of y with respect to restricted versions of A and B are equivalent:

ρA,B(v) =
vTAv
vTBv

=
yTPTAPy
yTPTBPy

= ρP T AP, P T BP (y) = ρAV ,BV (y),(2.7)

for AV := PTAP and BV := PTBP . Thus, the solution to restricted minimization
problem (2.6) is found by solving a low-dimensional minimization problem:

find y1 6= 0 such that ρAV ,BV (y1) = min
y∈Rm

ρAV ,BV (y),(2.8)

or, equivalently

find an eigenvector, y1 6= 0, corresponding to the smallest
eigenvalue, µ1, in the eigenproblem AVy = µBVy.

(2.9)

After either approximating the solution to low-dimensional minimization problem
(2.8) or solving low-dimensional eigenvalue problem (2.9) for y1 with a standard solver,
the solution to the minimization problem restricted to V defined in (2.6) is recovered
by interpolation: w̃← Py1.

Vector w̃ is our updated iterate, and the whole process is repeated. We first
update ṽ ← w̃, use ṽ to form a new subspace, V, with its respective interpolation

GES-SA 7

matrix, P , solve a low-dimensional problem for a new y1, and then interpolate via
w̃← Py1.

The specific methods we use for constructing interpolation operators, P , are the
features of GES-SA and are explained in the following three sections. Before we
discuss how subspaces are selected in RQ-relaxation and coarse-grid correction, we
first focus on how a reasonable initial approximation is obtained using a version of the
subspace correction algorithm in section 2.1. Section 2.2 presents how we phrase global
subspaces corrections or nonlinear coarse-grid corrections, and section 2.3 presents
how we phrase the local subspace corrections or nonlinear relaxation processes.

2.1. Initial Guess Development via Aggregation. Since the subspace cor-
rections used in this eigensolver are nonlinear iterations is helpful to develop a fairly
accurate initial approximation to a minimal eigenvector. The development of initial
approximate minimal eigenvectors is very similar to local subspace correction as pre-
sented later in section 2.3. The exception is that we form an additive local subspace
correction that starts with the zero-vector. To do so, we require that an aggregation,
{Aj}Jj=1, is provided. Each aggregate induces a subspace, Sj ⊂ Rn, defined by all
vectors v whose support is contained entirely in Aj . (Subspaces Sj constitute the V
used in general subspace correction at the beginning of section 2.) For each subspace,
we choose w̃j to minimize the RQ over Sj . We then set the initial guess to be the
sum over j of these vectors to create a vector that has its RQ minimized over each
disjoint aggregate individually. This creates a vector that has a relatively low RQ and
is, therefore, close to being a minimal eigenvector.

For each aggregate, we form a local interpolation matrix, Pj , that maps Rmj onto
Sj , where mj is the number of nodes in the j-th aggregate. This interpolation matrix
is given by

Pj =

 > >
êp1 . . . êpmj

⊥ ⊥

 ,(2.10)

where êp is the p-th canonical basis vector,

(êp)i =
{

1 i = p
0 i 6= p

}
,(2.11)

and {pq}
mj

q=1 are the mj nodes in the j-th aggregation. We then restrict the prin-
cipal matrices to Sj : AV ← PT

j APj and BV ← PT
j BPj . A solution, y1 6= 0, to

generalized eigenvalue problem (2.9) of size mj is then found using a standard eigen-
solver. Note that the choice of scaling for y1 is not an issue, because the subsequent
subspace corrections adjust any scaling. Nodes within the j-th aggregate are initial-
ized by interpolation: w̃j ← Py1. After w̃j is found for each aggregate, the initial
approximation is constructed by summing the local initial guesses:

tṽ←
J∑

j=1

w̃j .(2.12)

We summarize initial guess development in the form of an algorithm. It is a
component of the full GES-SA algorithm and is used by algorithm 3 in section 3.

Algorithm 1 : Initial Guess Development

8 Brezina, Manteuffel, McCormick, Ruge, Sanders, and Vassilevski

• Function: ṽ← IGD(A,B, {Aj}Jj=1).
• Input: SPD matrices A and B, and aggregation {Aj}Jj=1.
• Output: initial approximate solution ṽ to (2.1).

1. For j = 1, ..., J , do the following:
(a) Form Pj based on Aj as in (2.10).
(b) Compute AV = PT

j APj and BV = PT
j BPj .

(c) Find any y1 6= 0 by solving (2.9) via a standard eigensolver.
(d) Interpolate w̃j ← Pjy1.

2. Output ṽ←
∑J

j=1 w̃j .

The difference between this subspace correction and subsequent subspace correc-
tions is output is produced additively instead of multiplicatively, allowing for easier
parallelization. To demonstrate the effect of algorithm 1, we return to example 1.
The interpolation matrices are

P1 =



1
1

1


, P2 =


1

1
1


, and P3 =

 1
1

1


.(2.13)

Here, for all aggregates, j = 1, 2, 3, the restricted matrices are identical:

AV =

 2 −1
−1 2 −1

−1 2

 and BV =

 1
1

1

 .(2.14)

Hence, solutions to the restricted eigenproblems are all of the form ỹ1 = ωj [1√
2
, 1, 1√

2
]T ,

with a scaling term ωj 6= 0. So the initial guess developed is the vector

ṽ = [
ω1√

2
, ω1,

ω1√
2
,
ω2√

2
, ω2,

ω2√
2
,
ω3√

2
, ω3,

ω3√
2

]T .(2.15)

Note that the type of subspace corrections we use in the following section allows
arbitrary scaling values ω1. For the case ωj = 1 for all three aggregates, the initial
guess is seen in figure 2.1.

Fig. 2.1. Initial guess for the 1D model problem produced by the initial guess development
algorithm; the RQ has been minimized over each aggregate individually.

In the context of multigrid, initial guess development is used in place of pre-
relaxation for the first GES-SA multigrid cycle performed. Subsequent pre-relaxations

GES-SA 9

and post-relaxations are presented as multiplicative local subspace correction in sec-
tion 2.3. We now describe how smoothed aggregation is used to phrase global subspace
corrections.

2.2. Global Coarse-Grid Correction using Smoothed Aggregation. Typ-
ically, smoothed aggregation has been used to form grid transfer operators within
multigrid schemes for linear systems, as in [3], [10], and [12]. Here, we use smoothed
aggregation in a similar fashion to form coarse, global subspaces of lower dimension
that are used to form subspace corrections with lower RQ.

Smoothed aggregation defines a sparse n × m interpolation operator, P f
c , that

maps from a coarse set of m variables to the original fine set of n variables. We first
partition the domain using the same aggregation that was used for linear SA solvers in
the section 1. Note here, the number of coarse degrees of freedom, m, is equal to the
number of aggregates, J , in the aggregation that we use. As in the general subspace
correction method introduced in the beginning of section 2, P f

c is designed so that its
range, V, has vectors with lower RQ than the current iterate, ṽ. Using a subspace
correction with this interpolation improves the iterate. This section describes the
process of forming P f

c and V using smoothed aggregation.
The aggregation matrix, [A], defined in section 1.2 is used as a template for the

sparsity structure of the interpolation operator we create, as in the linear solver case.
Assume that we have our iterate ṽ, or current approximate solution. To assure the
range of interpolation contains vectors with a RQ that is less than or equal to that of
ṽ, we first form tentative interpolation, P̂ , that has ṽ in its range. To do so, we use
[A] to define the sparsity pattern of P̂ by injecting ṽ into that sparsity pattern:

P̂ij :=
{
vi, [A]ij = 1
0, [A]ij = 0

}
,(2.16)

where vi denotes the i-th entry of ṽ. For our n = 9, 1D example, this injection is the
following:

ṽ =



v1
v2
v3
v4
v5
v6
v7
v8
v9


−→ P̂ =



v1
v2
v3

v4
v5
v6

v7
v8
v9


.(2.17)

Operator P̂ is such that ṽ ∈ R(P̂). Specifically, ṽ = P̂ 1m, where 1m is the
column vector of all ones with length m. This of course means that that we are
guaranteed to have a vector within R(P̂) with no larger a RQ than that of ṽ:

min
v∈R(P̂)

ρA,B(v) ≤ ρA,B(ṽ).(2.18)

To attempt to improve the minimal RQ within V with significantly lower RQ,
we smooth interpolation. A smoothing operator, S, or smoother, is introduced for
this purpose. Note that this smoothing process is just a local relaxation process to
be applied to the columns of the interpolation. Many types of smoothing could be

10 Brezina, Manteuffel, McCormick, Ruge, Sanders, and Vassilevski

Fig. 2.2. Iterate ṽ is aggregated and smoothed to form the columns of P f
c for example 1 with

n = 9. The top vector in the figure is a typical approximate minimal eigenvector ṽ. Each of
the lower-left three vectors, (P̂)j , is the j-th column of tentative interpolation matrix P̂ formed by

restricting ṽ to the j-th aggregate. Each of the lower-right three vectors, (P f
c)j , is the j-th column

of smoothed interpolation matrix P f
c formed by smoothing P̂ .

employed here, but it is best to use a smoother that does not significantly expand
the support of the columns of P̂ . Typically, one application of the error propagation
operator of Richardson of damped-Jacobi smoothing is performed, as in smoothing
for the linear case. In this study, we use Richardson smoothing:

S := (In − αA),(2.19)

where In is the identity operator on Rn and α is chosen to be 4
3‖A‖2 . This is the same

value of α that is chosen for linear SA in [11], and our experience shows that it works
well for the nonlinear subspace corrections as well.

Normalization of the columns of P̂ is also performed. This does not change the
range of interpolation, but does control the scaling of the coarse-grid problems. We
choose a diagonal normalization matrix, N , so that the restricted, right-hand matrix,
BV , has a diagonal that is the identity matrix of dimension m:

Nii :=
1

‖S(P̂)i‖B
.(2.20)

We now define the interpolation matrix by

P f
c := SP̂N.(2.21)

GES-SA 11

For our 1D example with n = 9, the sparsity structure of P f
c is as follows:

P f
c =



×
×
× ×
× ×
×
× ×
× ×
×
×


,(2.22)

where each × represents a nonzero entry at its corresponding location. Figure 2.2
gives a full picture of how ṽ is used to form the columns of P̂ and P f

c for the 1D
example.

The columns of P f
c form a basis for V because our construction ensures that

there is at least one point in the support of each column that is not present in any
other column. Forming aggregates that are at least a neighborhood in size and only
smoothing interpolation once does not allow columns to ever share support with an
aggregate’s central node. We then compute AV = (P f

c)TAP f
c and BV = (P f

c)TBP f
c .

In multigrid vocabulary, restricted problem (2.9) is now the coarse-grid problem. The
coarse-grid correction is given by interpolating the solution of the coarse-grid problem,
w̃← P f

c y1. This problem, AVy = µBVy, is either solved using a standard eigensolver
or phrased as a coarse-grid minimization problem as in (2.8), where local and global
subspace corrections may be applied in a recursive fashion. This offers approximate
solutions to the coarse-grid problem as in a standard nonlinear multigrid method.
Note that there is no algorithm presented in this subsection. However, algorithm 3 of
section 3, the full GES-SA algorithm, uses coarse-grid corrections within it.

Under this construction, Sṽ is in the range of P f
c . Therefore, if Sṽ has lower RQ

than that of ṽ, we have guaranteed that subspace correction improves the RQ of our
iterate. There is no way to ensure that our choice of smoother will lower the RQ of
ṽ (consider an eigenvector), however, our experience shows that it does for the types
of vectors we use in the problems we have considered. Note that a choice of α could
be computed to minimize the RQ of ṽ, a single vector in the range of interpolation.
However, this choice of α may not be the best choice for all the other vectors in the
range. We want to avoid having high RQ components represented by interpolation,
because this causes ill-conditioned coarse-grid problems. Also, the vector of minimal
RQ we select is most likely not merely Sṽ, but a vector of even lower RQ. Otherwise,
the coarse-grid correction is unnecessary. The choice of α = 4

3‖A‖2 aims to make both
minimum and maximum RQs within V small, and its success is verified in section 4.

No matter how the coarse-grid problem is solved, it is designed to provide a
correction that has the global traits of the actual minimal eigenvector. The local
traits, however, still need to be corrected. Thus, we next develop a complementary
process to selecting local subspaces for corrections that give local traits of approximate
minimal eigenvectors resembling the actual minimal eigenvector.

2.3. Nonlinear Relaxation by Local Subspace Corrections. In the con-
text of a nonlinear multilevel method, we use subspace corrections posed over locally
supported subsets as our relaxation process, which is basically just nonlinear block-
Gauss Seidel for minimizing the RQ. This section explains the specifics for choosing
the nodes that make up each block, and presents the relaxation algorithm.

12 Brezina, Manteuffel, McCormick, Ruge, Sanders, and Vassilevski

The original generalized eigenvalue problem, Av = λBv, is posed over a set of
n nodes, Ωn. To choose a subspace that provides a local correction over a small
cluster of nj nodes, we constructWj to be a subset of Ωn, with cardinality nj . Subset
Wj should be local and connected within the graph of A. Subspace Vj is chosen to
be the space of all vectors that only differ from a constant multiple of our current
approximation, ṽ, by w, a vector with support in the subset Wj :

Vj := {v ∈ Rn | v = w0ṽ + w where w0 ∈ R and supp(w) ⊂ Wj},(2.23)

a subspace of Rn with dimension (nj + 1) used to form and solve (2.6) for an updated
approximation, w̃, that has a minimum RQ within Vj . Note that Wj is a subset of
the full set of nodes, while Vj is a subspace of Rn. We effectively change the value of
current iterate ṽ at only nodes in set Wj to minimize RQ, while leaving ṽ unchanged
at nodes outside of Wj , up to a scaling factor, w0. We now explain how subsets Wj

are chosen, and then explain how the corrections are performed.
One step of the local subspace relaxation minimizes the approximate eigenvalue

locally over one small portion of the full set of nodes, Ωn. We want to construct a
sequence of local subspace corrections so that the iterate is somewhat locally minimal
over the entire set of nodes. To do so, we need a sequence of overlapping subsets
{Wj}Jj=1 that form an overlapping covering of Ωn. We then perform local subspace
correction with each of these subsets in sequence until a correction has been done
within each. The covering is called an overlapping subset covering of Ωn, and is
defined similarly to an aggregation, except that sufficient overlap is required in place
of disjointness.

Definition 2.2. A sequence of J subsets, {Wj}Jj=1, is an overlapping subset
covering of Ωn with respect to A if the following properties hold.

• Overlap: For any j 6= k, if point p ∈ Wj and Apq 6= 0 for some q ∈ Wk \Wj,
then we require p ∈ Wk as well.

• Covering:
⋃J

j=1Wj = Ωn.
• Connected: For any j, if points p, q ∈ Wj, then there exists a sequence of

points in Wj that connect p to q within the graph of A.

Figure 2.3 displays an overlapping subset covering for our 1D example.

Fig. 2.3. Graph of matrix A from example 1 with n = 9, grouped into three overlapping subsets.
Each cartouche encloses the group of unknowns in the respective subset.

W1 W2 W3

Similar to aggregation matrix [A], we represent these subset coverings with a
sparse, binary, overlapping subset matrix, [W]. One way to obtain an overlapping
subset decomposition is to dilate an aggregation. This is accomplished by taking each
aggregate Aj within the aggregation and expanding Aj once with respect to the graph
of matrix A. Let [A] be an n × n binary version of A that stores connections in the
graph of A, defined as

[A]ij :=
{

1, Aij 6= 0
0, Aij = 0

}
.(2.24)

GES-SA 13

Fig. 2.4. How a typical local subspace relaxation sweep acts on a random iterate for the 1D
example with n = 9. The top left vector is the initial iterate, ṽ; top right shows a subspace correction
on subset W1, bottom left shows a subsequent subspace correction over W2, and bottom right shows
final relaxed iterate w̃ after a subsequent subspace correction over W3.

ṽ after correcting over W1

after correcting over W2 after correcting over W3

Then define [W] by creating a binary version of the matrix product [A][A], a dilation,

[W]ij :=

{
1,

(
[A][A]

)
ij
6= 0

0,
(
[A][A]

)
ij

= 0

}
.(2.25)

We see no reason to insist that the overlapping subsets have anything to do with
the aggregates, except for simplicity and convenience. Under this construction, the
overlapping subset matrix, [W], has the same sparsity structure as the smoothed
interpolation operator associated with the global coarse-grid correction, P f

c . This
construction gives us the characteristic of the covering having a 2-point overlap for
every neighboring pair of local subsets. For our 1D example in section 2, [W] looks
exactly like (2.22) with a 1 in the place of each ×:

[W] =



1
1
1 1
1 1

1
1 1
1 1

1
1


,(2.26)

In practice, each local correction is accomplished by rephrasing minimization
problem (2.6) as a generalized eigenvalue problem of low dimension, as in (2.9), and

14 Brezina, Manteuffel, McCormick, Ruge, Sanders, and Vassilevski

solving for minimal eigenvector y1 with a standard eigensolver. Note: here, we use Qj

to represent interpolation matrices that span each subspace, Vj , to distinguish from
the Pj and Sj used in the initial guess section. To construct the basis, Qj , for Vj that
we need to phrase (2.9), recall there are nj nodes represented by Wj . We construct a
n× (nj + 1) matrix, Qj , so that its columns are an orthogonal basis for subspace V.
To define Qj explicitly, first define vector v0 by

(v0)i :=
{
vi, i 6∈ Wj

0, i ∈ Wj

}
.(2.27)

For each point p ∈ Wj , define elementary basis vectors êp as in (2.11). Then, we form
Qj by appending these (nj + 1) vectors in a matrix of column vectors:

Qj =

 > > >
v0 êp1 . . . êpnj

⊥ ⊥ ⊥

 ,(2.28)

where the sequence of points, {pi}
nj

i=1, is a list of all points within local subset Wj .
This makes the columns of Qj orthogonal, a matrix that maps from Rnj+1 onto Vj .
For the 1D example, with W2 = {3, 4, 5, 6, 7}, the interpolation operator is given by

Qj =



v1
v2

1
1

1
1

1
v8
v9


.(2.29)

Next, we compute

AV ← QT
j AQj and BV ← QT

j BQj .(2.30)

Although Qj is not sparse, due to its first column, all J of the triple products in
(2.30) can be efficiently implemented in O(n) +

∑J
j=1O(nj) operations. Then (2.9)

is solved for y1 normalized such that (y1)1 = 1. This normalization is the same as
requiring w0 = 1, which leaves all nodes outside of Wj unchanged by the correction.
Then, the local subspace correction is given by interpolating w̃← Py1. This problem
has dimension (nj + 1) << n, so it is solved cheaply with an standard eigensolver for
a sufficiently small subspace.

Local subspace relaxation is summarized in the following algorithm, a component
of the full GES-SA algorithm referred to in algorithm 3 of section 3.

Algorithm 2 : Local Subspace Relaxation
Function: w̃← LSR(A,B, ṽ, {Wj}Jj=1) .
Input: SPD matrices A and B, current approximation to the minimal eigen-
vector ṽ, and overlapping subset covering {Wj}Jj=1.
Output: corrected iterate w̃.

1. For j = 1, ..., J , do the following:

GES-SA 15

(a) Form Qj based on ṽ and Wj as in (2.28).
(b) Form AV = QT

j AQj and BV = QT
j BQj .

(c) Find y1 by solving (2.9) via a standard eigensolver.
(d) Normalize and interpolate w̃← Qjy1.
(e) Update ṽ← w̃.

2. Output w̃.

Figure 2.3 shows how a single sweep of local subspace relaxation acts on a random
initial guess, ṽ. Although the guess is never really random in the actual algorithm,
we show this case so it is clear how the algorithm behaves. This algorithm gives
relaxed iterate w̃ local characteristics of the actual minimal eigenvector. For problems
with large numbers of nodes, the global characteristics of the iterate are far from
those of the actual minimal eigenvector. This is where the coarse-grid correction
complements local subspace relaxation. When done in an alternating sequence, as
in a standard multigrid method, the complementary processes correct both local and
global characteristics of the approximate minimal eigenvector, forming an eigensolver.
Their explicit use is presented in the next section.

3. The full GES-SA algorithm. Because GES-SA is a multilevel method, to
describe it, we change to multilevel notation. Any symbol with subscript l refers to
an object on grid l, with l = 1 the finest or original grid and l = L the coarsest. The
matrix on the l-th grid is written Al; in particular, A1 = A, the matrix from our
original problem. Interpolation from grid l+ 1 to grid l is written P l

l+1 instead of P f
c ,

and restriction from grid l to grid l+1 is denoted P l+1
l . Again, we use P l+1

l = (P l
l+1)T ,

because Al is SPD. The dimension of Al is written nl. Several other level l objects
are denoted with subscript and superscripts l, as well.

The full GES-SA algorithm is a nonlinear multigrid method that uses standard
components, relaxation and coarse-grid correction, in the way they are used for linear
multgrid solvers with some differences. First, both are deigned to minimize RQ over a
subspace, versus minimizing the error. Another crucial difference is that interpolation
is redefined for each and every coarsening, making each cycle more expensive than
those of linear solvers. Therefore, we intend to do a very small number of cycles. In
fact, the results in this paper are all produced using one GES-SA cycle.

Here, the relaxation process is accomplished by using the local subspace correc-
tion of section 2.3, while the coarse-grid correction is done using global corrections
formed with smoothed aggregation interpolation, as in section 2.2. Also, no initial
guess is provided to the eigensolver. Instead, during the first cycle, at each level, an
initial guess is developed by the solver in place of pre-relaxation with local subspace
correction. For the post-relaxations, and pre-relaxations of subsequent cycles, local
subspace correction is used, as pictured in figure 3.1.

Several parameters are involved with the GES-SA algorithm: ν dictates how many
relaxations are done at a given stage of the algorithm, with ν = 2 as our standard; η
is the total number of cycles; and γ is the number of sub-iterations, with γ = 1 giving
a V -cycle (as in figure 3.1), and γ = 2 giving a W -cycle.

Algorithm 3 : Generalized Eigensolver Based on Smoothed Aggregation
Function: ṽl ← GESSA(Al, Bl, ν, η, γ, l, L).
Input: SPD matrices Al and Bl, number of relaxations to perform ν, number
cycles η, number of coarse-grid problem iterations γ, current level l, and
coarsest level L. Assume that an aggregation and an overlapping subspace
covering are available for each level l.

16 Brezina, Manteuffel, McCormick, Ruge, Sanders, and Vassilevski

Fig. 3.1. Diagram of how V -cycles are done in GES-SA for γ = 1. We follow the diagram
from left to right as the algorithm progresses. Gray dots represent the initial guess development
phase of the algorithm, only done on the first cycle where pre-relaxation is usually done. Hollow
dots represent solve steps done with a standard eigensolver on the coarsest eigenproblem. Black dots
represent local subspace pre- and post-relaxation steps. A dot on top stands for a step on the finest
grid and a dot on bottom stands for a step on the coarsest grid.

Output: approximate minimal eigenvector ṽl to the level l problem.

0. If no aggregation of Ωnl
is provided, compute {Al

j}
Jl
j=1. Also, if no overlapping

subset covering is provided, compute {W l
j}

Jl
j=1.

1. For ζ = 1, ..., η, do the following:
(a) If ζ = 1, form an initial guess, ṽl ← IGD(Al, Bl, {Al

j}
Jl
j=1). Otherwise,

pre-relax the current approximation, ṽl ← LSR(Al, Bl, ṽl, ν, {W l
j}

Jl
j=1).

(b) Form P l
l+1 with SA based on ṽl and {Al

j}
Jl
j=1 as in (2.21).

(c) Form matrices Al+1 ← (P l
l+1)TAlP

l
l+1 and Bl+1 ← (P l

l+1)TBlP
l
l+1.

(d) If (l + 1) = L, solve (2.9) for y1 with a standard eigensolver, and set
ṽl+1 ← y1. Else, ṽl+1 ← GESSA(Al+1, Bl+1, ν, γ, γ, l + 1, L).

(e) Interpolate the coarse-grid correction, ṽl ← P l
l+1ṽl+1.

(f) Post-relax the current approximation, ṽl ← LSR(Al, Bl, ṽl, ν, {W l
j}

Jl
j=1).

2. Output ṽl.

To describe the creation of a simple adaptive linear solver, assume that GES-SA
has produced an approximate eigenvector, ṽ1. Then, the setup phase of SA is called
with this vector as a characterization of the near-kernel, K = {ṽ1}. The solve phase
of SA is then run, starting with a random initial guess for x. If the solver is still not
adequate, more GES-SA cycles are run (without initial guess development) to lower
the RQ of ṽ1. Then, the setup phase is run again, and a new solver is formed. This
one-vector process is repeated until the solver is adequate, or until the RQ of ṽ1 is
not being improved by much. If the latter case occurs, then it may be that more than
one prototypical smooth error component should be developed. As of now, this is
not a feature covered by the GES-SA approach, although an algorithm for developing
secondary kernel components is developed in [3].

4. Numerical Results. Many linear systems that come from the discretization
of scalar PDEs are solved with SA, with the vector of all ones as a near-kernel com-
ponent, where the linear solver has decent convergence rates. However, we present
examples of matrices where the vector of all ones is not a near-kernel component, and
using it as one with SA produces a linear solver with unacceptable convergence rates.
For all of these problems, one cycle of the GES-SA algorithm gives an approximate

GES-SA 17

minimal eigenvector that may be use to produce an acceptable linear SA solver.
Example 2. A random-signed discrete Laplacian. Consider the d-dimensional

Dirichlet-Poisson problem

−∆u = f in Ω = (0, 1)d

u = 0 on δΩ.(4.1)

We first discretize (4.1) with linear finite elements, or second-order finite differences,
on equidistant rectilinear grids. For finite elements, in one-dimension, we use piecewise
linear functions on equidistant intervals giving a 3-point stencil; in two dimensions, we
use bilinears on equidistant squares giving a 9-point stencil; and in three dimensions,
we use trilinears on equidistant cubes giving a 27-point stencil. For finite differences,
in one dimension, central differences give a 3-point stencil; in two dimensions, they
give a 5-point stencil; and in three dimensions, they give a 7-point stencil. The one-
dimensional finite-difference case problem is neglected because it is identical to the
one-dimensional finite element problem. Either way we discretize the problem, we
have a sparse n × n matrix Â. We then define the diagonal, random-signed matrix
D± to have randomly assigned positive and negative ones for entries. Finally, we form
the random-signed discrete Laplacian matrix A by

A← D±ÂD±.(4.2)

In our results, we also symmetrically scale the matrix A to have ones on its diagonal.

Table 4.1
Asymptotic convergence factors for the one-, two-, and three-dimensional finite element ver-

sions of the random-signed Dirichlet Laplacian problem. Aggregation was done geometrically. All
factors were calculated using a geometric average of the last 5 of 25 linear SA multigrid V (2, 2)-
cycles. Factors in the column labeled ”ones” correspond to solvers created using the vectors of all
ones as algebraically smooth error; factors in the ”ges-sa” column correspond to solvers that use
our approximate minimal eigenvector computed with one RQ V -cycle with ν = 2; and factors in the
”eigen” column correspond to solvers that use the minimal eigenvector computed with a standard
method. The last column, ”comp”, displays the operator complexity for the linear solver based on
the GES-SA vector.

prob. size dimensions ones ges-sa eigen comp
1D 81 n = 811 0.987 0.204 0.193 1.461

243 n = 2431 0.984 0.218 0.214 1.484
729 n = 7291 0.994 0.218 0.218 1.494
2187 n = 21871 0.991 0.219 0.220 1.498
6561 n = 65611 0.989 0.221 0.220 1.499
19683 n = 196831 0.989 0.221 0.221 1.500
59049 n = 590491 0.990 0.221 0.221 1.500

2D 81 n = 92 0.620 0.074 0.074 1.078
729 n = 272 0.892 0.176 0.179 1.108
6561 n = 812 0.965 0.193 0.196 1.119
59049 n = 2432 0.977 0.215 0.214 1.123

3D 729 n = 93 0.598 0.114 0.111 1.054
19683 n = 273 0.934 0.188 0.189 1.112

Now consider solving Ax = b given vector b. Note that the vector of all ones
is no longer algebraically smooth with respect to standard relaxation methods. As

18 Brezina, Manteuffel, McCormick, Ruge, Sanders, and Vassilevski

Table 4.2
Asymptotic convergence factors for the two- and three-dimensional finite difference versions

of the random-signed Dirichlet Laplacian problem. Aggregation was done algebraically. All factors
were calculated using a geometric average of the last 5 of 25 linear SA multigrid V (2, 2)-cycles.
Factors in the column labeled ”ones” correspond to solvers created using the vectors of all ones
as algebraically smooth error; factors in the ”ges-sa” column correspond to solvers that use our
approximate minimal eigenvector computed with one RQ V -cycle with ν = 2; and factors in the
”eigen” column correspond to solvers that use the minimal eigenvector computed with a standard
method. The last column, ”comp”, displays the operator complexity for the linear solver based on
the GES-SA vector.

prob. size dimensions ones ges-sa eigen comp
2D 81 n = 92 0.849 0.219 0.219 1.317

729 n = 272 0.947 0.294 0.290 1.357
6561 n = 812 0.962 0.306 0.305 1.348
59049 n = 2432 0.978 0.312 0.312 1.342

3D 729 n = 93 0.825 0.289 0.292 1.389
19683 n = 273 0.944 0.360 0.358 1.495
64000 n = 403 0.961 0.418 0.413 1.511

Fig. 4.1. Aggregation examples displayed for 2D test problems of low dimension. On the left
is an aggregation formed with a geometric aggregation method that is used for the finite element
problems; on the right is an aggregation formed with an algebraic aggregation method that is used
for finite-difference problems. Each gray cartouche represents a separate aggregate that contains the
nodes enclosed.

geometric aggregation algebraic aggregation

seen in tables 4.1 and 4.2, using the vector of all ones produces SA solvers that have
unacceptable convergence factors. Instead, we use one GES-SA cycle to produce
an approximate minimal eigenvector, ṽ, and use k1 = ṽ in the setup phase of SA
to produce a linear SA solver. The convergence factors of the resulting solver are
comparable to those obtained using the actual minimal eigenvector to build the linear
SA solver. Note that convergence factors are reported as an estimation of asymptotic
convergence factors by computing a geometric average of the last 5 of 25 V-cycles:

Asymptotic Convergence Factor ≈
(
‖e(25)‖A
‖e(20)‖A

)1/5

(4.3)

for the zero right-hand-side problem Ax = 0. Operator complexity is also reported
for the linear solver that uses the vector developed with GES-SA. We define operator

GES-SA 19

complexity to be

Operator Complexity =
∑L

l=1 nz(Al)
nz(A1)

,(4.4)

where the function nz(M) is the number of nonzeros in sparse matrix M .
Two types of aggregation were done. For the finite element problems, we took

advantage of knowing the grid and formed aggregations that were blocks of 3d nodes.
This is fairly close to what would occur if we used algebraic aggregation with the
nodes numbered lexicographically. For the finite difference problems, no geometric
information was employed and aggregation was done algebraically. Small examples in
2 dimensions of the difference between the two types of aggregates we used are shown
in figure 4.1 Also, we consider i to be strongly connected to unknown j with respect
to the parameter θ ∈ (0, 1) if

|aij | > θmax
k 6=i
|aik|.(4.5)

Any connection that violates this requirement is a weak connection. Algebraic aggre-
gations were done based on this strength-of-connection measure, with θ = .25.

Although it is not the primary purpose of this study, it is also interesting to view
GES-SA as a standalone eigensolver. For the random-signed Dirichlet-Laplacians,
tables 4.3 and 4.4 display how one GES-SA V -cycle with ν = 2 produces an approxi-
mate minimal eigenvector that is very close to the actual minimal eigenvector in the
sense that the relative error between the RQ and the minimal eigenvalue is order 1.

All the results in this section are produced using only one GES-SA cycle. However,
we do not believe that that a decent approximate minimal eigenvector can be produced
with one GES-SA cycle for general problems. Note, the relative error of one cycle
tends to increase as h decreases, or as the discretization error decreases. For most
problems, we anticipate having to do more GES-SA cycles to achieve an acceptable
approximate minimal eigenvector.

5. Conclusion. We described a multilevel generalized eigensolver, GES-SA, that
uses corrections over various subspaces to minimize the RQ. This eigensolver was
composed of complementary RQ subspace corrections. The process of creating the
subspaces was centered around the concept of smoothed aggregation and it represents
a new approach to eigenvalue problems. We also discussed how the multilevel eigen-
solver is used to adaptively create linear SA solvers. The numerical results in section
4 show that using GES-SA to form a linear SA solver results in one that has suitable
convergence rates for the problems tested. This suggests that GES-SA is a decent
initialization component for adaptively forming linear SA solvers. Our next goal is to
create a version of GES-SA that is used in a fully adaptive way, creating secondary
near-kernel components.

REFERENCES

[1] A. Brandt, Algebraic multigrid theory: The symmetric case, Appl. Math. Comput. Vol. 19,
pp. 23-56, (1986)

[2] M. Brezina, Robust iterative methods on unstructured meshes, PhD Thesis, University of
Colorado, Denver (1997)

[3] M. Brezina, R. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick, J. Ruge, Adap-
tive Smoothed Aggregation (αSA), SISC, Volume 25, Issue 6. (2004) pages 1896-1920.

20 Brezina, Manteuffel, McCormick, Ruge, Sanders, and Vassilevski

Table 4.3
Relative errors between the RQ of the GES-SA approximate minimal eigenvector, ρ, and the

minimal eigenvalue, λ1, for the one-, two-, and three-dimensional finite element versions of the
random-signed Dirichlet-Laplacian problem. The GES-SA approximation was computed with one
GES-SA V -cycle with ν = 2.

prob. size dimensions ρ λ1 rel. error
1D 81 n = 811 2.257e-02 2.256e-02 0.0002538

243 n = 2431 7.585e-03 7.584e-03 0.0001592
729 n = 7291 2.535e-03 2.535e-03 0.0000478
2187 n = 21871 8.458e-04 8.458e-04 0.0000423
6561 n = 65611 2.820e-04 2.820e-04 0.0000551
19683 n = 196831 9.404e-05 9.401e-05 0.0002368
59049 n = 590491 3.147e-05 3.134e-05 0.0040870

2D 81 n = 92 7.222e-02 7.222e-02 0.0000034
729 n = 272 9.413e-03 9.412e-03 0.0001608
6561 n = 812 1.101e-03 1.100e-03 0.0002491
59049 n = 2432 1.243e-04 1.243e-04 0.0001224

3D 729 n = 93 1.066e-01 1.066e-01 0.0000017
19683 n = 273 1.412e-02 1.409e-06 0.0022805

Table 4.4
Relative errors between the RQ of the GES-SA approximate minimal eigenvector, ρ, and the

minimal eigenvalue, λ1, for the one-, two-, and three-dimensional finite difference versions of the
random-signed Dirichlet Laplacian problem. The GES-SA approximation was computed with one
GES-SA V -cycle with ν = 2.

prob. size dimensions ρ λ1 rel. error
2D 81 n = 92 4.895e-02 4.894e-02 0.0000582

729 n = 272 6.307e-03 6.288e-03 0.0031257
6561 n = 812 7.501e-04 7.338e-04 0.0222547
59049 n = 2432 9.306e-05 8.289e-05 0.1227465

3D 729 n = 93 4.896e-02 4.894e-02 0.0003230
19683 n = 273 6.303e-03 6.288e-03 0.0024756
64000 n = 403 2.981e-03 2.934e-03 0.0158771

[4] W. Briggs, V. E. Henson, S. F. McCormick, A Multigrid Tutorial, 2nd Edition, SIAM
books, 2000.

[5] Z. Cai, J. Mandel, and S. McCormick, Multigrid methods for nearly singular linear equations
and eigenvalue problems, SIAM J. Numer. Anal. 34 (1997), pp. 178-200.

[6] T. F. Chan, I. Sharapov, Subspace correction multi-level methods for elliptic eigenvalue prob-
lems, Numerical Linear Algebra with Applications, John Wiley and Sons, Ltd. 2002; 9:1
20

[7] S. F. McCormick, J. Ruge, Multigrid Methods for Variational Problems SIAM J. Numer.
Anal. Vol. 19, No. 5 (1982), pp. 925-929.

[8] J. Ruge, Multigrid methods for variational and differential eigenvalue problems and unigrid
for multigrid simulation, PhD Thesis, Colorado State University, Fort Collins (1981)

[9] U. Trottenberg, C. W. Osterlee, A. Schuller, Multigrid, Academic Press, 2000.
[10] P. Vanek, J. Mandel, M. Brezina, Algebraic multigrid on unstructured meshes, in University

of Colorado Technical Reports, University of Colorado at Denver, 1994
[11] P. Vanek, J. Mandel, M. Brezina, Convergence of algebraic multigrid based on smoothed

aggregation, Numerische Mathematik, Vol. 88, pp. 559-579, (2001) ,
[12] P. Vanek, M. Brezina, J. Mandel, Algebraic multigrid by smoothed agregation for second

GES-SA 21

and fourth order elliptic problems, in Computing, Springer Wien, Volume 56, Number 3,
pp. 179 - 196

