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Abstract—An algorithm was developed for the two-dimensional (2D) reconstruction of truncated and 

non-truncated uniformly attenuated data acquired from single photon emission computed tomography 

(SPECT). The algorithm is able to reconstruct data from half-scan (180º) and short-scan (180º + fan angle) 

acquisitions for parallel- and fan-beam geometries, respectively, as well as data from full-scan (360º) 

acquisitions. The algorithm is a DBH method, which involves the backprojection of differentiated 

projection data followed by an inversion of the finite weighted Hilbert transform. The kernel of the inverse 

weighted Hilbert transform is solved numerically using matrix inversion. Numerical simulations confirm 

that the DBH method provides accurate reconstructions from half-scan and short-scan data, even when 

there is truncation. However, as the attenuation increases, finer data sampling is required. 

 

Index Terms—Image reconstruction, attenuation, SPECT, truncation, fan-beam, half-scan, short-scan  

I. INTRODUCTION 

   Quantitative studies in single photon emission computed tomography (SPECT) are important in clinical 

diagnosis and treatment. However, there are problems which can make it difficult to perform quantitative 

SPECT imaging. Attenuation is a major degradation factor in image quality [1]. Truncated measurements, 

which occur when the camera field of view (FOV) is smaller than the patient imaged, cause artifacts in the 

reconstructed image [2, 3]. Also, to minimize the loss in camera resolution as the source-to-detector 

distance increases, there is considerable interest to perform acquisitions close to the organ of interest such 

as in breast imaging where anterior scanning close to the breast is desired. Another advantage of anterior 

scanning is that a half-scan (180º) or a short-scan (180º + fan angle) can be implemented that covers the 

least attenuated half circles. Here we investigate a method that reconstructs the image from uniformly 

attenuated data measured over a half-scan acquisition for parallel-beam geometry and a short-scan 

acquisition for fan-beam geometry, and allows use of a relatively small detector with projections truncated 

at some view angles. 

In the past three decades, much research has been performed in developing iterative and analytical 

attenuation compensation algorithms for different data acquisition geometries. Iterative algorithms, such as 

those in [4-12], have the potential to utilize better models of the imaging system that include various 

physical factors and complicated data acquisition geometries but require significant amount of computation 

compared to analytical methods. Whereas, analytical methods, such as those in [13-15], treat the projection 

data as perfect line integrals and the reconstruction can be carried out efficiently using mathematically 
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explicit formulas. The developments of analytical methods have led to new insights into the mathematics of 

computerized tomography in SPECT. These insights have spurred the development of new reconstruction 

algorithms for various collimator geometries and detector orbit configurations with both uniform [13-15] 

and non-uniform [16] attenuation correction. Analytical algorithms also provide theoretical consistency 

conditions. These conditions are extremely important in the evaluation and understanding of the 

performance of iterative reconstruction algorithms and for determining if they may provide accurate 

solutions. Beyond the theoretical aspects there are practical reasons for developing analytical reconstruction 

algorithms. Analytical methods provide: a) a quick reconstruction that allows evaluation of subject 

positioning and determination of whether or not an experiment needs to be redone, b) a method for 

analytical evaluation of various factors that affect resolution and signal-to-noise, which are difficult to do 

with a non-linear iterative algorithm, c) a means by which to compare and to evaluate the development of 

iterative reconstruction methods, and d) a method useful in quality control; for example, the evaluation of 

whether or not geometrical calibrations, such as the center of rotation, are measured accurately. 

There is considerable interest in developing algorithms that are able to reconstruct data acquired for less 

than 360º because of potential clinical applications. The data from a half-scan acquisition is sufficient for an 

exact reconstruction for the attenuation-free case [13]. However, analytical methods [14, 15] developed 

earlier for uniform attenuation required the projection data to be available over a full-scan. The same 

requirement was necessary for other analytical reconstruction methods such as the Fourier methods in [17-

22], the integral geometry method in [23], and the Cormack-type inversion methods in [24, 25]. Recently 

progress has been made in the reconstruction of attenuated half-scan projection data [26-30]. The 

uniqueness of analytical reconstruction solutions when the scanning range is an open subset of [0, 360º) 

was proven in [31, 32], and stable reconstructions for half-scan data were later proposed for iterative 

algorithms in [26, 27] and an analytical algorithm in [28]. The method in [28] was an explicit formula of 

the convolution-backprojection type and was designed to reconstruct images from non-truncated 

measurements in the parallel-beam geometry. Some progress has been made in developing algorithms 

which are capable of dealing with fan-beam data and truncated measurements [29, 30]. The method in [29] 

performs least-squares fitting to find a kernel function numerically and the algorithm in [30] utilizes the 

calculation of a power series expansion. The algorithms in [28-30] can be implemented in a common 

procedure of derivative, backprojection, and Hilbert transform (DBH). In the DBH method, one of the key 

steps is the inversion of the finite Hilbert transform, which is an old research topic surveyed in [33]. The 

recent works [34-36] show progress on that subject, aiming at an exact image reconstruction from data 

acquisitions of less than 360º.  

The DBH method has been used in x-ray CT to reconstruct a region-of-interest (ROI) from truncated data 

[37-39]. Recently, progress has been made [28, 30] in applying the DBH method in the reconstruction of 

truncated uniformly attenuated SPECT data either obtained by half-scan (parallel geometry) or short-scan 

(fan-beam) acquisitions. This paper further explores the DBH method for the analytical reconstruction of 

exponential Radon transform (eRT) data acquisitions of less than 360º in both parallel- and fan-beam 

acquisition geometries and develops a stable method to obtain a numerical kernel for the inverse of the 

finite weighted Hilbert transform. We demonstrate that the DBH method is effective in reconstructing an 

ROI from truncated half-scan (parallel-beam) or short-scan (fan-beam) uniformly attenuated data.  

 The paper is organized in five sections. In Section I, we motivate the problem under consideration. In 

Section II, the DBH method is developed for the 2D parallel-beam and fan-beam geometries. Section III 

develops the numerical implementation of the finite weighted Hilbert transform. Section IV gives 

implementation details and numerical results demonstrating the effectiveness of the DBH method. In 

Section V, we offer our conclusions and directions for further work.  
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II. DBH METHOD FOR INVERSE OF THE EXPONENTIAL RADON TRANSFORM 

For a transaxial slice, let ),( yxf  represent the distribution of a radiopharmaceutical in body tissues, which 

is assumed to be a smooth and compactly supported function of 2R . The SPECT image reconstruction 

estimates ),( yxf  from the detected photon counts. We denote ),( yxr =
r

 and }1:),{( 222 ≤+∈= yxRyxD . 

We assume 0),( ≡yxf  outside of D and the attenuation of the body tissues is uniform inside the elliptical 

grey region in Fig. 1. For example, these assumptions can be met in brain SPECT after compensating for 

the attenuation of the skull [40]. We denote )sin,(cosθ θθ=
r

 and )cos,sin(θ θθ−=⊥
r

. Let 0>µ  be the constant 

attenuation coefficient and sL ,θ  be the distance between the point C on the boundary of the elliptical 

attenuator and the s-axis in Fig. 1. All photons detected in the collimator hole at ),( sθ  are proportional to 

∫
−−⊥+ dtetsf
tL s )( ,)θθ( θµrr

; here the integral is carried out along the line PC. The factor sL
e ,θµ−  can be estimated 

if the boundary of the uniform attenuation region is known. After multiplying the measured projections by 
sL

e ,θµ , the modified projections can be expressed as the eRT 

∫
∞

∞−

⊥+= dtetsfsfR
tµ

µ θθθ )(),]([
rr

.                                                  (1) 

For simplicity, we use ),]([),( sfRsp θθ µ=  throughout this paper. The reconstruction process estimates 

),( yxf  from ),( sp θ . 

 
The DBH method involves calculating the derivative of the projection data, backprojection, and the 

inversion of the finite weighted Hilbert transform. The first two steps, the operation of derivative and 

backprojection, are also named as the DBP operation in [37] for the reconstruction of CT data acquired over 

less than 360º. According to [28], the DBP operation of the eRT is the one-dimensional (1D) weighted 

Hilbert transform of the original image along certain lines. Through coordinate transformations, we obtain a 

similar relation for the uniformly attenuated fan-beam projection data. Based on work in [30], an exact 

reconstruction can be achieved in a well-defined subset of the support of  ),( yxf  from the DBP of truncated 

projections. 

A. DBP operation and the weighted Hilbert transform 

We define an intermediate function ),(ˆ yxf  as 

∫
−

⋅− ⋅′−=
⊥

2/

2/

θ )θ,(
2

1
),(ˆ

π

π

µ θθ drpeyxf
r

rrrr

,                                                (2) 

where ),( sp θ′  is the partial derivative of ),( sp θ  with respect to the variable s. Equation (2) is usually called 

the operation of derivative and backprojection (DBP). The DBP operation yields an intermediate function 

),(ˆ yxf , which is different from the desired function ),( yxf . Let )/,/( yx ∂∂∂∂=∇ , then from (1) we have 
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Fig. 1:  Illustration of projection coordinates corresponding to a parallel-beam scanning geometry for SPECT. 
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Notice that by using the chain rule, we obtain 
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                 (4)                                         

By changing the variables ⊥⋅−= θ
rr

rtτ  and using (4), we can rewrite ),(ˆ yxf  as  

.
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This represents ),(ˆ yxf  as the hyperbolic-cosine-weighted Hilbert transform of ),( yxf  along horizontal 

lines. It follows that the reconstruction of ),( yxf  reduces to the inversion of (5). For 0=µ , this is called the 

inversion of the Hilbert transform [33]. For 0≠µ , several formulas have recently been reported in [28, 30] 

to obtain ),(ˆ yxf from (5). In this paper, we refer to the DBP operation followed by the inversion of a finite 

weighted Hilbert transform as the DBH method for the exponential Radon transform. Note that the term 

“finite” refers to the limits of the last integration in (5) as being finite. 

Due to the uniform attenuation, the derivative with respect to s is, in general, no longer odd, i.e.,  

)θ,()θ,(
rrrr

⋅−+′−≠⋅′ rprp πθθ . However, the weighted backprojection of the derivative over 360˚ is still zero. 

This property can be seen from (5) by replacing ( )2/,2/ ππ− , the interval of integration, with ( )π2,0 . We 

also prove for a point source in Appendix A that the weighted backprojection of the derivative over 360˚ is 

zero. Due to the superposition property of a linear algorithm, the weighted backprojection 

for any arbitrary object is zero. 

B. DBP operation for fan-beam data 

A typical fan-beam data acquisition geometry with a circular focal-point trajectory is shown in Fig. 2, 

where each projection ray is represented by ),( σβ . One particular projection ray is the arrowed line from the 

focal point S  for the angle β  with the ray angle σ . In this paper, the fan-beam uniformly attenuated 

projection of the function ),( yxf  is defined as 

∫
∞

+=
0

)),((),]([ τσβατσβ µτ
µ deSffD

r
,                                                 (6) 

where fDµ  is the projection operator for the uniformly attenuated fan-beam projection data, ],[ mm σσσ −∈ , 

and ),( σβα
r

 is a unit vector in 2R  representing the direction from the focal point to the collimation hole, as 

shown in Fig. 2. Here, )2/,0( πσ ∈m  denotes the maximum angle subtended by the fan-beam. Let R be the 
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radius of the circular focal point trajectory. The coordinates in parallel- and fan-beam geometries are related 

by 

βσθσ +== ,sinRs .                                                (7) 

The distance between the focal point and the s-axis is σcosR . Thus, the definitions of (1) and (6) can be 

related by the following equation 

                     ),(),]([)sin,( cos σβσβσβσ µ
σµ gfDeRp R ==+ − .                                             (8) 

 

We will use ),( σβg  for the modified projection of (8). By the chain rule, we have ),(),( s
pg

θ
θ

σβ
β ∂

∂
=

∂

∂
and 

),(cos),(),( s
s

p
Rs

pg
θσθ

θ
σβ

σ ∂

∂
+

∂

∂
=

∂

∂
.                                              (9) 

Then, we obtain 

),]()[(
cos

1
),( σβ

βσσ
θ g

R
s

s

p

∂

∂
−

∂

∂
=

∂

∂
.                                               (10) 

Let || rr
r

=  and )sin,(cos),( ϕϕryxr ==
r

, and ),,( βϕrK  denotes the length of SP, and ),,( βϕσ r′  the angle 

between SO and SP. It is straightforward to derive the following geometric identities [41]: 

)sin(2),,( 22 ϕββϕ −++= rRRrrK ,                                                 (11) 

)sin(

)cos(
arctan),,(

ϕβ

ϕβ
βϕσ

−+

−
=′

rR

r
r ,                                                (12) 

))cos(),(sin(),( σβσβσβα +−+=
r

.                                               (13) 

For a given r
r
, θ , and β  the following differential relationship is satisfied [42]: 

β
βϕ

βϕσ
βϕσβθ d

rK

rR
rdd

),,(

),,(cos
)),,((

′
=′+= . 

For simplicity, only the fan-beam short-scan reconstruction will be discussed in this subsection. The short-

scan is the scanning range of ]5.0,5.0[ mm σπσπ +−− , which is 180˚ plus the fan angle. We assume 1sin =mR σ  

so that the inner disk in Fig. 3 is the unit disk D, i.e., the projection is not truncated. In Fig. 3 for )1,1(−∈y , 

)/arcsin()( Ryy =β . After transforming the integration over θ  in (2) to the integration over β  in the fan-

beam geometry, (2) becomes: 
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Fig. 2: Illustration of a typical fan-beam acquisition geometry. Each projection ray is uniquely determined by ),( σβ . Points O and S represent the 

coordinate origin and focal point, respectively. P is a point at which the value needs to be reconstructed, σ  denotes the angle between OS and the 

projection ray, σ ′ denotes the angle between OS and PS, β  denotes the angle between OS and the y-axis, and R is the radius of the circular orbit. 
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               (15) 

The interval of integration in (15) is a subset of ]5.0,5.0[ mm σπσπ +−− , as shown in Fig. 3. Actually, for 

each vertical position y, the projections from )](5.0),(5.0[ yy βπβπβ +−−∈  are sufficient to perform the  

DBP operation, which is similar to the line-π path integral in [43, 44]. Since the support of ),( yxf  is 

confined inside the inner disk of Fig. 3, the DBP operation only needs to be performed on the inner disk. In 

other words, the function ),( yxf  can be completely reconstructed in this region from uniformly attenuated 

fan-beam short-scan projection data.  

 
The weight ),,(/1 βϕrK  may have a singularity in (15) when Rr →  [42]. We express ),,( βϕσ r′  in (15) in 

parallel-beam coordinates as 

R

r

R

r
r

)cos(
arcsin

θ
arcsin),,(ˆ
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θϕσ

−
=

⋅
=

rr

.                                                     (16) 

The first equality in (16) is due to (8). We modify the factor ),,(/1 βϕrK  in (15) using (7) and (16) to obtain 
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                                (17)  

Equation (17) involves the operations of derivative and backprojection for the modified attenuated 

projection in a fan-beam geometry and can be readily obtained from fan-beam measurements. After (17) is 

implemented, the same procedure used for the parallel-beam geometry is performed to invert the finite 

weighted Hilbert transform.    

C. Consideration of truncated data 

In the previous two subsections, we assumed that the detector is large enough so that both ),( sp θ  and 

),( σβg  cover the support region D of ),( yxf . However in SPECT imaging there are cases in which the FOV 

of the detector does not cover the entire object. Fig. 4 gives a typical example of such a scan where the 

FOV inside the thick circle does not cover the entire elliptical object. The projection acquired at the 

 

y β(y) 
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Line to perform the DBH 
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Fig. 3: Horizontal lines in the inner unit disk for performing the inverse of the finite Hilbert transform in the fan-beam short-scan. 
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position indicated in the figure is truncated due to a small detector. 

 
Summarizing the preceding analysis, the derivative and backprojection are local operations and do not 

require projections to be available in the entire FOV. If ),( yxf  has a support in the finite region 

)](),([ yLyL− , as illustrated in Fig. 4; regardless of the data acquisition geometry, ),( yxf  and ),(ˆ yxf  can be 

related by 

∫
−

−
=

)(

)(

),()cosh(
),(ˆ

yL

yL

d
yxf

yxf τ
πτ

τµτ
.         

Because of the limited data availability and the limitation in conducting the backprojection, ),(ˆ yxf  may be 

available only in a finite region for the variable x. Intuitively, that region must be large enough to have a 

stable inversion. In [28], ),(ˆ yxf  must be computed in ))(3),(3( yLyL− . The inversion procedure in [30] uses 

),(ˆ yxf  over )](),([ yLyL−  and 2/)],2/(),2/([ spsp ππ −+ . The inversion algorithm presented in this work only 

needs ),(ˆ yxf  in )](),([ yLyL− . All those inversion formulas are mathematically exact, thus ),( yxf  can be 

completely reconstructed from ),(ˆ yxf  on )](),([ yLyL− . Also, there is a direct extension to reconstruction of 

fan-beam data, as indicated in (4), (14), and (17). 

III. INVERSION OF THE FINITE WEIGHTED HILBERT TRANSFORM 

It has been shown that the function ),(ˆ yxf  can be obtained from the acquisition of both parallel- and fan-

beam data and that ),( yxf  and ),(ˆ yxf  are related by a weighted Hilbert transform. In this section, we show 

that ),( yxf  can be exactly reconstructed from ),(ˆ yxf  if ),(ˆ yxf  is available in the same support region 

of ),( yxf .  Frequently in SPECT imaging the projections are truncated because the FOV is not sufficiently 

large enough to image the entire body. However, a smaller region instead of the whole object can be 

accurately reconstructed from truncated projection data. In the presence of truncation, a subset of ),( yxf ,  

the region between the two dashed lines in Fig. 4, can be exactly reconstruction. 

A function )(th  and its Hilbert transform )(sH  are related by: 

∫
∞

∞− −
= dt

ts

th
sH

)(1
)(

π
, ∫

∞

∞− −
= ds

ts

sH
th

)(1
)(

π
.                                              (18) 

It is assumed that all singular integrals are equal to the Cauchy principal value. The function )(th  is 

assumed to be continuously smooth with compact support in ],[ qq− , 0>q . With the hyperbolic cosine 

weighting function, the finite weighted Hilbert transform is defined as 

∫
− −

−
=

q

q

dtth
ts

ts
sH )(

))(cosh(1
)(

µ

π
µ .                                                (19) 

It is obvious that when 0=µ , the finite weighted Hilbert transform reduces to the finite Hilbert transform. 

Notice that )(sH µ  quickly tends to ∞  as ±∞→s .  

Two classic inversion formulas [33] of the finite Hilbert transform ( 0=µ ) are  
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Fig. 4: Illustration of a small detector and the area of exact reconstruction by the DBH method. 
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In order to obtain an inversion formula of the finite weighted Hilbert transform ( 0≠µ ), we construct an 

intermediate function )(ˆ th  similar to (21), but replacing )(sH  with )(sH µ : 
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Upon substituting (19) into the right side of this equation and using the inversion formula in (21), we have 

the following series of equations that obtain a relationship between )(sH µ and )(th   
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µ .                                                                   (24) 

The second equality in (23) is a result of the equality 0])/[(1
22 =−−∫−

q

q
dssqts  for ),( qqt −∈ , see [33, p.174] 

or the alternative proof given in Appendix B. By adding the term with a value zero to ),( ptKµ , we change 

the singularity at ts =  to a removable singularity. Notice that the function )/()]()([ tsptApsA −−−− µµ  is now 

smooth. Smoothness is important in the implementation of the algorithm. It is hard to sample functions with 

discontinuities, singularities, or sharp changes. Generally speaking, functions with higher frequencies need 

finer sampling. The smooth integrand for the definite integral makes the evaluation stable. This is desirable 

for efficient and accurate implementation.  

It then follows that ),( ptKµ  constructs a compact operator, denoted byΨ . Symbolically,  (22) becomes 

.
)(

)(
)]()[(

22

22

∫
− −

−

−
=+

q

q

ds
sq

tq

ts

sH
th

π
µ

ΨI                                                         (25) 
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It was shown in [45] that if the eigenvalues of Ψ  are different from -1, the operator 1)( −+ΨI  should exist 

and be bounded. We do not have a proof showing that all the eigenvalues of Ψ  are different from -1 for 

all µ . In our simulation studies in the following section, the inverse operator 1)( −+ΨI  appears to be well 

defined for 6≤µ  when 1=q . In other words, for an organ with a 20 cm diameter, the inversion should exist 

for an attenuator as large as 16.0)20/(26 −=×= cmcmµ . This is sufficiently large enough to cover the linear 

attenuation coefficients of most body tissues imaged in the clinic with SPECT. Hence assuming 1)( −+ΨI  

exists for realistic µ  values using SPECT, the original function )(th  can be completely recovered using the 

following inversion formula: 

).](
)(

)(
)[()(

22

22
1 tds

sq

q

s

sH
th

q

q

∫
−

−

−

•−

•−
+=

π

µ
ΨI                                                        (26) 

The expression in (26) with the dots is an operator. This operator has a functional expression when the dots 

are replaced with the variable t . 

Equation (25) is a Fredholm integral equation of the second kind. According to the comments in [46], the 

matrix inversion based algorithm discussed in [47, 48] is a stable way to numerically solve (25). Using the 

trapezoidal rule for evenly sampled data, the numerical implementation of (26) is summarized in the 

following four steps. 

 

Step1: Initialize the following  

• Compact support interval is ]1,1[− , i.e., 1=q . 

• Sampling interval is Mt /1=∆  with 512=M  for two 1D signals and 128=M  for SPECT data in this 

paper. 

• Sampling points within the support are tmtm ∆+= )5.0(  and 1−≤≤− MmM . 

Step 2: Compute the kernel ),( ptKµ  

• 




∆<

∆≥−
=

tt

tttt
tA

5.0||,0

5.0||,/)1)(cosh(
)(

µ
µ . 

• 







∆<−

∆≥−
−

−−−

=

tts

tts
ts

ptApsA

ptsM

5.0||),/(5.0

5.0||,
)(

)()(

),,( 2

πµ
π

µµ

µ . 

• ∑
−

−=

−−∆=
1

22 ]1/),,([1),(
M

Mj
jnmjmnm ttttMttttK µµ . 

• 1

,

1 }),({)( −− +=+ nmnm ttK δµΨI , where nm,δ  is the Kronecker delta function. 

Step 3: Perform the integral transform 

∑∫
−

−=−
−

−

−
=

−

−

−
=

1

2

21

1

2

2

1

1

)(

)(

1

1

)(

)(
)(ˆ

M

Mn n

mnm

m
m

t

t

nm

tH
ds

s

t

ts

sH
th

ππ

µµ . 

In the implementation, the contribution of the integrand     at singular points is not sampled. 

Step 4: Invert the matrix )( ΨI +  

∑
−

−=

−+=
1

1

, )(ˆ}),({)(
M

Mn
nnmnmm thttKth δµ . 

The calculation of ),( nm ttKµ  in step 2 does not involve any singularity; thus, all numerical computations are 

stable. When applying this numerical procedure to the image reconstruction problem (5), we let 

),(ˆ)( ysxfsH ==µ  and find )(),( xthyxf ==  for a fixed y.  This row-by-row finite inversion procedure is 

repeated for all y coordinates. 
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IV. COMPUTER SIMULATION RESULTS 

The key step in the DBH method is the inversion of the finite weighted Hilbert transform. The numerical 

behavior of (19) and (26) was first studied, and then the DBH method was applied to the inversion of the 

eRT for half-scan parallel-beam and short-scan fan-beam data acquisition geometries both with truncated 

and non-truncated projections.  

A. Numerical realization of (19) and (26) for 1D signals 

Two 1D signals )sin()( tth π=  and ||1)( tth −=  with 1|| <t  were chosen to investigate the numerical 

behaviors of the  finite weighted Hilbert transform (19) and the inversion formula (26). Original signals 

were evenly sampled over 1024 points for 1|| <t  as described previously in the implementation steps in 

Section III. A very high sampling rate was used in this simulation to ensure that the finite weighted Hilbert 

transform )(sH µ  was accurate. For this simulation, the attenuation coefficient 6=µ  was equivalent to 6/512 

per sampling interval. If 1024 points are sampled along an object diameter of 20 cm, this is equivalent to an 

attenuation coefficient equal 0.6 cm
-1
. In this simulation, the weighted Hilbert transform of the original 

signal was calculated to using (19) and is shown in Figs. 5(a) and 5(b). Then these two 1D signals were 

reconstructed from their finite weighted Hilbert transform according to the four steps described in Section 

III. For comparison, the original signals and their reconstructions are plotted in Figs. 5(c) and 5(d). 

Numerically, equation (26) does provide fairly accurate reconstructions.  

B. Parallel-beam half-scan with and without truncation and with and without noise 

In the SPECT simulation study, the object function ),( yxf  is chosen to be the modified Shepp-Logan 

phantom shown in Fig. 6(a), which is composed of 10 ellipses. The intensity in each ellipse has been 

modified from the original Shepp-Logan phantom [13] to mimic the distribution of a radiopharmaceutical 

      (a)                      (b) 

(c)                   (d) 

 

Fig. 5: Weighted Hilbert transform )(sHµ
 for (a) )sin()( tth π=  and (b) ||1)( tth −= , only shown for |s|<1. Original signals and their reconstruction 

from the finite weighted Hilbert transform: (c) for )sin()( tth π=  and (d) for ||1)( tth −= . 
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concentration. These ellipses were described in [30], and were scaled to be contained in the unit disk D in 

our simulations. The phantom is represented by a 256×256 grid. In terms of pixels, the lengths of the major 

and minor axes of the most outer ellipse are 184 and 138, respectively. The three detectors around the 

phantom indicate the range of the projections being sampled. Projection data were evenly sampled on a grid 

of 400×256 over )1,1()2/3,2/[ −×ππ , and are shown in Fig. 6(b). All simulated projection data were 

analytically generated based on the weighted line integrals of the modified Shepp-Logan phantom with a 

uniform attenuation coefficient of 0.15 cm
-1
.  

0.5

0.4

0.3

0.1

10.8 cm

14.4
 cm0.1

                                          (a) 

 
In the study of the effect of noise with the DBH method, we converted the analytically generated 

projection data into Poisson random samples. The total counts were 2×10
7
, with each bin containing about 

200 photons on average. Projection data were first modified to place the detector at the center of rotation, as 

explained in Section II. Once the modified projections ),( sp θ  were obtained, the DBP image ),(ˆ yxf  was 

calculated by (2) on a 256×256 grid, the same size used to sample the original modified Shepp-Logan 

phantom. At each fixed view angle, the modified projections were convolved with a discrete band-limited 

five-point kernel to yield the derivative ),(' sp θ . The numerical implementation of the derivative was a mid-

point method. The DBP image was obtained by backprojecting the derivative over 180º with an exponential 

weighting function 
⊥⋅− θµr

e . Then the finite inverse Hilbert transform (26) was performed to find ),( yxf  

along each row. In other words, using the four steps in Section III, the desired image ),( yxf  (corresponding 

to )( xth = ) at each fixed y  is reconstructed from its weighted Hilbert transform ),(ˆ yxf  (corresponding to 

),(ˆ)( ysxfsH ==µ ) at the same y .                                         

The reconstructed images from noise-free and noisy projection data are shown in Fig. 7(a). The grayscale 

                                                        (b)
 

Fig. 6: (a) The modified Shepp-Logan phantom. The numbers in the figure without dimensions indicate the relative distributions of the radiopharmaceutical 

for each of the ellipses. For example, the five small ellipses have a value 0.4. These values were scaled to obtain the total desired counts in the statistical 

studies. The detectors around the phantom indicate the range of the sampled projections. (b) The analytically computed noise-free projection data. The view 

angle is along the vertical axis and the detector bin is along the horizontal axis. 

detector 
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is [0.15, 0.45] for the display of all the reconstructed images throughout the paper. Two profiles passing 

through the reconstructed images at y = 0 are plotted in Fig. 7(b) to compare the difference between the 

reconstruction and the original phantom. For the noise-free data, the visual observation from Fig. 7(a) and 

the 1D profiles in Fig. 7(b) show that the reconstruction is fairly accurate.  

For the noisy data, there is a non-uniform distribution of the noise from the top to the bottom in the 

reconstructed image. More specifically, the upper half of the reconstructed image looks noisier than the 

lower half. For the case when the total counts equal 2×10
7
, the percent root mean square errors for the two 

circles shown in the right image of Fig. 7(a) are 7.33% for the lower and 7.67% for the upper circle. Here 

the root mean square error was defined as the ratio of the standard deviation and the mean value sampled 

over the corresponding regions of interest.  

        
The difference in the noise structure between the upper and lower half of the image is related to the 

weighting factor 
⊥⋅− θ

rr
re µ  in the backprojection. If 0θ >⋅ ⊥

rr
r , the weighting factor 

⊥⋅− θ
rr

re µ  is less than 1 and 

suppresses the noise in the backprojection; otherwise, it magnifies the projection noise. For our simulations, 

 
Fig. 8: Variance images for different noise levels without truncation. The total counts equal 1×105, 5×10

5 and 1×106, from left to right. The grayscale 

is [0, 0.1155] for all the three images. 

 

 
(a) 

 
(b) 

Fig. 7: (a) Reconstructed images from parallel-beam half-scan, noise-free (left), and noisy (right) data (total counts equal 2×107). The grayscale is [0.15, 

0.45]. (b) Profiles of reconstructed images from half-scan, noise-free, and noisy data (total counts equal 2×107) across the vertical centerline (top) and the 

horizontal centerline (bottom). 
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the projections were sampled from ]2/3,2/[ ππθ ∈ . Therefore, the backprojection of the differentiated 

projections are weighted by a factor greater than 1 in the upper half of the image because 0θ <⋅ ⊥
rr

r  and less 

than 1 in the lower half of the image because 0θ >⋅ ⊥
rr

r . Thus, the reconstruction in the upper half of the 

image is noisier.  

For those pixels being generally further from the detector, this effect of the noise being worse can be 

observed from the variance images for three different noise levels in Fig. 8. For total counts of 1×10
5
, 

5×10
5
 and 1×10

6
, we performed 1000 simulations without truncated projections with random noise 

generated for each realization. The ensemble variances [49, 50] of the reconstructed images were calculated 

and are shown in Fig. 8 for the three noise levels. The brightness at each pixel is the value of the variance at 

that pixel. The images in Fig. 8 show higher variance in the top-half of each image. Also, it is clear that the 

higher the total counts, the lower the ensemble variance. The mean and the standard deviation of the value 

for the pixel at the origin )0,0(),( =yx  are tabulated in Table 1. The Tests 1, 2, and 3 refer to the tests 

performed for total counts of 1×10
5
, 5×10

5 
and 1×10

6
, respectively. When the counts are low, we observe 

that the noise causes large deviations. In order to investigate how well the sample mean estimates the 

population mean we calculated the 95% confidence interval ( )tnXtnX ⋅+⋅− /,/ σσ  for the sample mean 

X with sample standard deviation σ  [51]. For 1000=n  realizations, the degrees of freedom is 999 giving a 

critical value of 962.11,025.0 == −ntt for the t-distribution from the table on page 485 of [51]. The lower and 

upper confidence limits were calculated and are tabulated in the last two columns of Table 1. As can be 

seen in Fig. 9, the confidence interval shrinks as the noise decreases, which means the estimation is more 

precise.  

 
For the study with truncated data, we considered the detector to sample only the central 156 rays of the 

modified Shepp-Logan phantom at each angle as illustrated for the elliptical object in Fig. 4. This small 

detector defines the FOV to be within the thick circle with a radius of 78. Recall that the maximum length 

of the ellipse of the modified Shepp-Logan phantom was 184; thus, a total of 28 pixels along the major axis 

were truncated. As pointed out previously, the derivative and backprojection are local operations; thus, the 

values of the intermediate function ),(ˆ yxf  between the two dashed lines illustrated in Fig. 4 are sufficient 

to provide an exact reconstruction of ),( yxf  within that region. In this simulation, 400×156 noise-free and 

noisy truncated projection data were generated, and (2) was then used to backproject the derivative of the 

truncated data. The inverse (26) of the finite weighted Hilbert transform was applied to reconstruct the 

object function ),( yxf  between the two dashed lines in Fig. 4.  

The reconstructed images are shown in Fig. 10. Three variance images (see Fig. 11) were calculated from 

1000 noise realizations with truncation for total counts of 1×10
5
, 5×10

5 
and 1×10

6
, respectively. The 95% 

confidence intervals for the mean value of the pixel at the origin )0,0(),( =yx  are tabulated in Table 1. The 

Tests 4, 5, and 6 refer to the tests performed for the truncated case for total counts of 1×10
5
, 

Test 

# 

Sample 

mean 

X  

Sample 

deviation 
σ  n

tX n

σ
1,025.0 −−

 

n
tX n

σ
1,025.0 −+

 

1 0.2821     0.2263 0.268059 0.296141 

2 0.2897     0.1045 0.283216 0.296184 

3 0.2913     0.0759 0.286591 0.296009 

4 0.3050     0.2304 0.290705 0.319295 

5 0.2861     0.1056 0.279548 0.292652 

6 0.2848     0.0474 0.281859 0.287741 

 

Table 1: Statistics used in the calculation of the 95% confidence interval for the sample means. Tests 1, 2, 3 are for non-truncated data with total counts of 

1×105, 5×10
5 and 1×106, and Tests 4, 5, 6 are for truncated data with total counts of 1×105, 5×10

5 and 1×106.  The limits of the 95% confidence interval in 

the last two columns are displayed in Fig. 9. When 1000=n , 962.11,025.0 =−nt . 
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5×10

5 
and 1×10

6
, respectively. The same trend as in the non-truncated case can be observed. The higher the 

total number of counts, the lower the ensemble variance and the narrower the confidence interval. In other 

words, greater precision is expected when we increase the counts. This is shown graphically in Fig. 9. Note 

that the true value at the origin was 0.3. The results show differences between the reconstruction of 

truncated and non-truncated data in both the bias and the variance. For the non-truncated cases the bias and 

precision improve with the increase in the total counts whereas for the truncation cases the precision 

improves with increased counts but the bias appears to become worse. 

C.  Fan-beam truncated short-scan data with and without noise 

Equation (26) indicates that the data range required for )(sH µ  is the same interval as for )(th , indicating 

that the DBP image ),(ˆ yxf  in the inner disk of Fig. 3 is sufficient for reconstructing the original 

image ),( yxf . In order to ensure a numerically stable inversion using (26), the DBH operation has to be 

conducted in a larger area than the support of ),( yxf . Since the fan-beam short-scan reconstruction using 

the DBH method with and without truncation is virtually identical within the truncated FOV, we only show 

in this paper the simulation for the reconstruction of truncated short-scan data. In our computer simulations, 

1 2 3 4 5 6
0.26

0.27

0.28

0.29

0.3

0.31

0.32

 
Fig. 9: The 95% confidence interval for the pixel value at the origin. The horizontal axis indicates six tests: Tests 1, 2, 3 for non-truncated data with total 

counts of 1×105, 5×10
5 and 1×106, and Tests 4, 5, 6 for truncated data with total counts of 1×105, 5×10

5 and 1×106.  For each test, the mean value (dot) 

and the confidence limits (*) are shown.  The limits (*) of the 95% confidence interval are tabulated in Table 1. 

 
Fig. 10: Reconstructed images from parallel-beam, truncated noise-free (left), and noisy (right) data. The grayscale is [0.15, 0.45]. 

 
Fig. 11: Variance images for different noise levels with truncation. The total counts equal 1×105, 5×10

5 and 1×106, from left to right. The grayscale is [0, 

0.0339] for all the three images. 
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the focal length was 400  =R  pixels with a subtending angle of o5.32=mσ . The modified data ),( σβg  were 

analytically computed on a 256×256 grid for ]32.5 ,5.32[]5.122 ,5.122[ oooo −×− . We also converted ),( σβg  into 

Poisson random samples to simulate the noisy projections for total counts equal to 2×10
7
. 

The derivative of a sampled projection was calculated using (10), the backprojection was performed by 

strictly following (15) inside the thick rectangle illustrated in Fig. 12, and then (26) was applied to 

reconstruct ),( yxf . The reconstructed images from noise-free and noisy data are shown in Fig. 13. The 

direction for the finite inverse weighted Hilbert transform was set to be horizontal as described in Fig. 3. To 

reconstruct the value at point a, data over the arc AMB  were used. While at point b, only data over the arc 

CMD  were used. The different ranges of the backprojection in (15) over β  for different points such as point 

a and point b cause different sampling densities. Such a nonstationary sampling density can be mitigated 

through the parallel-beam coordinate expression (17), which was suggested in [42] for the reconstruction of 

fan-beam CT data that is partially sampled.  

 
In subsection A of section IV, a very fine sampling was used to implement both (19) and (26) for two 

reasons: one was to calculate )(sH µ  with high accuracy and the other was to reduce the numerical errors in 

the computation of 1)( −+ΨI . In subsections B and C, a sampling of 400 projection angles overπ  with each 

projection having 256 samples, was used for sampling ),( sp θ  or ),( σβg  in order to make sure the weighted 

Hilbert transformed image ),(ˆ yxf  was accurate enough. In our numerical simulation study, it was found 

that the sampling is related to the attenuation coefficient µ  with finer sampling required for higher 

attenuation coefficients. In subsection C of section IV, we calculated the derivative of the projection data 

using (10). However, the derivative with respect to β  can be avoided by using the following equation:  
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Fig. 13: Reconstructions of truncated fan-beam, noise-free (left), and noisy (right) data. The grayscale is [0.15, 0.45]. 

 

 

x 

y 

A B 

C D 

M

a 

b 

 

Fig. 12: The outer circle is the trajectory of the focal point for the fan-beam geometry, and the inner circle is the support region of the object 

function ),( yxf . The DBP operation is performed inside the rectangular area. 
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Using (27) could probably help reduce the numerical errors in calculating the partial derivative with respect 

to β , which is usually under-sampled in SPECT imaging.  

V. DISCUSSION AND CONCLUSION 

The DBH method was applied to the inversion of the eRT for both parallel- and fan-beam data 

acquisition geometries for SPECT. In the DBH method, the backprojection of the differentiated projections 

was obtained first and an inverse of the finite weighted Hilbert transform was performed to restore the 

image. Computer simulations show that the DBH algorithm produces a reconstruction of uniformly 

attenuated SPECT data when the attenuation coefficient is 0.15cm
-1
. The effectiveness of our method was 

demonstrated with the reconstruction of parallel-beam half-scan and fan-beam short-scan truncated 

projections. However, issues such as sampling resolution, noise effects, and clinical efficacy have to be 

further investigated.  

We developed a matrix inversion method to numerically generate the kernel for the inverse of the finite 

weighted Hilbert transform. Our numerical method consists of forming a small nonsingular matrix 

(256x256 in our computer simulations) by numerically evaluating definite integrals in (23), which do not 

contain any essential singularities. The singularity at s = t in (23) was transformed into a removable 

singularity by adding an integral term equal to zero. This matrix does not have any zero eigenvalues. The 

eigenvalues depend on the attenuation coefficient. For attenuation coefficients in the range of most clinical 

nuclear medicine applications, our computer simulations indicate that the inversion of the matrix is stable 

and insensitive to computer numerical errors.   

The most important aspect of this work is the development of a stable method to obtain a numerical 

kernel of the inverse of the finite weighted Hilbert transform. A new result in this paper is the application of 

the DBH algorithm with this new kernel to parallel-beam half-scan, fan-beam short-scan, and truncated 

data. This method requires )(sH µ  to be known in the interval ),( qq− , whereas in [28] )(sH µ  is required in 

the interval )3,3( qq− . In [30] a power series expansion method was used to solve for the inverse to the 

integral equation in (19) starting with (20). Our proposed matrix inversion method started instead with (21) 

to derive an inversion procedure. In [29] a different matrix inversion method was developed, where the 

equation in (5) of this paper was first discretized and transformed into a system of linear equations, a matrix 

inversion method was used to solve this system. Computer simulations showed that the method developed 

in this paper is more stable than the one in [29]. 

The analytical reconstruction algorithm developed in this paper for the correction of uniform attenuation 

is computationally more efficient than an iterative algorithm and may have potential applications in clinical 

SPECT. A possible application is in brain imaging after the data have been compensated for the attenuation 

of the bone. The two dimensional (2D) algorithm could also be extended to the development of a fully three 

dimensional (3D) analytical reconstruction algorithm with uniform attenuation correction for breast 

imaging with rotating slant hole collimation [52]. This would be an important extension of the 2D 

algorithm to fully 3D tomographic reconstruction. It is also possible that the DBH reconstruction method 

could be applied to other more complicated geometries such as variable focal-length fan-beam geometries. 

The DBH method is a new direction in the development of analytical reconstruction algorithms for 

tomographic imaging. It provides important insight into understanding the limitations and possibilities for 

reconstructing truncated projections with uniform attenuation correction. The development of this method 

is actively being carried out in CT [37-39] and has potential for SPECT [28-30] with uniform attenuation. 

There is potential of extending our algorithm to fully 3D applications and to the reconstruction of cone-

beam data with correction for uniform attenuation [53]. A more difficult problem, which is still unsolved, is 

the development of an analytical algorithm for reconstructing an ROI from truncated projections with a non 

uniform attenuation distribution. 
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APPENDIX 

A. Proof that the DBP of a point source over 360° is equal to zero. 

Without loss of generality, let the object be a delta function at (0, 1), i.e., )1,(),( −= yxyxf δ . According to 

the definition in (2), the eRT is )sin(),( cos θδθ θµ −= sesp . The derivative of the eRT with respect to s can be 

expressed as )sin(),( cos θδθ θµ −′=′ − sesp . 

Next, consider the weighted backprojection of )sin(),( cos θδθ θµ −′=′ sesp at a fixed point ),( yxr =
r

: 

∫ −⋅′=
⊥⋅−

π
θµθµ θθθδ

2

0

cos
0 )sin()(ˆ dreexf

r
vrv

vr

. 

Let 0θ  be the particular detector angle where the line connecting r
r
and the point source location (0,1) is 

orthogonal to the detector as shown in Fig. 14. 

Denote 000 sin θθ
vr

⋅== rs  and ⊥⋅= 00 θ
vr

rt . Using the properties of the delta function, the above weighted 

backprojection can be written as 
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where θθθθθθ sinsincossin)( −+=−⋅= yxrg
vr

 and  θθθθθθ coscoscossin)( −⋅=−+−=′ ⊥
vr

ryxg . 

B. An alternative proof of  0/)(/1 22 =−−∫
−
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q

q
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Let tsx −= , then  

dx

ttxxqx
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sqts

I
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q

q

∫∫
−

−−− −−−
−=

−−
=

22222
2

1

)(

1
. 

This integral is evaluated in the sense of the Cauchy Principle Value. That is,  

.
2

1

2

1
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2222220 






−−−
+








−−−
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−−

−−
→

dx
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I

tq

tq ε

ε

ε
 

In the following we use the formula (2.266) in [54]:  

( )
x

cxbxaabxa

acxbxax

dx
2

2

22
ln

1 ++++
−=

++
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For negative x let x = -y, then we have 

( )
y

cybyaabya

acybyay

dy
2

2

22
ln

1 +−+−
−=

+−
∫ . 
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Using the short-hand notation F(x), the integral I can be evaluated as 

 )]()()()([lim
1

022
tqFFFtqF

tq
I −−−−+−−

−
−=

→
εε

ε
. 

Since –q < t < q, (q-t) > 0 and (-q-t) < 0, 

( )
),2ln(

)()(2)()()(2)(2
ln)(

2222222

q
tq

tqtqttqtq

tq

tqttq
tqF =








−

−−−−−−
+






−

−−−
=−  

( )
).2ln(

)()(2)()(2)(2)(2
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
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



+
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

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+
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Therefore, 0)()( =−−−− tqFtqF . Also, 
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ε

εεε
ε
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=
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ε
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ε
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Evaluating the )( )()(lim 0 εεε FF −−→ , we have 
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Thus, I = 0. 
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Fig. 14: Acquisition of a point source activity. 
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