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Abstract— ZnTe and form a separate band inside the energy band
We present a new linearly scaling three-dimensional gap of ZnTe. Preliminary experimental results have
fragment (LS3DF) method for large scale ab initio  ghown that such mid-band-gap states do exist [2]. But

electronic structure calculations. LS3DF is based on the characteristics of these mid-band-gap states are
a divide-and-conquer approach, which incorporates a ISt : gap

novel patching scheme that effectively cancels out the NOt known (i.e., whether they are spatially isolated or
artificial boundary effects due to the subdivision of extended), nor is it known whether there is a clear
the system. As a consequence, the LS3DF programenergy band gap between the oxygen induced state and
yields essentially the same results as direct density iha CBM of ZnTe. If there is no gap, the electron from

functional theory (DFT) calculations. The fragments of . . . .
the LS3DF algorithm can be calculated separately with the ZnTe conduction band will be relaxed into the mid-

different groups of processors. This leads to almost band-gap states through phonon emission, which will
perfect parallelization on over one hundred thousand render the material unusable for solar cell applications.
processors. After code optimization, we were able to  The above questions can be answeredabyinitio

achieve 60.3 Tflop/s, which is 23.4% of the theoretical yansity functional theory (DET) calculations [31. [4
peak speed on 30,720 Cray XT4 processor cores. In a Y y ) [3], [41-

separate run on a BlueGene/P system, we achieved 107.§_|OW€V€r’ due to the small pgrgentage of the oxygen
Tflop/s on 131,072 cores, or 24.2% of peak. Our 13,824- atoms, large supercells containing thousands of atoms
atom ZnTeO alloy calculation runs 400 times faster than must be used to describe the random distribution of
a direct DFT calculation, even presuming that the direct these oxygen atoms properly. This makes calculations
DFT calculation can scale well up to 17,280 processor using a direct DFT method impractical. For example,

cores. These results demonstrate the applicability of the . 3
LS3DF method to material simulations, the advantage using any of theO(N®) (here N refers to the sys-

of using linearly scaling algorithms over conventional €M size in atloms) planewave DFT COd_eS_ (e.g., the
O(N?) methods, and the potential for petascale compu- Gordon Bell winning Qbox code [5], the similar norm

tation using the LS3DF method. conserving pseudopotential codes PARATEC [6] and
PEtot [7], or the widely used ultrasoft pseudopotential
. INTRODUCTION code VASP [8]) to simulate the 13,824-atom system

There are many material science and nanosciendiscussed in this paper would require between 4-6
problems involving thousands to tens of thousands wfeeks of run time for a fully converged self-consistent
atoms that can be accurately simulated only dly result using 20,000 cores (processors). This reckoning
initio self-consistent methods. These include nanogenerously presumes that these codes achieve a high
tructures such as quantum dots and wires, core/shiefiction of peak and scale perfectly in performance to
nanostructures, as well as more conventional syste23,000 cores for a single-point calculation. In reality,
such as semiconductor alloys. For example, materialf course, performance scaling on such large numbers
that have separate electron states within the energf/cores is usually less than perfect, so that more than
band gap (mid-band-gap states) have been propogke@ weeks would likely be required.
as next-generation solar cells [1]. Such systems couldin order to solve such problems and to take full
increase theoretical solar cell efficiencies fromJ40 advantage of future computer systems now on the
to 63% [1]. One potential way to produce mid-band-drawing boards that will employ hundreds of thou-
gap state materials is to use substitutional semicosands of cores, we have developed a new linearly
ductor alloys such as ZnTe,O,. For a small alloy scaling method that also exhibits excellent parallel
percentage(~ 3%), the oxygen states will repulsescalability. For the 13,824-atom system mentioned
the conduction band minimum (CBM) states of thabove, this method is roughly 400 times faster than



conventionalO(N?) methods (e.g., Qbox, PARATEC,and the LSMS has only be used to study metallic
PEtot, and VASP), yet it yields essentially the samgystems so far. Although there are some codes like
numerical results as the conventional methods. BIESTA [11], [12] that can be used to calculate 1000-
addition, since it uses a divide-and-conquer schemmpm semiconductor systems using linearly scaling
our method is very well-suited for large-scale highlyalgorithms, the performance rates of these codes do not
parallel computers. scale well to thousands of cores. In addition, SIESTA
As will be shown in this paper, the performance ofs based on simple atomic orbital basis sets that are
the algorithm scales almost perfectly to 17,280 cores t&ss accurate than the planewave basis set that we are
the Cray XT4 system (Franklin) at the NERSC facilityusing here. The divide-and-conquer approach was first
at Lawrence Berkeley National Laboratory, to 30,72proposed by W. Yang [13] and has been used for large
cores of a larger Cray XT4 system (Jaguar) at thgystem calculations [14]. Based on a different partition
NCCS facility at Oak Ridge National Laboratory, andcheme, these earlier works did not have the variational
to 131,072 cores of the BlueGene/P system (Intrepigyinciples and boundary effect cancellations of our
at the ALCF at Argonne National Laboratory. Basethethod. As a result, they are less accurate than our
on our performance analysis, LS3DF will scale to acheme when compared with direct DFT calculations.
much larger number of cores without any substantive
algorithmic obstacles. On the 131,072 core test run  |ll. LS3DF ALGORITHM DESCRIPTION

we describe below, our code achieved 107.5 Tflop/s o divide-and-conquer scheme is a natural approach

or 24.2% of the peak floating-point performance ofy. nanning the physical locality of a large problem

the Intrepid machine. To our knowledge, this maket% the architectural locality of a massively parallel

LS3DF the first variationally accurate linearly Scal'computer. our method is based on the observation

ing qb initio electr_onic structure code that has beeEwat the total energy of a given system can be bro-
efficiently parallelized to such a large number o en down into two parts: the electrostatic energy
Processors. and the quantum mechanical energy (e.g, the kinetic
energy and exchange correlation energy). While the
electrostatic energy is long-range and must be solved
During the last 15 years there have been numeroui® a global Poisson equation, the computationally
developments in linearly scalingb initio methods expensive quantum mechanical energy is short-range
[9]. Most of these methods use localized orbital§15] and can be solved locally. The idea is to divide the
and minimize the total energy as a function of thes#hole system into small fragments (pieces), calculate
orbitals. Unfortunately, the use of localized orbitals cathe quantum mechanical energies of these fragments,
introduce extraneous local minima in the total energgnd then combine the separate fragment energies to
functional, which makes the total energy minimizatiombtain the energy of the whole system.
difficult. On the computational side, such schemes areA critical issue in a divide-and-conquer scheme such
not well-suited for systems with thousands of coregs this is how to combine (patch) the fragments. The
because localized orbitals can have strong overlapsre of our algorithm is a novel patching scheme that
which make large-scale parallelization a nontriviatancels out the artificial boundary effects caused by
task. As a result of these challenges and in spite tife division of the system into smaller fragments. As a
more than a decade of intense research, no one hasult of this cancellation, our results are essentially the
yet demonstrated an accurate linearly scaling code ttsatme as a direct calculation on the large system, which
can be efficiently used on thousands of cores. Anothspically scales a®)(N?), whereN is the size of the
O(N) approach, the Gordon Bell winning locally self-system in atoms. In our method, once the fragment
consistent muliple scattering (LSMS) method [10], hasizes are chosen to obtain a given numerical accuracy,
been shown to scale to thousands of cores. The LSMI& computational cost is proportional to the number
method is based on the observation that a good apf-fragments. Hence, we call our method the linearly
proximation to the density can be made by considerirggaling three-dimensional fragment (LS3DF) method.
only the electronic multiple scattering processes in @sing a small group of cores to solve the quantum
region centered about an atom. This observation carechanical part of each fragment independently, our
then be used to reduce the original problem to one ofethod also scales in performance almost perfectly
calculating a single particle Green’s function at onwith the number of cores. Only a small overhead is
atom with an average Green’s function to represeneeded to patch the fragment charge densities into a
the surrounding atoms. This approximation is morglobal charge density, to solve the Poisson equation for
applicable to metallic systems than to semiconductotthe whole system, and to divide the global potential
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into fragment potentials. As a result, our method cations. The artificially created surfaces of the fragments
be employed on computer systems with hundreds afe passivated with hydrogen or partially charged
thousands of cores. pseudo-hydrogen atoms to fill the dangling bonds [18].
Our divide-and-conquer scheme is illustrated ifhe wavefunctions of the fragments are described by
Figure 1, which uses a two-dimensional system fgrlanewaves within a periodic fragment b@x- (which
clarity. In Figure 1, a periodic supercell is divideds the square region plus a buffer region as shown by
into m1 x mse small pieces. From each grid cornethe dashed line in Figure 1 for2ax 2 fragment). Norm
(i,4) we can define four fragments, with their sizesonserving pseudopotentials are used to describe the
S equal to (in units of the smallest piecey: = Hamiltonian. We use the all-band conjugate gradient
1x1,1x2, 2x1and2 x 2, respectively. Suppose method to solve the fragment wavefunctions [7].
we calculate the quantum enerdy; ; s and charge  Our LS3DF method involves four important steps
densityp; ; s of all of these fragments. Then the totawithin each total potential self-consistent iteration, as
guantum energy of the system can be calculated #lastrated in Figure 2. First, a total input potential
E = Zi’j’s asE; s, and the total charge densityV,:!(r) (for the whole system) is provided. Secondly,
as p(r) = Zi,j’s agp;;s(r). Hereag = 1 for the the GenVF routine generates for each fragméntthe
S =1x1and2 x 2 fragments, andvs = —1 for potential Vz(r) = V% (r) + AVg(r), r € Qp, Where
the S =1 x 2 and2 x 1 fragments. By allowing the AVx(r) is a fixed passivation potential for each frag-
usage of both positive and negative fragments in theent F which is only nonzero near its boundary [16].
above summation, the edge and corner effects betwesate thatVx(r) is only defined i) . Third, PEtot F
different fragments are canceled out, while one complves Schidinger’s equation on each fragment for its
at the interior region of the fragment will be left towavefunctionsy!"(r). After the fragment wavefunc-
describe the original large system. This scheme céions«/'(r) are solved for, the fragment charge density
be extended to three dimensions in a straightforwarsl computed,pr(r) = Y, [F(r)|?, and the charge
way. The details of this method, as well as some afensity for the overall system is patched together
its novel features, are described in [16], [17]. ptot(r) = > parpr(r) by subroutine Gerdens. In
the final step carried out by subroutine GENPOT, a
global Poisson equation is solved using FFTs to obtain

Qoyo the global potentialV!%(r). After potential mixing
from previous iterations, the modifidd’’; (r) is used
A N r as the input for the next self-consistent iteration. Self-
! ! consistency is reached &§2!(r) approached/;!°!(r)
within a specified tolerance.
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In our implementation of the LS3DF method, we 2 GENPOT: Pus() = VI (D)
start with a 3D periodic supercell, and divide it into e out

an M = mj x my X mg grid. The atoms are as-
signed to fragments depending on their spatial loca- Fig. 2. LS3DF flow chart.



IV. LS3DF CoDE OPTIMIZATIONS performance.

LS3DF was developed specifically for large-scale 4) Eliminate the setup overhead during each
parallel computation over the last one and one-half ~ Self-consistent call for PEtoE and GENPOT
years, although it builds on the previoGN'3) DFT through storage of the relevant variables in the
code PEtot [7] that has been in development for ~ LS3DF global module.
nearly ten years. The four major subroutines in LS3DF, With regards to the first item, the original PEtBt
namely GenVF, PEtotF, Gendens, and GENPOT band-by-band algorithm has the advantage of requiring
(Figure 2) were developed in steps. Initially, as a rather modest amount of memory. But on the Cray
proof of concept, they were developed as separaXd4 system, with 2 GBbyte memory per core, we
executables using file I/O to pass the data betwedave enough memory to use the all-band method,
them. Later, these subroutines were integrated intowdich involves matrix-matrix multiplication that can
single executable. These codes are written in Fortrape performed using BLAS-3 routines. This all-band
90, using MPI for parallel computation. optimization required changes in the data layout and

In the most recent phase of the development, whigkarrangements of the loop structures. We have also
yielded the code that we used in this study, we fir$inplemented a new orthogonalization scheme for the
focused on the PEtoF subroutine, which dominatesall-band method. Instead of imposing the orthonormal
run time. It ran at about 15% of peak performance ioondition for the wavefunction using a Gram-Schmidt
the earlier phases of development. PEFois derived scheme at each conjugate gradient step, we only im-
from the PEtot code, which uses the same planewapese the orthonormal condition after a few conjugate
g-space parallelization as other standard codes, supfadient steps by calculating an overlapping matrix.
as PARATEC and Qbox. However, to save on men¥Fhe use of the overlapping matrix instead of the direct
ory requirements, it used a band-by-band algorithimand-by-band Gram-Schmidt algorithm also permits
that contributed to its relative low performance rateghe use of BLAS-3 library routines such as DGEMM.
Detailed profiling and analyses were carried out to In the wake of this code optimization, the perfor-
increase the performance of PEt6t Closer analysis mance of the stand-alone PEtot code has increased
revealed that since PELtdt solved for one electron from 15% of the theoretical peak to 56% for large
wavefunction at a time (band-by-band), the majorsystem calculations. This performance ratio is close to
ity of operations (for nonlocal pseudopotential anehat of the best planewave codes, such as PARATEC
wavefunction orthogonalization) were performed usingnd Qbox. The performance ratio of PEtet for
BLAS-2 routines. The file /0 for communication alsoour largest fragments is 45% on Franklin, which is
took a substantial amount of time. slightly slower than the stand-alone code, probably

Based on these analyses, we performed four majaie to the small size of the fragment. In a 2000-atom
code optimizations to improve its performance anddSe quantum rod sample problem, after the final
scalability: code optimization, for 8,000-core runs, the execution

1) Within PEtotF, solve for all the electron times for the four subroutines of the code have been

wavefunctions simultaneously (i.e., the all-bandeduced to: GerWF 2.5 seconds (from the original 22
scheme), instead of one wavefunction at a timgeconds), PEtoF 60 seconds (from the original 170
(i.e., the band-by-band scheme). With this apeconds), Gerens 2.2 seconds (from the original 19
proach, we can utilize BLAS-3 operations suclseconds), and GENPOT 0.4 seconds (from the original
as DGEMM, yielding higher performance thar22 seconds). These timings represent a factor of four
is possible with BLAS-2 routines. A typical overall improvement compared with the previous ver-
matrix size for one of our fragments would besion. For GenVF and Gendens, the improvement is
3000 x 200. a factor of 10, while for GENPOT, the improvement
2) Implement a different algorithm for data com-s a factor of 50. The improvements for these three
munication between cores in Gén- and subroutines are critical for large-scale runs.
Gen dens to allow better scaling for large num- Shortly before the final completion of this study,
bers of cores. we were able to obtain access to the Intrepid sys-

3) Store the data in memory (through an LS3DRem, which is a large BlueGene/P system in the

global module), and communicate with MPIALCF facility at Argonne National Laboratory. For
calls, rather than store the data on disk anour largest run on the Intrepid system (using 131,072
communicating via file I/O as in the earliercores), we further improved GewF and Gendens
versions of the code. This change has resulted inutines by employing point-to-point isend and ire-
a major improvement in scalability and overalceive operations. As a result, on our Intrepid runs,



these two routines together comprised less than 28ojector for the nonlocal potential calculation [20].
of the total run time. In particular, the breakdown foiThe accuracy of LS3DF, as compared with the equiv-
one self-consistent field (SCF) iteration is as followsalent DFT computation, increases exponentially with
Gen VF (0.37 sec.), PEtoF (54.84 sec.), Gemlens the fragment size. For the LS3DF calculation, we
(0.56 sec.) and GENPOT (1.23 sec.). Since such a lafgave used the eight-atom cubic cell as our smallest
percentage of the time now goes to PEE{which has fragment size, as shown in Figure 1. Using this frag-
no inter-group communication), this bodes well for thenent size, the LS3DF results are very close to direct
future scalability of this code on petascale comput@®FT calculated results. For example, the total energy
systems. differed by only a few meV per atom, and the atomic
Although we are pleased with the performance arfdrces differed by 10° a.u. [16]. For all practical
scalability of the present version, we do plan omapplications, this means the LS3DF and the direct DFT
making some additional improvements in the monthresults are essentially the same.
and years ahead including: (1) two-level parallelization To test the weak scaling of the LS3DF code, we have
in PEtot F, to achieve greater parallelism; and (2thosen alloy supercells of dimensiomsg x mq x msg,
replacing DGEMM with a custom routine specializechamely3 x 3 x 3,4 x4 x4, 5x5 x5, 6x 6 x 6, 8 x
for PEtot F. The two-level parallelization will include 6 x 9,8 x 8 x 8,10 x 10 x 8 and 12 x 12 x 12.
parallelization over the plane wave basis set (as curhese problems correspond to 216, 512, 1000, 1728,
rently implemented) and on the wave function indeg456, 4096, 6400, and 13824 atoms, respectively. To
¢ as indicated in Figure 2. This parallelization willstudy the physics of the oxygen induced states, large
allow us to increase the number of processois, per supercells are needed to properly describe the atomic
group, thereby increasing the scalability of our codeonfiguration due to the small oxygen percentages

even further, especially for strong scaling. (e.g., 3%) used in laboratory experiments.
For the3 x 3 x 3 system, we have also calculated
V. TEST SYSTEMS the full system with a direct local density approxi-

In order to test the scaling and flop/s performand@ation (LDA) method (using PEtot). The band gap

of the LS3DF code, we set up a series of test proﬁ‘-nd eigenenergy differences between the direct LDA
lems involving ZnTe_,,O, alloy systems. These alloy method and the LS3DF method are about 2 meV (for

systems are in a distorted zinc blende crystal structuf@® LS3DF method, we took its converged potential,

with 3% of Te atoms being replaced by oxygen atomihen calculated the eigenenergy of the full system).

Although the LS3DF method can be used to calculaiCe the energy gaps we wish to investigate are
the force and relax the atomic position, for thes@round a few tenths of an eV to a few eV, the LS3DF

particular systems we found that the atomic relaxatigfethod is extremely accurate for our study. In fact, it
numerically accurate enough for almost all material

can be described accurately by the classical valente

force field (VFF) method [19]. Here we are moreScience simulations in terms of reproducing the direct
interested in the charge density and electronic structdrPA results. For example, in a previous study we
for a given atomic configuration which is relaxedis€d LS3DF to calculate thousand-atom quantum rods

using VFF. These alloy systems are characterized B?d their dipole moments [16_]. These calculated dipole
the sizes of their periodic supercells. The size of @oments differed from the direct LDA results by less

supercell can be described ag x msy x ms in the han 1%. _ _

unit of the cubic eight-atom zinc blende unit cell. Thus, FOr the runs we did on the Intrepid system, we
the total number of atoms is equal $a2,mams. We modified the above parameters as follows. _Flrst of
used a nonlocal norm-conserving pseudopotential &> We employed a cutoff value of 40 Ryd instead
describe the Hamiltonian, and we used a planewa@& 50, and we employed a real-space grid of size
basis function with a 50 Ryd energy cutoff to describg2 * 32 x 32. These changes were made to adjust
the wavefunction. The real space grid for each eighie" the smaller amount of main memory per core on
atom unit cell is40 x 40 x 40. The d-state electrons the BlueGene/P system. Secondly, we generated larger
in Zn atom are not included in the valence electroRfoPlem sizes, including alloy supercells of dimen-
calculation. Thus in average, there are four valen@ONS4x4x4, 8x4x4, §x8x4, 8x8x8, 16x8x8
electrons per atom. and16 x 16 x 8.

We found that for our fragment calculations, a
reciprocalg-space implementation of the nonlocal po-
tential is faster than a real-space implementation. Thus,To assess the optimizations implemented in LS3DF
we have used g-space nonlocal Kleinman-Bylanderand to demonstrate the benefits of this new code, we

VI. COMPUTATIONAL RESULTS



conducted several computational experiments. We ex- SyS- Size |atoms| cores N, [Tflop/s % peak
ecuted LS3DF with a constant problem size across the Franklin
currently available range of concurrency (i.e., “strong 3x3x3 | 216| 270110 | 0.57|40.4%
scaling”), and for a variety of problem sizes (e, 3*3X%3 216 | 540120 | 1.14]40.8%
“weak scaling”). We then compared code performange 3x3x3 | 216} 108040 | 227 40.5%
to other important DFT codes such as PARATEC and 4x4x4 | 512 128020 | 2.64 | 39.6%
VASP. 5x5x5 | 1000| 2500(20 | 5.15| 39.6%
Part of these benchmark runs were performed on the 6x6x6 1728\ 4320120 | 8.7238.8%
Franklin system at NERSC. This is a Cray XT4 system 5*6x9 | 34561 1080140 2.28] 40.5%
with 9,660 compute nodes, each of which has two 2|6 5% 6x9 | 3456 | 216040 | 4.5140.2%
GHz AMD Opteron cores and 4 GByte main memory. 5 * 69 3456 | 432040 | 8.88 39.5%
The entire system has a theoretical peak performarce8 X 69 3456 864040 | 17.0437.9%
rate of 101.5 Tflop/s. The second set of runs wefe 5*6x9 | 345611728040 | 31.35] 34.9%
performed on the Jaguar system at NCCS. Jaguar has® < 8 *8 | 40961 2560120 | 5.46 41.0%
7,832 XT4 compute nodes, each with a quad-core S*8x8 | 4096110240120 | 19.72] 37.0%
2.1 GHz AMD Opteron processor and 8 GByte of 10> 10x8 | 6400} 2000120 | 4.18] 40.2%
memory. The theoretical peak performance rate of this 10 x 10x 8 6400 | 1600020 | 29.52 | 35.5%
system is approximately 263 Tflop/s. The third set ¢f 12 % 12 x 12 13824 17280]10 | 32.17 35.8%
runs were performed on the Intrepid system at ALCF. Jaguar
This is a BlueGene/P system with 40,960 nodes and 8 8> 6 | 3072 7680120 | 17.3 | 26.8%
163,840 cores, and a theoretical peak performance rate® < 8 x 6 3072/ 15360140 |  33.0 | 25.6%
is | e e e
. . . 8xX6x9 . .27
A summary of our .perfor.mance results is givenin | | 6144 | 1536020 | 33.6 | 26.0%
Table I. Figures are I|3Fed in separate secupns of t1e16 <12 x8 122881 30720120 | 603 | 23.4%
table for runs on Franklin, Jaguar and Intrepid. Tflopfs Intrepid
figures in the table for various problem sizes were
calculated based on operation counts measured on the;1 z i i i 125 gggg gj gg’ gigzﬁ
Franklin system using the CrayPat tool [21]. For the S x 8 x4 2048 | 16384 |64 17'5 31'4%
very largest problems, which we were unable to run S % 8 % 8 4096 | 32768 | 64 34'5 31'1%
on Franklin, we estimated the operation count based 6xsxs | 8192 6553664 60.2 27‘1%
on the number of fragments and the small-problem ' '
. . S 16 x 16 x 8 (16384 131072 |64 | 107.5 | 24.2%
operation counts. This estimation scheme was found'to
TABLE |

. . . -
be consistently within 1% of the actual operation count
SUMMARY OF TEST RESULTS “% PEAK” IS THE FRACTION OF

for those prObIemS that we could run on Franklin. THE PEAK PERFORMANCE FOR THE NUMBER OF CORES USED

Note that our Tflop/s figures reported in Table 1 were
calculated based on wall-clock time. On Franklin,
these figures are roughly 10% lower than the Tflop/s
figures reported by the CrayPat tool, which uses usgé-fold range of concurrency levels from 1,080 cores
time rather than wall-clock time, but we decided t@o 17,280 cores on the Franklin system. To estimate the
use the wall-clock reckoning for consistency acrosgin time, we executed two SCF iterations of LS3DF
all systems. and analyzed the times for the second iteration, since
To evaluate the strong scaling behavior of LS3DHRhis is the iteration which will be iterated several dozen
we chose a medium-sized problem with 3,456 atontgnes for a converged calculation. The first iteration
and a fragment grid size ofi; x my xm3 = 8x6x9. has some small additional overhead (due to array and
In this test, we usedV,, = 40, whereN,, is the number index setups), while subsequent iterations behave very
of cores within each group used in PEt6t The value similarly to each other. We confirmed this behavior
of 40 was determined by the parallel efficiency forduring our full scientific runs with 60 SCF iterations.
each group. Our experience has shown (for example,Figure 3 shows the speedup of LS3DF and the
Table I, third test case for the Jaguar system) thBEtot F component for the range of cores evaluated
when the value ofN, is increased beyond 40, theon Franklin. Speedup and parallel efficiency figures
scaling within each group drops off, which drives théor the 17,280-core runs (using the 1,080-core run
overall efficiency down. We increased the number &fs baseline), were 15.3 and 95.8% for the PHtot
groups N, from 27 to 432. This change represents portion, and 13.8 and 86.3% for LS3DF, both of which



are excellent. Overall, LS3DF achieved a performandbke effective single core performance and hypothetical

rate of 31.35 Tflop/s on 17,280 cores. All computationsactions of the remaining serial work components

are performed on 64-bit floating-point data. of 1/362,000 for PEtof~ and 1/101,000 overall for
LS3DF.
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Fig. 3. Strong scaling speedups for LS3DF and PEtothe curves

are models based on Amdahl’s Law. Fig. 5. Weak scaling floating point operation rates on different

machines.

In Figure 4, we show computational efficiencies
for a variety of problems and different code exe-

a0 oy cution parameters for runs on Franklin. Overall, the
as% * + X excellent scalability demonstrated in our strong scaling
g 30% experiment is confirmed. The small variations in code

o o Atoms simulated
o

performance for a given concurrency level appear to
depend, to first order, on code execution parameters

G 500 216 =512 1000 x 1728

15% X 3456 © 4096 + 6400 13824

0% such as the siz&V,, of processor groups working on
5% individual fragments. We also notice that for a given
0% concurrency, the computational efficiency is almost
0 5,000 10,000 15,000 20,000 . . . .
Cores independent of the size of the physical system studied.

The slight drop of efficiency for very high concurrency
is again mostly due to GeNF and Gendens. This
drop-off should be reduced if we ran our latest version
Fig. 4. Computational efficiency for different runs on Franklin of the code on Franklin and Jaguar, which employs a
faster communication scheme for these two routines.

We analyzed the results of our strong scaling expdror the same reason, the LS3DF curve in Figure 3

iment with Amdahl's Law: would become closer to the PEt&t curve should the
n latest version of the code be used on Franklin.
Po=P | —F—— . Q) Figure 5 shows the total Flop/s rate for weak scaling
1+(n—1)a

runs (with constant number of atoms to number of
Here P, is parallel performancep; is the serial cores ratio) on different machines. These data reflect
performance,n is the number of cores, and is the fact that Jaguar has the faster per processor speed,
the fraction of serial work in the code. In particuwhile Intrepid has the largest number of processors
lar, we employed least-squares fitting to determirend thus yields the largest total performance rate (107
the parameters’; and a. The resulting formula fits Tflop/s). The fairly straight lines suggest that the code
our performance data extremely well, with an aveiis well poised for future petascale computer systems.
age absolute relative deviation of the fitting, namely On our sustained test run on Franklin, we achieved
> | (Pitted/ Pmeasurea — 1)| /1, 0f only 0.26% and convergence on thex 6 x 9 system with 60 iterations,

a single maximal deviation of 0.48%. Fitted valuesising 17,280 cores of Franklin. This run required one
for the single core performance are 2.39 GFlop/s fdrour of run time, with one minute per iteration. The



total sustained performance rate is 31.4 Tflop/s, whidkecause the absolute difference can be directly related
is 35% of the theoretical peak rate (89.9 Tflop/s) oto the energy difference. The differendgV;,, (1) —
17,280 cores. Vout (1)|d3r as a function of self-consistent iteration is
To demonstrate the advantages of LS3DF over shown in Figure 6 (in atomic units). As one can see,
conventionalO(N?3) method, we also performed com-overall this difference decays steadily. However, there
parable calculations on Franklin with commonly usedre a few cases where this difference jumps. This is
DFT codes, including VASP and PARATEC, whichtypical in the potential mixing method, since there is
have SCF convergence rates similar to that of LS3D# guarantee that this difference will decrease at every
[16]. We calculated th8 x 3 x 3 and4 x 4 x 4 systems step. Overall, the convergence rate is satisfactory, and
with PARATEC, stand-alone PEtot and VASP. Théhe final 10~2 potential difference is comparable to
performance rates of PARATEC and stand-alone PEtilite criterion used in our nanosystem dipole moment
are within 5% of each other. From the execution timesalculations. In addition, because the charge density
for these two systems, we can see that €gV?) response to a potential change in LS3DF is similar to a
regime is already reached by thex 4 x 4 system. For direct LDA method, and we are using the same charge
PARATEC, we used the same pseudopotentials, enemgyxing scheme, we would expect that the LS3DF
cutoff, and number of conjugate gradient steps fanethod will have similar convergence properties as the
each SCF iteration, as in LS3DF. PARATEC requiredirect LDA method, and should therefore converge for
340 seconds for one SCF iteration using 320 coresll systems with a band gap.
For VASP, one iteration required about 200 seconds.
However, a direct comparison with VASP is clouded 4y’
by the fact that it uses different pseudopotential and Zn, 2,6 T€,57,0:,
planewave cutoff values, and it takes fewer conjugate
gradient (or residual minimization) steps per SCF iter-_ 10
ation. Nevertheless, the key fact here is that PARATE(;L
and VASP have times that are within a factor of two.Z= 45|
From the O(N3) scaling of PARATEC, we deduce 'Q
that its computation time will cross with the LS3DF
time at about 600 atoms. For the 13,824-atom proble@ 10°}
we simulated using LS3DF, we estimate PARATEC
will be 400 times slower, even under the generous ;3
presumption that its performance scales perfectly to
17,280 cores. In summary, while LS3DF requires only Number of iterations
three hours to perform a fully converged calculation
for such a physical system, tl‘(é(N3) codes would Fig- 6. LS3DF convergence: Input and output potential difference
. . ) s a function of self-consistent iteration steps.
require roughly six weeks, making them impractica af
for most research purposes. This large ratio (400) will
be even more dramatic as we consider runs on ey,
larger physical configurations, e.g., for dislocation g
grain boundary problems.

0 10 20 30 40 50 60

The converged potentidf (r) is then used to solve
Schédinger equation for the whole system for
nly the band edge states. This was done using our
folded spectrum method (FSM) [22]. Since not all the
occupied eigenstates are calculated, the FSM method
scales linearly with the size of the system. Overall this

As mentioned above, we have achieved fully corstep does not take much time and it can be considered
verged results for then; x my x mg = 8 x 6 x 9 as a fast post-process of the LS3DF calculations. There
system. This physical system has 3,456 atoms, airsda well-known LDA band gap error that can be
requires 60 SCF iterations (the outer loop in Figure Zorrected using a modified nonlocal pseudopotential
to achieve full convergence. Using 17,280 processofsy the s,p,d states [19]. The calculated CBM state
the run requires one minute for each iteration, and shown in Figure 7(a), while the highest oxygen
thus one hour for the entire calculation. The SCkduced states is shown in Figure 7(b). Between the
convergence of the system can be measured by 88M and the highest oxygen induced state, there is a
difference between the inpi#t,, () and outpul,..;(r) 0.2 eV band gap. This should prevent the electron in
potentials, as shown in Figure 2. We have chosen @BM from falling down to the oxygen induced states.
use the absolute difference rather than the relative difhus, our simulations predict that the ZgEeOy o3
ference becausg,, (r) can have an arbitrary shift, andalloy could be used for solar cell applications.

VIl. SCIENCE RESULTS



Bottom of conduction band state (b Top of O band stat . I ,
(&) Bottom of coniction e (b)Topof Oband state entire 60-iteration run could be completed in less than

two hours. The sustained performance of our test run
was 60.3 Tflop/s. In separate test runs on the Intrepid
system, on a6 x 16 x 8 ZnTeO system with 16,384
atoms, we achieved 107.5 Tflop/s on 131,072 cores,
so that a full calculation could be completed within
one hour. These performance figures (and all others
reported in this paper) are for 64-bit floating-point
operations.

In another test computation, namely a 13,824-atom
Fig. 7. Isosurface plots (yellow) of the electron wavefunctior‘zm—eO alloy calculation, performed 9” the Franklin
squares for the bottom of conduction band (a), and top of oxygeByStem, our code ran roughly 400 times faster than
induced band (b). The small grey dots are Zn atoms, the blue d%u|d be possib|e with any of the other planewave
are Te atoms, and the red dots are oxygen atoms. research codes currently in use, mostly because of the
linearly scaling algorithm of our method, as compared

; 3 .
One interesting point is that the oxygen induce ith the O(N™) algorithms of most other methods.

states form a very broad band (0.7 eV) inside the bal A short, our code 'S Fhe first va'riationally accurate
gap of ZnTe. As a result, its theoretical maximur‘#ne.arly scaling ab. initio electroqlc structure code
efficiency of a solar cell made from this alloy wiIIWhICh has been efficiently parallellzgd to over 100,000
be smaller than the 63% estimated based on a narrBiyyC€SSOr COres. Our code makes it possible to tackle
mid-band-gap [1]. Also, as shown in Figure 7(b), thgroblems which were not amenable before.

oxygen induced states can cluster among a few oxyg nOur simulation yielded substantive scientific results.

atoms. Such a clustering is more localized in the hi |rst,zw$ founddtha}: the[)e |sda 0'2 i\r{ band gap l_ae(;weeg
energy states than in the lower energy states within t e d nie Icqn L:E I?r:h' an” an g oxyggnf n u?e
oxygen induced band, which will significantly reduc c:IT a{pmga);:ggs gecolns dI?/ ?/?//ecgrl:n detr?;tetheogxsyc;;
the electron mobility (i.e., conductivity) in those states; ' ' e
y( Y) ssmduced states form a very broad band (0.7 eV) inside
VIIl. CONCLUSIONS the band gap of ZnTe. As a result, our simulations

predict that the theoretical maximum efficiency of
In summary, we have developed and deployed %Iar cells made from this alloy will most likely be

fundamentally new approach to the problem of large- op i .
scaleab initio electronic structure calculations. Our 2" than the 63% figure estimated based on a narrow

: id-band-gap. Also, as shown in Fig. 7(b), the oxygen
approa_ch targets systems with a band gap and _that Féduced stgteps can cluster among ag fev(v gxygen gt?)ms
quire highly accurate planewave based calculatlons#uch a clustering will have an impact on the mobility
can be applied to nanostructures, defects, dislocatio ?’the electrons in those states
grain boundaries, alloys and large organic m0|eCUIe%'Lastly based on our performlance analysis, we see
It simultaneously addresses the two critical issues for intrir;sic obstacle to scaling our code toyrun on
any large-scale computer simulation: the scaling &Ser 1,000,000 processing cores and over 1 Pflop/s
the total computational cost relative to the size O?erforn,wanc'e
the physical problem, and the parallel scaling of th '
computation to very large numbers of processor Cores'AcknowIedgements This work was supported by
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