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Abstract |

This report presents an assessment of the IVA3 computer code
for multifield flow simulation, as applied to the premixing phase of a
hypothetical steam explosion in a water-cooled power reactor.

The first section of this report reviews the derivation of the basic
partial differential equations of multifield modeling, with reference to
standard practices in the multiphase fiow literature. Basic underlying
assumptions and approximations are highlighted, and comparison is
made between IVA3 and other codes in current use. Although Kolev’s
derivation of these equations is outside the mainstream of the mul-
tiphase literature, the basic partial differential equations are in fact
nearly equivalent to those in other codes.

In the second section, the assumptions and approximations re-
quired to pass from generic differential equations to a specific working
form are detailed. Some modest improvements to the IVA3 model are
suggested.

In Section 3, the finite difference approximations to the differen-
tial equations are described. The discretization strategy is discussed
with reference to numerical stability, accuracy, and the role of var-
ious physical phenomena — material convection, sonic propagation,
viscous stress, and interfacial exchanges — in the choice of discrete
approximations. Comparing this strategy with the salient features of




typical premixing simulations suggests that a more efficient strategy
for this application might be to treat convection explicitly and at least
some of the heat and mass transfer terms implicitly. There is also cause
for concern about the approximations of time evolution in some heat
transfer terms, which might be adversely affecting numerical accuracy.

The fourth section documents the numerical solution method used
in IVA3. An explanation for erratic behavior sometimes observed in
the first outer iteration is suggested, along with possible remedies.
Also the subtle relations between stability, accuracy, and the auto-
matic time step selection algorithm are discussed; specific analyses for
further assessment of the overall numerical strategy are proposed.

Finally, six recommendations for future assessment and improve-
ment of the IVA3 model and code are made. Briefly, they are: (1)
improve code efficiency in the numerical treatment of material convec-
tion; (2) improve code efficiency (and perhaps accuracy) in numerical
treatment of heat and mass transfer; (3) implement a more consis-
tent representation of virtual mass and drag forces; (4) investigate
the model sensitivity to the magnitude of viscous stresses; (5) develop
improved visualization techniques to identify numerical stability and
accuracy problems which may be masked by automatic time step size
selection; and (6) apply state-of-the-art software tools to further im-
prove code documentation.
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1 Basic Equations of Multifield Flow

1.1 Introduction

The physical basis for an assessment of the IVA3 multifield model should
begin with an understanding of the basic partial differential equations for
multifield approximations of interpenetrating multifluid flow. The existing
documentation (KFK 4948, 4949, 4950) of IVA3 by Kolev includes an exten-
sive discussion of the derivation of multifield flow equations. However, that
discussion involves idiosyncratic approaches which are not in the mainstream
of multiphase flow literature. This makes it difficult to compare the IVA3
approach with other multifluid models. In fact, the equations ultimately
used in the code are very close to those of other models; therefore it should
be useful to provide a derivation of the IVA3 equations based on standard
practices and concepts in the multiphase flow literature. This will make it
possible to understand the similarity with other approaches, and to clarify
the relatively minor differences. It will also provide a sound basis for any
possible new code development.

The most striking departure from standard practice in Kolev’s derivation
of multifield low equations is his representation of what he labels the local
instantaneous equations. Normal practice is to begin with single-phase flow
equations describing the local flow within a very small region occupied by
a single phase of the multiphase mixture. (For the moment, we shall use
the terms phase and field interchangeably, temporarily ignoring the fact that
the specific application intended for IVA3 involves multicomponent fields.)
Since the goal of multifield modeling is to avoid detailed description of the
partitioning of space into regions occupied by a single phase, these local
instantaneous equations are averaged in such a way as to filter out much of
this fine-scale description.

One obvious way to do this would be to average over spatial control vol-
umes large enough that each control volume contains more than one phase.
This spatial averaging emphasizes the spatially interpenetrating nature of
the phases to be modeled. Another possibility is to average over time in-
tervals long enough that more than one phase occupies any given spatial
location during the averaging interval. A third possibility is to average over
a statistical ensemble of flow realizations such that at any given point in
space and time, different realizations have different phases present on the




fine scale. All these averaging approaches have been used, often in combina-
tion. Their purpose is the same: to pass from fine scale flow description with
phases occupying mutually exclusive space-time locations, toward a multi-
field approximation in which the interpenetrating nature of the multiphase
flow is exploited to simplify the model. This simplification is achieved by
what might seem a complication: extending the velocity fields for each phase
to be defined everywhere in space and time. The resulting multifield flow
equations will be weighted by a new quantity, the average volume fraction of
each field; this may be thought of as the average amount (by volume) of each
phase present in a control volume whose size is larger than the fine scale of
the phase distributions.

The essential point to be made at this juncture is that one begins with
local instant flow equations which are just single-phase flow equations. The
volume fractions, denoted oy for each field ¢, do not appear in these local
equations; they arise as a result of the averaging procedure used to pass to
multifield equations.

In view of the well-established literature on deriving multifield equations
by various forms of averaging, it would serve little purpose to repeat those
derivations here in detail. In spite of the several different approaches in the
multiphase flow literature, there is almost complete agreement on the proper
form of the multifield equations and the approximations involved in reach-
ing them. We propose to summarize those derivations, identifying the most
important assumptions and approximations involved. This is important be-
cause the multifield equations are unlike the basic equations of mathematical
physics, in that they do involve approximations of a much more serious nature
than those involved in the equations for single-phase flow. The slow process
of confronting multifield models with experimental data, then rethinking and
improving the models, will require an understanding of the assumptions upon
which the models are based. We may take encouragement from some of the
successes already scored by multifield flow models, including understanding
of some subtle, inherently dynamical phenomena such as flow regime changes
(Lahey et al. 1992).

Before proceeding, let us state that only one version of IVA3 is being
assessed here, namely the version intended for analysis of hypothetical core
melt down and steam explosion in a pressurized water reactor. In this appli-
cation, the multifield model describes three material fields, each moving with
its own velocity field. Field 1 is a gas composed of a mixture of steam and




air. Field 2 is a liquid consisting of water, potentially mixed with inert solid
particles of reactor core material, or corium. The corium particles in field
2 are of the same substance as field 3, but are supposed to be finely frag-
mented and hence in mechanical and thermodynamic equilibrium with the
nearby liquid water. Field 3 consists of reactor core material in a molten or
partially melted state. We use the term “field” to refer both to any one of the
three vector velocity fields describing the motion, and also to the composite
material carried by each velocity field.

The multiphase flow literature contains many thorough discussions of the
derivation of multifield equations by averaging. The following summary is
drawn from the book by Ishii (1975), work of Nigmatulin (1979), review
articles by Bouré and Delhaye (1981) and by Lahey and Drew (1989), and
the thesis of Arnold (1988). The forms of the averaged equations used here
can be found in Lahey and Drew (1989).

1.2 Local instantaneous equations

We begin by stating the local instantaneous equations describing the fluid
flow on the microscopic scale, in very small regions occupied by one phase
or field only. There are three such partial differential equations. The first is
the equation of continuity, or conservation of mass:

o
“gf + V- (peVy) = 0. (1)

Next is the equation of conservation of momentum:
7]
'3—t(PzVe) +V - (0eVeVe) =peg +V - Ty (2)

And finally, the equation expressing the conservation of total energy, in-
cluding both the internal thermodynamic energy e, and the kinetic energy
of fluid motion described by the velocity field V,:

8 .
E[Pz(ee + 3V +V - [pelee + 3VA) Vel =

—ptg-Ve+V - (T Vi) =V-q7 + ¢

In these equations we use the following notation:



pe = local instant density of field ¢

V¢ = local instant velocity of field ¢; Vf =V;y-V,
g = gravitational body force

T, = stress tensor = —P,J + 7,

P, = local instant pressure in field £

T¢ = Vviscous stress tensor

e¢ = specific internal energy of field ¢

q7 = heat flux of thermal diffusion

g/ = volumetric heat source for field ¢

The energy equation can be expressed equivalently in terms of enthalpy
h¢, or in terms of the entropy se.

The averaging procedure will involve the three conservation equations
(1)-(3), together with associated jump conditions describing the transfer of
mass, momentum, and energy across the interfaces common to any pair of
phases or fields.

The jump condition for mass can be written as

D> pe(Ve— Vi) -ng=0, (4)
Z

where n; is the unit normal to the interface, and V; is the local velocity of
the interface. The same equation is conveniently written as

D me=0
]
by defining the interfacial mass transfer flux
n'u = pg(Vl - Vi) - g
This is a superficial flux, to be multiplied by interfacial area, and is therefore

. . N
sometimes denoted m,.
The momentum jump condition is

ngvl = an . T[. (5)
£ £




The jump condition for the total energy, internal plus kinetic, is

. 1
> rngles + §Vz2) +Y qrng=) (ng-Ty)- Vo (6)
£ £ £

In each case, since a local interface between two phases is being described,
the summation is taken over those two phases. (This differs from the con-
vention to be used later, that sums over ¢ are understood to taken over all
fields unless otherwise indicated.) After averaging has been carried out, the
contributions of the interfacial transfers will involve all fields present (in a
macroscopic control volume, or in a statistical ensemble.)

1.3 Averaged multifield equations
1.3.1 General considerations

The local instantaneous partial differential equations (1)-(3) are applicable
only within a region occupied by field ¢, while the jump conditions (4)-(6)
apply only at an interface between two fields. By taking averages, the lo-
cal instantaneous equations are transformed to equations involving averaged
quantities {(pg), (e¢), (V) which will be taken as defined simultaneously for
all fields at every point.The purpose of the averaging is to remove the need
for a detailed description of the local distribution of the separate phases.
Although the interface topology cannot be completely eliminated from the
problem, it will ultimately appear only through certain assumptions needed
to specify averaged interfacial terms which depend on flow regime.

The averaging operator has been considered in the multiphase flow liter-
ature in several different forms; (-) may stand for volume average

() = Vol ///Vdf(x',t)dx’

or for time average

t
=T / ,tdt
=1 [ 1ext)
or a combination of time and volume averaging, or an ensemble average
()= [ £t wam(u)

8



integrated over realizations p occurring with probability m(u) in a statistical
ensemble M.

Without repeating the details of the averaging procedure, we note some
of the major considerations involved.

(1) Because the fields interpenetrate, averaging will include integration
over the interfaces separating the phases one from another. The interfacial
contributions may be expressed generally in the form (¢, - Vx¢), where ¢,
stands for a flux, and x, is the field indicator function defined as

(%,1) = 1 if field £ occupies location x at time ¢t = 0
X5 =1 0 otherwise.

Since x¢ is a step function, Vx, is a distribution.

In most cases, putting these interfacial average contributions in usable
form will involve assumptions about the topology of the interface(s), deter-
mined by the specific flow regime.

(2) The many nonlinearities in the local instantaneous equations mean
that, in order to obtain equations in which the averaged quantities such
as {(pg), {er), (V) appear as dependent variables, averages of products will
need to be transformed to expressions involving products of averages. To
some extent this difficulty can be finessed by defining appropriately weighted
averages as the dependent variables; but in some crucial places, it will become
necessary to simply neglect the covariance, that is, the difference between the
average of a product and the product of averages. This means that serious
approximations must be made before even the basic form of the multifield
equations are written.

(3) A related problem is that one will also want, during the averaging
derivation, to approximate the average of a quantity multiplied by an already
averaged quantity, that is, to approximate (f¢{ge)) by (fe){(g¢). This can be
justified for smoothly varying functions f; and g, provided that, in the case of
volume averaging, the averaging control volume is sufficiently small compared
to the length scale on which the averaged quantities vary; see Lahey and
Drew (1989). In particular, this assumption would come into doubt in case
one would attempt to model flows with large-scale interfaces between fields.




1.3.2 Mass and momentum equations

Let us now consider the averaged equation expressing the conservation of
mass based on egs. (1) and (4). This balance equation will involve in the
time derivative the average (xsp,), which can be rewritten by introducing the
definition of the field volume fraction

ar = (xe) (7)

and the weighted average

(fo* = (xefe)/ e (8)
It then becomes possible to express the first term of the averaged mass con-
servation equation as

9 (aefpe)*)/ 0t

This represents a reasonable definition of the averaged phase density which
serves as a convenient dependent variable. It must be borne in mind that
at the end of the day, the multifield equations will only be valid with this
interpretation of {pg).

Next, the divergence term of the phase mass conservation equation will
generate a term (x¢0,V¢). Again a suitable weighted average can be defined
as

(fo)*f = (xepefe) [ oulpe)® 9)

Once again, this is a reasonable way to define the averaged phase velocity,
and is convenient for obtaining usable equations, provided it be remembered
that (V) should always be interpreted as (V)X*.

Finally, with the interfacial contribution associated with phase change
included, the averaged mass conservation equation for field ¢ reads

= (arlpd) + V - (ealpd (V) = (10)

where

pe = volumetric mass generation rate due to phase or field change
=—-Vol™! JIa, medA;

10




The notation pu, of IVA3 is used here, although I'y is common in the multi-
phase flow literature.

Next consider the averaged balance of momentum based on egs. (2) and
(5). The same definitions of {p,) and (V) serve equally well for transforming
the time derivative term in the momentum equation. However, the spatial
divergence term contains an additional factor V,; here there is no further
possibility to define away the difficulty, and the present state of the art in
multiphase low modeling approximates the average of the product (V,V;) by
the product of the averages (V) and {V), and simply discards the difference
or covariance term (V,V ) —(V}{V,). Equivalently, the same approximation
may be expressed as supposing that the corresponding correlation tensor to
be the unit tensor, as in Lahey and Drew (1989).

Similar approximations for averaged pipe flow equations were studied by
Birkhoff in 1964. He observed that covariance terms can be large in cases
where the density ratio is large and the ratio of velocities is large. Neglecting
the covariance is a serious assumption; all multifield models are based on
such assumptions, and the success of multifield modeling is some demanding
applications shows that the neglected covariances do not necessarily cripple
multifield models. However, it should be borne in mind that the basic mul-
tifield equations contain approximations more serious than those typical of
the basic equations of mathematical physics.

Accepting this assumption and neglecting the covariance in the momen-
tum divergence, and incorporating the interfacial momentum jump condi-
tions, the averaged momentum conservation equation can be written in the
form

o (@lpP (VD) + V- (ki VPOV ) =
—V(a(P)X) + V - [ae({Te)X + TF)] + (Py): Ve (11)

+ae(pe)*g + Fp — Fo + eV

where

11




TF = Reynolds stress tensor {xsp,V,V,) /oy
(Te)X = average viscous stress

V, = velocity fluctuations V, — (V)X

(P¢); = pressure at interface

g = gravitational body force

F¢ = interfacial momentum source

Fe, = wall friction

V4 = velocity at the interface

Note that here and below, terms of the form u,f, are averages weighted
by the interfacial mass transfer m,, that is,

pefe = (pefe(Ve— Vi) - Vxy)

In eq. (11) the pressure contribution —{P,};Va, to interfacial momentum
transfer is written explicitly; the remaining contributions, in Fg, include
drag, virtual mass, and lift forces. Assuming a single local pressure for all
phases

P = (P)X = (Ps)s (12)

the two pressure terms may be combined:
~V(ce(P)*) + (Pe);iVay = —a,VP.

Wall friction F,,, includes frictional drag; other forces such as lateral lift may
exist but are usually neglected except in special applications

1.3.3 Energy equation

Now consider the averaged energy equation based on (3) and (6). As usual in
thermodynamics, there is more than one way to express the energy balance,
according to whether one chooses the specific internal energy, the enthalpy,
or the entropy as the primary dependent variable. Here we adapt Kolev's ap-
proach of beginning with an averaged energy equation expressed as a balance
for the sum of the enthalpy plus the kinetic energy of the average motion.
Following Lahey and Drew (1989),

12




lae(pX(h)® + H(V A (Vi + )+

V - loepe) X ((he)*® + 5{V2Y* - (Vo) + ef*) (V)] = )
1
oP

ae—sr = V- agl{qe)* + af) + V- [ee({Tg)X + T) - (V)*?]

+op{pe)*g- (V)X + pelhe + 3(Ve- V)il + Qe+ uqy +Foi- Vi

where
efe = turbulent kinetic energy
hg = enthalpy at the interface
Q¢ = interfacial heat source {g, - Vx¢)
(q7)X = average heat flux
qf = turbulent heat flux

"

g, = volumetric heat generation rate

Here again we assume a single local pressure for all phases P = (Pg)X =
(Pe)i-

The energy ef® associated with the turbulent fluctuations is included in
this balance. The treatment of ef* has caused some confusion in multifield
modeling. Ishii (1975) incorporated the quantity ef*® implicitly in the phase
average internal energy when deriving the averaged energy equation. A num-
ber of multiphase flow models have been based on Ishii’s equations, without
noticing the incorporation of ef** into (e,). This affects the manner in which
interfacial energy transfer is constituted. Arnold (1988) has shown that with
careful consideration of the interfacial energy sources it is correct to express
the interfacial flux of energy due to mass transfer in terms of the enthalpy,
when turbulent kinetic energy is included in the balance. However in the
balance for average internal energy only, the interfacial energy flux should
carry the internal energy, and not the enthalpy, according to Arnold.

Most multifield computer codes simply neglect the turbulent kinetic en-
ergy. Arnold shows that internal energy equations so derived may violate the
second law of thermodynamics. However if the discrepancies are small, this

13



may be tolerable. We now specifically choose to follow the common practice
and simply drop ef‘ from the balance. As a consequence, the energy trans-
ferred with mass is retained in the form pchy;, although Arnold recommends
leeg;, along with other correction terms. The resulting error should be small;
furthermore, it will turn out that the approximations used in transforming to
an entropy formulation partly compensate for the missing correction terms
suggested by Arnold.

We now follow Kolev in transforming the above equation to express it
in terms of the average entropy (s;)X?. Of course it would be possible to
carry out thermodynamic transformations on the local instantaneous energy
equation (3) in its accepted form, and then average each variant form. How-
ever, it is very difficult to compare the results, because of the different forms
appropriate for the interfacial contributions. An illustration of this difficulty
is given by Arnold et al. (1990), p. 486.

In view of this complication, we prefer to transform the averaged equa-
tions. This means that thermodynamic relations used in the transformation
of the equations will involve the average quantities (h)X?, (es)*?, (s5¢)** and
are therefore approximations, not thermodynamic identities.

We begin by subtracting the mechanical energy balance, which is the
dot product of the averaged momentum equation (11) with the average field
velocity (V,)XP. Making use of the mass conservation equation (10), we get

= (aelp {he?) + 9 - laelpe () <*(V ) =

oP
ar— + VP - (V¥ — V- as({a7)* + qf)
ot (14)

+apg((Te)X + T) : V{V)XP + pshg + Spe(Ves — (V)XP)?

+Qe+ argy + Fo- (Vi — (V)*P)

If we wish to express this in terms of specific internal energy instead
of enthaply, we use the approximation (he)X? =~ (e)*? + P/{pg)*. Again
we emphasize that this expression involving averaged quantities is an ap-
proximation, and not a thermodynamic identity. The approximation can be
justified as in Arnold (1988). The result

14



= (@elp (o) + 7 - laelpe (e (V] =

oa
—P—L = PV - (ae(Vey®) = V - ar((a))* + af¥)

A

(15)

1
+ ae((Te)* + T7%) : VAV +phs+ gHe(Ve = (V)** )?
% X .

C

+Qr+ gy + Foi- (Vi — (V1))

D

is the form of the energy equation used by Amarasooriya and Theofanous
(1991). We observe that they neglect the average and turbulent heat flux
divergences (A), the energy dissipated by the average (7¢}X and turbulent
stress TF¢ (B), the kinetic energy dissipation associated with phase change
(C), and the work associated with interfacial momentum transfer (D).

Now let us return to equation (14) and make another transformation of
the enthalpy form to express the balance in terms of the average entropy
(sg)*P. This involves two substitutions. First we subtract (hg)X? times the
mass balance equation (10) to rewrite eq. (14) in terms of the material
derivative

D{he)*/ Dt = %(h,)xp + (VX - T (he)®.

As a result, the energy carried with mass becomes pg(hgy; — (he)}XP); this can
be rewritten using the relation

pe(he — (he)*) = peTe(se — (56)F) + pe(Pi — (P)*)/{pe)*

which can be justified using arguments similar to those in Arnold (1988),
pp. 96-97. Under the assumption of a single pressure, the pressure difference
term in the above expression vanishes.

Next, we use the approximation

15



(pe)XD{heY*X? | Dt = {p)*(Te)**D(s4)**/ Dt + DP/Dt (16)

which can again be justified as in Arnold (1988); c¢f. pp. 92 and 96. The
result is

ar(pe)(Te)X*D(se)¥ /Dt = — V - au((a;)* + a7*)

"

A

+ a((Te)* + T7°) : VIVX +pTe(se: — (3¢)®)

~ (17)

1 "t
+ ue(Ve = (VO*)? +Qe + cegy + Fai- (Ve — (Vo))
~ E l B

Comparing this with equation (2.4.5.7) of Kolev, we see that again the
turbulent dissipation associated with T5¢ (B), and the energy dissipated by
interfacial drag (D) are neglected. The average heat flux (qp)X is initially
constituted by Kolev as proportional to V{(T}), but is later neglected. The
energy source associated with kinetic energy of mass transfer (C') does appear
in Kolev’s entropy balance equation. The dissipation from average viscous
stress (T¢)X is optional in IVA3, and can be omitted in premixing problems.

The neglected turbulent fluctuation terms involving T}, and qf are
commonly omitted in multiphase flow modeling, as little is known about
them. Thus the whole of term (A) is neglected. The other neglected terms
in IVA3 — the divergence of average heat flux {(q;)* and the energy dissipated
by drag (D) — are dominated by the terms retained.

Again comparing eq. (17) with eq. (15), we see that IVA3 retains the
kinetic energy dissipation associated with phase change (C), whereas Ama-
rasooriya and Theofanous (1991) omit it. It is worth noting that because
the transformation from eq. (15) to eq. (17) involves approximations such
as eq. (16), we could not expect the two models to give identical results
even if the treatment of the kinetic energy dissipation associated with phase
change (C) were the same in both codes. Thus the entropy formulation eq.
(17) has the disadvantage of making precise inter-code comparison of bench-
mark problems difficult. Kolev claims that the entropy formulation has the
advantage of a simple form, without terms involving derivatives of pressure

16




or volume fraction, as in eq. (15) or eq. (14). This claimed advantage is not
very persuasive, as the computational effort involved in evaluating the extra
terms in a numerical solution scheme is a relatively small fraction of the over-
all computation. There is however one theoretical advantage to the entropy
formulation in IVA3: it can be more readily checked that D{s,)X*/Dt > 0,
in agreement with the second law of thermodynamics. Arnold et al. (1990)
have noted that the second law is not always satisfied for other formulations
such as eq. (15), and have recommended corrections to the average internal
energy equation used in other codes, to insure that the second law holds.
Deviations from the second law may be small in magnitude, and do not nec-
essarily represent a significant error in the energy balance; but in any event,
agreement with the second law is of course reassuring.

In sum, the entropy formulation of the energy balance has a slight advan-
tage over the more usual formulation in terms of internal energy. If precise
inter-code comparison were important, the advantage of the entropy formu-
lation would be less compelling; however, precise comparisons are not very
practical in view of the many different equations of state in different codes.

2 Working Form of Multifield Equations

We are now ready to put the averaged balance equations in working form.
This involves dropping terms which are neglected, and constituting the in-
terfacial transfer terms. We also derive a porous medium formulation, and
introduce additional balance equations which describe the multicomponent
fields. ,
Every aspect of the present description has been validated by close reading
of the relevant parts of the Fortran source listing of IVA3, in the version used
for premixing analysis.

2.1 Partial differential equations

Let us restate the three balance equations (10), (11), and (17) with only those
terms which are actually treated in IVA3. We also transform the momentum
equations to material derivative form, by subtracting the corresponding mass
equation times the velocity. The finite difference momentum equations are
more conveniently understood with reference to the material derivative form
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of the differential equations.
The partial differential equations express the balance of mass for each

field

0
g(aem) + V- (epeVe) = e (18)
the balance of momentum for each field
oepeDVye/Dt+ayVP =
(19)
V- (eTe) + 0o+ Fp— Foy + (Ve — Vo)
and the balance of entropy for each field
appeTeDse/ Dt =
(20)

"

+5pe(Vei — V) + peTe(ses — se) + Qe + gy

where

e = volumetric mass generation rate

T¢ = average viscous stress

g = gravitational body force

Fy = interfacial momentum source

F4, = wall friction

Vi = velocity at the interface

sg = entropy at the interface

Q¢ = interfacial heat transfer without mass transfer
qé" = volumetric heat generation rate

Recall again that terms of the form u.f; are averages weighted by the
interfacial mass transfer mg, that is,

pefe = {pefe(Ve— Vi) - Vxe)

In particular, such terms can include contributions from interfaces with
more than one other field, as specified below.
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2.2 Porous body formulation

Multifield low models can be formulated for flow through a porous medium.
In the thermohydraulics of intact cores, the fuel rod arrays are conveniently
treated as an anisotropic porous medium. For premixing analysis, engineer-
ing structures within the vessel might be modeled as a porous medium.

A simple method of deriving a porous medium formulation is to consider a
multifield model with £ = 1, ...L fields augmented by a field L 41 representing
the porous medium. Its volume fraction &y41 in an (L + 1)-field formulation
with

L+1
dar=1
=1

is related to the volume porosity v of the medium by

1—édpn(x) = v(x).

The momentum equation for field L + 1 is ignored under the assumption
that V1 = 0, and the energy equation is ignored also. The effect of the
porous medium on the momenta of fields 1, ...L may be modeled in Fy,. The
(L + 1)-field formulation reduces to an L-field model in which

L
Eat =1
=1
by defining o, to satisfy
Yo = .

That is, the porous medium formulation of the multifield equations is ob-
tained by writing o, wherever o, appears in equations (18), (19), (20).

In some cases it might be possible to argue directly on physical grounds
for a different treatment of engineering structures displacing flow volume.
The formulation just derived is consistent with treating the structures in a
porous medium formulation.

The numerical implementation of porosity factors will be discussed in
section 3 below.




2.3 Multicomponent fields

IVA3 treats fields 1 and 2 as multicomponent fields. In fact, the code in-
ternally allows field 3 to have two material components also; however, this
appears to be an artifact of a version of IVA3 which was designed to model
the annular flow regime of an intact core using field 3 to represent water
droplets. Since this modeling option is not intended for the premixing ap-
plication, we ignore the multicomponent option for field 3, and discuss only
fields 1 and 2. Note that the dispersal of corium particles into field 2 lacks a
model for the dispersal rate in the present version; but since a two-component.
treatment of field 2 is foreseen, and the supporting code infrastructure is in
place, we shall discuss it.

Field 1 consists of a mixture of air and saturated steam. The equation of
state for this two-component mixture is

P1 = Pair T Pvapor
This composition of the mixture is described by introducing a concentra-

tion

= pair/pla (21)

from which it follows that

l-¢ = pvapor/p1~

The density of each component is evaluated at its partial pressure. In
solving the model numerically, it will be necessary to find p; given P, T}, and
c1. This is done by finding the partial pressures which satisfy

P=P air + P, vapor
Pair = Pair/(RairTl)
Pvapor = pvapor(le Pvapor)

by eliminating P, in favor of Pygpor
P vapor = P - RairTlpa'ir

1

=P - _cRairTlpvapor(le Pvapor)'
1
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This equation is then solved for Py.por using a Newton iteration; the formu-
lae used are equations (3.2.3) to (3.2.5) in KFK 4948. Further details on
computing the mixture equation of state and its partial derivatives can be
found in Kolev (1991a).

The purpose of defining the concentration as a density ratio in eq. (21)
was to make ajp;¢; the conserved quantity in the mass balance for air. The
evolution of the concentration ¢; of air in field 1 is therefore described by the
conservation equation

o
Bz(alplcl) + V- (a1p1e1V1) = pair.

Normally pgr is zero, although IVA3 does in principle allow for air intro-
duced from an external source at a prescribed rate pgi = 1%, The same
balance can be rewritten in terms of the material derivative by subtracting

¢1 times the mass balance eq. (18) of field 1 to obtain

aiprDey /Dt = pgir — crp1.

Notice that u$** will also appear in 1, so the net source of air in the material
derivative form of the concentration equation will be (¢ — ¢;)u™.

Field 2 consists of a mixture of liquid water and corium particles in ther-
mal equilibrium. Again one wishes that aspoce be the conserved quantity in

the mass balance for the corium component of field 2. Thus one defines

Co = Q2 coriumPeorium ] Q202 (22)

where a2 corium is the volume fraction of the corium assigned to field 2. In
contrast to field 1, where each gas component occupies the full volume frac-
tion @y, here we have g corium < @2. In consequence, the composite equation
of state is

l/pQ = 02/pcorium + (1 - c?)/f)water-

The evaluation of p; is nevertheless straightforward, since the component
equations of state involve only the system pressure P and temperature To:

Peorium = Pcon'um(T% P)
Pwater = pwater(T2> P)
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The concentration ¢, then evolves according to the conservation equation

Io]
a(azpzcz) + V - (a2p2c2V 2) = pdispersal;

" where Udispersas describes the dispersal of corium particles from field 3 into
field 2. Expressed in material derivatives, this gives

agpaDeo/ Dt = pgispersal — Cofto.

Notice that pgispersaz Will also appear as a term in po, so the net contri-
bution of dispersal to the material derivative form of the c; concentration
equation will be (1 — ¢2)Ltdispersat; this will vanish if ¢co = 1, insuring that cg
never exceeds 1.

In addition to the inert component concentrations ¢; and c¢o, an addi-
tional property, the particle number density n, evolves with each field. This
quantity applies whenever a field is dispersed, for example bubbles, droplets,
or solid particles, and gives the number of such particles per unit of volume.
If the dispersed field particles are of uniform size, then the particle number
density n, together with the volume fraction o, determine the diameter D, of
an individual particle, from which the interfacial surface area per unit volume
can be computed. This interfacial area is a key parameter in constituting
interfacial transfer terms, particularly heat transfer.

The particle number density for a dispersed field ¢ evolves according to

Ong/Ot +V - (nyVy) = Ny

where N; is the particle production rate; this typically describes a relaxation
toward some equilibrium value n; with characteristic time 7.

2.4 Constitutive relations

We now begin a description of how the interfacial transfers of mass, momen-
tum, and energy are constituted. IVA3 provides a very flexible framework for
treating a variety of different flow and heat transfer regimes. At this stage of
IVA3 assessment, the detailed consideration of every correlation used in every
regime considered is less pressing than an overview of the general manner in
which these terms are handled. In particular, we shall have some important
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comments to make in the next two sections regarding the treatment of heat,
mass, and momentum transfer in the numerical solution procedure. With
this in mind, we shall here give a limited but representative sample of the
constitutive relations in IVA3, sufficient to illustrate all the difficulties which
will confront us in assessing the numerical solution procedure.

2.4.1 Mass transfer

Mass transfer among the fields is constituted within the following general
categories. For field 1, water vapor is created by evaporation, and removed
by condensation; including the external mass source (which exists as an input
option in IVA3) gives

H1 = Hevap — Hcond + fot

For field 2, liquid water can be created by condensation, and removed by
evaporation. The inert component corium enters field 2 by dispersal from
field 3. Including a possible external mass source gives

12 = fcond — Hevap + Kdispersal + ﬂgxt

For field 3, corium is removed by dispersal to field 2, so

13 = —Udispersal T I‘gxt

To illustrate the salient features of the mass transfer relations, we shall
consider the contribution to phase change fe.qp due to the presence of field
3, particles of very hot corium. Note that the expressions given below are
only these contributions to phase change; in a typical flow regime, the full
expression for leyep would include other terms as well. The transfer of mass
by phase change involves heat transfer as well, and in what follows, the
contributions to peyep, and to @, are both given.

In order to accurately describe the constitution of heat and mass transfer,
it is necessary to give not only the correlations used, but also the logic of flow
regime and heat transfer regime identification. In the case of heat and mass
transfer associated with particles of field 3, the expressions to be given below
are used in either of two flow regimes: (i} continuous field 2 and dispersed
field 3 with no field 1, or (ii) continuous field 2 with dispersed field 3 and
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field 1 as bubbles. If either of these flow regimes is identified (based on crite-
ria involving mainly the volume fractions ay), then one of the following four
heat transfer regimes will be selected: (1) convective heat transfer only; (2)
subcooled nucleate boiling with partly compensating convective heat trans-
fer; (3) nucleate boiling; (4) film boiling with radiative and convective heat
transfer.

The first step in heat transfer regime identification is to compute the field
3 temperature threshold T3, for the onset of nucleate boiling

a, 1/2
Tap = Toqt + ["' (Tsat — Tz)]
(84

where «; is an empirical function of pressure, and o, is a convective heat
transfer coefficient, given as an empirical function of the corium particle size
D3 (determined from the field 3 particle number density n3), the thermal
conductivity of field 2, and the Peclet number for field 3 corium particles
moving through continuous liquid field 2.

If T5 < T3, then heat transfer is by convection from field 3 to field 2 with
no phase change, case (1):

Hevap = (()3
Q3= —Q2= Qeonv = (—g'é)ac(Tz — Ts)
3

If on the other hand T3 > T3, then further identification of the regime
requires computing empirical expressions for a minimum stable film boiling
temperature Tspp, a critical heat flux @32, and a postulated nucleate boiling
heat flux @npg. If either T5 > Tipp or Qnp > Qa2cr, the heat transfer regime
is film boiling with radiative and convective heat transfer, case (4):

(23)

Hevap = (QRAD + QFB)/(hvapor,sat - hwater)
Q@3 = —Qrap — @FB — Qconv (24)
Q2 = Qconv.
If neither the critical heat flux nor the film boiling temperature are ex-
ceeded, then it remains only to compare T, against the saturation tempera-
ture Teq(P). If Ty > Tgqy, there is nucleate boiling, case (3):

Hevap = QNB/(hvapar,sat - hwater)
Qs = —QnB (25)
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If on the other hand Ty < T, there is subcooled nucleate boiling with
compensating convective heat transfer, case (2):

Hevap = (QNB - Qconv)/(hvapor,sat - hwater)
Q@s = —QnB (26)
Q2 = Qconv

The main features which will be important in discussing the numerical
solution procedure are (1) the heat fluxes appear as source terms both in
the mass and in the entropy equations; (2) the heat fluxes depend strongly
on temperature differences, either between the phases, or relative to the
saturation temperature; and (3) where the saturation temperature appears,
there is a strong dependence on the pressure.

2.4.2 Momentum transfer

The terms in the field momentum equations which need to be constituted are
the average stress tensor, the phase change contribution, and the interfacial
forces composed of drag, added or virtual mass, and lift forces. The wall
friction term is present in IVA3 only for cells in the spatial discretization for
which the porosity factor v is less than one, i.e. regions of intact reactor
core or other engineering structures which displace a significant amount of
the volume available to flow.

Average stress The pressure stress tensor has already been considered;
we are here concerned with the remaining shear stress contribution to the
total stress. Let us begin with the average stress tensor. In IVA3, this is
constituted as the single-phase laminar viscous stress in its simplest form:

V- (al‘l'g) = a[pzl/¢V2Vl (27)

where v, is the single-field kinematic viscosity; for multicomponent fields,
this is computed by the composite rules of Kolev (1991a).

This expression could be strictly justified only for laminar flow of the
continuous field. (By continuous field, we mean as usual the field which
occupies a microscopically connected subregion of the volume open to flow,
e.g. the liquid field in the flow regime of gas bubbles and solid particles
flowing through connected liquid.). In turbulent flow, one would expect the
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average shear stress to be much larger, and not necessarily in the simple form
above. Using the assumption of Reynolds that turbulent stresses take the
same mathematical form as viscous stress, the effective viscosity coefficient
would be much larger. For turbulent two-phase flow, the average shear stress
might be greater still. Furthermore, in turbulent two-phase flow, one could
imagine that a shear stress term might be appropriate for the dispersed
phases as well as the continuous phase.

Not much is known about stresses in turbulent multiphase flow, although
there are carefully derived recommendations for bubble flow (Nigmatulin
1979; Biesheuvel and van Wijngaarden 1984). The shear stress terms used in
IVA3 surely underestimate the real stresses. In light of the incomplete state
of knowledge of these effects, it would be prudent to regard the shear stress
terms used in IVA3 as a starting point to explore the sensitivity of simulations
to the modeling of shear stresses. Sensitivity studies could be performed with
an artificially increased viscosity coefficient (already foreseen in the Fortran
source), or with reference to the known expressions for bubble flow. There
will be a limit to the magnitude of viscosity which can be computed stably
under the IVA3 numerical scheme, as discussed below; however this limit will
be several orders of magnitude larger than the viscosity coefficients currently
used, so meaningful sensitivity tests are quite feasible.

Phase change contribution Constituting the phase change contribution
to momentum transfer requires a specification of V; the velocity with which
mass arrives in field ¢ by phase change. IVA3 follows a common practice of
choosing this velocity to be the velocity of the field from which the mass
comes. For example, for field 1, the velocity is

Vi — V, for evaporation
™1 V, for condensation

so the contribution to momentum transfer is
ﬂl(vli - Vl) = Il'evap(v2 - Vl)-

By examining the momentum balance expressed in material derivative
form (cf. equations (31-33) below), it can be seen that this assumption
implies that condensation will not exert a decelerating force on the remaining
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gas, while vapor added to the gas by evaporation will need some force to
accelerate it from the velocity Vo to velocity V.

This assumption can be referred to as a donor field approximation. Some-
times in the literature one sees this described as a donor cell approximation,
but that is a serious abuse of terminology: donor cell refers to spatial dis-
cretization of flow terms, whereas here we are choosing a field to associate
with Vg, with the spatial location playing no role at this stage.

Donor field is not the only assumption which might be made for V4. Some
models use a compliance factor to set Vy; to some value between the velocities
of the donor field and the accepting field. In some applications the value
of the compliance factor might have an important effect, but for premixing
analysis this is not a major consideration, or at least other modeling concerns
are much more important.

Drag, virtual mass, and lift The principal interfacial force in most flow
regimes is usually taken as a frictional drag force, generally constituted as
some drag coeflicient times the velocity of the dispersed field relative to the
continuous field.

In flow regimes where the continuous phase is much more dense than
the dispersed phase, one must also consider a virtual mass or added mass
effect. This arises because a bubble moving through a liquid medium must
accelerate not only its own mass, but also the mass of the liquid it displaces,
which is of course much larger. This displaced mass is called the added mass,
and the mass of the bubble plus the added mass is the virtual mass of the
bubble. These terms are sometimes used loosely, so that one speaks of virtual
mass when referring to what is, strictly speaking, the added mass term. The
virtual mass effect also exists in droplet flow, but is clearly of no significance
when the continuous phase is much less dense than the continuous phase.
It would be significant for the gas field in bubble flow, and for the gas and
liquid fields if there should arise a situation in which the corium is (locally)
the continuous phase.

Associated with the added mass term is a lift force also acting on the
dispersed field (Drew and Lahey 1987; Park 1992). Considering the motion
of the gas, field 1, a general form for bubble flow would be

Fiu=C5(Va— Vi) + Co'[D1V1/Dt — DyV/Dt + (Vo — V1) X V X V]

adde:i( mass lift
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where
D¢Vy/Dt=0V,/ot+V,-VV,

Combining the added mass and lift terms is attractive from a theoretical
viewpoint because, taken together, the two terms comprise a force which
satisfies the criterion of objectivity. constitutive equations should retain their
form under a change of coordinates from one non-inertial frame of reference
to another. Applying this criterion can require great care, and the literature
includes some debate as to whether, in a given situation, objectivity is a strict
principle or just a good approximation. In multiphase flow, even greater care
is required. Arnold (1988) includes a discussion of these issues.

The precise form of the drag force varies according to the Reynolds num-
ber for relative motion through the continuous phase, e.g.

Regy = D1(1 — oq)p2|Vo — V| /12

and also according to the bubble diameter D; derived from the bubble num-
ber density n,. Typically, unless this Reynolds number is very low, Cgl
depends on [Vg — V;]; for example, in the case of cap bubbles,

P2
0511 = 0‘13'0‘211 V2 -V,
1
where ¢, = 2(1 —ag1)? and as = @;/(a; +az) is a modification of the usual
two-phase formulation to allow for the volume displaced by the third field.
It should be noted that although the correct form for the drag force is

p2

D Cgl Vo= V4| (V= V)
1

Fu=qo
the IVA3 code actually uses the absolute values of the components of the
relative velocity (Vo — V) rather than |Ve — V;|. Denoting V = (u, v, w)
and F1; = (Fiig, Fiiy, F1iz),

r2
Fiiz = oy ==y Juz — ua| (uz — us)
D,

and so on.
The added mass coefficient used in IVA3 for bubble flow is
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The most important fact to note about this expression is the appearance of po;
comparison with the differential equation shows that this increases the inertia
of the gas field by the large factor po/p;,. Typically the gas inertia would be
negligible next to the balance of VP and the drag force; but the virtual
inertia could be important for treating the gas field correctly, especially in
situations of strong acceleration.

In IVA3, the lift term is neglected completely, and the spatial derivatives
in the virtual mass terms are also omitted. Incorporating these terms in the
numerical solution procedure would pose a problem if convection were to be
treated implicitly in the momentum equations; however, in a semi-implicit
scheme, there is no obstacle to including the full virtual mass and lift terms,
treated with explicit (old time level) finite differences. Although IVA3 claims
to use a fully implicit scheme, it is not necessary for premixing analysis, and
probably inefficient; this will be discussed in detail below.

Complete description of the interfacial momentum transfer expressions in
IVA3 involves a number of different (mechanical) flow regimes, identified by
logical decisions different from, and independent of, the heat transfer regime
selection. To avoid unnecessary and confusing generality, we shall give a
description for the specific mechanical regime of gas bubbles and corium
particles in continuous liquid field 2. The interfacial forces consist of the
liquid force F'5; on bubbles just described, and the liquid force F23 on corium
particles in field 3, appearing as

Fii=Fo
Foi = —Fg — Fo3
F3; =Fo3
where
Fo3 = C%(Ve = Vi) + CH*[D3V3/Dt — D3V /Dt + (V2 — V3) x V x Vg
added mass lift

and C& again depends on a (modified) Reynolds number. The added mass of
the fuel particles in liquid field 2 could almost certainly be neglected, because
corium is much more dense than water.
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2.4.3 Entropy transfer

The most important interfacial term in the entropy balance is Q; as ex-
plained above, the determination of @, is made in conjunction with the
evaluation of mass transfer. The example given above will suffice for this
assessment.

It remains to constitute Vg and sg. The choice of Vg in IVA3 is the
same as the donor field approximation used for the momentum equation:

Voo — V4 for evaporation
8= Vv, for condensation

Thus for example

1 1
5#1(V1i -V)?i= E”evap(vi’ -V,y)?

with a null contribution for condensation (due to the material derivative form
of the equation; cf. Sec. 2.4.2 above).
The interfacial entropy sy; is constituted in similar fashion, e.g.

so for evaporation
S1: = f :
s1 for condensation

In constituting u¢T¢(se; — s¢), the entropy transfer due to phase change is
subtracted, and simultaneously the corresponding heat flux is left out of
Q¢ For example, in eqgs. (25), the heat flux Qnp is drawn from field 3 and
directed entirely to production of vapor, but @y g is not added to the balance
of entropy for field 1. So pevapT1(s1: — 51) is adjusted by the same amount to
give

/‘evapTl(s2 - 81) + /*Levap(hvapor,sat - hwater) =
/‘evapTl(s2 - Sl,sat) + ll'evapTl(sl,sat - 51) + l‘evap(hvapor,sat - hwater)
= /‘evapTl (sl,sat - 31)

This has the advantage of removing from the balance a dominating term
which is both added and subtracted, improving the precision of the remaining
balance computation.

For dispersal of fine corium particles from field 3 into field 2, there is no

such compensating adjustments of the heat flux and mass transfer terms.
The donor field rule is
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So; = S3; = 83 for dispersal

so the field 2 entropy balance equation should include a term

ﬂdz'spmasz(Szi - 52) = /‘dispersalTQ(SS - 52)

while in the field 3 entropy balance, the corresponding term is null because

of the donor field rule.

Any volumetric heat sources agqé", including for example the radiative

heat transfer Qrap, are treated as being included in Q..

2.5 Final working form

We now repeat the working form of the averaged balance equations, with
general forms of the transfer terms, and examples (in square brackets) con-
stituted as described above. The example used for heat and mass transfer is
nucleate boiling; for momentum transfer the example chosen is bubbles and

corium particles in continuous liquid.
The balance of mass for field 1 is

1)
'é't'(alpl) +V- (alplvl) = Hevap — Moond + ou?zt

- ~(

hvapor,sa,t - hwater

[ QNB Gas)ab (T3 ~ Toat)? ]

D 3 hvapor,sat t hwate‘r
The balance of mass for field 2 is

ext

o
_(a2p2) +V. (a2p2V2) = Heond — Hevap + Hdispersal + Ho

ot
[: —QNB
hvapor,sat - hwater

The balance of mass for field 3 is
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1)
a(asm) + V - (3p3V3) = —pdispersal + p§*

=]

The balance of momentum for field 1 is

a1p1DV1/Dt+a1VP =

1pr1 V3V + cip1g+itevap(Ve — V1) + Fy;

o
Fi;=Fq = Cgl(Vg -Vi)+ Cé’lmgt—(Vg — VI)J
The balance of momentum for field 2 is

agpgDVQ/Dt+a2VP =
aop2avoViVy + aopogtpteond(Vi — Va) + praispersat(Va—Va) + Fo;

Fo = ~Fq — Fo3

0 G,
= (G4 + O3 5) (V1 = Va) + (Ch + CF 5 ) (Vs = Vo)
The balance of momentum for field 3 is

a3p3DV3/Dt+asVP =

asp3v3V2V; + aspsg + Fy

. o
Fy; = Fo3 = CH(Vy— Vi) + Cgsmgz(vz —V3)

The balance of entropy for field 1 is
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alplTlel/Dt =

%uevap(vﬂ - V1)2 + l‘evapTl(sl,sat - 51) + Ql

(34)
(@1 = 0]
The balance of entropy for field 2 is
aopaTaD s/ Dt = Lpicoma(Ve — V1)? + 3 ptdispersat( V2 — V3)?
+icondT2(52,sat — 52) + BdispersatT2(s53 — s2) + Q2 (35)
[Q2 = 0]
The balance of entropy for field 3 is
a3p3T3Ds3/Dt = Q3

(36)

[- -2)au(rs - To?
3
These are the forms used in IVA3, with one exception: IVA3 includes
modifications of the entropy transfer associated with phase change. These
modifications are a term

#cmzdclTl (sm'.r - svapor)

added to the right side of eq. (34), and a term

l‘evapC2T2(scorium - swater)

added to the right side of eq. (35). Such terms do not appear when a field
consists of only one component. The term added to eq. (34) will be zero in
case ¢; = 0, and also in case ¢; = 1 (because fong Would then necessarily be
zero). These terms arise from the mass loss from each field (e.g. condensation
from field 1 vapor). The donor field rule nullifies the mass loss term in the
material derivative form of the entropy balance only when sy = sygpor, that
is when c¢; = 0. Using the correct value syqpor for the mass leaving field 1
when ¢; > 0 gives rise to the additional terms above.
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3 Finite Difference Equations

3.1 Time scales and stability

In order to solve the multifield flow equations successfully, it is necessary to
define a discrete approximation, and a procedure for advancing the solution
of the appropriate initial-boundary value problem by one time step. IVA3
chooses a finite difference approximation, based on the usual staggered grid.

There are two principal considerations in defining the details of the fi-
nite difference approximation: first, the discrete solution should be accurate
and remain numerically stable over time, and second, the computation of
the solution should be efficient. The stability of finite difference approxima-
tions can be established by consideration of characteristic times associated
with the various physical processes being described. In the case of multifield
flow, the physical processes can be grouped as sonic propagation, interfacial
coupling, fluid convection, and viscous stress. If one is content to solve the
discrete equations for time step sizes smaller than all relevant characteristic
times, one may use explicit finite differences, in which all terms other than
time differences involve only variables at the current time level. There is no
difficulty in advancing explicit difference equations by one time step. This
approach is preferred if all evolutionary processes must be resolved in detail
in the numerical scheme.

If on the other hand, some physical processes have very short character-
istic times, and do not need to be resolved on their short time scales, the
corresponding terms in the finite difference equations can be treated with im-
plicit differences, using variables at the new time level. When done carefully,
this yields a method which gives stable solutions using time steps larger than
the related characteristic times. The price to be paid is that the procedure
for advancing one time step becomes more difficult, involving simultaneous
equations for the variables at the new time level.

Of course the stability sought is numerical stability; IVA3 is intended
for simulation of highly transient behavior, and physical instabilities will be
present and must be accurately simulated. The usual signature of numerical
instability is growing oscillation with a period of two time steps, and is not
difficult to recognize and distinguish from physical instability.

In multifield models such as IVA3, there are four groups of characteristic
times. The interfacial exchange terms define characteristic times which may
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be viewed as relaxation times for the local temperature, pressure, or field
velocity. The spatial derivative terms are implicated in sonic propagation,
material convection, and viscous stress. The associated characteristic time for
sonic propagation is the time for a pressure disturbance to travel the width of
the smallest grid step; explicit differencing of sonic propagation would limit
the time step size according to the Courant-Friedrichs-Lewy condition

At < min(Az, Ay, Az)/e.

For convection, the characteristic time is the time for the fastest flowing ma-
terial to move across the smallest grid step; explicit treatment of convection
limits the time step size to

At < min(Az/u, Ay /v, Az /w).

The characteristic time relating the viscosity to the grid size implies a time
step limit for explicit treatment of viscous stress

At < min(Az?, Ay?, Az2%) /20,

The choice of strategy in IVA3 seems to be to treat convection, sonic prop-
agation, viscous stress, and interfacial momentum coupling implicitly, and to
treat interfacial heat and mass transfer explicitly. With the time step sizes
used in IVA3 for premixing simulations (on the order of 0.1 milliseconds),
there is little reason to treat convection and viscous stress implicitly. The
kinematic viscosity of liquid water is roughly 10~% m?/sec; for grid spacings of
0.2 m, the characteristic time is 40,000 sec! For the material convection time,
a velocity of 20 m/sec implies a characteristic time of 10 milliseconds. Even
the single-phase sonic velocities (300 m/sec for air, 1200 m/sec for water)
have characteristic times of 0.7 to 0.2 milliseconds.

Characteristic times for heat, mass and momentum transfer are more
difficult to quantify, because of the complicated flow regime and heat transfer
regime treatment. Characteristic times shorter than 10 milliseconds are likely
to appear in heat and mass transfer, so that implicit treatment of at least
some of these terms appears to be a higher priority than implicit convection.
There is a special approximation procedure in IVA3 for rapid heat and mass
transfer terms, but we have grave reservations about its accuracy. This issue
will also be discussed below.
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Revision of the IVA3 strategy may prove, upon further study, to be ad-
visable. First, however, we present the finite difference equations in present
use, based on the strategy just indicated.

3.2 1IVAS3 differencing scheme

3.2.1 Staggered grid and index convention

The discretization of the multifield flow equations is based on the staggered
grid which is commonly used for fluid dynamics. The computational region is
divided into an orthogonal grid of cells. The balances of mass and entropy are
written for each cell. Each dependent variable has a principal site for each
cell. Material properties of the fields, such as ay, p¢, s¢, and the pressure
P have their principal sites at the center of each cell. The cells may thus
be referred to as material cells. Velocities have their principal sites at the
centers of the cell faces, with each velocity component situated on the cell
face to which it is normal.

Three indices i, 7, k identify each cell in the grid, specifically the cell
center. That is, the index triple (7, j, k) identify the principal site of the
material property variables. The principal sites of the velocity components
are therefore (i + 1/2, j, k) for uy; (i,5 + 1/2, k) for ve; and (4, 5,k + 1/2) for
wy. These principal sites turn out to be very convenient for writing the finite
difference form of the balance equations. However, in several instances, a
variable will appear in the finite difference equations at a location other than
its principal site, and when this happens, the variable will be expressed in
terms of the neighboring principal site values by interpolation.

In order to maintain some readability of the discretized equations, a sub-
script convention will be used. Any variable taken at its principal site will be
written with all indices suppressed. Only when secondary sites appear will
indices be written explicitly, and then only those indices differing from the
principal site values need be shoun. (Occasionally for emphasis a principal
site index may be written explicitly.) Thus
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oe = (0f)ijk

(ap)ivrze = (@e)ir1/245k

Up = (ul)i+1/2,j,k

(we)iv1 = (ul)i+1,j,k

Vg = (”t)ia'+1/2,k
(Ve)iy1 = (vl)i+1,j+l/2,k

Wwe = (wl)i,j,k+1/2
(We)it1 = (wl)i+l,j,lc+1/2

and so on.

3.2.2 Mass equations

The finite difference form of the mass conservation equation represents the
balance in a material cell whose center is the principal site for material prop-
erties:

25 {(aep)™ ~ (eapa)}

+ {[’)’:r:(‘»‘ﬂflf’t!)n+1 (ul)n+1]i+l /2= [’Yz(aepz)nH (ul)"+1]i—1/2} [Dz (37)

+ {[7y(a4p¢)"+1 (Ul)n+I]j+;/2 = [vy(cepe)™** (ve)™* ]j—1/2} /Dy

+ {[re(aepe)™ (we) g1 )0 — [:(ep) ™ wD)™ Ny o} /D2 = i}

The convected quantity agp, at each material cell face is not at its primary
site, and its value is specified by a donor cell rule

oty = | (2P0 1 (W) > O
£PLliv1/2 (alpl)i+1 if (ul):'fll/g <0
(cepe); if (ve)j{1/n >0
(aepe)j if (v0)j11/e < O
(agpg)k if (w[);:i}/z >0
Y if (we)ii1/p < O

eepeljyrpe =

laepelisrje = {
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Note the somewhat unexpected presence of donor cell rules in a suppos-
edly implicit scheme; the function of donor cell differencing is usually to
effectively add numerical dissipation which stabilizes an explicit finite differ-
ence scheme. The donor cell rules are convenient however if one decided to
convert IVA3 to a scheme which treats convection explicitly.

All quantities used in the evaluation of the phase change rate p} are taken
at the old time level, so the treatment is explicit in mass transfer. This could
result in significant restrictions on the size of the time step.

The discrete equation (37) contains the volume porosity factor v, and
additional factors v, 7,, 7. in the discrete divergences. These factors describe
reduced areas at the material cell faces. In the case of engineering structure
represented as a porous medium, these factors 7., 7y, 7, should all be equal
to the volume porosity 7; that is, the effective cell face area should be chosen
such that when multiplied by the third linear dimension of the cell (Az,
Ay, or Az) the volume available to flow is obtained. A proof of this fact
can be found in Appendix D of Reed and Stewart (1981). In particular, the
factors 7z, 7y, 7. are not equal to the fraction of area available to flow at the
cell faces. Thus it is somewhat misleading to refer to v, vy, 7, as surface
permeabilities.

On the other hand, in cases where one wishes to model an engineering
structure which restricts the flow in one of the three orthogonal coordinate di-
rections without significantly reducing the volume available to flow, it would
be more appropriate to use 7z, -y, Or 7, (as appropriate) to model the re-
duced area for flow, and leave y = 1. One can also imagine situations in
which both approaches might be combined: v modeling a partial reduction
in volume available to flow, and one of v, ,, or v, set to some value less than
v to model an additional restriction of flow area without further displacement
of volume available to flow.

3.2.3 Momentum equations

Next we consider the finite difference form of the momentum equations; for
the sake of concreteness and simplicity, we shall write the scalar equation for
the component of momentum in the z-direction. The discrete momentum
equations represent balances for cells which are not the material cell, but are
displaced by one-half grid step in each direction, so that the balance for each
velocity component is centered at the principal site for that component.
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In order to motivate the finite difference form of the convection terms, it
may be helpful to refer to their derivation from conservative differential form.
After subtracting V, times the mass equation, the two divergence terms are

V  (yepeVeVie) — ViV - (yaepeVy).

Consider just the 8/0z terms in the equation for the velocity component u,

0 o
gg(vaemumt) - wé;(’razpeut)- (38)

The first term is discretized about the principal site (i + 1/2,7, k) of wuy,
locating aypeus at (4,7, k) and (i + 1, 4, k) and the second factor u¢ by donor
cell rules, while the second term is discretized by central differences:

{[(’)‘:.:cxm:zwz)(ue)]iﬁh1 - [(%alpgu,)(u,)]i} JAz—

(39)
(W)i+1/2 {(Voepeue)ivn — (’Yzatpzuz)i} JEAY:-
where
. + i
(Yz0eprte)iv1 = (Vz0epe)in (uz),+1/2 2 (ue) +3/2 (40)
and

], = (ue)ivry2 if (Yzouppug)ipys > 0
1T (ug)iase if (Ye0epeue)iva < 0

Note that the discretized mass balance equation used in the second line of
(39) is not the finite difference equation (37). Here we use a different form of
mass balance, centered at the principal site for u, and using central differences
rather than donor cell rules. This form of mass balance is used solely for the
purpose of deriving (or motivating) a discrete momentum balance in material
derivative form.

In light of the donor cell rule for u, (used only in the first line of (39)!),
we may rewrite

[(Yzeepeue) (ue)];yq /DT — (we)iv1/2(Yooeprue)ivr/ Dz

(Aul)i+l

= (Vz0pere)ita g
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where

0 if (Yoezpeue)irr > 0
(Budts” _ (ut)gy i 21*)’;,11 (41)
s i+3/2 i+1/2 if (Yeoupeve)iy: <0

Az

Note that time levels have been indicated, as they are coded in IVA3; the
mixed time levels will be further discussed below.

Because the discrete mass balance used in (39) is not the same as equation
(37), the discrete momentum equations will not be strictly conservative—
small numerical sinks or sources of momentum will be present as part of
the truncation error for the spatial derivatives. In view of the other uncer-
tainties in the momentum balances, this departure from strict momentum
conservation in the discrete formulation is not a serious concern.

Similarly rewriting the remaining two terms in the expression (39) yields
the expression

: 2
(g (Bt
(Youepeue)iy R 25— + (Yooepeus)}-——F—

as an approximation to the differential expression (38). The definition of

0 if (yooepeue): > 0
Au n+1/2 x
Bude | )iy — Wty
Az

is precisely analogous in its spatial indices to the preceding definition in eq.
(41) of (Aul)?:ll/ %/ Az, but is repeated to specify the mixed time level coded
in IVA3. It is now evident that the new time level is chosen whenever u,
appears at the central principal site. This introduces minimal extra compli-
cation in the numerical procedure for advancing the finite difference solution
one time step. While it is true that this partially implicit treatment of convec-
tion is unconditionally stable, its truncation error grows significantly worse
when the time step exceeds the CFL convection limit, and for this reason
the use of new time levels exclusively would usually be the preferred form of
implicit differencing.

Difference forms of the expressions for the 8/8y and 8/8z terms can be
written similarly. The interpolations to secondary sites for (yyapeve)jv1/2
and for (y,auppwe)e+1/2 are more elaborate than eq. (40). This is because

(42)

if (yzaepeue)i < 0
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(:+1/2,5 + 1/2,k) as a secondary site for v, is best interpolated from the
values of vy at four surrounding principal sites, and similarly for w,. Again
the differences of u, in the y and z directions use new time level for the
central site and old time level for the surrounding sites.

With this motivation, the discrete momentum equation for u, is

1 n n n
N {’)’atpl("-"l - u?)}i+1/2 + (yee) iy {Pz‘ﬁl - Pin+1} [Dz+

(7za£plul)?+l (—;);L + (%azpzut)?gT"‘
/2
(A""l)tifll/zz i+1/2 (Aul),}:IIQ j—1/2
(’Yyazpevz)?+1/2,j+1/2 ZA y/ 4/ + (Wyazptvl)?ﬂ/z,j—uz sz/ 2ol +
+1/2 +1/2
n (Aul)?+1//2,k+1/2 n (Aul)?ﬂ //2,k—1 /2
(’Yzaéptwl)i+1/2,k+1 /2 Az + (Ye0upewe) i /2.k—1/2 N +
1/2 1/2
= (upeve)ivs/o(Viru)ivfy + Fag | + pg(ugt! — upt!)
(43)
where
2 n+1/2 __ ) Vit +1 i +1
(V2 yu)iihfe = { e L R A el vl (CAS R CY } |z

Yi+1/2 n n+1 Ti-1/2 n+1 n
+ ¢ —— 1y )i+1 — (u — —— U — (u%); Dz
{ij+1/2 [( (4 ).7+1 ( ] )] ij—l/2 [( £ ) ( ’4 ).7 1] } /

Ye+1/2 n (o] _ _Ykt1/2 ntly _ /n
{2 () = ()]~ 22 [(03) — ()] /0

Again the choice of time level for u, in the viscous stress terms is mixed,
with new time level at the central site and old time level for surrounding
sites. This is much easier to solve than fully implicit differencing, and is
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unconditionally stable, but again the accuracy deteriorates significantly if
the time step exceeds the characteristic time associated with viscous stress
on the discrete spatial grid.

The discretization of the drag and the time derivative part of the added
mass is straightforward. We use the example of bubble flow. Since u, is only
required at the principal site, the drag term can be treated implicitly:

2 n rm n
Foz" = [(Ch)tnse + (CIT)Erase/ Ot] (b —uf )= (CHM)2a o/ Ot (up—u})

The coefficients (C$,)7,; , and (C3™)7, /2 are evaluated using material prop-
erties appropriately interpolated to the secondary site (i+1/2, j, k); examples
for ay and «agp, are shown below.

The phase change contribution is conveniently discretized with new time
levels for the velocities, which again appear only at the central principal site:
PR = ) = pg (ug — ult)

All quantities used in the evaluation of the phase change rate uj are again
taken at the old time level, so the treatment is again explicit.

Other quantities in the discrete momentum equation which appear at
secondary sites are defined as follows:

(’)‘Ote)' 1/ = (’YAzal)H-l + (’YAIL‘Q[),-
Y (YAz)ip1 + (vAx);

(Yaepe)iv1/2 = (YAzoupe)iv1 + (YDAZwpe)s
o (YAz)ip + (YD)

3.2.4 Entropy and concentration equations

The discrete forms of the entropy and concentration balances are very similar
to the mass balances. Since entropies and concentrations are material prop-
erties, the discrete balances are again written with reference to the material
cell whose center is the principal site (4, j, k) for all material properties.

Material derivative forms are used for the discrete entropy and concen-
tration balances. As with the momentum equations, the spatial derivative
term yapp, Ve - Vsg is expressed as a difference

42



V- (voupeseVe) — 56V - (yaepeVe)

However, in contrast with the momentum equations, the discrete form for
V - (yaepeVe) used in the entropy equation is identical with the form used
in the discrete mass balance

[V - (youpeV o)l =
+ {['nc(auw)'”rl (ue)™ipaj2 — Draleepe)™ (ug)™ ], /2} /Dz
+ {[’Yy(aept)nH (vl)n+11j+1 /27 [y (@e0e)™ ! (”l)n+1]j—1/2} /Dy

+ {[’Yz(atpl)"+l (W)™ M p1y0 = [’Yz(aeﬂt)nﬂ(wll)n+1]k—1/2} Az

The term V - (yagpeseV ) is discretized in precisely analogous fashion,

[V - (yarpeseVo)lge =
+ {['Yac(OtePe-‘it)"Jrl (o)™ iy — Dalcepese)™ (ue)™]; /2} JRAX
+{ [ (cepese)™ ()], 10 — Dry(cpese)™ Hwe) ™, o} / Ay

+ {[’Yz(agpzsz)"+1 (we)™" iy1/e — [12(@epese)H (we)™ )y /2} [ Dz

and using donor cell rules
(alpl.sw),- if (ul):‘fll/z >0

+1

" ; = i
[ocepesel;r o { (aepese)ivt if (ve)itie < 0

and so on. The discrete entropy balance for field 1 is then

apr1y ntl _ (s \n
;1) (s1)"}

+[V- (’701P131V1)]:;-:1 ~ st v ('yalplvl)]:;f:l = (44)

{30l (V2 = VORI + Q2 } /TT + g (5T e — 537)
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Because the term V - (ya01V,) is discretized here exactly as in the mass
equation, the discrete entropy balance is strictly conservative in the spatial
derivative terms; that is, the sum of all the discrete fluxes of entropy across
all the material cells is zero for a closed region. Thus there are no numerical
sources or sinks of entropy associated with the spatial discretization. Thisis a
desirable property for the finite difference equations; it is most consequential
in the simulation of very slow transients or steady states, where total energy
and mass conservation is assured.

In IVA3, this discrete conservation is achieved while simultaneously ben-
efiting from a favorable property of the material derivative form of entropy
balance: namely, the largest portion peyqp(S1,sar — 59) of the entropy car-
ried by phase change is absent from the calculation of the entropy balance
for field 1, for example. If the material derivative form were not used, the
term flevap(S1,sat — So) together with an opposing term s1{8(ya1p:)/8t + V -
(va191V1)} might dominate the remaining terms in cases of very rapid phase
change. The absence of these two large terms which nearly cancel each other
makes the calculation of the remaining terms in eq. (44) less susceptible
to numerical error. The penalty paid for these advantages is the cost of
computing V - (yaeprseVe) — 84V - (yapeVe) in place of youpeVe - Vs or
V - (youypese V), and this cost is not great because V - (yayp,V,) has already
been computed for the mass balances.

In short, this semi-conservative finite differencing of the entropy balance
combines advantageous properties of both the fully conservative form and
the material derivative form.

3.2.5 Approximation of heat transfer terms

In addition to the discrete approximations detailed above, there is one fur-
ther aspect of the discretization which must be described. Some of the heat
transfer terms comprising @, and p, are modified by factors intended to pro-
vide a better approximation of their temporal evolution than can be obtained
from a first-order explicit differencing scheme. For example, in the case of
the convective heat transfer contribution in eq. (23), instead of Qcony, IVA3
uses

Qcon,v = Qconvf
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— ___(1 _ e-At/'rs‘)’

1+ — Dapsces
3‘_ .

6o,

The factor f involves the ratio of the discrete time step size At to a
characteristic time 73 for this heat transfer process, and can be motivated by
the following consideration. Suppose we consider a highly simplified entropy
balance for field 3,

Os oT
agpsTs— = aspacpi— = Q3 = Qoony
ot 600 ot
= —55')%(7"2 — T3)

Suppose further that during the time At, the value of T, remains sensibly
constant; then T3 relaxes toward the value T; with the characteristic time 73
according to

at T3

Under these assumptions, the value of T at the end of the time step At
would satisfy

T:;H-l - Ty = (Tgl-f‘l _ Tz)e—At/T;.

The same value of T3}

ence equation

would be obtained from an explicit finite differ-

(I -Tp) (=T
At Ts

where the value of f may be determined by rewriting
T3 - T3 = T3 = T + (T2 - TF)

= (Tp - T$)(1 — e747),
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From this it follows that the value of f must be as stated above.

It should be particularly noted that the value of f approaches the very
small value 73 /At when the time step size At is much larger than the char-
acteristic time 75. In other words, the heat transfer is sharply reduced to
such an extent that the characteristic time for change in T3 is made equal to
At. Thus the possibility that explicit differencing of the heat transfer terms
would produce numerical instability for At > 73 is eliminated. Similar ap-
proximation factors f are introduced into the heat transfer and phase change
contributions in other heat transfer regimes.

The assumptions on which this approximation rests are a highly simplistic
entropy balance, and the constancy of T,. These assumptions are unlikely
to be valid in actual simulations of complex phenomena like premixing or
detonation of steam explosions. Furthermore, it should be noted that where
flow and heat transfer regimes dictate multiple contributions to the total heat
transfer, IVA3 may apply several approximation factors f based on contra-
dictory assumptions, for example, that T3 is sensibly constant in deriving one
approximation factor f while assuming that T, relaxes with a characteristic
time in deriving another factor f in a separate heat transfer contribution.

Finally, it must be recognized that these approximation factors have as
a consequence the very undesirable property that the magnitude of heat
transfer contributions will depend on the time step size At. When At is
larger than the characteristic time for any given heat transfer contribution,
doubling At will halve the heat transfer contribution.

The possibility of significant errors caused by these approximation factors
f in the heat transfer terms is a serious cause for concern about the accuracy
of IVA3, and calls for a careful and detailed investigation, to be outlined at
the end of this report.

3.3 Semi-implicit differencing

Although IVA3 uses a fully implicit treatment of sonic propagation, convec-
tion, and viscous stress, we have seen that the treatment of convection and
viscous stress in the momentum equations uses mixed time levels which have
poor accuracy for large time step sizes. This causes no practical difficul-
ties because the very rapid evolution of a premixing transient means that
time step sizes must in any case be held below the material convective limit.
In view of this, it must be asked what is the cost in computational effort
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required for implicit convection, and whether it might be more efficient to
adopt a different overall strategy and treat all aspects of material convection
with explicit differences. In particular, the divergences in the mass and en-
tropy balances could then be written with the material properties at the old
time level, retaining new time levels only for the velocities. As we shall see in
the next section, this would result in a significant simplification of the IVA3
numerical solution procedure.

Here, for comparison, we give the semi-implicit difference equation for
mass balance:

)n-H

L [(aep)™ ~ (cepe)"]

+{[a(eepe)™ ()™ sy — Draloepe)™(ue)™],, ) /BT
+ {Ir(eepe)™ @)™ ;4170 — brylcepd)™ @)™,y o} /By

+ {[’Yz(alpl)n(wl)nH]kH/Q - [’Yz(aepe)n(wl)n+1]k—1/2} [Dz = pg

Again donor cell rules are used for the convected densities; the spatial in-
dexing is exactly as given previously for eq. (37), with only the time level
changed from n + 1 to n.

Semi-implicit entropy and concentration balances would be written in
completely analogous fashion.

It is possible, and sometimes desirable, to treat the phase change terms
with more implicitness. For example, semi-implicit difference schemes typ-
ically admit new time levels for any material properties appearing in the
phase change terms:

u‘g'*‘l/? _ [Lg(an+l,Tn+1, Pn+1,V;t’ g,vg)

where a = {a), ag, @3} and T = {T, T, T3}. Similarly, material properties
(especially T and P) appearing in the heat transfer terms in the entropy
balances may be taken at the new time level.

An efficient and reliable solution procedure incorporating this alternative
numerical strategy is described in Reed and Stewart (1981).

47



4 Numerical Solution Procedure

Having once indicated the details of the finite difference equations, let us
now consider a more concise description of these equations which will serve
to describe the numerical solution procedure while suppressing unnecessary
detail. The discrete mass balance (37) may be written as

2= (0™ — (epe"] + V- [y(eep™ (VO™ = 4 (45)

keeping in mind that the discrete divergence involves each velocity component
whose principal site is a material cell face; furthermore, the macroscopic
densities agpe in the discrete divergence are given by donor cell rules, so that
values in adjacent material cells appear for each cell face having inward flow.

The discrete momentum equation (43) in the z direction is written com-
pactly as

1

N [’)/auoe(’“?+1 - U?)]i +1/2 +(ren)ta e [P - P in+1] [ Bzt

n+1/2 1/2
(yoepeVe)iaye - V(ue)inise = laepevelip o (VPrue) sy ss (46)

+1/2
+F g () s (w2 o, (ua) ) + we(ug™ — gt

keeping in mind that velocities u, at sites other than (i + 1/2, 4, k) appear
only in the convection and viscous stress terms (second line above), taken at
the old time level. Only velocities u, at the central site (i + 1/2, j, k) are at
the new time level.

Our compact form for the discrete entropy balance eq. (44) is

a1y n+l1 n
2 (1) = s

19 - [(yoaprs) ™ (V)™ = 2719 - [(yaap) ™ (Vi)™ = (47)

+ {'-12-“,;1’0?[(‘,2 - Vl)%k]Q + Q?} /Tln + /"’:vap(s?,sat - 8’11'+1)

This equation is identical in structure to the mass balance: new time level
velocity components at material cell faces, new time level material properties
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at the material cell center, and in adjacent cells when flow across a cell face
is directed inward.

4.1 Outer iteration

Because of the multiple appearances of new time level quantities in the finite
difference equations, often in nonlinear combinations (e.g. a;p151V1), no
direct solution procedure is available. IVA3 uses an iterative procedure, with
each iteration consisting essentially of two phases.

In the first phase of the outer iteration, the volume fractions, concentra-
tions, and entropies are held fixed; the densities change only through changes
in pressure. The momentum equations are combined with a mixture volume
conservation equation, and solved simultaneously for estimates of the new
velocities and pressures. This is achieved by first eliminating all velocities
to obtain a set of simultaneous equations for the pressures in all cells, then
solving this Poisson problem using one of several standard elliptic solvers. In
this phase, the physical phenomena of sonic propagation, interfacial momen-
tum exchange, and momentum convection are resolved through the implicit
terms in the momentum equations, and the new time level velocities in the
divergence terms of the mixture mass conservation equation.

In the second phase of the outer iteration, the pressures and velocities
are held fixed; the densities change only through changes in entropies and
concentrations. The individual field balance equations for masses, entropies,
concentrations, and particle number densities are solved for estimates of the
new volume fractions, entropies, concentrations, and particle number den-
sities. This is achieved by a Gauss-Seidel iteration over all cells for each
balance equation. In this phase, the physical phenomena of material convec-
tion is resolved through the new time level material properties in the diver-
gence terms of the individual field material balance equations; the physical
phenomenon of thermal expansion is resolved by computing density changes
resulting from changes in entropy, and conservation of volume is reconciled.
Because the heat and mass transfer terms have been differenced explicitly,
we prefer not to say that these physical phenomena are resolved here, but
rather that they are incorporated in the resolution of material convection
and thermal expansion.

Each outer iterations carries out the first, pressure-velocity phase, and
then the second, material convection phase. There is no relaxation or other
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adjustment to aid convergence. Because of the decoupling of physical phe-
nomena in the two separate phases of each outer iteration, the overall solution
cannot be considered as a generalized Newton or secant iteration for the full
set of difference equations. Thus in contrast to other procedures such as the
semi-implicit method of the THERMIT, TRAC, and other codes, the con-
vergence of the IVA3 outer iterations cannot in general be guaranteed. In
practical application to premixing analysis, the time step sizes used appear
to decouple the equations, that is, to minimize the influence of the first phase
estimates on the second phase, sufficiently that the outer iterations usually
converge very rapidly after the first two outer iterations. However, in some
cases, the result of the first outer iteration is observed to be erratic, and this
can be attributed to the decoupled solution strategy. A more extensively
coupled solution method such as used in THERMIT, for example, would in
most instances avoid this erratic behavior of the first iteration.

4.2 Pressure-velocity phase

In this phase, the volume fractions, concentrations, and entropies are held
fixed; the densities change only through changes in pressure. The momentum
equations (46) are combined with a mixture volume conservation equation,
and solved simultaneously for estimates of the new velocities and pressures.

The mixture volume conservation equation is obtained from a sum of the
individual field mass balances, weighted by the specific volume (= p;') of
each field. The purpose of this equation is to determine the relation between
pressure changes in a cell and mass fluxes across the cell faces, independent
of any changes of volume fractions. Returning to the differential form of mass
balance,

o
5‘5(0‘:/0:) + V- (epeVe) = pe

we expand the time derivative

0 aag apl
5t (cepe) = pr PN + oy 5t
oo Opg OP Opg 8 Ope Oc
£ ay (ﬂ_+_ﬁﬂ+ﬂ_z)

=P OP Ot | s, 0t | Ocs Ot
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Now take the specific volume weighted sum of the balances for the indi-
vidual fields:

Oay ay
>t 5t +3

(ap, OP  8pydsy N Ope aq)
pe

AP Ot @ s, Bt = ey O

+ 307V - (0upeVie) = e Py 1e

Of course ) ,da,/0t = 0; the elimination of time derivatives of the volume
fractions was the goal of weighting by specific volume. We might have con-
templated a mixture mass conservation equation, and simply ignored the
effect of the changes in a;‘“ from the second, material convection phase of
the outer iteration; but in that case, the decoupling of the pressure-velocity
phase from the material convection phase would not be so effective, and the
convergence of outer iterations would be impeded. Note however that the
coupling of the two solution phases through entropy changes still exists. In
particular, a change in density due to entropy change (i.e. thermal expan-
sion) is not recognized in the pressure-velocity problem at the first outer
iteration, because the entropy change will only be manifest in the second,
material convection phase. This is the reason for the erratic behavior of
the first outer iteration which is sometimes observed in IVA3. This design
of the outer iteration will in principal also cause some deterioration in the
rate of convergence in subsequent outer iterations, but any such deterioration
appears to be much less dramatic than the effect on the first iteration.

These difficulties might be partly corrected by revising the outer iteration
so that the material convection phase (including heat transfer) is performed
before the pressure-velocity phase; this might reduce the erratic behavior of
the first iteration. A better approach, although more difficult to implement,
would be to more fully couple the solution procedure, including heat transfer
effects in the pressure-velocity phase; this might improve both the initial
iterations and the final convergence. This would correspond to the approach
described in Reed and Stewart (1981).

The discrete form of the mixture volume conservation equation in IVA3
is
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We now consider fixed all quantities in eq. (48) to be updated in the ma-
terial convection phase of the outer iteration: the volume fractions o™, the
entropies sy 71 the concentrations c?“, and the convected macroscopic den-
sities (agpg)"+1 appearing in the discrete divergences. With these quantities
considered fixed, the remaining new time level variables describe a relation
between the cell face velocities and the change in pressure within the cell

associated with the combined compressibility of the fields. The expression

3p£ N 1
Z (3P )  (Zeapr) a?

relates this combined compressibility to the sound speed a of the multifield
mixture in mechanical equilibrium, i.e. all field velocities equal.

The velocities can be eliminated from the mixture volume concentration
in favor of the pressure gradients across each cell face by using the momen-
tum equations for each field and each velocity component. Keeping in mind
that the partly implicit convection and viscous stress terms in the discrete
momentum equation (46) involve new time level velocities only at the central
site (i+1/2, j, k) for uy, the discrete momentum equations for the three fields
may be written as linear rela.tionships

(48)
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Here the diagonal coefficients ag involve the terms in eq. (46) where u}*"

appears in the field £ balance, namely the time derivative, convection, viscous
stress, drag, virtual mass, and phase change terms; the off-diagonal coeffi-
cients involve only the drag, virtual mass and phase change terms describing
interfacial momentum exchange.




By inverting the 3 x 3 matrix [a] this system can be simplified to a system
ut + BUPLY - PP = Gy
upt! + By(PI — PP = C, (49)

uf™ + By(PIN - PIY) =Gy

These relations at (i+1/2, j, k) and the corresponding ones at (i—1/2, j, k)
can now be used to eliminate the cell face velocities from the 0/8z component
of the divergences in the mixture volume conservation equation (48) in favor
of the pressures P!, P*!, and P{'. Similarly, the momentum equations
for vy and w¢ lead to equations used to eliminate the remaining velocities
from (48). The result is an equation for each cell involving the new time
level pressures in the cell and in the six adjacent cells on both sides in the
three coordinate directions. This system of equations for the pressures is
elliptic. It can be shown that diagonal dominance is assured when at least
one field is compressible and the interfacial drag coefficients are non-negative;
see Reed and Stewart (1981) for a proof in the case of two velocity fields.
The diagonal dominance is proportional to the ratio of the CFL sonic time
step limit to the time step size At, and is of the order of the off-diagonal
terms when At is of the order of the CFL sonic limit.

The pressure problem can be solved by any standard elliptic solver. IVA3
offers a choice of line or plane SOR; these methods should be entirely ad-
equate for premixing analysis where the time step sizes are typically much
smaller than the CFL sonic limit. If changes in the numerical method were
to allow larger time step sizes, more efficient elliptic solvers, such as an in-
complete Cholesky conjugate gradient method, might be preferred.

Once the pressure problem is solved, the equations (49) are used to infer
the new time level velocities. This completes the pressure-velocity phase of
the outer iteration.

The pressure-velocity phase of the outer iteration involves several sub-
routines in IVA3. The equations (49) do not change from one outer iteration
to the next, and can be pre-computed before the outer iterations begin.
This is done in subroutine I12DIV, which in turn calls I2DIVU, 12DIVV, and
I2DIVW to compute the momentum convection, viscous stress, and phase
change terms, subroutine DRAGOO0 for the interfacial drag and virtual mass
terms, and subroutine RELI which assembles the momentum equations and
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inverts the 3 x 3 matrices to obtain the velocity-pressure gradient relations
(49). The coefficients B are stored as variables RUU, RVV, and RWW for
the uy, v4, and w; equations; the remainders C are stored as DUU, DVV,
and DWW,

The mixture volume conservation equation must be recomputed for each
outer iteration; this is done in subroutine ASSCO1, along with the reduc-
tion to the Poisson problem. The variant Poisson solvers are subroutines
POISZY, POISFL, POISRE, and POISON. The backward substitution of
the new pressures into equations (49) for the new velocities is done in sub-
routine I2GESH. Finally, in the case of cylindrical geometry, the velocities at
azimuthal angle zero and at angle 2x must be identified, and this is done in
subroutine ZYKLUS. This concludes the pressure-velocity phase of the outer
iteration.

4.3 Material convection phase

In this phase, the pressures and velocities are held fixed; the densities change
only through changes in entropies and concentrations. The individual field
balance equations for masses, entropies, concentrations, and particle number
densities are solved for estimates of the new volume fractions, entropies,
concentrations, and particle number densities. This is achieved by a Gauss-
Seidel iteration over all cells for each balance equation. Let us first see how
this applies to an individual field mass balance equation

'g'z [(aepl)nH - (alpl)"] +V. [’Y(atpt)"H(Ve)"-“] = P

For each cell, it is convenient to divide the terms in the discrete divergence
into two groups, fluxes of mass leaving a cell, and fluxes of mass entering the
cell:

V- [y(cepe)™ (Vo) H] =

V- [1(ap)™ (Vo)™ + V - [y (cep)™ 1 (V)™

Because of the donor cell rules for the mass fluxes, the [ |out fluxes involve
only the macroscopic density ayp, in the cell (4, 7, k), so

V- (e (VO™ = (cep 'V - [y (Vo™

out
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On the other hand, the [ ];, fluxes involve exclusively macroscopic densities
in the neighboring cells. This partitioning is the basis for a Gauss-Seidel
iterative solution for the new time level macroscopic densities. Marching

over the cells in a fixed sequence, a new estimate for a}*! is obtained as
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27 =
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Always the latest available values for the macroscopic densities agps in the
neighboring cells are used in computing the [ };n fluxes: for neighbors pre-
ceding cell (4, 7, k) in the marching sequence, macroscopic densities from the
current Gauss-Seidel iteration are used, while for neighbors succeeding cell
(,7, k) in the marching sequence, macroscopic densities from the previous
Gauss-Seidel iteration are taken.

A similar approach is used for the entropy balance. Both divergences are
decomposed into incoming and outgoing fluxes, and the double decomposi-
tion is simplified as follows:

(l ‘v h(Vz)"“lo..t) o
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In the final line, we again have neighboring cell entropies exclusively in one

term, and the entropy in cell (3, §, k) exclusively in the other term. Thus each
step in the Gauss-Seidel iteration solves for
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(51)

At
where (taking the example of field 1)
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The new concentrations ¢y and particle number densities ng are found in
analogous fashion.

We can now summarize the Gauss-Seidel iterative procedure for estimat-
ing aptl, s7Y, gt nftl, TP and pft! as follows:

1. For each Gauss-Seldel iteration, loop over cell in ascending order of
indices; the z (or azimuthal) direction is the innermost loop, the z (or radial)
direction is next, and the y (or axial) direction is the outermost loop. Inside
all spatial index loops, loop over fields £ = 1, 2, 3.

2. Compute new estimate of o/‘“"1 using eq. (50), new estimate of sj
using eq. (51), and new estimate of gt similarly.

3. Compute new estimate of temperature T'hLl and density pl+1 by linear
perturbation from the old time level values T and pf :

n+1
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3Tg
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0 0
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P + ( ) 30( 5t 38(

oP
In particular, the effect of thermal expansion is resolved in the last term
perturbing pj+?.

4. Check that p3! > 0; check that T;"*! — TP does not exceed allowed
limit.

5. Compute new estimate of particle number density n"“.

6. Because there is no guarantee that Y ,a; = 1 at this stage, the con-
servation of volume may have to be reconciled by adjusting one (or more) of
the oy; currently in IVA3 this is done by adjusting the largest of the three
Qy.

7. If the change in aj 2+1 for this cell from its value at the previous Gauss-
Seidel iteration is larger than the corresponding change for preceding cells
in the sweep, record the change (to check convergence of the Gauss-Seidel
iterations); likewise for s7*! and cf*!.
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8. If any cell does not meet the convergence criterion, repeat the entire
procedure; however, no more than 10 Gauss-Seidel iterations are performed.

Since the Gauss-Seidel iteration is done mainly for the purpose of re-
solving material convection, the iteration should converge quickly when the
time step size is much smaller than the material convection CFL limit. How-
ever, for larger time step sizes, the order in which cells are visited during
the Gauss-Seidel iteration becomes important. When cells are visited in the
same sequence as the direction of flow, the effect of convection is propagated
over many cells in a single iteration. However, if the sequence of visiting
cells opposes the direction of flow, convergence propagates by only one cell
per iteration. In flow-through applications, a fixed sequence of visiting cells
(as in IVA3) would be effective; but in problems in closed regions, where
there is no preferred direction for convection, it would be much more effec-
tive to alternate the sequence of visiting cells from one Gauss-Seidel iteration
to the next. However, we do not advocate such a modification to IVA3 for
premixing; in view of the small time step sizes used in practice, it would be
preferable to avoid the question of Gauss-Seidel iterative convergence entirely
by treating material convection with explicit finite differences.

The Gauss-Seidel iterations would be unnecessary if convection were to be
treated explicitly, so that the material properties in the discrete divergences
were taken at the old time level. However, it might be preferable in that case
to update the entropy first, permitting the temperature to be updated and
the corresponding adjustment of density to be made before the new volume
fraction is determined from the mass balance. Or a coupled simultaneous
update of entropy and volume fraction in each cell may prove necessary.

The source terms u, are treated explicitly in IVA3, and can therefore be
computed once before the beginning of the outer iterations. This is done in
subroutine INTGRA. The complete Gauss-Seidel iteration process is done in
subroutine I4ALEN.

4.4 Automatic time step selection

For efficient computation of transients, it is desirable to choose the time step
size during computation with an adaptive algorithm. Ideally the time step
size should be just below the threshold of numerical instability, and just small
enough to maintain reasonable truncation error.

IVA3 includes algorithms for automatic time step size selection. The prin-
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cipal criteria are limits on the magnitude of change in key variables (pressure,
temperatures, volume fractions, velocities) during each time step. By limiting
the changes per time step, truncation error is presumably kept at acceptable
levels.

As noted above, IVA3 treats all heat and mass transfer processes with
explicit finite differences. This implies some stability limit on time step size,
involving certain characteristic times for the heat and mass transfer processes.
Because of the complex interdependence of the mass and energy balances, it
is difficult to analyze the characteristic times definitively. Rough estimates
can be obtained using simplistic assumptions, as in Section 3.2.5 above. IVA3
uses some estimates of characteristic times to modify heat and mass transfer
terms to effectively reduce the characteristic times and guarantee stability;
but this is done at the cost of jeopardizing the accuracy, perhaps seriously.
It would be safer in terms of accuracy to use the estimates of characteristic
times to limit the time step size, but this could increase the computational
effort. In the long run, an implicit or selectively implicit treatment of heat
and mass transfer may be required for best accuracy and efficiency.

At present, even the adjustments to heat transfer may not insure numer-
ical stability. Only some contributions are adjusted; it is far from clear that
these are the only contributions of significance for stability. Furthermore,
even if all contributions were analyzed and adjusted, the simplistic analyses
might not be conclusive for the stability of the coupled system of equations.

If numerical instabilities should develop during a simulation due to strong
heat and mass transfer, they will probably be eventually damped out by the
automatic time step selection. Typical numerical instabilities generate grow-
ing oscillations with a period of two time steps. Such oscillations superposed
on the underlying (physical) trends in the variables will substantially increase
the magnitude of changes during each time step. If the limits on changes per
time step are chosen carefully, the growing numerical instability will cause
the time step to be reduced before the oscillations reach catastrophic pro-
portions.

Although the adaptive selection of time step size is in one sense a desirable
means of balancing accuracy and efficiency, in another sense it might possibly
conceal a multitude of sins. If the explicit treatment of heat transfer terms
implies strong constraints on the time step size, these constraints will be re-
alized through the time step size selection. Oscillatory numerical instabilities
will continually erupt and be gradually damped out, introducing inaccuracies
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that would not be present if the time step could be chosen more rationally.
If only the variable changes from the previous time step are checked, there is
no way of knowing whether the time step size is a result of unavoidable ac-
curacy requirements for a very rapid transient phenomenon, or on the other
hand if the time step size is small simply because of unrecognized numerical
instabilities.

If numerical instabilities are present, it would be typical that the time step
size itself would oscillate over periods of many time steps. On the other hand,
if the time step constraints are purely physical, and unrelated to numerical
instability, one would expect a more steady evolution of the time step size,
with substantial changes occurring only when unusual physical events occur,
e.g. a large slug of liquid impacting on a rigid structure.

In typical premixing simulations, IVA3 does exhibit large swings in time
step size over many time steps, consistent with the eruption and suppression
of numerical instabilities. Note that this indication by itself is consistent
with, but does not necessarily imply, numerical instability problems; it could
be that these swings in time step size are purely physical in origin. If however
they are symptoms of time step constraints due to explicit treatment of
heat and mass transfer, then a more implicit coupled treatment could result
in the ability to use substantially large time step sizes, with corresponding
improvements in computational efficiency.

There are at least two more incisive tests for potential numerical instabil-
ities. One is to extend the analysis of characteristic times to all heat transfer
contributions. This has value, but is difficult to extend beyond the simplistic
analysis of individual contributions. Another approach would be more re-
fined empirical evaluation of the numerical solution. For instance, one could
save key solution variables over several time steps and examine them in the
time domain for evidence of a strong component with a period of two time
steps. In addition, spatial domain analysis could be performed to identify
any spatial oscillations with a period of two spatial grid steps.

While it is certainly possible to implement such diagnostics as automatic
algorithms within IVA3, the evaluation would be greatly facilitated by de-
veloping diagnostic tools using interactive graphic analysis. For example,
an interactive version of IVA3 could repeat a small time slice of simulation
following an intermediate dump, with visualization of solution variables un-
der user control as the simulation steps forward. This would eliminate some
of the missed opportunities for diagnosis which are inevitably dictated by
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the vast amounts of data generated and the limitations of storage media.
Such an interactive visualization capability would certainly be of great ben-
efit in evaluating the physics of IVA3 simulations, as well as any numerical
problems.

5 Recommendations

The foregoing assessment has lead to six specific recommendations for future
assessment and improvement of the IVA3 model and code. Briefly, they are:
(1) improve code efficiency in the numerical treatment of material convection;
(2) improve code efficiency (and perhaps accuracy) in numerical treatment
of heat and mass transfer; (3) implement a more consistent representation
of virtual mass and drag forces; (4) investigate the model sensitivity to the
magnitude of viscous stresses; (5) develop improved visualization techniques
to assess numerical stability and accuracy problems which may be masked
by automatic time step size selection; and (6) apply state-of-the-art software
tools to further improve code documentation.

The first recommendation is actually a series of suggestions concerning
the implicit treatment of material convection, and the material convection
phase of the outer iteration. The concern here is with computational effi-
ciency; there is little doubt that in this regard the accuracy of the current
scheme is acceptable. However, an execution profile of IVA3 carried out by
M. Lummer has shown that about 40 percent of CPU time in a typical sim-
ulation is consumed in subroutine I4ALEN where the material convection
phase is computed. Furthermore, it is typical to use as many as six Gauss-
Seidel iterations in this phase. This means that there is substantial room for
improvement in efficiency if the number of iterations can be reduced. If noth-
ing else, it should be possible to save some time by allowing less convergence
of the Gauss-Seidel iterations during the first few outer iterations, either by
relaxing tolerances or by limiting the number of iterations. However, even
better strategies are available.

A full Gauss-Seidel iteration of all cells is only required if there is sub-
stantial coupling among cells due to convection. However, in almost all cells
the field velocities in typical premixing simulations are at least an order of
magnitude smaller than Az/At, so the convective coupling is in fact very
weak. Therefore, the repeated Gauss-Seidel iterations are almost certainly
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being used to resolve coupling among the volume fractions, entropies, and
concentrations in each cell separately. It is highly unlikely that as many as six
iterations are required to resolve these couplings in every cell simultaneously.
Therefore a next level of improvement could be obtained by eliminating the
Gauss-Seidel full sweep, and only iterating in each cell as often as required
for that cell. This could be done whenever the convective coupling is deter-
mined to be small. If one were to change the overall strategy to an explicit
treatment of material convection, the convective coupling would automati-
cally become null. In fact, just the simplification of computing the convective
terms only once in each material convection phase should by itself create a
considerable saving of computational effort.

Another level of improvement could be gained by noting that the coupling
among variables in each cell separately (in particular the coupling of density
and entropy through thermal expansion) is a relatively simple problem for
which a set of simultaneous equations could be developed and solved rather
easily.

A final improvement might involve incorporating these simultaneous equa-
tions into the pressure-velocity phase of the outer iteration. This might im-
prove convergence of the outer iterations, make convergence more reliable
(i.e. cut down on the need for time step reduction), and help the erratic
behavior sometimes seen in the first iteration. Actually, this last problem,
which is the most obviously vexing one, might be cured by simply reversing
the order of the two phases in the outer iteration, as noted in Section 4.2
above.

If the explicit numerical treatment of material convection is adopted,
then it would be preferable to make the treatment of momentum convection
explicit as well. While this would not change the computational efficiency,
it would remove any possible concern about the accuracy of the mixed time
level differencing.

The second recommendation is for a detailed investigation of the treat-
ment of heat and mass transfer, particularly whether there are numerical
stability problems associated with the explicit treatment which are being
masked by the automatic time step size algorithm. The adjustments to the
heat transfer terms for time averaging should be examined to see if char-
acteristic times are ever much shorter than the time step size. If so, the
adjustments may seriously effect accuracy, and should be removed; if not,
the adjustments have virtually no effect, and for safety’s sake they should be
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removed.

With the adjustments removed, simulations should be diagnosed for any
signs of numerical instability, that is, oscillations with a period of two dis-
crete steps in either time or space. If any such evidence is found, further
analysis should attempt to determine what heat and mass transfer regimes
and contributions are responsible, whether a selectively implicit treatment is
feasible, and whether it would substantially increase the allowable time step
size. (That is, in addition to knowing the time step limitation which actually
controls, one should look at the magnitudes of other limitations which would
come into play if the strategy were modified.)

If no evidence is found that time step size selection is controlling numerical
instabilities, then it is probably the case that physical rates of change inherent
in the problem itself are limiting the time step size which can be used for
accurate solutions. This should be carefully confirmed, since the time step
sizes currently used in IVA3 appear to be smaller even than the CFL limit
associated with single-phase sonic propagation, and one would therefore want
to consider the extra simplicity and efficiency of a fully explicit numerical
scheme.

A complete, accurate, and readable documentation of the entire logic of
flow regime selection, heat transfer regime selection, and all heat and mass
transfer correlations would be helpful in implementing this recommendation.

The third recommendation is to review the treatment of virtual mass and
lift terms. The virtual mass could be neglected altogether in the more dense
field; on the other hand, the spatial derivative terms and the lift force should
be included in the less dense fields. Although these changes are limited
in scope, it would be preferable to defer them until the issue of material
convection is resolved. If convection is treated with explicit differences, the
treatment of spatial derivatives in virtual mass and lift should be explicit
also, and this would be simpler and more straightforward to implement.

The fourth recommendation is to perform sensitivity studies of the ef-
fect of the magnitude of the viscous stress terms. Although little is known
about turbulent shear stress, it would be enlightening to know whether a
large increase in the single-phase kinematic viscosity coefficient would have
any significant impact on a typical simulation. Furthermore, the use of donor
cell rules in the differencing scheme is known to introduce an artificial vis-
cosity which is proportional to the truncation error. The magnitude of this
artificial viscosity is roughly equal to the largest viscosity which can be stably
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computed with an explicit difference scheme for the viscous stress term. By
introducing an appropriate negative viscosity into the model, one can there-
fore effectively reduce the artificial viscosity, and hence get some idea of the
effect which would be obtained by refining the mesh.

Of course viscosity relates only to the truncation error in the momentum
equations. It is tempting to introduce mass and entropy diffusion terms into
the model for the purpose of studying the sensitivity to possible turbulent
diffusion, and estimating the truncation error due to the donor cell rules in the
mass and entropy equations. However, it might be preferable to introduce
instead a partial donor cell rule, in which the convected quantities in the
divergence terms are taken at some location interpolated between the donor
and the acceptor cell.

The fifth recommendation is to develop an interactive visualization ca-
pability for IVA3. This would help considerably in implementing the second
recommendation, and would undoubtedly have great benefits for the assess-
ment of the physics of simulations as well. The most powerful visualization
tool would be based on a version of IVA3 executing on a workstation; since
execution times may be much longer than on a mainframe, one would like to
be able to use the workstation version to pick up from an intermediate dump
created by a mainframe run. By performing the visualization interactively
on the workstation while the simulation is in progress, one would be able
to edit the output in the most productive way, for example recording time
histories in specific cells identified as being of particular interest. This would
provide much more effectively targeted visualization than is possible from
batch runs, where the sheer volume of computed results precludes storage of
all quantities of possible interest.

The sixth recommendation is to exploit state-of-the-art software tools to
generate even better documentation of IVA3. Specifically, this report has
been prepared using the TEX text formatting and typesetting system. There
is a powerful software environment for code development, known as Web,
originally developed by the same D. Knuth who originated TEX. Web com-
bines the facilities of TEX for documentation with any of several standard
compilers, including Fortran. Sophisticated use of Web involves develop-
ing both code and documentation from a single source. This is said by its
advocates to profoundly alter the process of code development, supporting
and promoting greater clarity in basic code design. At the same time, code
documentation benefits from improved clarity and reliability, which in turn
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promotes better code efficiency, reliability, and easier maintenance. Using
Web at this level should be seriously considered in any new code develop-
ment to supplement or supersede IVA3.

In the meantime, Web could be used at a simpler level to improve the
documentation of IVA3. It would be possible to develop a unified source from
which it would be possible to automatically generate an extended version of
this report with the inclusion of appropriate segments of source code for
reference, and also to generate source program listings in which portions of
this report are included as comments. Even at this very simple level, the
use of Web might provide substantial benefits. Much of the work needed to
accomplish this has already been done by preparing this report with TEX.
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