SANDIA REPORT

SAND94-3128 + UC-705 '
Unlimited Release RECE’ VE D
Printed May 1995 JUN 14 1995

On Certificates and Lookahead in
Dynamic Graph Problems

Sanjeev Khanna, Rajeev Motwani, Randall H. Wilson

Prepared by

Sandia National Laboratories

Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy

under Contract DE-AC04-94AL85000

Approved for public release; distribution is unlimited.

SF2900Q(8-81)

FISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern-
ment, any agency thereof or any of their contractors.

Printed in the United States of America. This report has been i‘eproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A03
Microfiche copy: A0

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are

produced from the best available original
document.

SAND94-3128 Distribution
Unlimited Release Category UC-~705
Printed May 1995

On Certificates and Lookahead in Dynamic Graph Problems

Sanjeev Khanna* Rajeev Motwanit
Department of Computer Science
Stanford University

Stanford, CA 94305

Randall H. Wilson?
Intelligent Systems and Robotics Center

Sandia National Laboratories
Albuquerque, NM 87185-0951

May 5, 1995

Abstract

Recent work in dynamic graph algorithms has led to efficient al gorithms for dynamic undirected graph
problems such as connectivity. However, no efficient algorithms are known for the dynamic versions
of fundamental directed graph problems like strong connectivity and transitive closure, as well as some
undirected graph problems such as maximum matchings and cuts. We provide some explanation for
this lack of success by presenting quadratic lower bounds on the certificate complexity of the seemingly
difficult problems, in contrast to the known linear certificate complexity for the problems which have
efficient dynamic algorithms. A direct outcome of our lower bounds is the demonstration that a generic
technique for designing efficient dynamic graph algorithms, viz., sparsification, will not apply to the
difficult problems. More generally, it is our belief that the boundary between tractable and intractable
dynamic graph problems can be demarcated in terms of certificate complexity.

In many applications of dynamic (di)graph problems, a certain form of lookahead is available.
Specifically, we consider the problems of assembly planning in robotics and the maintenance of relations
in databases. These give rise to dynamic strong connectivity and dynamic transitive closure problems,
respectively. We explain why it is reasonable, and indeed natural and desirable, to assume that lookahead
is available in these two applications. Exploiting lookahead to circumvent their inherent complexity, we
obtain efficient fully-dynamic al gorithms for strong connectivity and transitive closure.

*Supported by an OTL grant, and NSF Grant CCR-9357849.

' Supported by Alfred P. Sloan Research Fellowship, an IBM Faculty Development Award, an OTL grant, and NSF Young
Investigator Award CCR-9357849, with matching funds from IBM, Schlumberger Foundation, Shell Foundation, and Xerox
Corporation,

’Supported by the Stanford Integrated Manufacturing Association, and by Sandia National Laboratories under DOE contract
DE-AC04-94AL85000. This work was performed in part while the author was at the Department of Computer Science, Stanford
University.

Sit

B
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

b

¥

3

7

>
S

1 Introduction

A dynamic graph problem is that of efficiently maintaining some property of a graph undergoing structural
changes defined by update operations such as insertion and deletion of edges, so as to minimize the amount
of recomputation needed after each update. An “efficient” algorithm for such problems will be able to
incrementally maintain the graph property at a cost (per update operation) that is significantly smaller than
the cost of computing the graph property from scratch.

While much of the prior research in the design of dynamic graph algorithms involved problem-specific
approaches [9, 10, 11, 19, 24], recently Eppstein, Galil, Italiano, and Nissenzweig [8] presented a general
paradigm called sparsification that is useful in both designing new dynamic graph algorithms, as well
as speeding up the existing ones. The sparsification technique is based on the notion of a sparse strong
certificate which, informally speaking, is a sparse graph whose structure is representative of the input graph

with respect to the property of interest. Eppstein et al established the existence of sparse strong certificates for
a variety of undirected graph properties® such as edge and vertex connectivity, bipartiteness, and minimum
spanning tree, thereby obtaining efficient dynamic algorithms; recently, Henzinger and King [14] improved
some of these results and obtained randomized fully-dynamic algorithms requiring only poly-logarithmic
time per operation. '

In practice, two particularly important dynamic graph problems are strong connectivity (in industrial
robotics applications [25]) and transitive closure (in database applications [28]). Despite intensive efforts,
no efficient dynamic graph algotithms have been devised for these two problems, as well as a host of others.
It appears that known techniques are of little use for non-trivial directed graph problems. We attempt to
explain this lack of success by initiating a study of the strong certificate complexity of graph properties.
For a variety of graph properties, we establish the existence of n-vertex graphs for which every strong
certificate must have Q(n?) edges, thereby ruling out the application of sparsification. We also show that
similar bounds hold even when a more relaxed notion of certificates is used. Our results demonstrate
a qualitative distinction between the certificate complexity of fully-dynamic graph problems with known
efficient algorithms and the (primarily digraph) problems for which no efficient algorithms are known. This
provides a partial explanation for the lack of progress on some dynamic graph problems.

Fortunately, many real systems have some form of lookahead available, i.e., the dynamic algorithm is

provided with information about future updates. In the Appendix, we detail a problem in industrial robotics
—assembly planning [15, 25, 26, 27] — that requires an efficient dynamic algorithm for strong connectivity,
and indicate why lookahead is naturally available in this setting. Also, the problem of dynamic transitive
closure arises in numerous database applications (see Yannakakis [28]). This is equivalent to maintaining
the transitive closure of a relation undergoing frequent updates, and it is usually desirable to update the
transitive closure only after accumulating batches of updates, leading to the availability of lookahead. While
the issue of lookahead is receiving increasing attention in online algorithms [3, 17, 18], there has not been
much work along these lines for dynamic graph algorithms. Schaeffer and Varman [20] studied parallel
batch update of minimum spanning trees, while Eppstein [7] considered the offline version of the same
problem. Dai, Imai, Iwano, and Katoh [6] describe an approach for constructing semi-online algorithms,
i.e., algorithms based on partial knowledge of future deletes, using partially dynamic algorithms, and apply
their techniques to undirected graph connectivity problem.

We propose the study of lookahead as a means to circumvent the inherent complexity of certain dynamic

5 As we explain in Section 2, the word property is used in a broad sense to include non-boolean functions on graphs.

graph problems. We present a lookahead-based variant of sparsification and use it to obtain efficient fully-
dynamic algorithms for the digraph properties that motivated our investigation, viz., strong connectivity and
transitive closure. Our algorithms require only a weak form of lookahead where it suffices to know only the
vertices involved rather than the exact sequence of edge operations.

Tn Section 2, we briefly review sparsification in a slightly more general framework than that of Eppstein
et al [8]. Section 3 develops the concept of strong certificate complexity and witness complexity. We present
a theorem relating these two measures and hence obtain a general technique for bounding the certificate
complexity. We present quadratic lower bounds on this complexity for a variety of problems. We also show
that these bounds essentially continue to hold under a relaxed notion of certificates. We conclude this section
by pointing out some intriguing trends that emerge from our results, and pose a couple of conjectures. In
Section 4, we present a framework for incorporating lookahead into dynamic graph algorithms via a variant
of sparsification. Section 5 is devoted to the presentation of two algorithms for strong connectivity using
our new framework; the Appendix contains a description of the motivating application, assembly planning
in robotics, including a technical development of this application and the practical implications of our
results. Finally, in Section 6, we extend our results to the transitive closure problem with lookahead and
provide a brief discussion of the relevance of this problem in database applications such as maintenance of
materialized views.

2 Preliminaries

We view a graph G as a set of edges whose cardinality is denoted |G|, enabling us to employ set operators to

graphs. The underlying vertex set will be a fixed set of 7 labeled vertices, or will be clear from the context,

The sparsification technique was originally presented in a framework for boolean graph properties, along
with applications to non-boolean functions such as minimum spanning tree [8]. We review the sparsification
technique using a more general formalism directly applicable to non-boolean graph properties.

Let P denote an arbitrary function, also referred to as a graph property, which maps graphs to non-empty
sets of objects. For example, the minimum spanning forest function will presumably map a given weighted
undirected graph to several possible minimum weight spanning forests. In case of boolean properties, P may
map graphs to symbols TRUE and FALSE. The sparsification technique is based on the notion of certificates.

Definition 1 (Strong Certificate) For any graph property P, a strong P-certificate of a graph G isa graph
G’ on the same vertex set as G such that for any graph H, P(G'U H) C P(GU H).

Definition 2 (Sparse Strong Certificate) A property P has sparse strong certificates if for every graph G,
there exists a strong P-certificate for G with O(n) edges. '

We claim that the next two propositions due to Eppstein et al [8] hold under the extended definition too.

Proposition 1 (Transitivity) If G’ is a strong P-certificate for G, and G" is a strong P-certificate for G,
then G" is a strong P-certificate for G.

Proposition 2 (Monotonicity) If G’ is a strong P-certificate for G, and H' is a strong P-certificate for H,
then G' U H' is a strong P-certificate for G U H.

Now suppose P is a property with sparse strong certificates. Propositions 1 and 2 together imply that a
recursive divide-and-conquer approach can be used for computing the sparse strong certificates. The basic

idea in the sparsification technique is to maintain a complete binary tree with [|G|/n] leaves such that each
leaf represents n edges of the graph. Each internal node maintains a sparse strong certificate of the graph
formed by the union of its two children. Using the transitivity and the monotonicity properties, it follows
that the root contains a sparse strong certificate for the whole graph. As the edges are inserted and deleted
from the graph, the certificates along the appropriate leaf-root paths are updated. Since each certificate is
sparse, an update on the whole graph now reduces to O(log(|G|/ n)) updates on sparse graphs. In essence,
this technique has cost which is the same as that incurred while processing updates on a sparse graph.

3 Lower Bounds on Strong Certificate Size

The sparsification technique allows us to devise efficient dynamic algorithms for a host of graph properties
including connectivity and minimum spanning trees. However, sparsification has its limitations: many
dynamic graph properties such as strong connectivity, maximum matchings, transitive closure and graph
search trees, do not yield to sparsification. In this section we explain this phenomenon by establishing the
lack of sparse strong certificates for these properties; in particular, we establish that they have instances

requiring quadratic-sized certificates, even for a very relaxed notion of certificates.

Definition 3 (Property Values) A graph property P is said to be mono-valued iffor any graph G, P(G) is
a singleton; otherwise, it is said to be a multi-valued property.

For example, all boolean graph properties are mono-valued. However, the class of mono-valued graph
properties is a strictly larger class as it also includes properties such as transitive closure.

Definition 4 (Critical Graph) A graph G is called P-critical if for every proper subgraph G’ of G, we have
P(G') # P(G).

Definition 5 (Witness Complexity) Let H denote the Jamily of all n-vertex P-critical graphs for a mono-
valued property P. Then the witness complexity g(n) of P is defined as maxgew |G|

Definition 6 (Distinguishing Graph) Given two graphs G\ and G,, a graph H is called a P-distinguishin g
graph for Gi and G, if P(G, U H) # P(G, U H).

Let C(G) denote the set of graphs G’ which are strong P-certificates for G. A graph G’ € C(G) if and
only if there does not exist a P-distinguishing graph for G and G'.

Definition 7 (Strong Certificate Complexity) Let G denote the Jamily of all n-vertex graphs. Then the
strong certificate complexity f(n) of a graph property P is defined as

max min_|G].
GeG G'eC(G)

3.1 Mono-Valued Properties and Lower Bounds via Witness Complexity

We show that the witness complexity of a mono-valued property P can be used to derive lower bounds on
its strong certificate complexity.

Theorem 1 Let P be a mono-valued graph property with witness complexity Q(g(n)). Then the strong
certificate complexity of P is Q(g(n)/logn).

The proof proceeds as follows. Let G be a largest P-critical graph and let 7 denote the family of all
labeled subgraphs of G. We claim that for any distinct G1, G2 € F,C(G1) N C(G2) = 0. Suppose not; let
'G' € C(G1) N C(Gy). Assume without loss of generality that |G| > |Ga|, and let H = G \ G. Clearly,
G, U H = G. On the other hand, by assumption, G| must contain at least one edge not in G,. Therefore,

(G2UH) C G and, since G is P-critical, we conclude that P(G1UH) # P(G2UH), thereby contradicting
the existence of such a G'. Thus, if f(n) denotes the strong certificate complexity of 7P, we must have

@)
Z((i ”)zm.

=0
Using Stirling’s approximation and the fact that | F| = 229(n)) | we obtain the desired result.

Corollary 1 The following (di)graph properties have Q(n?/logn) strong certificate complexzty (1) tran-
sitive closure; (2) diameter; and, (3) minimum cut value.

Each of these three properties is mono-valued and we obtain the results by applying Theorem 1 to the
following critical graphs: (1) a directed bipartite graph with all edges directed from one bipartition to the
other; (2) the complete bipartite graph K, , (diameter two); and, (3) the complete graph K. With some
further work, all three lower bounds may be improved to Q(n?). The details and some other interesting
applications of this theorem are deferred to the final version of this paper.

3.2 Multi-Valued Properties and Properties with Sparse Witnesses

Theorem 1 has its limitations in yielding good lower bounds. Several graph properties have linear witness
complexity and yet no sparse strong certificates. The properties of strong connectivity and perfect matching
are two such examples. In this section, we study several such properties and establish an Q(n?) lower bound
on the strong certificate complexity of these properties.

We first show that the certificate complexity of strong connectivity is Q(n?).

Lemma 1 Let Gy, G, be two labeled directed graphs on the same set of vertices, say V, and let Hy and
H,, respectively denote their transitive closure graphs. Then if Hy € Ho, there exists a graph H such that
G U H is strongly connected and G2 U H is not.

The proof proceeds as follows. Consider an edge e = (z,y) such thate € Hj and e ¢ Hp. Let H be
the set of edges (v, z) and (z,z) where z € V' \ {z,y}. Clearly, H U {e}, and hence H U Hj, is strongly
connected. On the other hand, the edges in H cannot contribute to a path from z to y and hence there is
no such path in H U H,. The lemma now follows by observing that for any two graphs G and H, we have
TC(GUH)=TC(TC(G)U H).

Consider now the directed bipartite graph G = (X UY, E) where | X| = |Y| = n and E contains an
edge (z,y) forallz € X and y € Y. It is easily seen that TC(G) = G. We claim that for any graph H
such that G € H, TC(G) # TC(H). To see this, consider such a graph H and an edge (z,y) € G\ H.
Suppose there is a path from z to y in H. Such a path in H must contain one of the following: an edge
between two vertices in X, an edge between two vertices in Y, or an edge from Y to X. But none of these
edges are present in G = T'C(G). Therefore, TC(G) # TC(H). On the other hand, if there is no path
from z toy in H, then TC(G) # TC(H). Thus, by Lemma 1, there exists a graph which distinguishes G

and H for the property of strong connectivity. We conclude that any certificate of the graph G’ must contain
every edge in the graph G.

Theorem 2 The strong certificate complexity of strong connectivity is Q(n?).

We now turn to the problem of maintaining a maximum matching in an undirected graph. Consider the
bipartite graph G = (X UY, E) where |X| =22, Y =Y UY,, [¥| = |[}3| = n, and E = {(z,y)]z €
X, y € Y1}. Observe that it is useless for a certificate G’ of G to have any edge e ¢ E because such an
edge does not belong to any maximum matching of G. Thus G’ C G. We claim that G’ must have at least
n? + 1 edges of G. Suppose not; then, there exists a vertex y € Y such that y is connected to no more
than k£ < n vertices in X in the graph G’. Let X' denote the set of neighbors of y. .Consider the graph
H = (X UY, Ey), where Ey contains all edges (z,y) such that z € X' and y € Y5. Clearly, the graph
G U H has a maximum matching of size n + & while no matching of G’ U H can have size more than
n + k — 1. We obtain the following theorem.

Theorem 3 The strong certificate complexity maximum matching is Q(n?).

Similar techniques can be used to establish quadratic complexity results for determining perfect match-
ings, and breadth-first and depth-first search tree maintenance; the details are deferred.

Theorem 4 The strong certificate complexity of the breadth-first search tree property from a given vertex
in a directed or undirected graph is Q(n?).

Theorem 5 The strong certificate complexity of a lexicographic-first depth-first search forest property in a
directed graph is Q(n?).

3.3 An Extended Notion of Certificates

So far we assumed that a certificate has the same vertex set as its underlying graph. However, conceivably,
by using a larger vertex set, one may reduce the overall certificate complexity, measured now in terms
of both the number of vertices and edges in the certificate. We refer to this new notion of certificates as
extended strong certificates and their complexity as extended strong certificate complexity. Surprisingly, the
quadratic complexity results of the Sections 3.1 and 3.2 generalize to this extended notion of certificates.

Theorem 6 Let P be a mono-valued graph property with witness complexity Q(g(n)). Then the extended
strong certificate complexity of P is Q(g(n)/logn).

The proof proceeds as follows. Let £,(.) denote a mapping from the set of n-vertex graphs to the set of
n*-vertex graphs such that £,(G) is an extended strong certificate for a n-vertex graph G. As in Theorem 1,

we consider a largest P-critical graph G on n vertices and define JF as the family of all its labeled subgraphs.
We claim that for any distinct G1, G2 € F, £,(G1) N Ex(G2) = 0. To see this, assume |G| > |Go|, and
define H = G \ G;. By definition, P(E,(G1) U E,(H)) = P(G, U H) = P(G). On the other hand,
P(En(G2) U E(H)) = P(G2U H) =P(G') # P(G) since G’ C G. Therefore, £,(G1) and £,(G>) must
be distinct. Thus, if f(n) denotes the extended strong certificate complexity of P, we must have

1(n) oy
3 (f(n)(f(in) 1)) > 17,

=0

Using Stirling’s approximation and the fact that | F| = 229(n)), we obtain the desired result.

Theorem 7 Suppose that for a graph property P there exists an n-vertex graph G with m edges such that
C(G) = G. Then the extended strong certificate complexity of P is Q(m /[logn).

The proof proceeds as follows. If C(G) = G, we show that for any two distinct subgraphs of G, say G|
and Ga, there exists a graph H such that P(G, U H) # P(G, U H). To see this, assume |G| > |G| and
define H) = G\ G). Clearly, GiUH, = Gand G, U H| = G' C G. But G’ ¢ C(G) and, therefore, there
exists a graph H such that P(G U H,) # P(G’U H;). Now the argument used in Theorem 6 implies that
En(G1) N Ex(G2) = B. Since there are 2™ possible subgraphs of G, the result follows from the counting
argument used earlier.

Corollary 2 The extended strong certificate complexity is Q(n?/ logn) for each of the following (di)graph
properties: (1) transitive closure; (2) diameter; (3) minimum cut; (4) strong connectivity; (5) maximum
matching; (6) breadth-first search tree; and, (7) lexicographic-first depth-first search.

The lower bound for the first three properties are an immediate corollary of Theorem 6 while those for
the last four can be obtained from Theorem 7.

3.4 Canonical Hard Instances and A Cohjecture

‘We conclude our discussion of certificate complexity by commenting on some interesting trends that emerge
from our work.

1t is rather surprising that the “hard” instances for most of the properties were simply bipartite graphs. A
natural question is: do bipartite graphs provide canonical hard instances for strong certificate complexity?
The following theorem asserts that this is almost the case. The proof is deferred to the final version.

Theorem 8 Let f(n) denote the strong certificate complexity of a property P, and h(n) denote the strong
certificate complexity of P when the input is restricted to bipartite graphs. Then, h(n) = Q(f(n)/logn).

A rather intriguing trend which seems to emerge is that a somewhat restricted class of graph properties
appears to have either linear or quadratic strong certificate complexity, but not in between. We define a
non-degenerate graph property as a graph property P such that there exist two graphs G, G, € P such that
G| has O(n) edges while G has Q(n?) edges. (An example of a degenerate property would be a threshold
function on the number of edges with a super-linear threshold.)

Conjecture 1 Let P be a non-degenerate, monotone graph property. Then the strong certificate complexity
of P is either O(n) or Q(n?).

In light of our results and the above conjecture, a review of known efficient dynamic graph algorithms
suggests that a non-degenerate, monotone graph problem has an efficient dynamic algorithm only if it has
sub-quadratic certificate complexity.

4 Sparsification with Lookahead

The strong certificate complexity results of the previous sections provide some explanation for the lack of
efficient dynamic graph algorithms for a variety of problems. However, these problems routinely arise in
many practical applications and there is a need for efficient algorithms. Fortunately, at least some of these
applications have the crucial feature of a lookahead in terms of some knowledge about the updates to be
performed in the future. This motivates us to study the complexity of maintaining some of these seemingly
intractable properties under lookahead. While doing so, we assume only a weak form of lookahead: we
know only the set of vertices involved in the updates to be performed in the immediate future. In other
words, we are aware of the current hot spots of activity in the underlying graph.

Our results are based on a new notion of sparsification, namely, lookahead-based sparsification. The
sparsification technique as presented by Eppstein ez al [8] is essentially an edge-sparsification technique in
which the sparse certificates encapsulate the essential structure of the original (dense) graph into a sparse
set of edges. The lookahead-based sparsification, on the other hand, is a vertex-sparsification technique
where we use the knowledge of the future to construct a representative graph H on a smaller set of vertices
such that processing the edge operation sequence on the original graph is "equivalent" to performing the
sequence on this smaller (possibly dense) graph H.

We defer the details of a formal lookahead-based sparsification framework to the final version of the
paper. We develop the basic technique in the next two sections through applications to strong connectivity
and transitive closure.

5 Assembly Sequencing and Exploiting Lookahead in Strong Connectivity

We describe the assembly planning problem in detail in the Appendix. For our purposes, the assembly
sequencing problem can be abstracted as follows: given a graph G and a sequence o of ¢ edge insertions and
deletions, determine for each ¢ € [1...¢] whether the graph obtained after the ith edge operation is strongly
connected. The order of ¢ could lie anywhere between n? and 7> (see Appendix A). Let m denote an upper
bound on the maximum number of edges the graph may have at any time. In practice, the graphs arising in
this application have Q(n?) edges. Thus the straightforward algorithm for verifying the strong connectivity
from scratch after each edge operation leads to an Q(¢2?) solution to this problem, which could be as large
as n’ and hence impractical even for the most trivial applications.

We can improve the running time by using a lookahead of % into the sequence T of edge operations. The
idea is to decompose’the processing into /% phases with each phase involving precisely k edge operations.
Let G, denote the graph in the beginning of a phase p and, for 1 < i < k, let G)p,i denote the graph obtained
after the 7th edge operation within the phase p. The total number of vertices involved in the & edge insertion
and deletions within a phase cannot exceed 2k; call these vertices as the active vertices during the phase.
We will need the following notation: A denotes the set of active vertices; E4 denotes the set of all possible

T Actually, the problem involves an implicitly-defined offline sequence but, as explained in the Appendix, the huge length of the
sequence makes it desirable to generate it in smaller blocks of length k so as to reduce the space (and time) requirement.

directed edges between the active vertices; E;} denotes the set of the edges actually present between the
active vertices in the graph G; Eﬁi denotes the set E;f after the ith edge operation in the phase p; define G,
as the graph G, \ E4 and let H,, denote the induced subgraph on the set of active vertices in the transitive
closure of the graph G (i.e., in the graph H »» there is an edge from u to v if and only if G, has a path from
u to v in which u and v are the only active vertices); Hy,; is the graph on the active vertices with precisely
the edges in H,, and E2;; finally, define G} as the graph G, U E4.

We defer the proofs of Lemmas 2 and 3 to the final version of this paper.

Lemma 2 If G, is strongly connected, then the graph G;’ is also strongly connected.

Lemma 3 For any two active vertices, say u and v, there exists a directed path from u to v in Gp; if and
only if there exists a directed path from u to v in Hy ;.

Theorem 9 The graph G, ; is strongly connected iff both Gg' and H, ; are strongly connected.

This theorem can be proved as follows. If Gy, ; is strongly connected then the graph G;,'” must also be
strongly connected by Lemma 2. By Lemma 3, the strong connectivity of G, ; implies that H, ; is strongly
connected. For the converse, observe that the strong connectivity of H, ; implies that TC(G,;) includes all
edges in the set E4 where TC(.) denote the transitive closure of a given graph. Therefore,

TC(G,;) 2 TC(G; U E4) = TC(GF).

Thus G, ; must be strongly connected.

The running time is determined by how efficiently strong connectivity of the graphs Gj and H, ; can be
verified. The strong connectivity of the graph Gg‘ can be verified at the beginning of the phase in O(m + n)
time by simply collapsing all active vertices into a single vertex and then running the standard strong
connectivity algorithm. Let T'(n,m) denote the time complexity of a computing transitive closure on a
n-vertex graph with m edges. Then the graph H, can be constructed in O(T'(n, m)) time. Finally, the strong
connectivity of each H, ; can be verified in O(k?) time. Hence the running time for each phase is given
by O(m + T(n, m) + k) and the total running time is given by O(¢(k? + T(n, m)/k)). This expression
is minimized when a lookahead of size @(T(n,m)'/3) is used. The running time for the whole sequence
becomes O(tT(n, m)?/3) which is an improvement over the naive approach for any m = Q(T(n, m)?/3),

Observe that if the graph contains o(T'(n, m)/?) edges, our algorithm is slower than the naive approach.
This can be handled easily by adding a simple feature to the lookahead algorithm. At the beginning
of each phase, the algorithm computes the number of edges in the current graph. If the graph contains
QT (n, m)z/ 3) edges, it uses this algorithm, else it simply uses the naive approach of running the strong
connectivity algorithm for each operation in the phase.

Theorem 10 There is an algorithm for fully-dynamic maintenance of the strong connectivity of a graph
at an amortized cost of O(min{m, k2 + T(n, m)/k}) per operation using lookahead k = O(T(n,m)'/3),
where T'(n, m) denotes the time complexity of the transitive closure algorithm used.

We now observe that the problem of determining strong connectivity of each H,,; within a phase p is
identical to our original problem. This leads to a recursive approach with a significantly improved running
time. We defer the details to the final version.

Theorem 11 There is an algorithm for fully-dynamic maintenance of the strong connectivity of a graph at
an amortized cost of O(T(n, m)/n) per operation using lookahead ©(n), where T(n, m) denotes the time
complexity of the transitive closure algorithm used.

Transitive closure of a graph can be computed using boolean matrix multiplication [2]. Let M(n)
denote the complexity of a boolean matrix multiplication algorithm. Then for instance, if we use the best-
known (but impractical) algorithm for matrix multiplication due to Coppersmith and Winograd [5] with
M(n) = n?¥76, then the time per operation of the recursive algorithm is O(n!376). On the other hand, using
the more practical algorithm due to Strassen [23] with M(n) = n?3%, we achieve a bound of O(n!-8%8) per
operation. These should be contrasted with the naive algorithm requiring Q(n?) time per operation. Note
that in this application, the graph has Q(n?) edges at most points of the update sequence.

Remark 1 Of course, it would be desirable to avoid using matrix multiplication altogether, and it is our
expectation that using a good transitive closure algorithm instead would still yield significant speed-ups in
practice. However, in the next application of this technique, we show that it achieves a significant speed-up
even without the use of a fast matrix multiplication algorithm.

6 Database Updating and Exploiting Lookahead in Transitive Closure

Consider the problem of maintaining the transitive closure of a directed graph undergoing edge updates. The
primary motivation for this problem is the maintenance of the transitive closure of relations in databases [28].
In several applications, it is known that the updates will be restricted to a particular portion of the database
that will be referred to as the active set. The knowledge of an active set provides us with lookahead that
can be used to significantly speed up the transitive closure computations. Specifically, we show that it is
possible to maintain transitive closure at an amortized cost of O(k3 + n?k/ log? n 4+ mn/k) per operation,
where k is the size of the active set (see Theorem 12 and Corollary 3). In applications where the amount
of lookahead available is unrestricted, such as in the off-line construction of a persistent data structure for
transitive closure, we show that it can be maintained at an amortized cost of O(n\/mn/ logn) per operation
using a lookahead of @(y/m/n logn) (see Corollaries 4 and 5).

Our techniques also yield a solution to the problem of efficiently updating materialized views in
databases [1, 4, 12, 16, 21, 22]. In many query-intensive database applications, materialized views, derived
from a base relation at a central site, are maintained at multiple local sites. Abstractly speaking, a materi-
alized view at a local site may simply correspond to the reachability information for a subset of vertices of
the original graph. Since the base relation may be very large, there are tremendous costs associated with
globally updating the views after each update. To save on such costs, a commonly employed strategy is to
trade off currency for efficiency, e.g., by batching the updates and updating the views only after periodic
intervals. Another possibility is to always keep the local views current with respect to the updates that affect
the vertices in the local view, and to perform global updates only periodically. Our results indicate how the
latter may be efficiently implemented by performing only local transitive closure computations after each
update (see Theorem 13).

We sketch the extension of the techniques from Section 5 to all-pairs transitive closure computation; the

ideas also apply to single-source transitive closure but we defer the details to the final version. We follow
the notation from Section 5 and outline the computation done in each phase.

At the beginning of a phase p, we first compute the transitive closure of G, in O(T'(n, m)) time. For
each non-active vertex v, let I"{,V "”‘4(1)) and I"g,v ~N (v) denote, respectively, the set of all active vertices and
the set of all non-active vertices that it can reach in the graph G;. Similarly, for each active vertex v, let
I‘;’”’N (v) denote the set of all non-active vertices that it can reach in Gy -

At the ith step in this phase, we compute the transitive closure of H,; in O(T'(k, k?)) time. For each
active vertex v, let l";‘;’A(v) denote the set of all active vertices it can reach in the graph H);. Now, if
T'p,i(v) denotes the set of all vertices reachable from a vertex v in G, ;, we may compute it as follows. We
begin by computing for each active vertex v,

Lri(v) =Tp5 4@ u{ | TN

o€l 4(v)
Next, for each non-active vertex v, we compute

pi(v) = F;VMN(”) U{ U Ipi(e)}

z€TY~4A(v)

The computation of I', ;(v) for active vertices can be easily performed in O(k*n) time. Similarly, a
straightforward implementation has O(kn?*) running time for computing I, ;(v) for all non-active vertices.
This may be slightly improved as follows. Consider a bipartite graph H* = (A, V, E*) such that there
is an edge (z,y)in E*, 2 € Aandy € V, if and only if y € I',;(z). It can be shown that the
computation of I", ;(v) for a non-active vertex v reduces to answering a reachability query in the graph
H~, ie,given X = {z € 1"{,\"‘*‘4(1))}, find the set of vertices adjacent to X in H*. Using the approach
of Hellerstein, Klein, and Wilber [13], we can construct a data structure to perform this computation in
O(n*k/ log? n) time for all the non-active vertices. Thus the total running time of each phase is given by
O(T(n, m)+kT(k, k*)+n?k?/ log? n), which is minimized when the lookahead is k = \/T'(n, m)logn/n.

Theorem 12 Given lookahead k, fully-dynamic maintenance of transitive closure can be performed at an
amortized cost of O(T(n, m)/k + T(k,k?) + n*k/ log® n) per update.

Corollary 3 Given lookahead k, fully-dynamic maintenance of transitive closure can be performed at an
amortized cost of O(k® + n?k/ log? n + mn/k) per update.

Corollary 4 Fully-dynamic maintenance of transitive closure can be performed at an amortized cost of
O((n+/mn)/ logn) per update using lookahead ©(y/m[nlogn).

It is worthwhile to contrast these bounds with the bound of O(nm) time per operation achieved by the
naive algorithm which recomputes transitive closure at each step.

In the preceding algorithm, we explicitly maintained the transitive closure of the resulting graph after
each update. We now describe a variant in which the update time is significantly improved by maintaining
only an implicit representation of the transitive closure. This implicit representation can support reachability
queries but at a significantly increased cost. The basic idea is the following: after each update during a
phase, we compute only the transitive closure of H, ;; queries are processed by using this along with the
transitive closure of G;. We present only the resulting time bounds and omit the details.

Theorem 13 Suppose the updates are restricted to a set of k active vertices. Then, there exists a fully-
dynamic data structure for processing reachability queries at an amortized cost of O(n> [k + k3) per update,
with a query cost that is O(k) for queries involving at least one active vertex, and O(k?) otherwise.

10

The preceding bounds can all be improved using fast matrix multiplication. For example, Corollary 4
can be replaced by the following.

Corollary 5 Using fast matrix multiplication, fully-dynamic maintenance of transitive closure can be per-
formed at an amortized cost of O(n?'88/ log n) per update using lookahead ©(n%'%8log n).

Acknowledgments

We are grateful to Jean-Claude Latombe for sharing his insights about assembly planning and his constant
encouragement. We thank Sergey Brin, Surajit Chaudhry, Waqar Hasan, Jeff Ullman, and Jennifer Widom
for useful discussions about transitive closure and databases. Many thanks also to Julien Basch, Chandra
Chekuri, Delphine Berthet, Philip MacKenzie, and David Strip.

References

[1] R. Agrawal and H.V. Jagdish. Materialization and Incremental Update of Path Information. In
Proceedings of Fifth International IEEE Conference on Data Engineering (1989), pp. 374-383.

[2] A.V. Aho,].E.Hopcroft, and J.D. Ullman, The Design and Analysis of Computer Algorithms. Addison-
Wesley, 1974.

[3] S. Albers. The influence of lookahead in competitive on-line algorithms. Technical Report MPI-1-92-
143, Max Planck Institute, Germany, 1993.

[4] J.A.Blakaley, P-A. Larson, and FW. Tompa. Efficiently Updating Materialized Views. In Proceedings
of the ACM-SIGMOD International Conference on Management of Data (1986), pp. 61-71.

[5] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. Journal of
Symbolic Computation, 9:1-6 (1990).

[6] Y. Dai, H. Imai, K. Iwano, and N. Katoh. How to treat delete requests in semi-online problems. In
Proceédings of the 4th International Symposium on Algorithms and Computation (1993), pp. 48-57.

[7] D. Eppstein. Offline Algorithms for Dynamic Minimum Spanning Tree Problems. Journal of Algo-
rithms, 17:237-250 (1994).

[8] D. Eppstein, Z. Galil, G. E Italiano, and A. Nissenzweig. Sparsification — A technique for speeding

up dynamic graph algorithms. In Proceedings of the 33rd Annual IEEE Symposium on Foundations of
Computer Science (1992), pp. 60-69.

[9] G.N. Frederickson. Data Structures for On-line Updating of Minimum Spanning Trees, with Applica-
tions. SIAM Journal on Computing, 14:781-798 (1985).

[10] G.N. Frederickson. Ambivalent Data Structures for Dynamic 2-edge Connectivity and & Smallest
Spanning Trees. In Proceedings of the 32nd Annual IEEE Symposium on Foundations of Computer
Science (1991), pp. 632-641.

[11] Z. Galil and G.F. Italiano. Fully dynamic algorithms for edge-connectivity problems. In Proceedings
of the 23rd Annual ACM Symposium on Theory of Computing (1991), pp. 317-327.

11

[12] E. Hanson. A Performance Analysis of View Materialization Strategies. In Proceedings of the ACM-
SIGMOD International Conference on Management of Data (1987), pp. 440-453.

[13] L. Hellerstein, P. Klein, and R. Wilber. On the time-space complexity of reachability queries for
preprocessed graphs. Information Processing Letters, 35:261-267 (1990).

[14] M. Rauch Henzinger and V. King. Randomized Dynamic Algorithms with Polylogarithmic Time per
Operation. In Proceedings of the 27th Annual ACM Symposium on Theory of Computing (1995).

[15] L.S. Homem de Mello and S. Lee (editors). Computer-Aided Mechanical Assembly Planning. Kluwer,
1991.

[16] H.V. Jagdish. A Compression Technique to Materialize Transitive Closure. ACM Transactlons on
Database Systems, 15:558-598 (1990).

[17] E. Koutsoupias and C.H. Papadimitriou. Beyond competitive analysis. In Proceedings of the 35th
Annual IEEE Symposium on Foundations of Computer Science (1994), pp. 394-400.

[18] R. Motwani, V. Saraswat, and E. Torng. Online Scheduling with Lookaﬁead: Multipass Assembly
Lines. Report CPS-94-41, Department of Computer Science, Michigan State University, 1994,

[19] M. Rauch. Fully dynamic biconnectivity in graphs. In Proceedings of the 33rd Annual IEEE Symposium
on Foundations of Computer Science (1992), pp. 50-59.

[20] A. Schaeffer and P. Varman. Parallel Batch Update of Minimum Spanning Trees. Technical Report
COMP TR90-140, Rice University, 1990.

[21] A.Segevand].Park. Maintaining Views in Distributed Databases. In Proceedings of Fifth International
IEEE Conference on Data Engineering (1989), pp. 262-270.

[22] O. Shmueli and A. Itai. Maintenance of Views. In Proceedings of the ACM-SIGMOD International
Conference on Management of Data (1984), pp. 240-255.

[23] V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 14:354-356 (1969).

[24] J. Westbrook and R.E. Tarjaﬁ. Maintaining bridge-connected and biconnected components on-line.
Algorithmica, 7:433-464 (1992).

[25] R.H. Wilson. On Geometric Assembly Planning. PhD thesis, Stanford University, 1992. Stanford
Technical Report STAN-CS-92-1416.

[26] R.H. Wilson and J-C. Latombe. Geometric reasoning about mechanical assembly. Artificial Intelli-
gence, 71 (1994).

[27] J.D. Wolter. On the Automatic Generation of Plans for Mechanical Assembly. PhD thesis, University
of Michigan, 1988.

[28] M. Yannakakis. Graph-theoretic Methods in Database Theory. In Proceedings of the Ninth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (1990), pp. 230-42.

12

Figure 1: The discriminator assembly

A The Assembly Sequencing Problem

Automated assembly planning promises to reduce the effort required to create manufacturing plans for
products, as well as provide valuable and timely design-for-assembly feedback to designers. Together with

the rising use of Computer-Aided Design (CAD) systems, this opportunity has fueled a decade of research
in assembly planning (see, e.g., [15]).
Assembly sequencing is a subproblem of assembly planning. Given a set of parts and their final positions

in a product (for example, see Figure 1), assembly sequencing attempts to find a sequence of object motions
that will build the assembly from the parts without inducing part collisions. Assuming that the parts are rigid
and each operation mates two rigid subassemblies to produce a larger one, an assembly sequence can be
‘found by disassembling the product and then reversing the operations and their order. The initial assembly is
divided into two subassemblies, each of which is disassembled recursively to find the disassembly sequence.

A.l Blocking Graphs

The blocking graph is a central structure in assembly sequencing, allowing polynomial-time sequencing
in many situations [26, 27]. Given a rigid motion d (for instance an infinite translation along a vector
d = (dz,dy, dz)), a part Py blocks a part P; along d if and only if P> collides with P; when moved along
d. The blocking graph G(A, d) for an assembly A and motion d is a directed graph with one vertex for each
part in A, and an arc from vertex N; to N; exactly when P; blocks P; along d. A proper subassembly S of
A can be removed along d if no parts in A \ § block parts in S. Such an S exists if and only if G(4, d) is
not strongly connected [25, 26].

Finally, consider the space of all possible motions d. This space can be partitioned into regions such that

the blocking graph is constant for all motions in that region; furthermore, the graphs of neighboring regions
differ by at most one arc. Refer to Appendix A.3 for useful classes of motion and the regions that result.
To find a removable subassembly, it suffices to check all the blocking graphs for strong connectedness; this
step dominates the running time of the algorithm [26]. A traversal of the regions yields a directed graph and
a sequence of edge insertions and deletions to that graph. This yields the following problem: given a graph
G and a sequence o of ¢ edge insertions and deletions, determine for each ¢ € [1...%] if the graph obtained
after the ith edge operation is strongly connected. The order of ¢ could lie anywhere between n? and n’,

13

depending on the type of motion used for the disassembly (see Appendix A.3).

In principle, the entire sequence o can be computed in advance, yielding an offline version of the
dynamic strong connectivity problem. However, note that the basic goal is to find a point in the sequence
(i.e., a direction vector d) at which the resulting graph is not strongly connected. Having found this point,
the graph will be decomposed into its strongly connected components, and the problem then needs to solved
independently on these components. Thus, it would be extremely wasteful (in terms of both time and space)
to compute the entire sequence o in the case where the disassembly could be performed very early in the
sequence, as is typically the case. Of course, we could use a doubling search technique to ensure that
we only compute a sequence that is at most twice as long as necessary. However, this would require a
tremendous amount of space since the sequence could be of length as much as n”.

A more reasonable approach is to use a lookahead k significantly smaller than ¢, thereby ensuring that
only a near-optimal prefix of the sequence o needs to be computed, while reducing the space requirement
to a quantity much smaller than the sequence length.

A.2 Practical Implications

We briefly discuss some practical aspects of the solution obtained in this paper. Figure 1 shows a discrim-
inator, a safety device with 42 complex parts modeled in the ProEngineer CAD system. A version of the
infinitesimal rigid motion disassembly algorithm discussed in Appendix A.3 is used in a planner that finds
an assembly plan for the discriminator in about 30 seconds on an SGI Indigo? workstation. The planner
checks several thousand blocking graphs in the planning process.

We are currently attempting to apply the assembly planner to assemblies having 1000 parts. Planning for
typical industrial assemblies (such as a car) will require massive numbers of strong connectedness checks
on graphs having on the order of one million edges. For such assemblies, methods such as those described
in this paper will be critical, even with the use of fast matrix multiplication algorithms.

A3 Classes of Motion

Depending on the desired output of assembly planning and the rest of the planning system in which an
assembly sequencer operates, several classes of relative motions between subassemblies might be allowed.
Each class generates a space of possible motions and regions in that space with the same blocking graph.
We first present a more detailed view of a disassembly algorithm for a simple case, that of infinitesimal
translations in two dimensions. We then summarize algorithms for two types of three-dimensional motions
used in real assembly planning systems: infinite translations and infinitesimal rigid motions (see [26] for
further details). Note that computing the strong connectedness of a sequence of blocking graphs dominates
the algorithm’s running time for each class of motion.

A Simple Case. Consider a two-dimensional polygonal assembly A such as the one shown in Figure 2.
We wish to identify a subassembly that can be translated infinitesimally without colliding with any other

parts, if one exists. Representing a direction of infinitesimal motion as a unit vector d = (dz, dy), the set
of all motions is the unit circle S'. Consider one contact between an edge of a part P; and an edge of part
P;. The diameter of S parallel to the contact edge divides the set of motions into an open half-circle of
motions for which P; blocks F;, and a closed half-circle of motions for which P; does not block P; at that
contact. A similar division occurs if a point of P; contacts an edge of P;.

The set of diameters corresponding to all the contacts of the assembly divide S' into a set of regions.
Since blocking relationships only change at the endpoints of these diameters, it is clear that the blocking
graph for all points in any region is constant. Furthermore, if no two diameters coincide, the blocking graph

14

d A d~a
A
Py /7] o) (=2

Figure 2: A simple assembly and blocking graphs for two directions of motion

D=0
(=%

Figure 3: The arrangement on S! and some of the blocking graphs for the assembly in Figure 2

for a region differs by at most one arc from the blocking graph of each neighbor region. Figure 3 shows the
arrangement on S and some of the blocking graphs for the regions.

To identify a movable subassembly, we construct the above arrangement on ! and compute a blocking
graph G(A, Ro) for one region Ro. We then step around $! to each region in turn, which gives a sequence
t of arc additions and deletions to the blocking graph G(A4, Ry). If the assembly has n parts with e edges
in total, the arrangement can be constructed in O(e log e) time and has O(e) regions. If the amortized time
to check an n-vertex graph in the sequence for strong connectedness is f(n), then identifying a movable
subassembly requires O(e(f(n) + loge)) time.

Infinite Translations. Consider now a more realistic case: anassembly A of polyhedra, to be disassembled
using single translations to infinity. In this case, the set of translation directions can be represented by S2.
A part P; blocks part P; in a (generally non-convex) region of the sphere bounded by arcs of great circles;
this region is computed by projecting the Minkowski difference P; & P; onto 52 by a central projection.
In an assembly with a total of v vertices, there are O(v?) boundary edges of these regions, which define
an arrangement of O(v*) cells on the sphere. This arrangement can be computed in ©(v*) time. O(v*)
blocking graphs must be checked for strong connectedness, for a total of O(v*f(n)) time.

Infinitesimal Rigid Motions. Now assume that we wish to identify subassemblies of A that can be moved
an infinitesimal distance in rigid motion. Such subassemblies are a superset of all possible removable
subassemblies. A direction of rigid motion can be represented as a 6D unit vector giving three degrees of
translation and three degrees of rotational motion. Thus the set of motions can be represented as the surface
of the unit sphere $°. The constraints on motion imposed by contacts can be represented as finite sets of
point-plane constraints [26]. Each point-plane constraint defines a 5D hyperplane through the origin, cutting
53 along a “great sphere” (for want of a better term). The set of constraints between any two parts defines

15

a convex polytope on S3; for motions within this polytope the two parts are free to move and outside of it
the parts collide.

The set of convex polytopes for all contacts of A determines an arrangement on S5, consisting of
relatively-open cells of dimensions 0,...,5. For a total of ¢ point-plane constraints, this arrangement
can have O(c®) cells, which are computable in the same time bound. In fact, the cells can be computed
incrementally, along with the sequence of edge insertions and deletions to the blocking graph that they
entail. Thus the running time for the local rigid motion disassembly algorithm is O(Sf(n)).

16

Distribution for SAND95-0722:

MS9018
MS 0899
MS 0619

MS 0100
MS 0951

Central Technical Files, 8523-2

Technical Library, 13414
Print Media, 12615

Document Processing for DOE/OSTI, 7613-2

Randy Wilson, 2121

17

(1)
(5)
(1)
(2)
(20)

