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Abstract 
Dynamical tests have been applied to fiber optic data taken from a cold-flow circulating 
fluidized bed to characterize flow conditions, identify three time and/or length scales (macro, 
meso, and micro), and understand the contribution these scales have on the raw data.  The 
characteristic variable analyzed is the raw voltage signal obtained from a fiber-optic probe 
taken at various axial and radial positions under different loading conditions so that different 
flow regimes could be attained.  These experiments were carried out with the bed material of 
812 μm cork particles.  The characterization was accomplished through analysis of the 
distribution of the signal through the third and fourth moments of skewness and excess 
kurtosis.  A generalization of the autocorrelation function known as the average mutual 
information function was analyzed by examining the function’s first minimum, identifying the 
point at which successive elements are no longer correlated.  Further characterization was 
accomplished through the correlation dimension, a measure of the complexity of the attractor.  
Lastly, the amount of disorder of the system is described by a Kolmogorov-type entropy 
estimate. All six aforementioned tests were also implemented on ten levels of detail 
coefficients resulting from a discrete wavelet transformation of the same signal as used above.  
Through this analysis it is possible to identify and describe micro (particle level), meso 
(clustering or turbulence level), and macro (physical or dimensional level) length scales even 
though some literature considers these scales inseparable [6].   This investigation also used 
detail wavelet coefficients in conjunction with ANOVA analysis to show which scales have the 
most impact on the raw signal resulting from local hydrodynamic conditions. 
 
Introduction 

Deterministic chaos theory has recently been used as a tool to analyze the dynamics 
within gas-solid systems, such as fluidized beds.  This theory has been used for the purpose of 
examining scale-up effects [8, 12], identifying regime changes [3, 17, 18], characterizing 
fluidization [5], and determining how changes in conditions affect dynamics [4, 10].     

 
Three scales can be identified within a fluidized bed:  the macroscale representing the 

physical or global aspects of the unit, the mesoscale expressing the clusters and their 
interactions, and microscale of individual particle behavior.  Bai et al.[1] and Ji et al. [11] 
examined the three scales by observing three separate time series collected from three 
separate probes.  A single time series decomposed through wavelet decomposition into series 
of detail and approximation coefficient was utilized to identify the three scales by Zhao and 
Yang [20] and Wu et al. [16].  This method of decomposition allows information from different 
frequency components to be analyzed separately.   

 
A majority of the current work have used deterministic chaos or wavelets techniques to 

analyze signals from a bubbling bed where the regime transitions and scales are well-defined.  
The objective of this work is to extend and add upon the characteristic techniques and regime 
and scale identification to a circulating fluidized bed, where these transitions are more subtle.         

cwright
Text Box
NETL-TPR-1927

cwright
Text Box
DOE/NETL-IR-2008-045



It was concluded by Zhao and Yang [20] and implemented by many others that 
characterization of a fluidized bed cannot be accomplished through a single test or approach.  
Therefore, multiple tests are being used in the current work on both the raw and wavelet data.  
In general, the wavelet data served to examine each scale independently.  Combine this with 
the examination of the raw data and based on trends and ANOVA results, it can be concluded 
which scale most contributes to the changes seen within the raw data.   
 
Experimental 
 The experimental unit is a cold flow circulating fluidized bed located at National Energy 
Technology Laboratory (NETL) in Morgantown, WV.  It consists of a riser 15.3 m high and 0.3 
m diameter and a 0.25 m diameter standpipe.  The transfer leg is a loopseal with a 0.23 m 
diameter allowing the solids to enter the riser from a side port 0.27 m above the distributor.  
Cork with an average size of 812 μm was the test bed material.  Solids circulation rate (Ms) 
and gas velocity (Ug) was varied independently; studied values are shown in table 1.   
 

Data was also obtained for three separate axial 
locations and five radial positions.  Axial locations were 
chosen in an effort to characterize the acceleration zone 
(3.9m), the fully developed zone (8.3m), and deceleration 
zone (12.1m).  Radial positions were chosen as the 
midpoint of five equal area circles within the riser. These 
positions will be referred to as P0, P1, P2, P3, and P4 

and represent distances of 0.12, 0.07, 0.05, 0.03, and 0.01 m from the wall, respectively.   
 

 The data was acquired using a multi-fiber optical reflective probe developed by Vector 
Scientific instruments. It consists of two fiber bundles located on the same vertical line.  Each 
bundle is composed of 150 randomly distributed of each transmitting and receiving fibers.   A 
light emitting diode (LED) transmits light through the transmitting half of the fibers, where upon 
hitting particle(s) in the riser will be reflected back to the probe.  The intensity of the reflected 
light depends on the concentration, size distribution, composition, and shape of the particles. 
The sampling rate was12.5 kHz and data was collected for 61.536 sec.  
 
Calculations 
 Various statistics can be used to describe the distribution of a dataset.  Higher order 
moments of skewness and excess kurtosis are of interest.  Skewness is a measure of the 
asymmetry of the distribution and excess kurtosis quantifies the peakedness.  As a point of 
reference, a Gaussian distribution has skewness and kurtosis values of zero.  
 

Also of interest is the amount of dependence the signal has with itself, or amount of 
memory a signal possesses.  The AMI function is a general measure of dependence that can 
detect both linear and non-linear correlations.  Its first minimum represents the point at which 
successive elements are no longer correlated.   

 
The two chaotic statistics used here are the correlation dimension which is a 

dimensionless number that represents the complexity of the signal, and the correlation entropy 
which is a measure of the predictability.  Both values are calculated from the reconstructed 
attractor most commonly computed through Takens’ delay embedding theorem [15].  The 
correlation dimension can be interpreted as the number of degrees of freedom that dominate 

Table 1 
Operating Conditions 
Ug (m/s) Ms (kg/h) Load Ratio 

4.6 907.2 0.62 
5.5 2721.6 1.55 
4.6 2721.6 1.86 
3.8 2721.6 2.25 
4.6 4535.9 3.10 



Figure 2- Correlation dimension, D2, of the detail 
coefficient series (d1-d10) for three 
representative data sets. 
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Figure 1-First minimum of the AMI function of the 
detail coefficient series (d1-d10) for three 
representative data sets 
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the dynamic behavior of the system.  Entropy can be interpreted as a quantitative measure of 
the amount of information needed to predict the value of an observation within a certain 
precision.   

 
 Statistics will also be computed for the series of coefficients resulting from a discrete 
wavelet transformation (DWT).  This process involves passing the signal f(x) through a low and 
high pass filter multiple times to examine the different levels of detail of f(x) independently.  
The output of the low pass filter known as the approximation coefficients, aj, form a smoother 
and smoother version of the raw signal.  The detail lost by going to the next higher level is 
captured in the detail coefficients, dj, output of the high-pass filter.  Each filter and level of 
decomposition represents a different frequency band, given by 
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where fs represents the sampling frequency.  Therefore, a reconstruction of the original signal 
is accomplished with the summation of the detail coefficients at all levels and the highest level 
of approximation.  In this work the detail coefficients up to level j = 10 are considered.  The 
Daubechies mother wavelet was utilized here for its simplicity, compact support, perfect 
reconstruction, orthogonality,  highest number of vanishing moments, L, for a given support 
width and popularity within the literature [2, 4, 8, 9, 16, 20].  
 
Scale Identification 
 A ten level DWT was performed on the raw signal to examine the different frequency 
bands and determine which scale, micro, meso, or macro, they represent.    It is desired to 
determine which phenomena within the CFB these bands are able to characterize.   
 
 Figure 1 presents the trend of the first minimum at increasing scales for three randomly 
chosen combinations of independent variables.  At the first half of the scales the first minimum 
value remains low.  Once the sixth level is attained the amount of memory within the 
decomposed signal begins to significantly increase and steadily increases to the maximum 
scale of d10.  This trend can be explained by the occurrence of a change within the CFB 
system will not be absorbed by the macro scale as quickly as the micro or meso scales.  A 
greater number of time increments will then be necessary before elements are no longer 
correlated at the macroscale, leading to a larger value for the first minimum.  Therefore, the 
examination of the first minimum of the AMI function indicates a boundary between the macro 
and meso scales with d6-d10 being identified as the macro scale.   



Figure 3- The structure of most groups of graphs 
in this section. 
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A plot of the correlation dimension as a function of the dyadic scale for three 
representative time series can be seen in figure 2.  For the lowest two scales, the dimension 
value decreases for all series.  At the third detail level, the estimates level off and do not vary 
until d6 where the values begin to increase and continue to do so until d10.  It has already 
been determined that the macro scale begins at d6, but the first shift in trends indicate that d1 
and d2 represent the micro scale, or individual particle interactions, and d3-d5 characterizes 
the meso scale, or clusters.  This is consistent with the view of larger changes in the high 
frequency fluctuations due to the random movement of particles which would correspond to 
higher dimensionality.  

 
  With a sampling frequency of 12.5 kHz and equation 1, it can be concluded the 

frequency band which corresponds to the mesoscale is (195 Hz, 1563 Hz).  This implies that 
the clustering is occurring at time scales between 0.00064 s and 0.00512 s.  Guenther and 
Breault [9] found clusters to occur within similar time scales for cork bed material.     

 
Results and Discussion 
 The characterization of flow regimes, phenomena within scales, and the dominant 
contributing scale to the raw signal can be accomplished with the examination of a 
combination of tests on both the raw voltage signal and detail wavelet coefficients.  Many plots 

will be presented as a group and will follow the 
order of the circles shown in figure 3.  Here, 
changes in the solids circulation rate (Ms) are 
along the abscissa and the riser gas velocity 
(Ug) along the ordinate. The relative size of the 
circles in figure 3 represents load ratio.  A dilute 
upflow regime was seen in the case with the 
least amount of loading and smallest Ms value.  
For Ms = 2721.6 kg/hr, the larger two values of 
gas velocity exhibit behavior within the core 
annular flow regime, and the lowest Ug value 
operates in the fast fluidization regime.  The 

point with the largest amount of loading and the highest Ms can demonstrate characteristics 
within the fast fluidization and core annular regimes.  The lines in figure 3 are shown to classify 
the regime in which the points studied in this work are operating and do not represent 
boundaries for the flow regimes of values not plotted here.  These divisions were suggested by 
the solids velocity in [21] and riser pressure profiles in [13]. Since the heaviest loaded case has 
been known to show behavior within both core annular and fast fluidization, the boundary can 
be represented by either the solid or dashed line.   
 

For the raw voltage signal, the first minimum of the AMI function is plotted against radial 
position at varying axial locations in figure 4.  The trend for most cases is a steady increase 
from the center (p0) to the wall (p4).  Since it takes more time steps for elements to become 
uncorrelated, this implies that there is more memory in the raw data at the wall.  This increase 
becomes more pronounced as the load ratio increases.  Dilute upflow has the least amount of 
memory overall.  The discrepancy between the lower elevation (3.9 m) and the other axial 
locations is largest while operating at the highest two load ratios.  A characterization of the fast 
fluidization is the “S” shaped pressure profile which is indicative of and exhibits “classical 
Yerushalmi [19] behavior” in the dense region at the bottom of the riser.  Figure 4 indicates that 



the two heaviest loaded cases are within the fast fluidization regime. The two highest load 
ratios also show that fast fluidization and core-annular can exist simultaneously in the riser at 
two different elevations which explains the ambiguity of the dashed line in figure 3.  By 
examining the incremental differential pressure profiles, this transition is not as obvious, 
providing an advantage of the AMI over incremental pressure measurements.  If the correlation 
dimension, D2, is plotted in the same manner, it can be seen that the complexity of the 
attractor is also greatest at the wall of the riser.  The transition between fast fluid and core 
annular is also present, but not as well-defined.   

 
Figure 5 characterizes the distribution of the raw signal with excess kurtosis by plotting 

it against the radial position at each axial location with a different graph for each load ratio.  A 
similar analysis was also performed for the skewness, but because of space limitations not 
shown here.  None of the distributions are statistically equivalent to the Gaussian distribution 
with skewness and excess kurtosis values of 0 using the standard error of skewness of 

n
SES 6=  and kurtosis of 

n
SEK 24= defined in [14].  All cases are positively skewed i.e. have 

a longer tail in the positive direction because the fiber optic probe measures the intensity of 
reflected light and this intensity is low due to the frequently passing voids.  A majority of the 
distributions are also leptokurtic (kurtosis > 0) which can be seen in figure 5.  At the heavier 
loaded cases, more platykurtic (kurtosis < 0) distributions occur.  The trend is for the 
distribution to approach Gaussian closer to the wall in relation to both the skewness and 
kurtosis.  One exception to this trend is the dilute upflow case (LR = 0.62) which remains 
consistently positively skewed and leptokurtic across the radius.  This boundary for dilute 
upflow is also present in the skewness plots; however, not as pronounced as that seen for the 
kurtosis. 

  

 
  

Figure 4- 1st min of the AMI function versus radial position for the raw voltage data at three 
axial locations.   
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Since the detail coefficients that relate to micro, meso, and macro scales have been 

identified, it is possible to analyze each scale independently by averaging over the 
corresponding detail levels (i.e. d1 and d2 for micro, d3-d5 for meso, and d6-d10 for macro).  
The result of doing this for the excess kurtosis for at 8.3m are plotted against the radial 
position at varying scales with a separate plot for each load ratio in figure 6.    High kurtosis 
values of detail coefficients can indicate intermittency caused by high 

frequency fluctuations from particle 
movements [2].  The fact that the microscale 
is always the most intermittent is further 
indication that this scale is capturing particle 
behavior.  For the micro and meso scales, as 
the load ratio increases the kurtosis value 
decreases with a considerable decrease 
going from the lowest load ratio to all others 
indicating that detail wavelet coefficients at 
these scales can be used to identify a 
boundary for dilute upflow.  To further 
quantify these results a separate ANOVA 
was performed at each scale for the data at 
all three elevations with table 2 indicating 
which independent variables were 
significant.  The value in parenthesis of each 
heading indicates the adjusted R2 value, a 
measure of the amount of variability 
explained by the model.  Since the 

Table 2 
ANOVA for response variable of excess kurtosis. 

Scale 
(Adjusted R2) 

micro 
(.42) 

meso 
(.70) 

macro 
(.14) 

raw 
(.95) 

Axial x      
Ug   x x x 
Ms x x x x 
Radial x x   x 
Axial*Ug        
Axial*Ms        
Axial*Radial      x 
Ug*Radial        
Ms*Radial    x   
Axial2      x 
Ug2        
Ms2 x x   x 
Radial2         
*x indicates significant at a 0.01 level of significance. 

  

 
  

Figure 5- Excess kurtosis versus radial position for the raw voltage data at three axial locations. 
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macroscale did not pick up on the regime transition and the model is such a poor fit (Ra
2 = 

0.14), nothing can be concluded about the macroscale from examination of the kurtosis.  In 
comparing the significant terms of the ANOVAs in table 2 of each scale to that of the raw, it 
can be seen that the scale that has the greatest influence on the excess kurtosis of the raw 
data is the mesoscale.   

 
Correlation entropy, h2, as a function of 

radial position can be seen for each scale at the 
8.3m elevation in figure 7.   For almost every 
set of points, the mesoscale has the lowest 
entropy value.  In terms of all other independent 
variables, there is no noticeable trend from 
these graphs.  This implies that the meso scale 
has the lowest rate of information loss, or the 
most memory.  For the raw data, it was shown 
in figure 4 that the first minimum of the AMI 
function was greatest at the wall and thus the 
amount of memory increased towards this wall.  
This implies that the mesoscale has more 
influence at the wall than at the center.  
Furthermore, from table 3 it can be concluded 
that since the model with the response variable 
of correlation dimension for the raw data most 
closely agrees with the mesoscale, it is this 

scale that is dominating the dynamics of the raw signal.   

Table 3 
ANOVA for response variable of correlation 
dimension. 

Scale 
(Adjusted R2) 

micro 
(.19) 

meso 
(.75) 

macro
(.18) 

raw  
(.80) 

Axial x x    
Ug  x  x  
Ms  x  x 
Radial  x x  x 
Axial*Ug     
Axial*Ms   x   
Axial*Radial    x 
Ug*Radial   x   
Ms*Radial      
Axial2     
Ug2  x   x 
Ms2      
Radial2 x  x x  x 
*x indicates significant at 0.01 level of significance 

  

 
  

Figure 6 - Average excess kurtosis values versus radial position at the 8.3m elevation for each 

scale identified with wavelet analysis. 
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Summary 

It has been shown that the raw voltage signal obtained from a fiber optic vector probe 
has more memory, a more complex attractor, and is more closely related to the Gaussian 
distribution at the wall of the riser of a CFB when compared to data at the center.  These 
trends become more pronounced for increased load ratio values.  Through the analysis of the 
first minimum of the AMI function, correlation dimension, skewness, and excess kurtosis of the 
raw signal, boundaries for the flow regimes of dilute upflow to core annular and core annular to 
fast fluid bed can be identified.   

 
 The wavelet decomposition of the raw signal allows for the examination of the micro, 
meso, and macro scales independently.  From this it can be seen that the mesoscale has the 
greatest influence on the intermittency and dynamics of the raw signal.  Also, the influence of 
this scale is greater at the wall than at the center of the riser.   
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