Final Report on Tech-X Phase Il SBIR project “FSML — Fusion
Simulation Markup Language,”

Grant No DE-FG02-04ER84101

Svetlana Shasharina - Pl

L. INEEOAUCTION.ceviiiiiieiiiiiieeeeeeeee ettt aaeaaasaaesssassssasssasssssssssssnsssnnnnnnnn 2
D Q1Y I 1 0) o) (o Te] | PSPPSR 2
3. Markup apProachueiiiieiiiee e e ettt e e et e e e anaaee s 3
JTA (oY L1 e (o) s EE 3
HDFS MATKUD .ttt ettt e e ettt e e ettt e e e enbbe e e e enbbeeaeennbeeesennaeeeas 4
OVEIVIEW ..o 4
AV F:1 o) (PO RURRRUOPPUPPRRURPUPRRPRPRt 5
VariableWIthIMESIuuiiiiiiiiiiiii ettt asassasssssssssnnnnnes 8
Multi-component vs single-component variables............cceeievruiiieeiiiiiieeeiiiiiee e 9
IMLESIIES ...ttt tatattaaatatannnntanannanarrtrranrrannnas 9
VizSchema IIDIariesoooooiiiiiiiiiiieee 11

4. CONCIUSIONuvviiiiietieieeeeeeeeeeet et a st aaaaaa s sasssas s saaasssssssssssssssssssssnsssnssnsnnssssssnnsnnnnes 15

70 > /
el

1. Introduction

This report summarizes the final successes of the project but skips the descriptions of the
routine work, as it was described in detail in our semi-annual reports.

VizSchema is a new name of the code and the schema (which used to be FSML). It reflects
a fact that instead of using semantic fusion-specific schema, we moved to the syntactic schema
(from the physics point of view), which is still semantic from the visualization point of view.

[/]o—{ schema |o— FsmL |2 @D (eses)@—] Physical |2 @D (ees)m— Variable
1.0

: StructuredMesh

UnstructuredMesh
"D 0)e—{====)z— Unit

0..1

~— Structure

0.0

omment i@

_(D StructuredMeshType)E)-‘—(

)

E—| Coordinates |D O)= (-—-—-—-)D { Structure |

Structure

Structure

Structure

—(I] Uns(ructuredMeshType)E}—@D O = —esa |} Structure
'D 0= ('---)D I Structure |

0.1

[variableDef B—@

[Stweture |

0..00

[StructDef El—(:) Structure

0..00
“D 0= % >B ((][) extends: xsd:string)
0..0
Figure 1. XML schema representing VizSchema.

VizSchema is an agreement about what visualization data is. This agreement can be
expressed as XML schema (that was the original intention of the project) or can be reflected in

the native data itself. In the next two sections we describe our approaches using XML and using
HDFS5 markup consistent with the schema.

2. XML approach

When XML schema is used, any particular type of a simulation output is then described by
an XML instance, which maps the schema fields to the entities of the native data format (dataset,

2-

attribute or group). This XML approach proved to be useful for the applications, which output
their data in the same way each time. Examples of such codes are NIMROD and M3D. The
XML schema that we used is shown on Figure 1.

Based on this XML schema, we created a C++ library that reads data one-dimensional
arrays accompanied by their metadata. This library was then used to create an AVS/Express
module and a Vislt plugin that allowed importing NIMROD and M3D data into these tools (see
Figure 2).

Figure 2. Comparative visualization of NIMROD and M3D data using XML schema. The
top row shows Vislt results, the lower row shows AVS/Express visualizations.

3. Markup approach

Introduction

The XML approach briefly described above does not work for the applications which
change the data organization from run to run. This means that it is impossible to have one XML
instance per application. Examples of such applications are VORPAL and FACETS. These

applications drove our effort to create an agreement on how one should markup data internally.
The description of this agreement follows.

HDF5 markup

Overview

The data, which is supposed to be plotted, is called a variable in this document. VizSchema is a
convention about the mark-up (attributes and data structure) of HDFS5 files to define such
variables so that they can be imported into our VSHS plugin. All VizSchema attributes start with
“vs”. Entities noticed by VizSchema always have attributes vsType, which is a string attribute
that shows the category of the entity. For example, vsType can be equal to “mesh”. Some
entities can be classified further, and in this case they use the vsKind attribute. For example, a
mesh can be of kind “uniformCartesian.” We currently support three string values of vsType:
“variable”, “variableWithMesh” and “mesh”.

In a file compliant with the VizSchema, default variables are represented by datasets, which must
have the vsType attribute equal to “variable” or “variableWithMesh”. Such dataset can be either
single- or multiple-component. This is figured out by comparing dimensions of the dataset and
the mesh. By default, multi-component datasets are component-minor (meaning that fastest
index is the component index). If a dataset is component-major, it should manifest this by a
string attribute vsOrder equal to “compMajor”.

By default, all variables data is node-centered (meaning that the colors are linearly interpolated
between the nodes). In order to change this, one should use optional attribute vsCellOffset and
set it to “center”, so that the zonal look will be used. No other offset are currently supported for
now.

If the dataset is single-component, it exposes one variable with the same name. If the dataset is
multi-component, each component is exposed as a separate variable with the name composed of
the name of the dataset and “_i”, where is the index of the component.

The “variable” data is assumed to be on a mesh, which can be a real N-dim mesh or 1-dim time
sequence, with such mesh represented by an outside group. A typical example is electric field on
a 3D grid. The “variable” data must have attribute vsMesh equal to the name of the mesh on
which data resides.

A mesh is referenced by the variables using an unqualified name if it is in the same level. If the
mesh group/dataset is not on the same level with the variable, then the full path should be
provided. Mesh groups/datasets must have the vsType attribute equal “mesh” and a string
attribute vsKind attribute defining the type of the mesh. The other mesh attributes and datasets
structure of are not fully defined as they depend on the mesh type and are subject to further
standardization.

Additional variables can be defined in the vsVars group with the vsType attribute equal to
“vsVars”, which should use variables (and their component) to define expressions readable by
Vislt.

The “variableWithMesh” data contains the mesh within itself. A typical example is particle data,
which has locations usually in the same dataset with other variables such as momenta. Such
entities are always multi-component and need to specify the integer value of the
vsNumSpatialDims attribute, which allows the plugin to separate the data that needs to be
visualized from the spatial information used to create the mesh.

Variables

This section is supposed to give exhaustive examples of how to define variables on meshes
defined outside the data.

Single-component variables using one dataset

Group A {
Dataset phi {
Att vsType = “variable” // Var on external mesh, required
Att vsMesh = “grid0” // Name of the mesh, required
}

Group myVars {
vsType = “vsVars”

Att tanphi = “sin(phi)/cos(phi)” //Extra variable, optional
}
Group grid0 {

Att vsType = “mesh” // This is a mesh, required

Att vsKind = “uniformCartesian” // Kind of the mesh, required

Att totNumPhysCells = [50, 50, 50] // Attributes needed to define this mesh
Att lowerBounds = [0., 0., 0.] // More attributes

Att upperBounds = [1.,1.,1.] // More attributes
Att startCell = [0, 0, 0] // More attributes
}//End of grid0

}

Assuming that there is just one component, this example defines phi as a variable on grid0 and
adds an extra variable tanphi on the same grid. The group for the mesh data is in the group
containing the variables using this mesh and that is just a name of the group if referenced in
vsMesh, rather than the full path.

Multi-component variables using one dataset

Group A {
Dataset b {
Att vsType = “variable” // Var on external mesh, required
Att vsMesh = “grid0” // Name of the mesh, required
Att vsOrder = “compMajor” // If absent, comp minor is assumed
}//End of b

Group vsVars {

Att mag pressure = “b 0*b_0+b 1*b 1+b 2*b 2~

Att b =“{b 0,b 1,b 2}"
}
Group grid0 {
Att vsType = “mesh” // This group is a mesh, required
Att vsKind = “unstructured” // Kind of the mesh, required
Dataset coordinates {} // Bppropriate for this type data
Dataset connectivity {} // Bppropriate for this type data
}//End of grid0

}

Assuming that comparison of dimensions of the dataset b and dimensions of mesh “grid0”
concluded that the number of components of b is 3, there will be 3 variables b_0, b_1 and b_2.
In addition, there is a variable mag_pressure defined. All variables are on mesh named “grid0”
which is on the same level as variables using it.

Single-component variables using many datasets
Group step50 {

Group BVars {
Dataset Bx {

Att vsType = “variable” // Required to be used and exposed
Att vsMesh = “/step50/grids/grid0” // Full path to grid, required
}//End of Bx

Dataset By {

Att vsType = “variable”

Att vsMesh = “/step50/grids/grid0”
}//End of By

Dataset Bz {

Att vsType = “variable”

Att vsMesh = “/step50/grids/grid0”
}//End of Bz

Dataset Br {

Att vsType = “variable”

Att vsMesh = “/step50/grids/gridl”
}//End of Br

Dataset Bphi {

Att vsType = “variable”

Att vsMesh = “/step50/grids/gridl”
}//End of Bphi

}//End of BVars

Group ExtraVars {
vsType = “vsVars”
Att B = “{Bx, By, Bz}”
}

Group grids {

Group grid0 {
Att vsType = “mesh”
Att vsKind = “uniformCartesian”
Att totNumPhysCells = [50, 50, 50]
Att lowerBounds = [0., 0., 0.]
Att upperBounds = [1.,1.,1.]
Att startCell = [0, 0, 0]

}//End of grid0

Group gridl {
Att vsType= “mesh”
Att vsKind = “unstructured”
Dataset coordinates {}
Dataset connectivity {}
}//End of gridl
}//End of grids

}//End of step50

// This is a mesh, required

// Kind of the mesh, required

// Bppropriate for the kind attribs
// Bppropriate for the kind attribs
// Bppropriate for the kind attribs
// Bppropriate for the kind attribs

// This is a mesh, required

// Kind of the mesh, required

// Bppropriate for the kind data
// Bppropriate for the kind data

In this example, Bx, By, Bz, Br and Bphi are variables. In addition, a vector B is defined and
added as a variable. Br and Bphi are defined on “grid1” while Bx, By, Bz and B are defined on

“erid0”.
specify them in the attribute vsMesh.

Since grid0 and gridl are not in the same level as the variables, full path is used to

Multi-component variables using many datasets

Group EVars {

Dataset E {
Att vsType = “variable”
Att vsMesh = “/gridl”
}//End of E
Dataset B {
Att vsType = “variable”
Att vsMesh = “/gridl”
}

//Extra variables
Group yVarss {
Att vsType = “vsVars”

// Required
// Name of the grid

Att P = “E O*E 0+E 1*E 1+B 0*B 0+B 1*B 1”

}

}//End of EVars

Dataset gridl {
Att vsType = “mesh”
Att vsKind = “unstructured”
Dataset coordinates {}
Dataset connectivity {}
}//End of gridl

// This is a mesh, required

// Kind of the mesh, required

// Bppropriate for the type data
// Bppropriate for the kind data

Comparison with the gridl dimensions concluded that E and B have 2 components. Components
E O0,E _1,B 0 and B_1 are variables, and an extra variable P is defined.

A time dependent variable as 1D plot

Group A {
Dataset totalEnergy {
Att vsType = “variable” // This is a variable
Att vsMesh = “timeSequencel” // Name of the mesh, required
}
Group timeSequencel {
vsType = mesh // This is a mesh, required
vsKind = “irregular” // Kind of the mesh, required
Att values = [t0, t1,.. tn] // Rppropriate for the kind data
}
}

This example exposes a variable totalEnergy plotted against time with times defined in a group
named “timeSequencel”. Note that, although physically timeSequence is a list of instances, for
the viz purposes it is marked as a mesh.

VariableWithMesh

This section is supposed to give examples of how to define variables on meshes defined within
the data.

VariableWithMesh in a dataset

Group C {
Dataset electrons {
Att vsType = “variableWithMesh” // This is a variable containing mesh
Att vsNumSpatialDims = 3 // Required

}//End of Electrons

Group vsVars {
Att Vx = “electrons 0"
} // Extra variables

}//End of C

We are following VORPAL example for now. Such data is supposed to give 2 dimensions and
always represents many components, which are found using the value of vsNumSpatialDims. If
the data is component-minor (like in this example), first 3 columns are interpreted as coordinates
of an unstructured mesh. The remaining columns are variables with the indices offset by the
value of vsNumSpatialDims (for example, in our case electrons_0 is the 4™ column of the
dataset). Extra variables can be defined in the terms of these components (Vx in this example).
In the case of component-major, we deal with rows, instead of columns and need to add the
vsOrder = “compMajor.”

Multi-component vs single-component variables

VSHS compares mesh dimensions to variable dimensions. Dimensions of variables are defined
using HDF5's dataspaces. For example, the following variable has dimensions 200x200x104x2:

Dataset d3dVacVess {
DATASPACE { (200, 200, 104, 2) / (200, 200, 104, 2) }
Att vsKind = "varible"
Att vsMesh" = meshl
}
The mesh's dimensions can be defined in various attributes and depend on a kind of a mesh. For

example, this mesh defines its dimensions in the attribute totalNumPhysCells to be
200x200x104:

Group meshl {
Att vsType = "mesh"
Att vsKind = "uniformCartesian"
Att startCell = [0, 0, 0]
Att totalNumPhysCells = [200,200, 104]
Att lowerBounds = [-2.5, -2.5, -1.3]
Att upperBounds = [2.5, 2.5, 1.3]

}

If the dimensions of such mesh is the same as dimensions of the variable, VSHS5 treats the
variable is a scalar quantity mapped to the mesh. If the variable's dimensions are a multiple of
the mesh dimensions (2 in the case above), VSHS defines an array and break out the components
(2 in the case above).

The number of meshes of different kinds is defined differently for each kind. It should be added
to getMeshDims method in VsH5Reader class.

The variable is only recognized as a vector (in the Vislt sense) if it is declared as such in a
vsVars group. In other cases such as the variable size being less than the mesh size, or larger but
not a multiple, the variable cannot be mapped to the mesh.

In the case of "variableWithMesh" variables, the value of the attribute vsNumSpatialDims
indicates how many components of the variable's dataset contain spatial coordinates. The
remaining components are treated as data components.

Meshes

We have specifications for three kinds of meshes: uniform Cartesian, structured and
unstructured. A uniform Cartesian mesh is a specialized form of structured mesh in which the
mesh divisions are located at regular intervals along Cartesian axes. Example of a uniform
Cartesian mesh:
Group meshl {

Att vsType = "mesh"

Att vsKind = "uniformCartesian"
Att startCell = [0, 0, O]

Att totalNumPhysCells = [200, 200, 104]
Att lowerBounds = [-2.5, -2.5, -1.3]
Att upperBounds = [2.5, 2.5, 1.3]

}

All the attributes are required.

A structured mesh has indexed vertices which are not necessarily regularly spaced or aligned
with the coordinate system, and so is specified simply as an array of mesh points. The format of

a 3D structured mesh:
Dataset mesh3 {
DATASPACE [n0][nl][n2][3]
Att vsType = "mesh"
Att vsKind = "structured"
}
The values (n0, n1, n2) correspond to the mesh indices. All the attributes are required.

2D and 1D structured meshes have fewer indices, like so:
Dataset mesh2 {
DATASPACE [n0][nl1][2]
Att vsType = "mesh"
Att vsKind = "structured"
}
Dataset meshl {
DATASPACE [n0][1]
Att vsType = "mesh"
Att vsKind = "structured"
}
An unstructured mesh has 2 required attributes (vsType, vsKind), 1 required dataset (points), and

one or more datasets describing connectivity (for example, polygons, tetrahedral and hexahedra).
For example, VORPAL specifies a mesh for some surfaces using this format:
Group poly {

Att vsType = “mesh” // Required
Att vsKind = “unstructured” // Required
Dataset points [num points][ndims] // Required
Dataset polygons [num polys][num verts] // Optional

-10-

Vizlt

VS
plugin

VS_VORPAL

VS_NIMROD

Figure 3. The latest version of VizSchema approach.

VS_FACETS

VS_UEDGE

VizSchema libraries

Based on the markup, we
developed a C++ library which
reads visualization data into
arrays. Based on this library we
developed a new Vislt plugin
called Vs (see Figure 3).

The markup described
above was accepted by several
applications: VORPAL (see
Figures 4-5), FACETS (see
Figure 6), UEDGE (see Figure
6), NIMROD (see Figure 7),
MODAVE (see Figure 8) and the
plugin was tried by several
members of the Vislt team.

Figure 4. Simulation of the crab cavity using VORPAL data. The data was brought up into

Vislt using the Vs plugin and further rendered using POVRAY ray-tracing tool.

-11-

DB: test_SumRhoJ_24.h5

Volume
Var: SumRhoJ_0O
—0.000

-5,000e+06
-1.000e+07
-1.500e+07

—-2.000e+07
Max: 0.000
Min: -5.364e+08

o T
T 11 2 0 [
\

user: ghweber
Mon Oct 13 18:52:26 2008

Figure 5. Wakefield visualization obtained using VORPAL simulation and Vs plugin
(courtesy of Gunther Weber and Cameron Gedes).

-12-

1.2 1.4 1.|6 1.8 2.‘0 2.2

X

Figure 6. FACETS simulation of Core and Edge (UEDGE) components.

-13-

Figure 7. NIMROD’s data visualized using the Vs plugin.

-14-

|
|-

Figure 8. Precipitation data from a climate modeling code MODAVE. Visualized using the Vs
plugin.

4. Conclusion
The software developed in this project (VisSchema) is being used by multiple teams:
FACETS (Fusion SciDAC), COMPASS (HEP/NP SciDAC using VORPAL), VACETS
(Visualization SciDAC) and CEMM (Fusion SciDAC).
Please contact Svetlana Shasharina (sveta@txcorp.com) for more details.

-15-

