SANDIA REPORT ez

SAND95-1322 « UC-705
Unlimited Release
Printed July 1995

The Implementation of the Upwind Leapfrog
Scheme for 3D Electromagnetic Scattering on
Massively Parallel Computers

Brian T. Nguyen, Scott A. Hutchinson

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 84550
for the United States Department of Energy
under Contract DE-AC04-94AL 85000

Approved for public releasev;rais‘;{ribution is unfimited.

|

i

AHE

it“‘{}ii' ,;:mm,: , |
4

hNEIt
™ 'nfﬁ"

j ! N, || T
i w i i 14591 v e L

lllllll

$£2900Q(8-81)



Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern-
ment, any agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A03
Microfiche copy: A01



DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.




SAND95-1322 Distribution
Unlimited Release Category UC-705
Printed July 1995

The Implementation of the Upwind Leapfrog
Scheme for 3D Electromagnetic Scattering on
Massively Parallel Computers”

Brian T. NguyenT
Department of Aerospace Engineering
University of Michigan
Ann Arbor, MI 48109-2118

Scott A. Hutchinsont
Massively Parallel Computing Research Laboratory

Sandia National Laboratories
Albuquerque, NM 87185

Abstract

The upwind leapfrog scheme for electromagnetic scattering is briefly described.
Its application to the 3D Maxwell’s time domain equations is shown in detail. The
scheme’s use of upwind characteristic variables and a narrow stencil result in a smaller
demand in communication overhead, making it ideal for implementation on distributed
memory parallel computers. The algorithm’s implementation on two message passing
computers, a 1024-processor nCUBE 2 and a 1840-processor Intel Paragon, is described.
Performance evaluation demonstrates that the scheme performs well with both good
scaling qualities and high efficiencies on these machines.
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1. Introduction. The leapfrog scheme of Yee [1] has long been a popular method
for solving Maxwell’s equations in the time domain. In recent years, several different
techniques for the solving the same classes of problems have been published, includ-
ing many finite element approaches, higher order finite difference methods and upwind
biased schemes. Some examples of new finite difference schemes [2, 3] use extended
differencing stencils to attain higher orders. Higher order extensions to the method
described in this paper are possible [4] though they are not addressed in this report.
Whereas the finite element approaches have emphasized the role of mathematically bet-
"ter numerical approximations for the differential operators, the upwind biased schemes
first interpret the phenomena as the interaction of moving waves with specific direc-
tions of propagations and then discretize the problems so that information is moved
in the correct direction. Experiences in computational fluid dynamics have shown that
this approach improves the solution [5], especially in the resolution of high gradients in
shock waves and boundary layers. Such high gradients are not unlike those found in
high frequency electromagnetic and acoustic disturbances.

Upwind biased schemes were developed for hyperbolic systems of equations whose
solutions exhibit wave-like behavior. Schemes including, but not limited to, those of
Gudonov [6] and Roe [7] use Riemann solvers to determine the interaction of waves at
the boundaries of discrete cells in the domain and then apply flux to the cells based
upon the Riemann solutions. The principle of solving the Riemann problems at cell
interfaces were applied to the time domain Maxwell’s equations by Shankar et. al. [8].
This method suffers a disadvantage in comparison to Yee’s leapfrog scheme in that it
is numerically dissipative. While numerical dissipation is acceptable in fluid dynamics
where the solution varies on the problem’s geometric scale it can be overwhelming in
electromagnetics whose solutions vary on an independent scale such as the electromag-
netic wavelength. These wave disturbances can be too dissipative if the grid resolution
is too low or prohibitively expensive if the the grid resolution is made sufficient.

Additionally, as the smallest important wavelength decreases with respect to the
characteristic geometric length of the problem, the computational requirements of the
solution can grow to exceed the available resources of traditional serial-vector comput-
ers. Today’s scalable massively parallel (MP) computers are ideal platforms for solving
such large problems. However, in order to realize the efficiency of any algorithm on such
computers, the overhead required for communication must not defeat the gains provided
by parallel processing. Thus, it is vital that approaches are suitable for parallelization
and are well designed.

In this report, we discuss the parallelization of the upwind leapfrog method, which is
a combination of the traditional leapfrog and upwinding methods and can be efficiently
implemented on MP computers. The scheme is introduced in Section 2, and the set of
equations actually solved is presented in Section 3. The numerical implementation of
the method is presented in Section 4 and specifics of the parallel implementation are
given in Section 5. In Section 6, results of a benchmark problem run on two different
platforms are presented and lastly, Section 7 summarizes our findings.




2. Upwind Leapfrog Scheme. The upwind leapfrog scheme was first described
by Iserles [9] and recently further developed by Roe [10], Thomas and Roe [11] and
Nguyen and Roe [12]. The reader is especially referred to [10] as only a brief summary
follows here.

The advantages of the upwind leapfrog schemes described in references [10, 11, 12]
include their lack of numerical dissipation, low numerical dispersion, their use compact
stencils and upwinded discretization of the bicharacteristic equations. The last two
items are especially useful for implementation on MP computers.

All leapfrog schemes are reversible in time and therefore are non-dissipative. Anal-
yses in [11] and [10] show the numerical dispersion characteristics to be much improved
over those of the original leapfrog scheme of Yee [1]. However, since Maxwell’s equations
for simple media decouple when this scheme is applied, only one of the decoupled sets
needs to be solved. One interpretation of Yee’s staggered scheme is as a leapfrog scheme
where only one of the decoupled sets is solved. The staggered placement of the solution
in space and in time results because the decoupled set consists of points in staggered
patterns.

The upwind leapfrog scheme uses bicharacteristic forms of Maxwell’s equations,
which are special combinations of the original partial differential equations. A fea-
ture of the bicharacteristic equations is the inclusion of an explicit derivative in a
two-dimensional spatial-temporal subspace of the D + 1 dimensional space of a D-
dimensional problem. It is the orientation of this subspace that tells the direction
and speed of propagation of the information governed by a particular bicharacteristic
equation. Bicharacteristic equations can be formulated for any spatial direction since a
change in direction is no more than a rotation of coordinates. But, as argued in [10],
many independent bicharacteristic equations can be formulated from a finite system of
PDE’s because each bicharacteristic applies along a particular direction (i.e. the vector
n in (40) and (41)), not just at a single point.

The use of bicharacteristic equations have two immediate consequences: a change
in the number of equations (and unknowns) and the presence of an explicit direction
associated with each equation (and unknown). For Maxwell’s equations in the current
implementation, twelve equations result, each pair corresponding to one of the directions
+z, +y, and 2. The two unknowns for each direction correspond to the two transverse
directions. (See Appendix A). Reference [10] has further discussion on bicharacteristic
equations and their discretization.

The uniqueness of each bicharacteristic equation to a particular direction and the
maintenance of this uniqueness in discretizing them with an appropriate upwind scheme
enables the present approach to propagate distinct information in a more physically
consistent manner than central difference or finite element schemes.

3. Bicharacteristic Governing Equations. The twelve bicharacteristic govern-
ing equations derived in Appendix A are
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Each equation applies in either the +z, +y or £z direction as indicated by the first
operator.

With the exception of two additional cross terms per equation, they are very similar
to the standard second order, one-dimensional advection equation for which the upwind
leapfrog scheme was first developed [9]:

(7) [2+a%}u=0

The cross terms are the results of the multidimensional coupling of non-planar waves
or waves that are not perfectly aligned and propagating along one of the coordinate
directions. As seen below, these cross terms do not present a problem when the leapfrog
scheme is naturally extended to multiple dimensions. The directions of propagation
are explicitly indicated by the second derivative in the first operator and the sense of
propagation by the the sign. These equations are physically consistent (in a discrete
sense) with the directions of propagation of the physical wave as well as the combinations
of propagated variables.

4. Numerical Implementation. In the one dimensional upwind leapfrog scheme,
the variables are stored at the points and the stencil is centered around a cell (Figure 1).
Information traversing the cell is used to update the points forming the cell. For exam-
ple, a difference centered at j — % is used to update right going information at point j
and a difference centered at j + % is used to update left going information at the same
point. The natural multidimensional extension of this is to store variables on the faces
(planar segments in 3D and line segments in 2D). Figure 2 shows, for the 3D problem,
how each face stores at its centroid the tangential components of the characteristic
variable vectors (or alternatively, primitive variable vectors). Four variables are stored
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at each face, two tangential components for each direction a wave can pass through the
face.

With the cell centered scheme described in the next section, only the solution at
two time steps needs to be stored since the solution at step n — 1 can be discarded just
prior to storing the solution at step n+ 1. However, the current code is written to store
three time steps in order to facilitate ongoing experimentations.

The bicharacteristic equations operate directly on the characteristic variables. To
save having to convert between primitive and characteristic variables at every time step,
the characteristic variables are stored. Conversion to primitive variables is still required
for the cross terms in (1), but no reverse conversion is necessary after the characteristic
variables are updated. _

The lines connecting opposing face centroids in Figure 2 indicate where differencing
takes place. These cell centered differences are used to update the solutions on each
face. Time differencing is taken as the average of two differences, the forward difference
between step n + 1 and step n and the backward difference between step n and step
n — 1, shown in Figure 1. For example, (1) can be discretized as

Y1 F 9
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where the super- and subscripts on Gti have been omitted to reduce clutter. This
approximation to (1) is second order accurate in space and time. Note that the half-
integer indexed derivatives are obtained by cell centered central differencing along the
legs directed in the y- and z-axis (Figure 2). The half-integer indexed current density
can be taken as the cell averaged current density.
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Within each cell, the algorithm determines how the incoming waves interact as they
traverse the cell. The scattered waves then become outgoing waves to be updated on
the faces. Each cell can only update the variables on the insides of its constituent faces
and relies on neighboring cells to update the other side.

The cell centered update approach was chosen because it can be easily vectorized
and it minimizes the amount of data that must be communicated between processors
in distributed computers. Each face borders two cells and is updated by both, but the
variables updated by each cell are independent, thus no vector dependencies exist which
might inhibit vectorization.

5. Parallel Implementation. For two major reasons, the second order upwind
leapfrog scheme is well suited for implementation on massively parallel message passing
computers: 1) it uses a narrow non-overlapping stencil and 2) it “knows” the direction
of wave propagation.

The method’s narrow, non-overlapping stencil allows the grid to be partitioned
along a plane of faces such that no stencil straddles a processor boundary. Larger stencils
such as Deveze’s extension to Yee’s scheme [2] which spans three stencils in space,
would require several layers of data to be exchanged between neighboring processors.
Additionally, large stencils that require data from diagonally located neighbors also
require processors to communicate with diagonal neighbors, increasing the number of
. communication calls from 6 to 26 in 3D.

The ability to work directly with characteristic variables also helps to minimize
communication overhead. Since each variable propagates in a definite direction from
one side of a face to the other and the grid can be partitioned at the faces, only variables
known to propagate across faces on the partition boundary need to be communicated.
In the present 3D implementation, although 12 variables are solved per cell, only two
variables are sent and two variables are received per cell on the partition interface
(except, of course, cells on the corners and edges of partitions).

5.1. Partitioning Methods. Given the 3D monolithic grid of the domain to be
simulated, the partitioning process divides it by making cuts along constant index planes
and assigning a subset to each processor. Figure 3 shows this in 2D, where the dividing
planes are represented by the lines of medium thickness. Notice that each face stores
variables that come from each side, as indicated by the circles lying on both sides of
each face. Each processor updates its interior data, including the interior data of its
boundary faces. Exterior data are obtained from the domain boundary condition or the
neighboring processors.

The processors are logically arranged into a “processor grid” which is a 3D grid
mapping dimension for dimension onto the 3D problem grid. Each partition in the 3D
analogy of Figure 3 represents a point on the partition grid. Each processor handles
the partition of the domain grid that maps directly to its location in the processor grid.

The first stage of the partitioning determines the dimension of the processor grid,
that is, how many layers of processors are to be in the ¢, j and %k directions given the
number of processors available. The second stage is to identify where in the processor
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grid each processor belongs. This essentially requires a simple heuristic to assign the
processor grid coordinates to each processor. Finally, the ranges of indices for which
each processor is responsible are computed.
The first and second stages are performed differently depending on the commu-
nication architecture of the target MP machine. The code has been implemented on
the nCUBE 2 and the Intel Paragon and the methods which take advantage of each
' computer’s specific architecture are described separately below. The third stage is a
relatively trivial but tedious procedure. It is only important to note that in each of the
i, j and k directions, the thickest and thinnest partitions differ by no more than one
layer of cells. This creates an optimal load balance for a partitioning scheme that uses
constant index planar cuts to divide the domain grid. In the worst case, this approach
yields a ratio of the heaviest loaded processor’s work to the lightest loaded processor’s
work of

(S; +1)(S; +1)(S, + 1)
SiS; Sk

where S; is the thickness of the smallest slice in the [ direction.

5.1.1. nCUBE 2. The nCUBE 2 computer uses a hypercube communication in-
terconnect. For an h-dimensional hypercube, the available number of processors is 2.
Each additional dimension of the hypercube doubles the number of processors.

The procedure to determine the size of the processor grid begins with a zero-
dimensional hypercube (one processor). For each additional hypercube dimension, the
computational dimension (i, j or k) with the greatest ratio

(9)

domain grid size
r= T
processor grid size

is selected to receive the doubling of processor grid size.
Once the dimensions of the processor grid is determined, the processor’s position
in the processor grid is found by the standard gray code algorithm implemented in the
7




function nodetogrid in the nCUBE 2 parallel library. This algorithm takes advantage of
the hypercube and assures that neighboring partitions in the domain grid are neighbors
in the hardware, minimizing contention for message passing routes and the distance
(hops) individual messages must travel.

5.1.2. Paragon. The Intel Paragon computer provides a b x h rectangular array
of processors. In this two-dimensional mesh architecture, a processor has at most four
immediate neighbors and communication with other processors requires the message to
travel through multiple processors (hops). Thus, an optimal mapping of the problem
grid to the processor mesh is not easily found.

Determining the size of the (3D) processor grid proceeds similarly to the procedure
used for the nCUBE 2 but instead of doubling the dimension with the largest r, this
dimension is increased by just one layer. The number of processors required for each
additional layer is the product of the remaining two dimensions of the current processor
grid. If this procedure exceeds the bh processors available without hitting it exactly,
the subroutine cannot proceed. It suggests a more compatible value for bh and returns.

Each processor’s position in the processor grid is determined by natural ordering,
thus there is no useful relationship established between the rectangular processor array
and the 3D processor grid. This can potentially lead to contention, but the Paragon
under SUNMOS has sufficient bandwidth (approximately 100 to 150 MB per second)
so that no significant contention should occur. The aspect ratio of the processor array
may also induce contention, therefore it is kept as square as is possible. This is limited
by a maximum height of h = 16 for each Paragon cabinet.

5.2. Parallel Algorithm. A serial implementation of the present scheme would
involve only a normal update followed by boundary condition setting and source term
effects. In the parallel implementation, these steps are followed by the boundary data
exchange step. Each processor gathers into a buffer data needed by its neighbors and
send that data to the appropriate neighbor. It then receives the data from its neighbors.

Across each face, four characteristic variables are propagated, two transverse com-
ponents each way. The faces lying on the partition interfaces are the only ones that
require data from the adjacent partition (Figure 3). On these faces, the process up-
dates the two characteristic variables coming from inside the cell. After updating, the
boundary data exchange procedure provides the remaining two variables.

A pseudocode for the update procedure for each partition is as follows:

For each update {

For all cells of the partition {
Update outgoing variables on faces of cell

3

Add source term effects to updated solution




For all sides of the partition {
If the side is a computational boundary {
set boundary condition as normal
X
Else {
Copy information leaving the partition through the boundary
Send (non-blocking) information to neighboring partition
}
}

While there is an unresolved partition boundary {
Receive information coming from any neighbor partition
Decide where the data should go
Copy received information into appropriate solution memory

}
}

6. Performance Results. As mentioned above, the computers used in this study
were the nCUBE 2 and the Intel Paragon at the Massively Parallel Computing Research
Laboratory at Sandia National Laboratories. On the Intel Paragon, all runs were made
using the SUNMOS operating system developed at Sandia.

6.1. Test Problem. The test problem chosen to evaluate the performance of the
implementation is that of a radiating dipole. As written, the code is capable of simu-
lating electromagnetic scattering in linear, isotropic, inhomogeneous (cellwise homoge-
neous) media. However, free space was chosen as the medium. The dipole was placed in
one of the partitions while the remaining partitions remain source free. At the domain
grid boundary, the incoming characteristic variables are set to zero. The main update
section requires 131 floating point operations (flops) per cell per time step.

Two problem sizes were used in this study, one fixed size problem and one scaled
size problem. In the fixed size problem, the maximum size that can fit on one processor
was determined. This size was fixed as the problem was run on an increasing number of
processors. In the scaled size problem, the maximum size that can fit on one processor
was used for a single processor run. For multiprocessor runs, the problem size was
increased proportional with the number of processors.

The time of each run was determined by a timing the entire integration loop 512
time steps. This loop does not include initialization procedures such as allocating
the processors, reading input, allocating memory, etc. During the runs, no residuals
were computed and no input/output operations were called. The processors were all
synchronized before the main integration loop and no explicit synchronizations were
performed during the loop. The functions clock and dclock were used to mark the times
during the runs on the nCUBE 2 and the Paragon, respectively.

Two measures of parallel efficiency were computed as follows. The flop rate is
computed from the estimate of flops performed in the solver and boundary condition

9




handler and the time required. The speed-up ratio is defined as

_ flop rate for p processors
"~ flop rate for 1 processor .

(10) Sp

| and the parallel efficiency is defined as

(11) p

where p is the number of processors.

6.2. nCUBE 2 Results. For the constant size problem, a grid of 19x19x19 cells
was used to utilize the 3.75 MB available on each processor. The scaled size problem was
run with a partition of 19x19x19 cells per processor. Tables 1 and 2 show, respectively,

the results for the nCUBE 2.

number of | grid size | time | flop rate Sy E,
processors | (cells) | (sec.) | (Mflop/s)

1 19x19x19 | 462.2 996 | 1.0000 | 1.0000

2 19x19x19 | 246.7 1.865 | 1.8738 | .9369

4 19x19x19 | 131.3 3.505 | 3.5207 | .8802

8 19x19x19 70.3 6.540 | 6.5704 | .8213

16 19x19x19 | 36.4 12.635 | 12.6938 | .7934

32 19x19x19 | 19.1 24.073 | 24.1839 | .7557

64 19x19x19 10.4 44.266 | 44.4717 | .6949

128 19x19x19 6.7 68.365 | 68.6819 | .5366

TABLE 1

nCUBE constant size problem results

The efficiencies for the constant size problem drop quickly (Figure 4), as expected,
because the processors are not fully utilized. For the scaled size problem, efficiency
remained above 97.5% for all the runs up to 1024 processors and drops slightly below
97.5% for 1024 processors (Figure 5). The maximum computational speed achieved by
utilizing 1024 processors was 993 Mflops/s. In comparison, the maximum computation
rate for double precision mathematics on this machine is 2.5 Gflops/s. Figure 5 shows
that the reduction in parallel efficiency tapers off with the number of processors. The
addition of more processors should incur reduced communication overhead according
to the trend of Figure 5.

6.3. Intel Paragon Results. For the constant size problem, a grid of 33x33x34
cells was used needing roughly 16 MBytes of memory on a single node. The scaled size
problem was run with a partition of 33x33x34 cells per processor. Tables 3 and 4 show,
respectively, the results for the Paragon runs.

For the constant size problem, the inefficient use of the processors is evident in E,
as contention dominates, leading to irregular results such as the parallel efficiencies for

10
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number of |  grid size time | flop rate S, | B
Processors (cells) (sec.) | (Mflop/s)

1 19x19x19 | 462.2 .996 1.0000 | 1.0000

2 19x19x38 | 463.3 1.986 1.9952 | .9976

4 19x38x38 | 465.0 3.957 3.9756 | .9939

8 38x38x38 | 466.7 7.886 7.9228 | .9904
16 38x38x76 | 468.4 15.715 | 15.8198 | .9887
32 38x76x76 | 470.0 31.323 | 31.5910 | .9872
64 76x76x76 | 471.7 62.423 | 63.0812 | .9856
128 76x76x152 | 471.7 124.485 | 126.0483 | .9848

256 76x152x152 | 473.7 248.610 | 249.7636 | .9756
512 152x152x152 | 473.7 497.210 | 499.5195 | .9756

1024 152x152x304 | 474.2 993.478 | 998.1084 | .9747
TABLE 2
nCUBE scaled size problem results

48, 64 80 and 100 processors being greater than that for 36 processors (Table 1 and
Figure 4).

The more realistic usage is illustrated in the scaled size problem (Table 4 and
Figure 5), where each processor’s memory is fully utilized. Here, the efficiency remains
above 97.5% up to 256 processors. More importantly, efficiency does not decrease as
the number of processors increase. A maximum flop rate of 1.76 Gflops/s. is achieved
with 256 processors.

Like the behavior on the nCUBE 2, reduction in parallel efficiency tapers off quickly
so that further parallelism does not incur significant additional communication overhead
(Figure 5).

7. Summary and Conclusions. The application of the second order leapfrog
scheme to the 3D time domain Maxwell’s equations was presented along with its im-
plementation on MP message passing computers. In addition to the previously demon-
strated ability to efficiently propagate disturbances with low numerical dispersion, this
scheme is now shown to have excellent parallel features. The test results presented show
that the implementation’s efficiency remained close to or above 97.5% for machine sizes
of up to 1024 processors for the nCUBE 2 computer and 256 processors for the Intel
Paragon. Further, scaled speed-up values of 998 for 1024 nCUBE 2 processors and 250
for 256 Intel Paragon processors were also demonstrated. These results were obtained
using scaled problems which used the maximum memory capacities of 3.75 MBytes per
processor on the nCUBE 2 and the 16 MBytes per processor on the Intel Paragon.
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processor | grid size time | flop rate Sp- E,
array size | (cells) (sec.) | (Mflop/s)
1x1 33x33x34 | 353.72 7.02 | 1.00 | 1.000
1x2 33x33x34 | 179.67 13.82 | 1.97 | 0.984
2x2 33x33x34 | 93.67 26.51 | 3.78 | 0.944
2x4 33x33x34 | 48.65 51.05 | 7.27 | 0.909
3x6 33x33x34 | 23.21 106.97 | 15.24 | 0.847
3x9 33x33x34 | 15.50 160.24 | 22.24 | 0.845
6x6 33x33x34 | 14.72 168.69 | 24.03 | 0.668
6x8 33x33x34 9.84 252.34 | 35.95 | 0.749
8x8 33x33x34 8.12 305.58 | 43.55 | 0.681
8x10 33x33x34 6.47 383.51 | 54.66 | 0.683
10x10 | 33x33x34 5.24 473.97 | 67.55 | 0.676
10x15 | 33x33x34 3.73 664.54 | 94.72 | 0.631
~ TABLE 3
Paragon constant size problem results
processor grid size time | flop rate Sp E,
array size (cells) (sec.) | (Mflop/s) |.
1x1 33x33x34 | 353.17 7.03 1.00 | 1.000
2x2 33x66x68 | 356.09 27.90 3.97 | 0.992
4x4 66x66x136 | 358.60 110.80 | 15.76 | 0.985
8x8 132x132x136 | 361.22 440.00 | 62.57 | 0.978
16x16 132x264x272 | 361.29 1759.69 | 250.25 | 0.977
TABLE 4

Paragon scaled size problem results

A. Derivation of Bicharacteristic Governing Equations. The following
derivation of the bicharacteristic form of Maxwell’s equations assumes a linear, isotropic
nondispersive media. It uses a well known characteristics analysis procedure involving
an eigensystem analysis. In addition, we define a set of characteristic variables and
formulate of the bicharacteristic equations.

A.1. Eigensystem Analysis. The common form of Maxwell’s equations is

0D
(12) —a?-i"J—VXH
0B

In the form of a single vector, Maxwell’s equations can be written as

8Q OF 8G 0K
'87+55+5§+__S’
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where

(15) Q=

(17) G =

This vector equation can be written as a one dimensional equation for a single wave
propagating along any unit vector n:

0Q @ OF _
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where now F is defined as

(21)

(22)

(23)

(24)

is

(25)

[ Exng— Eyn, \

E,n, — E,n,
F= Eymn, ~ E;n,
Hyn, — H,n,
H.,n, — H.n,

\ Hony — Hyn,

Equation (20) is a one-dimensional equation along any arbitrary direction. Equa-
tion (14) can be recovered from (20) by using the chain rule relationships

e _.9
dx ~  “on
dy  Yon
o_,9
8z “on

The Jacobian matrix of F in (21) with respect to independent variables @ in (15)

A

(

\

0
0
0
0

—’sz/N
Ny /

0 0 0

0 0 n,/e

0 0 —ny/e
n./u  —ny/pp 0

0 Ng/ 1t 0
_nm/ﬂ 0 0

—n,/€
0
ng /€
0
0
0

nyfe
—ng/e
0

0
0
0

/

where € and g are the permittivity and permeability of the medium.
This matrix (25) has the eigenvalues '

(26)

A=0,0,c,¢,—c,—cC

where ¢ = 1/,/epi is the speed of light.
The eigenvectors for the two stationary waves, associated with A = 0 and called
the DO and B0 waves, are simple. The right eigenvector of the B0 wave and the left
eigenvector of the D0 wave are linearly dependent and can be written

(27)

0\
0

Bo _ ;DO 0
Tz

Ty
\ 7.

T




and similarly, for the right eigenvector of the D0 wave and the left eigenvector of the
B0 wave, we have

[ 1z \
Ny
(28) TDO = lBO — 7:):
0

\ 0 )

Note that the right-left eigenvector pairs are orthonormal for both of the stationary
waves. .

The remaining eigenvalues belong to four moving waves, two along +c and two
along —c. Since these waves must be transverse, the two waves in each direction must
correspond to two field directions orthogonal to n.

The eigenvectors corresponding to the moving waves are more difficult to express.
Since each eigenvalue is repeated, each of their eigenvectors can lie in a two-dimensional
subspace of the six-dimensional space of the unknowns. This leads to a certain degree
of ambiguity in writing the eigenvectors, beyond the fact that they can vary within an
arbitrary multiplicative constant. Some ways of writing the left eigenvectors are

[ 0 ) ( FYn, \ [ £Yn, )

+Yn, 0 FYn,

(200 P | T | oo | EMe | gen O

nZ+n2 |’ —ngny |’ —NgNn,

—NgNy n2 +n? ~TyNy
k —ngn, ) \ —nyn. \ nZ+n2 )

[ n2+n?\ [ —nsny ) -

—ngny n2 + n? —nyn,

2. .2

liB” — —MNgT, =By _ —NyT, +B. _ n, + ny

(30) 0 +Zn, |’ ! FZn,
\ £Zn, ) \ FZn: ) \ 0 /

where the upper signs correspond to the +c eigenvalue and the lower signs correspond to
the —c eigenvalue. The + signs in the superscripts indicate the same correspondence.
The designations “D” and “B” will lead to different characteristic variable vectors
defined below, and the z, y and z subscripts in the superscripts will lead to orthogonal
components of the characteristic variable vectors, but for now, these are simply different
names for the different vectors. Note that six different left eigenvectors are offered for
each wave, but only two are linearly independent.
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Similarly, some ways of writing the right eigenvectors of the moving waves are

((n2+n2 ) [ —nany w [ —ngn,
—~n1y n2 + n? —nyn,
2 4,2
+B, _ | “NaN. +B, _ —NyN B, _ | Mz + 1y
(31) rEoe = 0 , rE8 = ivn, |PT= +Yn,
FYn, 0 +Yn,
\ £vn, | \ F¥n, \ o
[ 0 ([ FZn, \ [ +Zn, \
+Zn, 0 FZn,
(32) r*l= = :]2:Zny2 , 0y = +2n, , 0 = 0
ny + n; —NzNy . —NgN,
—ngny, n2 + n? —nyn,
\ —non, ) \ —nyn, | \ n2+n2 )

where the same conventions described above have been followed.

A.2. Characteristic Variables. Despite the above ambiguity in the choices of
eigenvectors, it is possible to resolve electromagnetic disturbances into waves by con-
. sidering inner products of any left eigenvector with the vector Q.

Since the given left and right eigenvectors of the stationary waves are orthonormal,
the strengths of these waves are the inner products of the the left eigenvectors with
@, and the distribution of each wave in the space of @) is proportional to its right
eigenvector. :

Upon premultiplying (20) by /5° and by P, and using the definitions

(33) G=n-D=D,
and
(34) G”®=n-B =B,
we get
9 ~Bo _

(35) atG =0

9 po _
(36) 6tG =-n-I

stating that a locally one-dimensional wave must be transverse since components of B
and D along n are steady, except for the electric field from the divergence of the current
field.

The characteristic variable associated with the moving waves are determined by
the inner product of the above left eigenvectors. Since only two can be independent,
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the choice of eigenvectors must be chosen carefully to obtain a concise definition for the
characteristic variable vector. The eigenvectors designated with superscripts “D” will
be used here. Mixing arbitrary combinations of valid eigenvectors will produce results
that are difficult to interpret.

Due to the similarity between the +c¢ and —c waves, it is possible to treat them
simultaneously. We premultiply @ with the left eigenvectors in (29), obtaining the wave
strengths

(37) GEP =1*P-.Q = (n2 +n?)D, — na(nyDy + n.D.) F Y (nyB, — 1. By)

38) GXP =p1Pv.Q = (n2+n?)D, — ny(n,D, +n,D,)FY(-n,B, + n,B.)
Yy z Yy Yy

(39) G =1*P-.Q=(n2+ nz)Dz — n,(nyDy + nyD,) FY (nyBy — nyBy)
which are the components of the “characteristic variable vector”
(40) GPf*=D;FYnxB

where the subscript ¢ stands for the transverse (to n) components. Again, of equa-
tions (37) through (39), only two equations for the ¢* characteristic and two for the ¢~
characteristic can be used. By definition, GP¥ is transverse to n. It actually represents
not one but two waves, since the two transverse components are independent.

In the above, the [? eigenvectors have been used. Working with the IZ eigenvectors
instead would yield different wave strengths and the characteristic variable vector

(41) GBE=B,+ZnxD

but the results, in terms of the vectors D and B would be the same. Additionally, one
can show

(42) n x GP* = xZGP*

Normally, the changes to @ by any wave are determined by the right eigenvector of
that wave, if the set of right and left eigenvectors are chosen to be orthonormal. Due to
the arbitrariness mentioned above, this would be difficult in the present case. However,
the distribution of changes in @ space can be directly backed out by the definitions of
the characteristic variables (33, 34, 40).

Directly from (35) and (36), we know that

(43) AD, = AB, =0

as expected of a transverse wave. From here on, we will drop the “A”. All appropriate
quantities are understood to be changes.

Knowing the solutions on the right and left sides of the face, we compute two
tangential components of

(44) GIR?_ = DtR +Yn x BR
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and two tangential components of
(45) GPt=D;,-YnxBg

These vector variables are tangent to the face, by (43). From these, we find

' 1
(46) D, = -(G2* +G§")

(47) B, = gn x (GD* — G2-)

on the face without having to use the right eigenvectors. Using the right eigenvectors
- would yield the same results. '

One may attempt to rewrite (46) and (47) to reveal the right eigenvectors (by
splitting the contributions from the +c and —c waves). Combining these equations, one
gets

[ B: \ ( Z(nyG£+—nzG5+) W
B, Z(n,GP* — n,GP*)
D+ D+
o B
2 2 G,
D, G+
\ D: ) \ G+ /

which is the weighted sum of the three possibilities in (32). But of the three weights,
GP+, GP+ and GP*, only two are independent wave strengths. It is impossible, but
fortunately not important, to separate the vector in (48) into two contributions of the
two independent waves without diminishing its generality for arbitrary n.

A.3. Derivation of Bicharacteristic Forms. Knowing the variable vector GP*
given by (40) and the associated direction vector n is equivalent to knowing D and
B. A set of equations governing the components of GP* can be found by taking the
appropriate combinations of equations that govern the variables appearing in GP*. As
suggested by (40), combining the transverse (to n) part of (12) with the cross product
of n and (13) yields an equation governing GP*. Upon simplification this equation is

(49) [—8—+c—a—J GPE+J=¢[Vi(n-D)—Yn x V(n-B)]
ot on
where V, is the gradient in the transverse plane.

To span a d-dimensional space, a minimum of d linearly independent directions
must be taken by n. For the cartesian grid used, natural choices are the coordinate
directions. For each of these directions, there are two vector variables, one propagating
forward and one backward. Each vector variable has d — 1 transverse components.
Therefore, in a 3D, directional splitting scheme, there are twelve equations governing
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twelve different scalar components of characteristic variable vectors. They are obtained
by letting n be +x, £y and *+z in equation 49. These are shown here, expanded to
reveal the primitive variables:

(50) ( )ic—— (Dyi%> aazz:{:caal;z =—Jy
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