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ABSTRACT 
 
We describe here our progress toward developing high-fidelity computational fluid dynamics (CFD)  
models of commercial-scale gasifiers for use in advanced power plant simulations. The first gasifier is a  
two-stage, coal slurry-fed, oxygen-blown, pressurized, entrained-flow gasifier modeled using the 
commercial FLUENT® CFD software. The Eulerian-Lagrangian modeling approach is applied whereby  
the gas phase is treated as continuous and the coal particles are handled using the discrete phase model 
(DPM). The second gasifier is a scaled-up design of the transport gasifier at the Power Systems 
Development Facility (PSDF) located near Wilsonville, Alabama. The transient Eulerian-Eulerian MFIX  
multiphase CFD code from the National Energy Technology Laboratory (NETL) is used to model the gas-
solids hydrodynamic conditions and the complex gasification processes that take place in the transport 
gasifier. 
 
In this paper we also highlight recent NETL efforts to integrate CFD-based gasifier models into advanced  
power plant simulations using NETL’s Advanced Process Engineering Co-Simulator (APECS). In one case 
study, the entrained-flow gasifier CFD model is coupled into an Aspen Plus® steady-state process 
simulation of a potential coal-fired, gasification-based power and hydrogen production plant for the U.S. 
Department of Energy’s (DOE) FutureGen project. The APECS results illustrate that the co-simulation 
technology offers the potential to optimize overall power plant performance with respect to gasifier fluid 
dynamics, which strongly affect carbon conversion and synthesis gas quality. 
 
Depending on initial solution estimates, the APECS co-simulations for the FutureGen typically require 
several hours of CPU time to converge on a single-CPU workstation. The turnaround times are improved  
by running the computationally-intensive gasifier CFD model remotely and in parallel on the Linux clusters  
at NETL and/or Pittsburgh Supercomputing Center. The APECS system also enables NETL engineers to  
speed up co-simulations by generating fast, reduced-order models (ROMs) based on previously-computed  
results from higher-order CFD models. For the transport gasifier, we discuss the MFIX simulations 
performed to generate a CFD results database for use in developing a ROM for integration into a 
FutureGen plant simulation. To cover the wide range of potential FutureGen operating conditions and to 
generate a more accurate ROM, parametric runs are required for both air-blown and oxygen-blown gasifier  
cases and for different feed stocks, operating pressures, and recycled char and synthesis gas flow rates. The  
seamless integration of CFD-based ROMs with process simulation will provide an efficient capability to  
investigate the effect of transport gasifier fluid mechanics on overall FutureGen plant performance and  
efficiency. 
 
INTRODUCTION 
 
Gasification technology is a key component of today’s Integrated Gasification Combined Cycle (IGCC) 
power plants and is expected to be the centerpiece of tomorrow’s high-efficiency, zero-emission systems.  
The gasifier provides a means for converting coal to a hydrogen-rich synthesis gas, ideally suited for power  
generation, refining, and chemical applications. In order to realize the full potential of this promising new  
technology, NETL researchers are using CFD modeling to better understand the complex physical and 
chemical phenomena, including fluid flow, heat and mass transfer, and chemical reactions, that impact  
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gasifier performance and efficiency.  These high-fidelity CFD models are also used within overall process 
simulations for improving the design, analysis, and optimization of gasification-based power plants.   
 
The DOE’s $1 billion, 10-year, FutureGen Research Initiative is aimed at creating the world’s first coal-
fired, gasification-based, near-zero emissions electricity and hydrogen production power plant (DOE, 
2004).  The FutureGen plant will employ advanced coal gasification technology integrated with combined 
cycle electricity generation, hydrogen production, and capture and sequestration of carbon dioxide (CO2).  
Figure 1 provides a simplified flow diagram of the FutureGen plant.  The plant gasifies a coal slurry using 
oxygen from an air separation unit (ASU) to produce a hydrogen-rich synthesis gas (syngas).  After exiting 
the gasifier, the syngas is cleaned and shifted to produce a concentrated gas stream of hydrogen, steam, and 
CO2.  Following separation of these three species, the generated hydrogen is used to power a gas turbine 
and/or delivered as a product for use in fuel cells, as well as in applications other than power generation, for 
example, transportation and refineries.  The FutureGen plant will be the cleanest fossil fuel-fired power 
plant in the world, capturing and sequestering at least 90% of the CO2 with potential for 100% 
sequestration.  The reference design plant efficiency is projected at 50% for hydrogen and power 
production with CO2 sequestration.  The actual plant efficiency and cost will depend on the hydrogen and 
electricity product ratio.      
 

 
Figure 1.  Simplified Flow Diagram of the FutureGen Plant 

 
 
To help achieve the aggressive integration, environmental, and performance goals for the FutureGen plant, 
NETL computational scientists and engineers are building on strong collaborations with R&D technology 
partners (e.g., Syamlal et al., 2001; Sloan et al., 2002; Bockelie et al., 2005; McCorkle et al., 2003) to 
develop the Advanced Process Engineering Co-Simulator (APECS) (Zitney, 2004a).  APECS is an 
integration framework that combines process simulation with high-fidelity equipment models, for example 
those based on computational fluid dynamics (CFD).  Process simulation and CFD are highly 
complementary technologies and coupling the two offers significant opportunities to analyze overall system 
performance with respect to fluid flow, mass and heat transfer, chemical reactions, and related phenomena.  
In APECS, NETL design engineers are able to run the widely-used, steady-state process simulator, Aspen 
Plus® (Aspen Technology, 2003) with various equipment models, including CFD models based on 
FLUENT® (Fluent, 2004), a leading software package for detailed flow analysis of process equipment.  
Integrated Aspen Plus and FLUENT simulations have been applied to various chemical process (Zitney and 
Syamlal, 2002) and power generation applications (Syamlal et al., 2003; Sloan et al., 2004, 2005; Zitney et 
al., 2004, 2005).   
 
In NETL’s APECS system shown in Figure 2, plug-and-play interoperability is achieved by using the 
international standard CAPE-OPEN (CO) interfaces for unit operations, physical properties, and reaction 



kinetics (Osawe et al., 2002; Syamlal et al., 2004; Zitney, 2004b, 2005).  The CO standard for process 
simulation is managed by the CAPE-OPEN Laboratories Network (CO-LaN, www.colan.org) and 
supported by over forty leading process-industry companies, software suppliers, and academic and 
government research institutions (Braunschweig and Gani, 2002).  The interfaces are open, multi-platform, 
available free of charge, and supported by many of the leading commercial process simulators.  A recent 
review of industrial applications of the CO standard, including a brief discussion of the integrated Aspen 
Plus and FLUENT solution used in APECS, can be found in Pons (2003).   
 
The APECS technology addresses the performance issue that equipment simulations based on high-fidelity 
CFD models require much more computational time than the process simulations based on simplified 
models.   The design engineer often needs to run many process simulations in a short period of time and 
detailed equipment models may lead to unacceptable turnaround times.  APECS overcomes this potential 
barrier by providing solutions on both ends of the performance spectrum, including parallel execution of 
the CFD models on high-performance computers (Zitney, 2004a) and use of fast reduced-order models 
based on CFD results (Syamlal and Osawe, 2004). 
 
The APECS system also provides a wide variety of analysis tools for optimizing overall plant performance 
with respect to mixing and fluid flow behavior (Zitney, 2004a).  Advanced 2D and 3D visualization tools 
enable the design engineer to display, within the process simulator, the results of a CFD simulation 
conducted as a part of an integrated simulation.  Other analysis tools include design specifications to 
calculate operating conditions or equipment parameters to meet specified performance targets; case studies 
to run multiple simulations with different input for comparison and study; sensitivity analysis to show how 
process performance varies with changes to selected equipment specifications and operating conditions; 
and optimization for maximizing an objective function, including plant efficiency, energy production, and 
process economics. 
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Figure 2. APECS Integration Framework 
 



ENTRAINED-FLOW GASIFIER 
 
The entrained-flow, coal-slurry gasifier considered here is a two-stage, up-flow gasifier consisting of a 
horizontal first stage and a vertical second stage as shown in Figure 3.  All of the oxidant and 78% of the 
coal slurry are evenly divided between the left- and right-hand inlets of the first stage.  This horizontal 
stage is mainly a coal combustor and provides hot gases through the connection to the second stage in 
which the remaining 22% of the coal slurry is injected.  Most of the coal gasification process occurs in the 
second stage.  The total volume of the gasifier is 45.5 m3.  The particle volume fraction is estimated to be 
around 4% and the average particle residence time is estimated to be 10 seconds.  The operating pressure is 
28 atm.  The coal slurry and the oxygen are fed into the gasifier at temperatures of 450 K and 411.4 K, 
respectively.  It is important to note here that this is a prototype gasifier design which is not intended to 
represent any existing gasifier designs, commercial or otherwise. 
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Figure 3. Entrained-Flow Gasifier with Coal Slurry and Oxidant Feed Streams 
 
 
CFD Model of Entrained-Flow Gasifier 
 
The entrained-flow gasifier is modeled using the steady-state, three-dimensional CFD model described by 
Shi et al. (2004, 2005b).  The continuous gas phase conservation equations include the continuity equation, 
momentum equations, energy equation, turbulence equations, species transport equations, and radiation 
transfer equation.  The gas phase reactions are modeled using the eddy dissipation model along with an 
Arrhenius rate law.  The discrete phase model (DPM) is used to simulate the coal slurry flow as two 
separate particle types, namely water droplets and coal particles, which are injected into the gasifier 
through the carrying gas with a particle diameter distribution of Rosin-Rammler (Fluent, 2005).  The 
assumption of two particle types is reasonable given that the water evaporates quickly after the slurry enters 
the gasifier.  Using DPM, the particle trajectories, along with mass and energy transfer to/from the 
particles, are computed with a Lagrangian formulation.  
The physical and chemical processing of the coal 
slurry is implemented by using user-defined functions 
(UDFs) in which the coal particles undergo moisture 
release, vaporization, devolatilization, char oxidation, 
and gasification.  The coal gasification model evolved 
from earlier models developed at NETL for fixed bed 
gasifiers (Syamlal and Bissett, 1992), and dilute 
(Shahnam et al., 2000) and dense (Syamlal et al., 
1996; Guenther et al., 2002, 2003) transport gasifiers.  
The coupling between the continuous phase (gas) and 
the discrete phase (particle) is solved by tracking the 
exchange of mass, momentum, and energy (Figure 4).      
            Figure 4.  Heat, mass, and momentum transfer 
                 between discrete and continue phases 



The gasifier CFD simulation with over 12,000 hexahedral computational cells was converged using 
approximately 50,000 gas phase iterations in FLUENT (Version 6.1.22).  Convergence was achieved when 
the residuals were less than their specified maximum values and the DPM mass and energy were balanced.  
A temperature of 2500 K was patched in the gasifier to initialize the combustion reaction.  The DPM 
calculations were performed at every 50th iteration of the fluid phase calculation.  The continuous phase and 
discrete phase equations are calculated alternatively until a converged coupled solution is achieved.  During 
the continuous phase iterations, accumulated sources from the particles remain unchanged, and vice versa.    
 
APECS Integration of Entrained-Flow Gasifier CFD Model and FutureGen Plant Simulation 
 
The converged entrained-flow gasifier CFD simulation described above was then coupled into a FutureGen 
plant simulation using the APECS integration framework.  The entrained-flow gasifier model is instantiated 
on the process flowsheet via the CFD block in the CAPE-OPEN Model Library.  The two-stage gasifier 
CFD model replaces two restricted equilibrium reactor models (REquil) from the Aspen Plus Model 
Library.  The gasifier CFD model is coupled to the Aspen Plus process flowsheet by a total of twelve 
material streams—nine inlets and three outlets 
(Figure 5).  Typically, an equipment item 
represented by a CFD model has “material 
stream ports” corresponding to the standard 
inlet and outlet boundaries of the 
computational domain.  When the CFD model 
is instantiated on the flowsheet, Aspen Plus 
“material streams” are connected to the 
“material stream ports”.  For the gasifier, the 
oxidant inlet streams and tail gas recycle in 
Aspen Plus are linked to standard “material 
stream ports” corresponding to mass-flow-inlet 
boundaries in FLUENT.  Similarly, the syngas 
outlet stream is linked to a pressure-outlet 
boundary.  However, a CFD model may also 
contain physical sub-models, such as DPM 
and/or a heat exchanger, which have stream 
connectivity requirements.  In this case, a 
“physical model port” capability is provided.  
For the coal slurry-fed gasifier, separate coal 
and water “material streams” are connected to 
the CFD block via “physical model ports” 
representing DPM injections for coal particles 
and water droplets.  The solid particles exiting 
the top and bottom of the gasifier are 
calculated in the FLUENT UDF and passed 
back to Aspen Plus using “physical model 
ports”.   
 
The FutureGen plant configuration considered here is modeled using the steady-state process simulator, 
Aspen Plus (Version 12.1), and based on several recent NETL reference cases for Integrated Gasification 
Combined Cycle (IGCC) systems with CO2 capture (Parsons et al., 2002; Shelton and White, 2004).  As 
shown in Figure 6, the highly-integrated process flowsheet contains over 250 unit operation models 
comprising all of the major plant sections including gasification, air separation unit (ASU), cold gas 
cleanup (CGCU), gas turbine, and steam cycle.   
 
The high-pressure, cryogenic ASU is heat integrated with the gas turbine section and supplies oxidant to 
the gasification section at a rate of 45.8 kg/s (oxidant = 94.4% O2, 1.5% N2, 4.1% Ar).  The gasification 
section employs two oxygen-blown, entrained-flow gasifiers, each operating at 28 atm and firing 
(nominally) 27.5 kg/s Illinois #6 coal assumed to be 49.72% fixed carbon, 39.37% volatiles, and 1.91% ash 
by weight (dry basis).  The slurry feed is assumed to be 67.7% solids by weight (dry basis).   
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Figure 6.  APECS FutureGen Simulation with CFD Model of an Entrained-Flow Gasifier 

Gasifier 

 
 
Following the gasification section is a syngas cooler for generating high-pressure superheated steam and a 
cyclone for capturing particulates for recycle to the gasifiers.  The syngas is further cooled and scrubbed 
and then sent to a gas cooling/heat recovery section before entering the shift-reaction section.  The water-
gas shift reaction and carbonyl sulfide (COS) hydrolysis reaction generate hydrogen and hydrogen sulfide 
(H2S), respectively, along with additional CO2.  In the cold gas cleanup (CGCU) section, a Selexol solvent 
process is used to selectively remove the H2S in a product stream that is sent to a Claus unit for elemental 
sulfur recovery and to recover the CO2 in a product stream that is sent to a compression unit for 
sequestration.  The CO2 is compressed in a multistage (5 stages), intercooled compressor, cooled to 310.9 
K (liquid), and pumped to 204 atm for storage. 
 
The cleaned syngas aimed at power production is reheated and sent to the gas turbine combustor, while the 
remainder is sent to a pressure swing adsorption (PSA) unit for generating hydrogen with a residual fuel 
stream available for use in power generation.  Using a design specification, the syngas split between the 
PSA unit and the gas turbine is adjusted to maintain the turbine inlet temperature at 1619.3 K.  Since 
combustor performance determines the turbine inlet temperature, the gas turbine combustor is simulated 
using a high-fidelity CFD model (Figure 3) described in more detail in the next section.  The gas turbine 
exhaust enters a heat recovery steam generator (HRSG) that produces steam for a three pressure level, 
subcritical reheat steam cycle (122.5 atm / 838.7 K / 26.5 atm / 838.7 K / 2.4 atm).   
 
APECS Co-Simulation and Entrained-Flow Gasifier Results 
 
When the FutureGen plant specifications are complete, the APECS co-simulation is ready to run.  Using an 
iterative sequential-modular solution process, Aspen Plus controls the integrated simulation and 
automatically executes the FLUENT gasifier and combustor CFD models as needed to converge the tail gas 
recycle loop and the design specification on the gas turbine inlet temperature.  The FLUENT results are 
saved at each flowsheet iteration so that subsequent CFD simulations converge more quickly. 
 
Depending on the initial solution estimates in Aspen Plus and FLUENT, the co-simulation typically 
required several hours of CPU time to converge the “turbine inlet temperature” design specification case on 
a single-CPU workstation PC running Windows XP.  The turnaround time for the co-simulation was 
improved by running the computationally-intensive CFD models in parallel on 2-8 CPUs of the Linux 
clusters at NETL and/or Pittsburgh Supercomputing Center (Zitney, 2004a).  The number of CPUs, 
message-passing communication protocol, and name of the hosts file containing the list of computers on 
which to run the parallel job were specified on the solver tab of the APECS Model Edit GUI for the 
equipment model. 
 



For the FutureGen design case, the APECS results show that the “turbine inlet temperature” target of 
1619.3 K is met when 43% of the syngas is sent to the gas turbine combustor and the remainder goes to the 
PSA unit for hydrogen production.  The corresponding net equivalent power output from the plant is 243.8 
MW, corresponding to an HHV thermal efficiency of 53%.   
 
The temperature contours for the gasifier are provided in Figure 6.  The hot gas generated from combustion 
of the volatiles in the first stage provides the necessary energy for the second-stage coal gasification.  The 
char conversion is 100% for the first stage and 86% for the second stage.  The mole fraction contours of 
some major chemical species are shown in Figures 7a-d.  Note here that the dark red represents the highest 
level while the dark blue represents the lowest level.  Figure 7d shows that all of the oxygen is depleted by 
combustion in the first stage.     

 

 

 

 

 

 

 

              (a) CO                              (b) H2                                   (c) H2O                                    (d) O2

Figure 7.  Species mole fraction contours at the center plane of the entrained-flow gasifier 

The species mole fractions at the outlet of the entrained-flow gasifier are 
shown in Table 1.  The benefit of using the CFD gasifier model is that it 
predicts the syngas composition based on fluid flow (Figure 8), heat and mass 
transfer, and chemical reactions in the specified geometry and at the specified 
boundary/operating conditions.  On the other hand, the Aspen Plus syngas 
composition must be tuned by specifying temperature approaches in the 
restricted equilibrium reactor models representing the two stages of the 
gasifier. 
 

 
    Table 1.  Syngas Composition   

 
 
 
 
 
 
 
 
 
 
 

 
 

Mole Fractions Chemical 
Species Aspen Plus FLUENT 
CO 0.339 0.359 
H2 0.212 0.229 
CO2 0.105 0.122 
CH4 0.021 0.017 
H2S 0.006 0.006 
Ar 0.007 0.008 
N2 0.020 0.020 
H2O 0.290 0.239 Figure 8.  Velocity vectors for 3D gasifier  

 



TRANSPORT GASIFIER  
 
The Power Systems Development Facility (PSDF), located in Wilsonville, Alabama is a joint project 
between the U.S. DOE, Southern Company Services (SCS), Kellogg Brown & Root (KBR), and other 
industrial partners to demonstrate an advanced coal-fueled power system (Smith et al., 1999).  The major 
component of this power system is a transport gasifier which operates at higher circulation rates, velocities, 
and riser densities than conventional circulating fluidized bed technology, thereby resulting in higher 
throughput, better mixing, and increased mass and heat transfer.  
 
At NETL, scientists and engineers are using the two-fluid model MFIX (Multiphase Flow with Interphase 
eXchanges) to model the hydrodynamic behavior inside the transport gasifier and account for chemical 
reactions and heat transfer (Guenther et al., 2002, 2003).  Two-fluid hydrodynamic models, also referred to 
as Eulerian-Eulerian models, treat the fluid and solid as two continuous and fully miscible phases.  This 
approach results in mass, momentum, and energy balance equations for both the gas and solids phases.  The 
MFIX model has been in use at the NETL for over fifteen years and has been become internationally 
recognized as one of the premier two-fluid models available to researchers (www.mfix.org).  Fully 
optimized to run on high performance computers, its open source format and FORTRAN coding of 
subroutines and versatile post-processing tools makes MFIX an ideal platform to develop, validate and test 
sub-models (e.g., coal combustion and gasification) within a two-fluid framework.  

Riser 

 
Figure 9. Schematic of transport gasifier and computational model 

 
 
The MFIX model provides PSDF engineers with transient hydrodynamic, chemistry, and energy 
information inside the mixing zone and riser (Figure 9).  The computational model uses a cylindrical 
coordinate system with over 250K computational cells.  The chemistry sub-model considers combustion, 
gasification, devolatilization, tar cracking and water-gas-shift reactions and tracks eight gas species and 
four solids species.  To validate the model simulations were completed considering both bituminous 
(Hiawatha) and sub-bituminous (PRB) coals under air and oxygen blown conditions.  Mole fractions of the 
syngas, exit temperature, carbon conversion, and syngas rates are given in Table 2.  

Coal 
Sorbent 

Air 
Steam 

Standpipe 

Air / O2 
Steam 

Mixing 
Zone 



Table 2. MFIX predictions and experimental results 
MFIX/Experiment PRB 

Oxygen Blown 
PRB 
Air Blown 

Hiawatha 
Oxygen Blown 

Hiawatha 
Air Blown 

CO 12.7/11.7 14/11 8.5/6.4 3.4/3.5 
CO2 11.2/14.1 5.1/7.4 13.8/12.6 11/9.3 
CH4 2.2/2.8 1.9/1 3.5/2.3 2.6/1.3 
H2 18/14.7 3/6.2 11/9.4 4.3/4.8 
H2O 28/22.9 7/8.3 37/33.8 17/23 
CO/CO2 .72/.8 .3/1.5 .62/.5 .3/.4 
Exit Temp (F) 1668/1674 1749/1757 1783/1714 1763/1779 
Percentage of 
Carbon Conversion 

66%/87% 98%/98% 100%/97% 99%/97% 

Syngas Rate in 
lbs/hr 

13400/16000 19800/21000 13200/14600 19400/21000 

 
Under the U.S. Department of Energy’s Clean Coal Power Initiative, SCS, KBR, and Orlando Utilities 
Commission will team up to construct a commercial scale 285 MW coal-based gasification plant in 
Orlando, Florida.  This plant will scale-up a transport gasifier in an air-blown mode.  However, actual 
gasifier design is problematic because there is no well established method for scale-up.  To help address 
some of these questions, NETL scientists working with SCS and KBR engineers have performed several 
MFIX simulations based on a conceptual design.  The MFIX simulations provide transient three-
dimensional detailed information inside the transport gasifier which would otherwise be unobtainable 
through experiments due to the high operating pressures and temperatures.  For example, the red and blue 
isosurfaces in Figure 10 denote decreasing oxygen mass fraction when going from the lower to middle 
sections of the mixing zone.  The green isosurface at the top of the mixing zone denotes a high 
concentration of carbon in the solids phase.  Figure 10 also shows particle path lines in gray.  
 
 

 
 

Figure 10. Oxygen and carbon mass fractions with particle trajectories inside the mixing zone 
 
 



Table 3 presents the species mole fractions in the exit syngas for the MFIX simulations, along with 
theoretical predictions, for both air and oxygen blown conditions for a sub-bituminous coal.  It should be 
noted that the large discrepancy between the MFIX and PSDF-model carbon monoxide (CO) mole fraction 
is due to a difference in input conditions into the respective models.  The PSDF-model used less steam in 
the mixing zone than the MFIX model.  With less steam available for gasification carbon combustion plays 
a more dominate role and results in increased production of CO. 
 
 

Table 3.  MFIX and PSDF predictions of syngas mole fractions  
 

MFIX/PSDF-Model Air Blown Oxygen Blown 
CO 21%/22.5% 24.0%/34% 
CO2 7.0%/6.7% 16.0%/13.5% 
CH4 2.3%/2.1% 3.8%/2.5% 
H2 12.7%/11.4% 27.0%/29.2% 

H2O 2.0%/5.5% 17.8%/18.9% 
 
 
The MFIX simulations require 1.2 million computational cells to adequately resolve the commercial-scale 
transport gasifier.  To run these large-scale simulations, NETL scientists rely heavily on high performance 
computers at NETL and the Pittsburgh Supercomputing Center (PSC).  At NETL’s Morgantown, WV and 
Pittsburgh, PA campuses, two clusters are readily available to NETL researchers working in the area of 
CFD and computational chemistry, respectively.  Comparable in performance to computers currently listed 
in the top 500 in the world, the 256-processor cluster in Morgantown has been optimized for CFD 
calculations with 256 Xeon 3.0-GHz processors with gigabit ethernet interconnection and the 232-
processor cluster in Pittsburgh has been optimized for computational chemistry calculations with 232 
Opteron 2.0-GHz processors with gigabit ethernet interconnection.  Furthermore, there exists 3.5 terabytes 
of mirrored raid level 5 data storage available at both the Morgantown and Pittsburgh campuses.  High-
performance computing at NETL is further enhanced through a regional Super Computing Science 
Consortium (SC)2.  This consortium is a partnership between NETL, PSC, West Virginia University, 
Carnegie Mellon University, University of Pittsburgh, West Virginia Governor’s Office of Technology, 
Institute for Scientific Research, Duquesne University, Waynesburg College, and the NASA Independent 
Verification and Validation Facility.  Through this consortium researchers have remote access to a variety 
of cluster and supercomputing platforms located at PSC. 
 
The high-end computers at NETL and the PSC provide the MFIX performance required to generate a CFD 
results database over a wide range of operating conditions for use in developing reduced-order models 
(ROMs).   Coupling these fast CFD-based ROMs together with plant-wide simulations using NETL’s 
APECS system offers an opportunity to investigate the effect of transport gasifier fluid dynamics on overall 
power plant performance and efficiency.   
 
SUMMARY AND FUTURE WORK  
 
In this paper we have described recent progress on developing CFD models for two commercial-scale 
gasifiers, including a two-stage, coal slurry-fed, oxygen-blown, pressurized, entrained-flow gasifier and a 
scaled-up design of the PSDF transport gasifier.  Also highlighted was NETL’s Advanced Process 
Engineering Co-Simulator for coupling high-fidelity equipment models with process simulation for the 
design, analysis, and optimization of advanced power plants.  Using APECS, we have coupled the 
entrained-flow gasifier CFD model into a coal-fired, gasification-based FutureGen power and hydrogen 
production plant.  The results for the FutureGen co-simulation illustrate how the APECS technology can 
help engineers better understand and optimize gasifier fluid dynamics and related phenomena that impact 
overall power plant performance.   
 
Development and validation of the MFIX transport gasifier model is continuing.  Additional experimental 
data, axial gas and solids samples from both the mixing zone and riser are being generated for validation.  
The effects of mass transfer coefficients and gas/solids dispersion coefficients are currently being evaluated 



and their sensitivity within the MFIX model are being analyzed.  In addition to these activities, the MFIX 
model is currently being used to study the effects of pressure and evaluate the effect of particle size. 
 
Future work will include the development of additional gasifier CFD models and ROMs for use in 
advanced power plant simulations.  For example, we are developing a FLUENT Eulerian-Eulerian 
multiphase model of the commercial-scale transport gasifier for use in generating a ROM based on the 
time-averaged transient CFD results (Shi et al., 2005a).  We are also considering the integration of a 
FLUENT CFD model of the Boeing/RocketDyne gasifier (Hartung, 2005) into an Aspen Plus simulation of 
a potential FutureGen plant configuration. 
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