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Abstract

In the design of modern accelerators, an accurate estimate of coupling impedance
is very important. The sources which give rise to coupling impedance are the geo-
metric discontinuities in the accelerator beam pipe. In various discontinuities such
as RF cavities, bellows, and collimators, the coupling impedance of the holes has not
been well understood. Although coupling impedance can be obtained in general from
the Fourier transform of the corresponding wake potential which may be obtained
numerically, this is time consuming and requires a large amount of computer storage
when applied to a small dimension of a discontinuity in a typical beam pipe, often
imposing a fundamental limitation of the numerical approach. It is especially true
for the holes since the typical size of a hole is small compared with the dimension
of a typical beam pipe. More fundamentally, however, numerical calculation does
not have the predictive power because of limited understanding of how the coupling
impedance of a hole should behave over a wide frequency range. This question was
studied by developing a theoretical analysis based on a variational method.

An analytical formula for the coupling impedance of a hole is developed in this
work using a variational method. The result gives good qualitative agreements with
the coupling impedances evaluated numerically from the Fourier transform of the
wake potential which is obtained from the computer code MAFIA-T3. We show
that the coupling impedance of a hole behaves quite similar to the impedance of
an RLC-resonator circuit. Important parameters used to describe such a resonator
circuit are the resonant frequency and bandwidth. These parameters can be easily
determined from the formula presented in this work. We provide a theoretical insight

on how to parameterize properly the numerical impedance of a hole when data exhibit
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complicated dependence on frequency. This is possible because we can show that the
parameters are a function of the dimensionless quantity kd alone, with & the free-space
wave number and d the radius of hole.

In summary, we will develop an analytical method for the hole-coupling problem

valid for a wide range of frequencies.
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Chapter 1

Introduction

1.1 Introductory Remarks

In a circular accelerator, a charged particle gains energy from the electromagnetic
field in RF cavities. In electron storage rings, RF power should compensate the
synchrotron radiation loss experienced by the charged particle. While an accelerator
is designed such that particles execute a stable longitudinal oscillation in the potential
well provided by the RF system, they should be stable in the transverse directions as
well. For transverse motion, the interaction is between the charged particle and the
external magnetic field which provides the transverse focusing force. Since both RF
fields and magnetic fields are supplied by the system external to particles, the motion
in such a field does not depend on the intensity of the beam. Hence we may call this
type of motion single particle dynamics in contrast to a collective motion which is
affected by the beam intensity also.

When an accelerator beam pipe is smooth everywhere, single particle dynamics
alone is sufficient in understanding the behavior of the beam inside an accelerator.
In general, however, an accelerator beam pipe is not smooth but discontinuous in

its dimension. An obvious discontinuity in a beam pipe is the RF cavities. Other
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examples may include bellows, collimators, and pumping holes. Such unavoidable
discontinuities in an accelerator beam pipe provide rich sources of interaction be-
tween the beam and the surroundings in such a way that, when the beam traverses a
discontinuity, say, an RF cavity, the source field associated with the beam is scattered
leaving the wake field behind the beam. The wake field then acts on the following
bunch of particles or acts on the original beam itself. This self-sustained mechanism is
continued either leading to a stable or to an unstable situation. Since the interaction
depends on the intensity of beam, the dynamics of the system is often dominated by
the so-called “collective effects.”

In modern accelerators or storage rings, the maximum achievable current is lim-
ited by the collective effects. In the equation of motion which characterizes the col-
lective effects, the concept of wake potential and its frequency domain counterpart,
coupling impedance, have been introduced, providing a coherent force in the equa-
tion of motion. Thus, in designing high-intensity accelerators and storage rings, one
tries to minimize the collective effects by reducing the wake potential or the coupling

impedance, and this is the subject of the present work.

1.2 Definition of Longitudinal Wake Potential and
Coupling Impedance

In this section we introduce the definition of longitudinal wake potential and coupling
impedance. Even though mathematically rigorous theorems can be found in the
standard literature [7], we emphasize the heuristic concept evolved over many years
in accelerator physics. Once the concept of longitudinal wake potential becomes clear,

extension to the transverse wake potential is straightforward.



Figure 1.1: Leading (driving) and trailing (test) charges in a pill-box cavity with axial
symmetry.

Let us consider two charges, q; and g2, traveling with constant velocity on the axis
of an axially symmetric structure. At time ¢ = 0, the position of leading charge is
defined as z; = 0. At time ¢, leading and trailing charges have coordinates z;(t) = vt
and z2(t) = v(t — 7), where 7 is the time delay of the trailing charge (see Fig. 1.1).

Since the wake field excited by ¢; exerts the Lorentz force on the trailing charge,

the trailing charge experiences the energy change by an amount

(el

AU:“‘h/

E, (z,t——- E-{-T) dz, ‘ (1.1)

-~00 v

where the electric field is computed at a later time and the unit is [Volt Coulomb].
We define the wake potential W(7) as the energy lost by the trailing charge per

unit of both charges ¢; and ¢ which can be expressed in the form

W(T):ﬂj—.:—l * E, (z,t:f+7-) dz (1.2)
q192 q1 J—o0 v




with the unit of [Volt/Coulomb].

Once the response to a point driving charge ¢; is calculated, the wake potential
W (r) can be used as Green’s function to compute the potential in and behind an
arbitrary charge distribution by means of the superposition principle. If the charge
q1 is continuously distributed according to the time distribution function I(7) such

that
q1=/ I(7)dr, (1.3)

the trailing charge experiences the effect due to a bunch distribution

V)= [~ Wir-a)()ar (1.4)

with the unit of [Volt]. The potential in Eq. (1.4) is sometimes called bunch potential.
Since bunch potential depends on the distribution of charges, wake potential is a more
fundamental quantity as it depends only on the structure surrounding a charge.

If we take the Fourier transform of Eq. (1.4), we have a response relation in the

frequency domain such that

2() = W) = 70, (15)

where W(w), a Fourier transform of wake potential, is defined as

W(w) = / " W(r)e i dr. (1.6)

-
Since the quantity Z(w) is the ratio of voltage and current, it will be called impedance
or coupling impedance with [Ohm] as its unit.

For the calculation of bunch potential, general-purpose computer codes exist:

TBCI [31] for axially symmetric geometries and MAFIA-T3 [17] for three-dimensional




geometries. Although direct numerical calculation of wake potential is impossible be-
cause of the finite size of the mesh used in these codes, we can obtain the impedance
via Eq. (1.5) from the discrete bunch potential. For the analytic calculation, however,

it would be much easier to work directly in the frequency domain, noting that
Z(k) = —— / (2, k)ei*dz, (1.7)

where k = w/v is the wave number, Iy = ¢qv is the dc current and the time dependence
is assumed to be exp(jwt). This definition requires the field everywhere along the
beam axis or along the gap if the structure is a cavity type. It should be noted also
that the field integral in Eq. (1.7) is the effective voltage, including the transit time
factor, experienced by the charge traversing RF cavity.

Since the drive current in the frequency domain has a sinusoidal dependence on z

of the form

I(z,y, 7 k) = Lob(x)8(y)e " ey, (1.8)

we can express Eq. (1.7) as

2(0) =~ / E. J*dV. (1.9)

In this form, coupling impedance used in the accelerator physics is equal to the input
impedance of the source which excites the waveguide or cavity.
It will be shown in the next section that Eq. (1.9) is more convenient for a certain

geometry, especially for a hole problem.




1.3 Aperture Problem and Gluckstern’s Formal-
ism

Maintaining a high vacuum in a storage ring is essential for a useful beam lifetime
which is typically many hours. Since the residual gas must be pumped out of the
beam pipe, pumping holes are distributed around the ring for the passage of residual
gas. Although the arrangement of pumping holes is different in different accelerators,
the impedance of even a single hole is not a well-known quantity.

Numerical calculation using computer codes for the wake potential is possible but

it will be time consuming since
1. the geometry describing a beam pipe with holes is three dimensional,

2. a large amount of computer storage will be required because the computation

will need a fine mesh in order to resolve the 1 or 2 mm thickness of the hole-plate,

3. it is always difficult to obtain the impedance in the high frequency range because
errors in the Fourier transformation are amplified in the convolution defined in

Eq (1.5).

Finding an analytic expression for the impedance of a hole in a broad frequency range
is therefore highly desirable in the design of high intensity storage rings.

Among many different ways of calculating impedance, Gluckstern’s formalism
[10, 11, 12] is particularly useful, and is introduced in this section. Let us consider
two axially symmetric beam pipes, one without a hole and the other with a hole
shown in Fig. 1.2. If we denote the field in the smooth beam pipe as E;, Hy, which
is the source field, and the field in the beam pipe with a hole as E;, H,, which is the




source field plus scattered field due to a hole, they satisfy Maxwell’s equations in the
form

V x El,z = —jw/,LHl’z ,V X H1,2 = ijHl,z + J, (1.10)

where J = I6(z)8(y)e ?** e, is the complex current density and k¥ = w./Ejio is the
free-space wave number. Assuming that the velocity of traveling charge is ultrarela-
tivistic (8 = v/c ~ 1, v = 1/4/T = B2 > 1, which is assumed throughout), and using

a well-known result of the impedance due to the source field
Z,(k) = —constant x :y‘]—z, (1.11)
we can construct

IoP(Za(k) + Z;(B)] = 1P (Za(k) = Zu(k)] = = [[Bz- 3" + Ef-J]av.  (112)

Noting the identity V - (E} x Hy + E; x H}) = —(E; - J* + E} - J), we convert the

volume integral into the surface integral, leading to
[Lo2 Za(k) = /n [E; x H? + ET x H,]dS, (1.13)

where we used the fact that Z;(k) vanishes in the ultrarelativistic limit. If we choose

S to be the inside surface of the beam pipe, n - E] x Hy = 0, we have

o Za(k) = [ (nx Es)-H, (1.14)

where n x E; is the tangential field inside the hole, a quantity unknown until we solve
the problem completely.
Determining the field inside hole has been an important subject of investigation

for a long time. Several hundred papers have been published on this subject, and




(a) (b)

Figure 1.2: (a) A charge traveling in the smooth beam pipe, (b) a charge traveling in
the beam pipe with a hole.

an excellent review paper was written by Bouwkamp in 1954 [4]. Among the large
amount of literature available, Schelkunoff’s Field Equivalence Theorems [26], Levine
and Schwinger’s variational formalism using dyadic Green’s function [21], and Rum-
sey’s Reaction Concept (23] are particularly useful for our problem. These works are

summarized in Chapter 2.

1.4 Goal and Scope of the Work

Obtaining an analytical estimate of longitudinal coupling impedance of a hole is the
main goal of this work. Since the exact soluix:ion is hard to obtain, we try to find
an approximate solution based on a variational principle. This approximate solution
should be valid in a wide frequency range.

As mentioned in the previous section, a hole cut in the surface imposes a funda-
mental problem in vector diffraction theory. Relevant theorems and formalism for our

impedance problem are summarized in Chapter 2. In Chapter 3, the most important




in the dissertation, we apply diffraction theorems to a particularly simple geometry,
namely, a hole in an infinitely flat screen. Although accelerator beam pipe is torus in
shape with circular, elliptical, or rectangular cross section, we consider the beam pipe
with rectangular cross section because other shapes raise the question of curvature
effect of a hole which is not essential to our problem. Analytic results and comparison
with numerical estimates are presented in Chapter 4. Conclusions and suggestions

for a further investigation are presented in Chapter 5.




Chapter 2

Vector Diffraction Theory

2.1 Introduction

The diffraction problem deals with the interaction between waves of finite wavelengths
and obstacles. A geometric theory describing the diffraction pattern was developed
by Huygens and Fresenel whose idea was put forward in the mathematical form by
Kirchhoff. Kirchhoff’s scalar diffraction theory is based on the integral equation
whose solution is in general impossible to find, and hence subject to the various
approximations for solutions. When Kirchhoff applied his formula to the problem of
diffraction by the black (or opaque) screen with an aperture in it, he assumed that

[16]):

1. A field function (%) and its normal derivative (%) on the screen vanish except

in the aperture.

2. The values of ¥ and g—i’ in the aperture are equal to the values of the incident

waves in the absence of any screen or obstacles.

It is these approximations that contain mathematical inconsistencies and physical

deficiencies and not the Kirchhoff integral equation itself [2].
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Since Kirchhoff’s integral equation is based on the scalar Green’s function, it does
not satisfy Maxwell’s equations in general. A vector analog of Kirchhoff’s integral
equation was developed by Stratton and Chu [27] which requires not only the tan-
gential electric and magnetic fields but also the normal electric fields on the entire
boundary surface surrounding the region of interest where the fields are to be com-
puted. The choice of vector Green’s function is rather arbitrary. The proper choice
of Green’s function will remove the normal electric fields from the integral equation
[22].

Green’s function, which relates the vector fields and the vector sources, should
be in general dyadic or tensor quantity. In particular, when we want to compute
the fields directly by solving vector wave equations for fields instead of resorting to
the use of vector potential, the dyadic Green’s function has a considerable advantage
over a vector Green’s function in simplifying the notation. Levine and Schwinger
[21] used the dyadic notation on the theory of electromagnetic wave diffraction by
an aperture in an infinite plane conducting screen. Employing variational principles,
they calculated the transmission coefficient with a great accuracy comparable to the
rigorous solution obtained by solving partial differential equations analytically. This
is the motivation for using the dyadic Green’s function throughout our work.

In Section 2.2, we explain the field equivalence principle which is helpful in under-
standing the physics involved in the diffraction phenomena. The brief introduction
of dyadic Green’s function which will be used later is laid out in Sections 2.3 and
2.4. The field equivalence principle will emerge as a natural part of the theory of
dyadic Green’s function. In Section 2.5, we introduce the Rumsey’s reaction concept

which not only simplifies the notation but also proves to be useful in deriving the
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variational formula for various quantities of interest. In Section 2.6, we calculate the
transmission coefficient of a plane wave incident on the infinite plane with an aperture

using all the concepts and formalisms laid out in the previous sections.

2.2 Field Equivalence Principle

Various field equivalence principles provide different ways of formulating a boundary-
value problem [9, 14, 24, 25, 26]. As an example, considef a solution of Poisson’s
equation in electrostatic problems. The region V surrounded by the surface S con-
tains no charge. Applying Green’s theorem, one can determine uniquely the potential
in the region V due to the charge distribution external to S by specifying a surface
charge and a dipole layer density on the surface S. This illustrates one form of equiva-
lence principle, for we replaced the original volume source with the equivalent surface
sources on the mathematical boundary.

A simple application of the equivalence principle for the time-varying electro-
magnetic fields is illustrated in Fig. 2.1. The sources for an electromagnetic field are
contained in a volume Vj bounded by a smooth closed surface S as shown in Fig. 2.1a.
Suppose we only need to evaluate the fields in the region V bounded by both the sur-
face S and the surface at infinity S.. For this purpose, assume the original field in
V and the null field in V; as shown in Fig. 2.1b. Since the fields change discontinu-
ously across S in Fig. 2.1b, there must exist surface currents to satisfy the boundary

conditions:

J:HXH, Jm=nXE,

where J and J,, denote the electric and magnetic currents respectively, and n is the

unit vector outwardly normal from the region where the fields are to be calculated.
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(This convention is used for the direction of unit normal vector throughout this work.)
The integrated effect of these surface currents will uniquely determine the field in the
region V. This is called Love’s field equivalence principle. Evidently this does not make
the problem any easier to solve since we do not know the equivalent surface currents
until the problem is solved. Since we know that the field can be uniquely determined
by the tangential components of E-field or H-field on the surface alone [28], we
may modify Love’s field equivalence principle such that it requires only magnetic
(tangential E) or electric currents (tangential H).

Since the field in the region V; is zero, we may place a perfect electric conduc-
tor over § without affecting the field in V3. Over this conducting surface we have
equivalent current source J and J,. The tangential E-field reduces to zero on the
conductor surface which crosses the magnetic current sheet, and the insertion of con-
ductor does not affect the field in the region V due to J,,.. It can be shown also that
an electric current just in front of an electric conductor produces a null field [9]. The
field in the region V is then uniquely determined by the magnetic surface current
(tangential E) adjacent to the perfect electric conductor whose surface coincides with
the S. In Green’s function technique, this is equivalent to finding Green’s function
to satisfy the boundary conditions for the perfect electric conductor. Similarly, if we
place the perfect magnetic conductor on S, we only need the electric surface currents
(tangential H) to determine the field uniquely in the region V. This modification
to Love’s field equivalence principle is called Schelkunoff’s field equivalence principle

and is illustrated in Fig. 2.2.
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Figure 2.1: Illustration of Love’s field equivalence principle. (a) Original problem;
(b) equivalent to (a).

E,H E,H
i Vv
Zero Field
S S
Zero Field
Electric Ma i
gnetic /
Conductor Conductor
Jm=nxE J=Hxn
(a) (b)

Figure 2.2: Illustration of Schelkunoff’s field equivalence principle. (a) magnetic
current over electric conductor; (b) electric current over magnetic conductor.
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2.3 Free-Space Dyadic Green’s Function

Maxwell’s equations in the phasor form are

VXxE+jwpH = —Jn, (2.1)
VxH-jweE = J, (2.2)
VH = paln, (23
V-E = ple (2.4)

It is assumed that all quantities vary as ¢“*. Quantities J,, and p,, are densities of
magnetic current and magnetic charge, respectively. Currents and charges are related

by the equation of continuity,

V-J+jwp = 0, (2.5)

V-dn+jwpn = 0. (2.6)
The vector wave equation for E is obtained by taking curl of curlE resulting in
VxVxE-EKE=—juud -V xIJ,,, (2.7)
where k% = w?pe. In a similar fashion we find that H is a solution of
VxVxH—k2H=—=jweJm+VxJ. (2.8)

We can derive either Eq. (2.7) or (2.8) from the other using the substitutions E — H,
H—--E J->J,, J.— —J,and € & p.

Both E and H fields satisfy the linear vector equation in the form

Lf=g. (2.9)
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We first note that, in general, the solution cannot be expressed in terms of a single

scalar Green’s function, as, for example,

£(r) = /V G(r|t)g(r')dV".

Such a relationship implies that the source g(r’) everywhere parallel to the z axis
generates field f(r) parallel to the same axis. This is true for the relationship be-
tween the current source and the magnetic vector potential but not for the fields. It
is therefore necessary to use nine scalar Green’s functions to express the three com-
ponents of f(r) in terms of three components of the source g(r’). One of such nine
scalar Green’s functions, G, (r|r’), measures the z-component of the field at r due to
a unit y-directed source at r'. |

Thus the equations for f(r) can be written as [6]
f(r) = / (Gues - g+ Gyey - g + Gre, - g)dV' = / G- gdV, (2.10)
where G is the dyadic Green’s function defined as
G = G.e; + Ge, + Ge,. (2.11)

(In this work, bold characters are used to denote vectors and bold characters with
a bar to denote dyadic quantities.) The G’s are the column vector of the dyadic

Green’s function G, for example, as
G:c = G:cz:e:x: + G‘yxey + Gz:cez~ (2]‘2)

In the matrix notation, Eq. (2.10) may be rewritten as

df T Ga::c Ga:y G:t:z dga:
dfy | = | Gye Gyy Gy dg, |, (2.13)
df z Gzz: Gzy Gzz dgz
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or in the tensor notation,
fi= /G,'jgjdV’. (2.14)

Consider the vector wave equation for E in the free space excited by the electric

current,

V xV x E - FE = —jwud. (2.15)

The dyadic Green’s function of electric type is defined as a solution of
VxVxG,—kG,=I§r-r), (2.16)
where I is the unit dyadic defined as
I=-e,e,+ee, +ee,. (2.17)

Subscript e of G, denotes the Green’s function of electric type. We do not impose
any boundary conditions on G, except that it should satisfy the radiation condition
at infinity.

Following Levine and Schwinger [21], we transform Eq. (2.16) to the vector Helmholtz

wave equation form. A vector identity
VxVx=VV.-V?

can be used to obtain

(V2 + B)G,(]r) = —(T + %5\7\7)5@ ~ 7). (2.18)

Since we know that, in free space, the scalar Green’s function G(r|r') obeys the

relation
(V2 + F)G(rlr') = —6(r — ), (2.19)

17




the corresponding dyadic Green’s function should be in the form
G.(r|t)) = (I+ VV)G (2.20)

The scalar Green’s function satisfying the radiation condition is well known as

G(rlr') = G(R) = (2.21)
4R’
where R = |R| = |r — 1’| is the distance between the source point r’ and the field
point r. Thus, the dyadic Green’s function is
1 e—ikR :
G (rlr) =(1 +o VV) (2.22)

The hierarchy of the above dyadic Green’s function becomes clear by constructing
an explicit coordinate-free form [8]. In order to do that we will use the following

relationships

A

VR = R (2.23)

S

VR = %(T-ﬁf{), (2.24)

where R =r — 1’ and R = R/R.
Using the chain rule that if f(u) is a function of u, and u is a function of r, we

have

df
du

With the aid of the above relations, we obtain

Vf=

6—ij

v pe L) R 9.
— = (jk+ =) SR, (2.25)
and
e—ikR jk 2 A o] eIkR |
\VAV, = 2 . .
= [ ( =+ Rz) I-3RR) — & RR] = (2.26)
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Substituting Eq. (2.26) into Eq. (2.22), we finally obtain

1

G.(eh') = (T~ RR)G(R) — (1~ BRR)G(R) — 5

E I -3RR)G(R). (2.27)

The first term, which varies as 1/R, is the radiation term which is purely transverse
to the direction R as the dyad I — RR projects any vector perpendicular to R. Thus
the radiation field far from the source is a plane wave. The second and third terms are
also familiar induction and electrostatic terms, respectively. For an arbitrary current

distribution, the electric field will be
E(r) = —jwp / G.(r]r") - I(r')dV". (2.28)
Similarly for H fields due to the magnetic currents satisfying
V xV xH-EFH=—jwel,, (2.29)
the dyadic Green’s function of magnetic type is defined as the solution of
V xV x G, — k*G,, =I§(r — r'). (2.30)
For an arbitrary magnetic current distribution the magnetic field will be
H(r) = —jwe / Go(r|r) - T (r)dV". (2.31)

G,, is obviously equal to G., and we denote both as Gg, which is called the free-
space dyadic Green’s function. In general the dyadic Green’s functions of electric type
and magnetic type are different from each other when the explicit boundary conditions
are included in the definition of Green’s function. For example, in the region bounded
by a perfectly conducting wall, the boundary conditions on the surface satisfied by

the Green’s function are such that
nxG.=0, nxVxG,=0, (2.32)
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which says that the tangential electric field on the electric conductor vanishes. Thus
G, # G, in general. |
From Eq. (2.27), we see that the free-space dyadic Green’s function has symmet-
rical properties,
Go(r|r') = Gg (r'[r), Go(r|r') = Go(r']r), (2.33)
where superscript T denotes the transpose of a dyadic. The first identity, often called
reciprocity relation, is satisfied by all types of Green’s function but the second one is

special to the free-space case. These are useful because we can write
Go-IJ=J-Gy (2.34)

without worrying about ordering of the multiplication, i.e., Go commutes with an

arbitrary vector.

2.4 Dyadic Green’s Function and Field Equiva-
lence Principle |

Consider the source in the region V; shown in Fig. 2.1a bounded by the surface S. The
fields of physical interest are those contained within the regions devoid of charges and
currents. Such a region is denoted as Vin Fig. 2.1a bounded by S and the sufface at
infinity Se. The unit vector n is normal to § outward from the region V. Then the

electric field in V satisfies the source-free wave equation,
VxVxE—-EKE=0. (2.35)
We define the dyadic Green’s function as a solution of

VxVxG-kG=15r~-1). (2.36)
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This Green’s function is defined in the unbounded space, V 4V, and it should satisfy
the radiation condition. This is essentially the free-space dyadic Green’s function
previously denoted as Gg but, since we will impose a boundary condition later, we
will leave it as G.

In order to relate the field in V with the surface integral over S, we use the Green’s

second vector identity written as

/S . dSn-[Bx(VxA)-Ax(VxB) = ‘/VdV[A-Vx(VxB)—-B-Vx (Vx A)].

+Sco / .
(2.37)

Substituting A(r') = E(r') and B(r') = G(r'|r) - e, where e is an arbitrary constant

vector, we obtain

/S+S°° dS'n - [(a(r’|r) . e) x (V' x E(r’)) _ E(r') % (V' % E(r'[r) . e)]

= /V dV'[E(r) - V' x V' x (G(r'[r) - e) — (G(x'|r) - €) - V' x V' x E(r)]. (2.38)

Using the relation V x E = —jwpH and noting that the surface integral vanishes on

S, we obtain

E(r) ifreV
0 otherwise
(2.39)

’

jwu/‘;dS'(n x H) - G(r'|r) — LdS'(n x E)- V' x G(r'|r) = {

where we used Eq. (2.35) and Eq. (2.36) to evaluate the volume integral. Physica.l

interpretation of this will be made clearer by applying the relation [21, 29]

V x Go(rlr') = [V x Go(r'lr)] (2.40)
to see that
E(r) = —jwp /S G(r|r)) - (H x n)dS’ — V x /g G(rlr') - (n x E)dS’
= E (duetoJ =H xn) +E (due to J,, =n x E) . (2.41)
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Thus we have proved Love’s field equivalence principle. A corresponding expression
for the magnetic field may be obtained by substituting A(r’) = H(r') and B(r') =
G(r'|r) - e into Eq. (2.37) and the result is

freV
otherwise

(2.42)

_jweLdS'(n x E)- G(r'|r) - /SdS'(n x H)- V' x G(r'|r) = { ;{(1‘)

which is equivalent to replacing E — H, H — —E, and x — ¢ in Eq. (2.39).
If the surface S is a perfectly conducting wall, it will be convenient to distin-
guish electric and magnetic Green’s functions G, and G, which satisfy the boundary

conditions

nxG,=0, nxVxG,=0. (2.43)

The expression for the electric field can be obtained by replacing G with G, in
Eq. (2.39), then the first integral vanishes because of the boundary condition. Simi-
larly the magnetic field can be obtained by replacing G with G,, in Eq. (2.42), then

the second integral vanishes. The resulting expressions are
E(r) = — /S dS'(n x E) - V' x G(r'|r), (2.44)
H(r) = —jwe /S dS'(n x E) - G(r'|r). (2.45)

Using the symmetrical relations Eq. (2.50) and Eq. (2.53) below, we rewrite the above

equations as

Er) = -V x /S dS' G (r|r') - (n x E), (2.46)
H(r) = —jwe /S dS'Gm(rlr') - (n x E), (2.47)
which clearly show that the fields are due to the magnetic surface current. We have

derived a mathematical expression of the Schelkunoff’s field equivalence principle
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shown in Fig. 2.2a. The other one corresponding to Fig. 2.2b will also be verified by
interchanging the roles of G, and G,,.
Finally, we summarize the useful symmetrical relations of dyadic Green’s func-

tions. The proof is given in Ref. [21, 29].

VXV x G- kG =Tsr—r), (2.48)
nxG =0, nxVxG,;=0, ronS, (2.49)
Gl =[G (2.50)

V x Go(rlr') = [V’ x Go( '|r)] (2.51)
V x Ga(rlr') = [V' x Gg(r'lr)] (2.52)
V x Galrlr) = [V' x Gl(r’lr)] (2.53)

2.5 Reaction Concept and Variational Formalism

Let E® and B*® be the fields in volume V bounded by a closed surface S and excited
by volume distribution of electric current J* and magnetic current J,. Similarly for
E® and H® generated by J° and J2,. Then, by the Lorentz reciprocity theorem, we

get
jé(E“be—E”><H“)-dS=/V(E"-J“~—H"-J,‘,‘n—E“-J"+H“-an)dV. (2.54)

If the current sources are finite and enclosed by the surface S, the left side of
Eq. (2.54) can be shown to vanish. One of the most useful forms of Lorentz reciprocity

theorem, in terms of Rumsey’s notation [23], may then be expressed as

<a,b>=<bya>, (2.55)
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where < a, b > is called by Rumsey as reaction of the field a onto the current source
b and is defined as

<ab>= /V (E*.J° — H*. 35 )dV. (2.56)

Rumsey showed that, if the quantity of interest can be expressed as a reaction, a

variational approximation with a suitable stationary property can be easily derived.

To see that, we let the correct reaction be < ¢,, ¢; > and the trial reaction be < a,b >.

Then it is shown that if < a,b > satisfies the condition
< CqyCp >R A, b >=< ¢, b >=<a,c >, (2.57)

< a,b > is a variational approximation to < ¢,, ¢, > which is stationary with respect
to the correct values of ¢, and ¢;. In order to prove it, following Harrington [14], we
let

a=Cy+ Paa, b=cp+ prey (2.58)

where p is an arbitrary parameter and e represents an error. Then < a,b > becomes
<a,b>=< ¢y, > +ps < €, > +pp < Cay€5 > +DaPp < €q,€p > . (2.59)

Using Eq. (2.57), we rewrite the above equation as
<a,b>=<cyych > —paps < €q,€p > . (2.60)

Since the equation satisfies

0<ab> 9<a,b>

op. Bp. =0 asp, =0, pp =0, (2.61)

we have proved the stationary property of < a,b >.
Even if Eq. (2.57) leads us to a variational formula, it does not enable us to set up

the proper functional equations to be solved when a trial field and associated source
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are expanded in series of functions with unknown coefficients. For that purpose we

will use the following expression,

< a,cp >< Cqyb>

<ab> ’ (262)

< €, Cp >RK a,b >=

which is the same as Eq. (2.57). By equating these two expressions, we are ready to
solve for unknown coefficients, which is usually equivalent to solving linear algebraic
equations. In the final stage, by substituting the calculated coefficients into Eq. (2.57),
we will have desired results which should be a good approximation to the correct

solution.

2.6 Application to Aperture Problem in an Infi-
nite Screen

We consider a surface S which consists of an infinitely thin, perfectly conducting plane
screen S, of infinite extent and an aperture S; (or S;), which is shown in Fig. 2.3.
If we denote the fields as Eo(r), Ho(r) in the absence of an aperture, we may write

the fields in each half-space as

E(r) = Eo(r) + Ey(r), H(r)=Hy(r) + Hy(r), 2<0
E(r) = Ey(r), ( ng; =H2§r§, () 2> 0 (2.63)

where the subscripts 1 and 2 indicate the region z < 0 and z > 0, respectively, and

the fields are subject to the boundary condition
e, xE=0, e, H=0, ron S.. (2.64)
Ey and Hy can be decomposed as

EO = Einc + Eref, HO — Hinc + Href, (265)
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E(inc), H(inc)

Figure 2.3: Diffracting aperture in a plane screen.

where the superscripts inc and ref indicate the incident and reflected waves from the
plane conducting screen which is not perforated. The boundary conditions on the
surface S are
Eine = Eref . Hi" = 0™ ronS, (2.66)
where the subscripts z and ¢ denote the z-component (normal component) and the
tangential component of fields, respectively.
The boundary conditions in the apertures can be expressed by the continuity of

fields in the aperture as

Ey=Ey, Hy— Hy = Hy, rin Sa, (2-67)
le = HZz, E2z h Elz - EOz’ rin SM (268)
which are satisfied if
1 . .
Hy = —Hy = §H0t = H;™, rin S,, (2.69)
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1 .
By = —FEq, = §E0z = E;nc, rin SG-‘ (270)

Using Eq. (2.46) and Eq. (2.47), we express the fields in each half-space separated

by the screen in the integrél form as

E(r) = Vx[5,Gn(rlr) (e xE)dS" |

a M . ].
H(r) = jocfy, GL(el)- (e xB)as J72% TV
E(r) = E™4+E™® -~V x [; G, (r|r') - (e. x E)dS’ 2 <0 (2.72)
H(r) = H™+H* —jwefs, G, (r|r') - (e. x E)dS’ [~ =7 '

where the superscripts 4+ and — denote the region z > 0 and z < 0, respectively.
Care must be taken with the sign of unit vector n. Following our convention that
the direction of n is outwardly normal from the region where the fields are to be
calculated, n = —e, for the region z > 0 and n = e, for the region z < 0.

The dyadic Green’s function for the half-space can be readily constructed using

the image principle and is shown to be {21, 29]
G/ (r]t) = Gol(r|r) T Go (r|r' — 2e.e, - ') - (T — 2eze,), 2,220,  (2.73)
where the upper and lower signs are employed for _G: and @;, respectively, and
G (1)) =G (r—2e.e, 1,1 —2ee, 1), 22 <0 (2.74)

If Eq. (2.73) is multiplied from the right by the vector e, x E(r’) and the result

evaluated at 2’ = 0, it can be seen that
G’ (r|r) - [e. x E(r))] = 2Go(r]r) - [e. x E(r')]. (2.75)

Thus, Eqgs. (2.71) and (2.72) are rewritten in the form
E(r) = V x [5, Go(r|r') - (2e, x E)dS’
H(r) = jwefs, Go(r|r')-(2e, x E)dS’

E(r) = E™+E™ -V [5, Go(rr))- (2e. x E)S" |
H(r) = H™ +H™ — jwe [5 Go(r|r') - (2e; x E)dS’ -

} 23>0, .(2.76)

(2.77)
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Screen Screen No Screen

]
1
E, H E, H Zero Field E.H Zero Field : E.H
1
i
_— 1
Il
— 1 Jm=nx E I:l Jm=2nxE
—_— B [ ] : | |
1
i
n z n z n 1 z
- - -
(@) (b) (c)

Figure 2.4: (a) Original problem; (b) and (c) Equivalent problem to (a) for the region
z > 0.

The physical steps hidden in the derivation can be visualized from the field equiva-
lence principle shown in Figs. 2.4 and 2.5 for the regions z > 0 and z < 0, respectively.

If we know the tangential E-fields in the aperture, we can calculate the fields ev-
erywhere using Eqgs. (2.76) and (2.77). The desired integral equation for the tangential
E-field in the aperture can be written by noting the boundary conditions Eqgs. (2.69)
and (2.70). In the plane of the aperture, we have

e, - Ei"‘f(r) = e,-Vx [ @o(r{r') - (2e, x E)dS’
e. x H™(r) = jwee, x [5 Go(r[t) - (2e, x E)dS’

}r, rin S,. | (2.78)

In general, it is difficult if not impossible to solve this integral quation. Fortu-
nately, most of the physically interesting quantities such as the transmission coefficient
do not require detailed knowledge of the field around the obstacle. Besides, such a
quantity is expressed in an ir;tegral form which is amenable to an approximation. We
take the calculation of the transmission coeflicient through a circular aperture as an

example of using variational formalism to obtain the approximate solution.

Consider a linearly polarized plane wave normally incident on an aperture in a
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Figure 2.5: (a) Original problem; (b) and (c) Equivalent problem to (a) for the region
z2<0.

plane screen. The transmission coefficient is defined as

_ Re[s, ExH*-e.dS
" Re [g Eirc x Hin . e,dS’

(2.79)

which is the ratio of the transmitted power through an aperture to the power incident
on the aperture. Re denotes the real part of the complex quantity. Let the incident

wave be specified by
ZOHi-n,c =e, e—jkz, Ei'n.c =e, e—jkz, (280)

where Zy = y/po/€o is the intrinsic impedance of free space, equal to 377 (2.
Since e, x H is real in the z = 0 plane, we may express the numerator of Eq. (2.79),

representing the transmitted power, as
P = —Re/S J,.-HdS = Re < ¢,c >, (2.81)

where J,, = n xE = E x e, is the equivalent magnetic surface current in the aperture

and < ¢,c¢ > is the Rumsey’s notation for the self-reaction of the correct magnetic
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current radiating in the presence of an electric conducting screen. We approximate

< ¢,¢ > by < a,a > with the constraint given by Eq. (2.57) such that
<c¢ec>m<La,a>=<ca>=<a,c>. (2.82)

The meaning of < ¢,a > is restated as the reaction of the correct field H on the trial
current J%,. The constraint condition is met for our problem because n x H® = n x H"¢
in the aperture. A variational formula for < ¢, ¢ >, which is stationary with respect

to the correct magnetic current J¢,, may be written as

. 2
2 H . J2 48

<e¢ > <Ge> _ _ (fs“ ) , (2.83)
<aa> Js, H* - 32.dS

where we must emphasize that H® is the field due to the assumed current JZ,.

Thus the variational solution of the transmission coefficient is

. 2
_ =1, Us - 35.dS)
= 7oA [ He-J:dS

T (2.84)

where P; = ZoA represents the incident power on the aperture of area A.
As a choice of trial fields, Meixner has shown that, at the rim of an aperture, the
tangential component of the electric field vanishes as R'/2 and the normal component

/2 where R measures the distance from the field point to the edge.

increases as R~
Bouwkamp has obtained the low-frequency exact solution for the normal incidence

on the circular hole of radius a. According to him,

2&2 — 2
e, E(p,¢) = W cos ¢,
es-E(p,6) = —2(a®—p?)%sin ¢,

in the hole. Here the origin of the polar coordinate system is at the center of the
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circular hole. Thus we may choose the trial field in the aperture in the form

1

e, -E(p,¢) = mian(s)%cosQ (2.85)

2 o
s Blpd) = (1-5)73 6.E)ymsing, (2.86)
0

where a, and b, are unknown coefficients to be determined. Huang, Kodis, and
Levine [15] have used this trial field to calculate the transmission coefficient and have
shown that the a,greemeﬁt between the calculation and meaéurement is excellent.
As an example of calculational procedure, we adopt here a simpler forrﬁ of the
original trial function used by Levine and Schwinger [21]. With the incident field

specified in Eq. (2.80), we may assume a one-component trial field as

o0 2 n—1/2
nxE =e, 3 a,(l— %) = e,(p). (2.87)
1

Substituting this into Eq. (2.84) and using the relation

H(r)® = —2jwe /S Go(rlr') - [n x E*(r')] 4", (2.88)
we obtaln
1
T = 7 AReI
R |
- 1 Re (fSa ¢(p)ds) (289)

ZoA " jre s, I, $(0)(Cas + Gy #(2)d5d5"

If we denote

2\ n—-1/2 2
B, = / (1—"—) ds = 214 (2.90)

and

= Com, (2.91)
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we may rewrite Eq. (2.89) as

(jwe)I Z A Crnn, = (Z a, B )2. | (2.92)

m,n=1

The procedure for determining unknown coefficients a, is to differentiate I with re-

spect to each coefficient a, and set 3I/da, = 0. This leads to

(Jwe)! ;C’mam =B, (; amBm) : (2.93)

But by definition I = ¥, @, B,, so that we have a set of linear algebraic equations

for a,,

E Crm O = B— (2.94)

m=1 JLUE

Once a,, is determined, the transmission coefficient will be obtained from

TW = ——Re Z I= -1 Re Z an B, (2.95)
ZoA

n=1 n=1
where N denotes the order of approximation and Re denotes the real part.

As an example, we will work out the first-order approximation. For N =1, a4 is
simply jwea; = B;/Cy;. Levine and Schwinger [21] have shown that the coefficients

Cmn can be expressed as

Con = ( k2a)2 &T (m + %) r (n + %) [(m + n — 3) Fon(ka) — kaF". (ka)],
(2.96)
where a is the radius of a circular hole and the prime denotes differentiation with
respect to the argument. The function F,.,(«) has been considered in Ref.[19, 20}
and its explicit expression is given there for m, n = 1, 2. Then, with Eq. (2.95), T®")

becomes

T = —f—kalm 1

(2.97
97 Fi(ka) + kaFy,(ka)’ (2.97)
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which is exactly the same as Eq. (7.16) in Ref. [21] except for the sign because
we have used e/’ instead of e™** in Ref. [21]. We also point out the differences
between Levine and Schwinger’s work and ours in deriving Eq. (2.97). First, we used
Rumsey’s reaction concept to derive the variational formula. Second, we used M.K.S.
units instead of cgs units. Because of these differences, the intermediate results in
deriving Eq. (2.97) look different but the final results are of the same form.

The transmission coeflicients obtained from the various theories, which are ex-

panded in powers of ka, are:

1. Small hole approximation (due to Bethe [5])

64

T= 277«'2

(ka)*. (2.98)

2. First- and second-order approximations by the variational method using Eq. (2.87)

as the trial fields (due to Levine and Schwinger [21])

T = 2? = (ka)* [1+ (ka)2+o.72955(ka)4+-~], (2.99)
T® = 5 2(ka)4 [1+ = (ka)? + 0.74155(ka)* + - - ] (2.100)

3. Zeroth-order approximation by the variational method using Egs. (2.85) and
(2.86) as the trial fields (due to Levine and Schwinger [21])

64

0) _
7©) o 2(

ka)* [1 + = (lm)2 + 0.4079(ka)* + - - ] . (2.101)

4. First-order approximation by the variational method using Egs. (2.85) and
(2.86) as the trial fields (due to Huang, Kodis, and Levine [15])

T —

(ke [ + 22 (kay? +0.3968(ka)4+~--]. (2.102)

‘77 2 25
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5. Exact solution (due to Bouwkamp [3])

T =

64 4[ 22 La)? 4 }
27”2(1«1) 1+25(ka) + 0.3979(ka)* + . (2.103)

(Original work of Bouwkamp is not available to us but the above result is cited

in Ref. [15, 21].)

We note that Bethe’s result is accurate only at low frequencies, namely ka < 1.
The variational method using one of the simplest trial fields shows a good agreement
with the exact result, even when such a trial field does not incorporate the proper
two-component tangential electric fields in the aperture. Inclusion of two-component
effects raises the accuracy up to the relative order (ka)? even in zeroth-order ap-
proximation as shown in Eq. (2.101). This demonstrates the importance of choosing

correct trial fields.
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Chapter 3

Longitudinal Impedance of a Hole
in an Infinite Screen

3.1 Introduction

In this chapter, we evaluate the longitudinal impedance of a hole in a thin, perfectly
conducting plane screen. We have already discussed a similar problem of calculating
the transmission coefficient in Chapter 2. Since the analytical technique presented in
Chapter 2 is general enough to deal with the calculation of a variety of interesting
quantities, it is not necessary to introduce new formalisms for our impedance calcu-
lation. After all, calculating the impedance or the transmission coefficient deals with
the same diffraction phenomenon. Only the definitions which involve the integration
of fields are different.

In Section 3.2, we will estimate the impedance in the low frequency range using
Bethe’s [5] small hole approximation. If we can expand in powers of frequency, the
low frequency solution will represent the first term in the series.

In Section 3.3, we will obtain the variational solution of impedance with different

trial fields, showing the main result of this chapter.

35




y
d 4

V=

S
N

Figure 3.1: Infinite flat screen with a hole.
3.2 Low Frequency Solution

The geometry of our problem is shown in Fig. 3.1 where a charge is moving in the
z-direction with velocity close to the speed of light. The distance between the plane
screen and the beam path is b and the origin of the coordinate is at the center of the
hole with radius d. The local cylindrical coordinate system (p,8,y) is also shown.
Denoting E,, H; as the fields without the hole and E,, H; as the fields with the

hole, we can express the longitudinal coupling impedance defined by Eq. (1.14) as
|L]2Z (k) = /h _(n x Ey) - HydS, (3.1)

where J,, = n x E; is the magnetic current induced in the hole, which is not known
until we solve the problem. In the low frequency approximation, however, we may
use Bethe’s solution for n x E as follows.

Assuming a small hole, namely kd = 2rd/A < 1, Bethe obtained the solution for
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the magnetic current in the hole [5]

P e, X Eo + ZkZO
g Fdz' _‘pf P 0 J T

where Eg and Hy are the field evaluated at the center of the hole in the absence of

nxE=- d? — P2 HO = Jm,E +Jm,H, (32)

the hole, and J,, g and J,, g denote the magnetic current induced in the hole due to
the incident electric and magnetic field, respectively.
The magnetic field from the unit source current can be obtained using the image

principle, resulting in

_ b (y=0)  (y+¥b =ik
e Lﬂ +(y =02 22+(y+ 6)2} ’

2r

H.

T B T ik
2r [+ (y+b)*  a?+(y— D) ’
(3-3)

where the coordinate system in Fig. 3.1 is used. In the plane of the hole, it becomes

Iy b

i = w4 b?

e % H, =0. (3.4)

Assuming a small hole in which the field is uniform but the phase is varying, we may

rewrite the source field as

H, = H, — jk2Ho + O(K), where Hy = —%ex. (3.5)

Then, the longitudinal coupling impedance becomes

A4Zo B H?
[lo]?Zu(k) = | Ty HdS = ]—0—3——2152, (3.6)
2ZodBH?
o’ Ze(k) = | JImp-HidS =—J———03—£k7 - @37
2Zod® H2
LI*Z(k) = Zu(k)+ Zp(k) = j==2—LF, (3:8)
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which results in Z(k) = (2Z0d®/372b*)k. We note that Zy(k) due to J,, g is a factor
of two larger than Z(k), and Zg(k) due to J,. g is the negative of Z(k). We also
observe that the current Iy does not appear in the final expression of impedance.
Thus we keep Iy in the expression only for bookkeeping purposes, setting Ip = 1 in
the final formula. By doing so, we may simplify the expression in the later sections.

Although Eq. (3.8) is valid only for low frequencies, it is quite general. If we
consider a charge traveling inside a cylindrical beam pipe of radius b with a hole of

radius d, the longitudinal coupling impedance becomes, with Hy = 5% in Eq. (3.8),

. Zod®

k (3.9)

which is exactly the same as Kurennoy’s [18] and Gluckstern’s results [11].
Thus, in low frequency approximation, we can easily obtain the longitudinal cou-
pling impedance once we know the source field which is specific to the geometry

surrounding a traveling charge.

3.3 Variational Solutions

In this section, we try to calculate the longitudinal coupling impedance of a.hole in
an infinite screen using a variational method. We begin by defining an “impedance
functional” which is stationary with respect to the unknown quantity (magnetic cur-
rent density in the hole). Such a functional may not be the same as the quantity
of interest, the longitudinal coupling impedance, but it will be shown later that the
two quantities are related. Thus, from the impedance functional, we can obtain the
expression for the longitudinal coupling impedance. Various trial fields are used to

evaluate the impedance functional and the results are presented.
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3.3.1 Derivation of Impedance Functional

The geometry of the problem is shown in Fig. 3.1. I we denote the fields without
the hole in the screen as E; and H;, and the fields with the hole in the screen as E,

and Hj, E; ; and H, ; satisfy Maxwell’s equations in the form
V x El,z = —jw#Hl,g, V x H1,2 = jw&El,g + J, (310)

where J = e;6(y + d)é(z)e 7% is the current density of the driving beam with unit
amplitude and k& = w,/eofip is the free-space wave number.

Expanding the quantity V - (E; x Hy — E; x H;), we get the identity
V. (B, x Hy ~E; x Hy) = J - (E; — E,). (3.11)
Taking the integral of both sides, we have
/(E1 x Hy — Eg x Hy) - ndS = /J - (E; — Ey)dV. (3.12)
We define the impedance functional £ as
Z=- /J (Eg — E;)dV. (3.13)

In the above definition, as we subtracted the contribution from the source field, the en-
tire contribution is from the scattered field which satisfies the homogeneous Maxwell’s
equations. We note that if the electric field is real, the longitudinal impedance is the
complex conjugate of the impedance functional, Z(k) = Z*(k).

If the integrating surface is chosen to coincide with the plane of the screen where

E; satisfies the boundary condition n x E; = 0, Z reduces to
2= [Hi-(nxE;)dS, (3.14)
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which we want to evaluate. We also recall that the longitudinal impedance is
Z(k) = / H: - (n x E,)dS. (3.15)

For the sake of clarity, we change the notation as

E1 = Ei, H1 = Hi,
E;=E+E, H,=H+H,

where superscript : denotes the “incident” or “source” field of the driving beam
without the hole, and superscript s denotes the “scattered” field from the hole. The
hole is acting as “scattering object” or “obstacle”; otherwise the media are empty
space surrounded or separated by the perfectly conducting material.

In the new notation, we may write Z as
Z= / H' - (n x E*)dS, (3.16)
where n x E* = 0 in the aperture is used. With J,, = n x E®, Z becomes
Z= / H - J3,.dS. (3.17)

But, by definition, Z = — [ J-E*dS so that this satisfies Lorentz’s reciprocity theorem.
Using Rumsey’s notation, we may express Z in a compact form, Z = — < i,s >
which is often called the “echo” of a scattering object, an important quantity in the
development of radar technology. We can state that our impedance functional is the
mutual reaction between the source current and the magnetic current induced in the
aperture. Using known boundary conditions which the tangential magnetic field must

satisfy in the aperture, H} = —2H?, we rewrite
Z=——2/H3~de5=2<c,c>, (3.18)
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where < ¢, ¢ > stands for the self-reaction of the “correct” magnetic current induced
in the aperture by the source.

Now we can write the variational expression for Z as

<c,a>2 _ i [fsa H' - (n x E“)dS]2

Z=2<c,c>z2<a’a>-— 3 H* (a x B)dS (3.19)
Using dyadic Green’s function, we calculate H® from
He(r) = —2jwe /S Go(rlr') - [n E*(+')|dS". - (3:20)
Thus, Eq. (3.19) may be rewritten as
: Js. - % Ea)ds]z (3.21)

" djwe [5 Js.In x Eo(r)] - Go(r|r') - [n x B*(r')]dSdS"
which is a homogeneous equation in the sense that the result does not depend on the
amplitude of the assumed electric field E®. In fact this is a general expression for
the impedance functional of an aperture in a conducting plane as long as the plane
is the symmetry plane separating two regions, namely, an infinite plane or coupled
waveguide structure. Details of the calculation depend on the shape of the aperture
and the assumed tangential electric field in the aperture. In the next section, we

present a closed form solution for a hole in an infinite screen.

3.3.2 The First Variational Solution

In the previous section, we derived the impedance functional Z which is stationary
with respect to the correct tangential electric field in the aperture. In order to evaluate
it, we need to assume a trial function for E®.

We assume a one-component trial field based on Bethe’s solution [5] as

n=0cc 2
nxE=e, 3 an(l- %)n—% = e.4(p), (3.22)
n=1
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where we dropped the superscript a. We note that the unknown coefficient a,, is

dependent on the frequency. The impedance functional is

_ 1 [Js. Hi(p,8)8(p)ds]’
" tjwe s, Iz, $(p)Geslp, 010/, 0)9()dSdS"

We transform the equation into a more symmetrical form utilizing the symmetry

(3.23)

of a circle. For instance, if the beam is moving in the x direction, the expression for Z
will be in the same functional form as Eq. (3.23) except that the subscript z denoting

the z component of the field or dyadic Green’s function is replaced by z. Thus, we

have )
_ [Js. Hi(p,0)#(p)dS] 3.2
2jwe Js, [s, #(p) (Gzo + Gz) ¢(p')dSdS"’ .
which is later shown to be much simpler to evaluate.
If we define .
2\ "3
- (g -2
B, = [ Hi(p,5) (1 d2) ds (3.25)
and

2

2 m—% n—-1/2
_ _r _Pr =
Cron = / / (1 d2> (Gre + Gs) (1 d2) dSdS' = Cum,  (3.26)

Z becomes

1 (XZn=1 aan)2

= (327
2jwe ¥ =1 @manCmn’ (3:27)

or

(2jwe)Z 3" amanCmn = (anaan>2. (3.28)

nym=1

Differentiation with respect to a,, and utilization of the stationary property of Z,

namely 0Z/0a, = 0, yield
(2jwe€) Y amCmn = Bn, (3.29)
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where we used the identity Z = ¥, a,B,. Once the frequency-dependent coefficient
an is determined by solving the linear algebraic equation, Eq. (3.29), the desired
impedance functional can be obtained from
N
2™ = %" a,B,, (3.30)
n=1
where NV is the order of approximation. Since the longitudinal coupling impedance is
defined by Z(k) = N, a,B: and B, = B}, which will be shown later, the impedance

functional is the same as the longitudinal coupling impedance.

The lowest order approximation, N = 1, results in

@ = 2jweC’11’
Zy { B?
z0) — _;20 (21 31
] 2k (Cll) ? (3 3 )

where k = w,/eoptp is the free-space wave number and Zy = 377 Q.

With N=2, we find

a - gg -31022 - B2CI2
! 5% | CuCr—Ch |’
v = _i% [ B,C11 — B1Che
2 2k | CuiCa —Cf2
Zo [ B} (B3Cy — Bi1Ch3)?
z@ - _;Z Bl (B:ln 1012
19k |C11 C1i(C11Ca2 — CF)

Zo (Bzcu - 31012)2
2k C11(011022 - 012)

(3.32)

which shows the successive approximation as the order of approximation is increased.

We turn our attention to finding an explicit expression of the quantities B, and
Cmn 1n order to complete the approximate calculation of the impedance. Since the
most convenient coordinate system to describe the hole in the flat plane is the cylin-

drical coordinate system, we express the component of dyadic Green’s function in
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that coordinate system and then carry out the necessary integration to obtain B,
and C,,,.

The free-space Green’s function satisfying the wave equation
(V% + E5)G(r,r') = —6(r — 1)

is G = e77*R/4x R, where R = |r — r’|. Its integral representation is

e—JkR

47 R
1 / . , o e—ia(y—y)

= — [ dgge~it=(==%) /d eiaslz=7) / d 3.33
87"3 q ‘Zz qug + qg + qz _ k2 ( )

where the Cartesian coordinate system is defined in Fig. 3.1. With the help of a

G =

contour which will result in the outgoing wave satisfying the radiation condition at
infinity, Eq. (3.33) becomes

. i [qz(x-x')+qz(z—z')+\/kz~q3-q§|y—y'|]
G=— / / da.d
3wz J J T JEt B

(3.34)

For the convergence of the above integral, we require that [ mm is negative
which also implies m\/m positive.

We are now ready to evaluate the individual component of dyadic Green’s function.
Specifically, we will work out G, and G,,.

1 62
G = (”ﬁﬁz‘z)a

1 - [qz(a:—:z:')-l-q:(z—z')+ k2—qi~QZIy—y'l] 2
= — / / dq,dq ¢ 1-—
N
Introducing a set of angle variables,

g:€; + ¢z€z = (gcosu)e, + (gsinu)e,,
(z—2, + (z—2')e, = (Rcosv)e, + (Rsinv)e,,

q
R
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we obtain

1 [ qdg i ly—y L _
G,, = / e~ IVE -a*ly yl/ jgRcos(v—u) 7.,
‘ 8r2Jo /q? —k? o °©

1 o d 2 : o 12

Using an integral formula

v+ 3)I(3)

T . I‘(
+jzcosd 2w = .
[ e sin 00 = =27 0(2), (3.36)
we find
_ L > qdq ¢ ' —iv/ k=% ly—v'|
G, = h T [Jo(qR) om (Jo(gR) — cos2vJ3(gR))| e .

(3.37)

A similar expression for G, is

1 S qu q2 —in k22 ly—y’
Gz = Z—L;r—./o T {Jo(qR) ~ 5 (Jo(qR) + cos 2vJ3(qR))| e V¥ -lv-v'l,
(3.38)
On the aperture plane y = y' = 0, the desired expression for G,z + G takes a
simpler form,
1 82 1 9%
Goo+ G.e = [(1 + -];55;2-) + (1 + ﬁ@)] G

= 117? | ada [(q"’ — K7 - 7;15(‘12 - kz)m] JolaR). (3.59)

Using a Bessel function addition theorem,

Jo(qR) = Jo (q(p?+ p* — 2pp' cos(8 — 6"))'/?)

= > (2~ bon)Jn(gp)Jnlgp’) cosn(8 — 0'),

0
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where &y, = 1 if n = 0 and o, = 0 if n # 0, we further transform G + G as

Gez + G, = 1 2(2 — bon) cosn(8 — ')
dr <5

/ow 9dq [(q L kl (" — k)Y 2] Tn(gp)Jn(p)-

Substituting the above expression into Eq. (3.26), we have
oo 7r/°° [(q2 ) l(qz — k2)1/2]
mn 0 k2
d p2 m‘% 12 "—l
/0 p (1 - 2§> Jo(gp)dp / (1 - —) Jo(gp')dp'  (3.40)

which is to be evaluated.

With the change of variable p = dsin ¢, the first integral in Eq. (3.40) becomes

d ,02 m-3
/0 p(l——ﬁ> Jo(gp)dp = d2/ Jo(gd sin @) sin ¢ cos®™ pdyp

2 m“I‘(m:}- 2)
(gd)™*2

m+%(qd)a (3'41)

where, in deriving the final result, we used Sonine’s first finite integral formulal,

3 2v
/0 J,.(zsin §) sin*** 0 cos® ! 6d0 = ——I-‘STTD-JH,,H (2) (3.42)

which is valid when both Re(u) and Re(v) exceed -1.
Substituting the above intermediate result into Eq. (3.40) and introducing a new
variable v = ¢/k, we rewrite C,,, as

w2\ 1 1
Crn = 3 () @T(m+3)T(n+3) (3.43)

/0 T = 1) = (02 = DY T (kdv) T,y (k) do.

1See reference [30], p. 373.
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If we define F,,., () as
Fn(a) = /0 T = )M T (), () dy, (3.44)

it can be shown that

Con =2 (%)Mn £T (m + -;-) r (n + %) (2 + 1 — 3) Fnn(kd) — kdF".. (kd)],

(3.45)
where the prime stands for differentiation with respect to the argument. With the
substitution of the above into Eq. (3.31), we obtain

B

zM) — .
Fi1(kd) + kdF/; (kd)

i d2 ° (kd) (3.46)

In order to evaluate the function F,,;,(«), we divide the integration range into two

parts,
Frn(a) = Rpn(a) + jInn(a), (3.47)

where

1
Lnn(@) = /(1—v2)1/2v'(m+n)Jm+l(av)Jn_l_%(av)dv

Rpn(a) = /oo 1)Y/2y=mtm) g 1(av).]n+%(av)dv. | (3.48)

For the first few values of m and n, Levine and Schwinger [19] found

1 1 f2 1 2 Si(¢
Iu(a) = i -— 4 So(2a) / So(t)dt — E/() §'1-£(—Zdt,

2r  4ra 80(2 1603 Jo
1 v 1 1
Ru(a) = 4a( +Z&?) /0 Jo(t)dt — == Jo(20) = £ (20), (3.49)

where Sp, S1 and Jy, J; denote the zeroth- and first-order Struve and Bessel func-

tions, respectively. The similarity between the two functions may be illustrated by
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comparing the integral representation of the two functions,

S,(z) = F—(}(f% 01(1-t2)”-%sinztdt,
J(z) = f@%——%/ol(l—tz)”"% cos ztdt.

We now need to calculate B, in order to obtain the complete expression for the

impedance. In the plane of the hole, y=0, the source fields become

b
7w z2 4+ b2

H, = e~ H, =0. (3.50)

Thus,

B, = /H* -(E x n)dS,

_ b p2 -3 e—jkz

T JSa

Assuming that the source current is far from the hole, i.e., /b << 1, and assuming

that the field is static, B, becomes

2w d? 24?

"Tn+1) T T (@n+ 1)

In fact this is the approximation on which Bethe’s small hole theory is based. Later,
we will factor this quantity out of a whole expression leaving the effect of finite size
of the hole and the effect of phase variation along the hole in the compact form. We
will call this a form factor.

For general cases, introducing the change of the variables z = pcos@ and z =
psin @ and denoting w = p/b, we find from Eq. (3.51)

d 2
Bn=2Ho/0 (1—%)

nel

2 T e—jkb‘wcos& |
d / . 52
pap o w?sin?f+1 (3.52)
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We integrate the second term to obtain

P e—jkbwcose 00 5 - - 9 5
___—da — __1 m m/ -7 w COS : modg

/o w?sin?f +1 mZ=O( )"w 0 ¢ sin
m 1

= S ;Z’,’cmr (m + -2-) r (-1?:) Tm(Ep).

m=0

Substituting the above into Eq. (3.52) and using

iy

1
d 2\ ""2 z -
/ (1 — p_) P I (kp)dp = d™F? /2 Jm(kdsin ) cos®™ @ sin™*! 646
0 ‘ 0

— dm+2 2n—%1‘\(n + :‘12_)

(kd)n_l_% Jm+n+%(kd)a
we may rewrite B, as
2nd? d
B, = 2n7"+ - Ho FFy(5,kd), (3.53)
FFn(%l,kd) — \/§(2n 1) (3.54)

+ 3 (=1)m2em -1 | (kT

Jnpi(kd) &2 (d)z"‘ Tminsy (Fd)
(kdy*+s 5 b ’

where FF,(4, kd) denotes “form factor” mentioned before. We can verify that

FFn(%,kd)zl a,skd—>0and%-—>0,

FFn(g,ka) ~ (kd)™™! as kd — oo and %— <1

The series in the form factor is uniformly convergent in the whole range of kd if
d/b < 1. The fast convergence of series can be seen in Fig. 3.2 which shows that even
the first term alone is a very good approximation. The first term contribution arises
from the phase variation along the hole with the source current being far from the

hole. The amplitude of the source field is constant in the hole and is equal to the
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value at the center of the hole. We may approximate the form factor as

n+2(kd)

T (3.55)

FF(kd) ~ \/—(2 T A

We now express Z(1) in a form which is convenient for numerical evaluation,

4Zod2H FF?

(1) —
z (kd) Fi1(kd) + kdF},(kd)’

(3.56)

Numerical values of Z(!) can be obtained by substituting Eqs. (3.49) and (3.53) into
Eq. (3.56). Since all the functions used in the expression are tabulated in standard
reference materials, it is easy to do; the result is shown in Fig. 3.3.

From the figure, we observe that the resonance frequency k, occurs at kd = 1.6
where Im Z(k) is equal to zero by definition. Since all the electromagnetic power
is dissipated at the resonance, Re Z(k) must have a maximum value there. But the
figure shows that the maximum of Re Z(k) occurs at kd = 1.3 which contradicts
physical argument. Such an unphysical phenomenon may be corrected if we include
the tangential field due to the incident electric field in Bethe’s solution in our trial
fields.

In order to investigate the impedance in the low frequency range, we use the

expansions [19]

In(e) = 2a° 4a° + 16a”
1 T 27t 6757 551257 ’
1 o at
Rll(a) = —3——1—5—-’—126_..._

We may write the impedance functional in a form appropriate to small values of kd:

Rez) — &‘Z{{@g(kd)4( %(kd)h...), (3.57)
ImzZ® = ___4Z°‘;2 ik (kd) (1+%(kd)2-»--). (3.58)
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If we compare these with the low frequency result, namely Z(k) = j(2Zod®HZ/3) k,
we find that the result from the variational method is a factor of two larger than the
low frequency result. This may be explained again by the fact that we excluded the
tangential field in the hole due to the electric field in our trial fields.

Since the impedance shown in Fig. 3.3 ié similar to the impedance of a parallel
RLC-resonator circuit, it would be useful if we described our impedance functional in
terms of circuit parameters. The impedance of a broa,dbandr RLC-resonator circuit is

R
1+5Q (% - =)

where @ is the quality factor and w, is the resonant frequency. In the limit of low

be (w) =

(3.59)

frequency,
Zyy(w) ~ jR(w/w, )/ Q. (3.60)

The quality factor ) is defined by

w;
= — .61
where |Zy(w)| at the frequency w = w, + Aw is 0.707 of its maximum value.
From the above definition, we find that
~ 1.6¢ o ~ 2 172 |
Wy, = T, Q = 18, R= 384Z0d Hg. (362)
The second-order variational solution of impedance Z(? can be written as
2
2(2) 4ng"‘H0 (kd)
(F22 — kdF},)FF? — EL (R, + kdF})FF? — 10F],F F,F F] (363)

(Fuu + del’l)(ng kdF3,) + (kdFy,)?
Numerical values of Z(® are shown in Fig. 3.4. The same comments as in Fig. 3.3

apply here also.
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In conclusion, we have derived the formula for the coupling impedance of a hole
in an infinite screen based on a variational method. Our results show that the hole is
acting like a broadband resonator circuit and our formulas are suitable for determining
the circuit parameters which are of practical use. However, in using one type of
trial field, it is shown that the resulting impedance exhibits unphysical behavior.
Such a deficiency of the method is not removed by simply going to the higher order
approximation. We therefore believe that, in order to obtain physically consistent
results, we should include another type of trial field, namely the field inside the hole
due to the electric field which appeared in Bethe’s low frequency solution. This is

carried out in the next section.
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Figure 3.2: Form factor as functions of kd.
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Figure 3.3: Impedance Functional Z()(kd) for various d/b values.
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Figure 3.4: Impedance Functional Z®)(kd) for various d/b values.
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3.3.3 The Second Variational Solution

In order to eliminate the unphysical behavior of the longitudinal coupling impedance

found in the previous section, we include the tangential field in the hole due to the

incident electric field in our variational calculation. An appropriate two-component

trial field in the hole based on Bethe’s solution is taken to be

/ (p/d)
n x E = a;\/1—(p/d)? e, + bj———=— ey.
e/ \/1"(P/d)2

Since the impedance functional Z(k) is

1 [fs, B - (n x E)dS]’
4jwe [ fs [0 x E(r)]- Go(r|r') - [n x E(x')]dSdS”’

Z(k) =
we may write the numerator as
a b 2
and the denominator as

4jwe [a%C{‘{’ + a1b,C + beﬁ’] ,

B} = [ Hip,0)y/1 = (o/dyds,

B = [ o0~ s

1= (pld)?
cii = [ (oldpodn [ i—(idriap [ a0 [ an

(3.64)

(3.65)

(3.66)

(3.67)

[sin§sin 6'G,,r + sin 0 cos 8'G g + cos 0 sin §'Gy, + cos 0 cos §'Gygr]
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Cit =/ 1—(p/d)2pdp/ \ﬁ%l

27
/ dO/ df’ [sin 0G g + cos 0Gogr]

+/ 1—(p/d)2'dpf\/—_p—/(i—/§— dp

2% 27
/ do / d6' [sin 6' Gy, + cos 0'Gap]
0 1]

d d / 2 27
C{Jllz — (p/d) d (P /d) 'do 4 do dalGaol.
et e

The components of dyadic Green’s function in the cylindrical coordinate system

are defined by

L1
cos(0 0 kzm) G,

1 92
Gpol = Sln(a 0)_k2p'm G,

G = | —sin(6 —¢) ! -—92— G
o = in T 125008, )

’ 1 8
Gggl = (COS(0 - 0 ) - kzpp' 50—3—67) G,

where G is the free-space scalar Green’s function which can be expressed as
e—ij
4rR  4r / Vq 7 k2
1 *  qdq
= —S(2-6, 0—9’/ w(qp)Tn(gp").
ir ;( on) COS n( ) 0 \/qz—-——EfJ (qP) (gp")

G = —5=—=Jo(¢R)
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The impedance functional, in terms of these coefficients, may be written as

2
a1 Bf + b, BY)
Z(k) = —— ( - (3.68)
4jwe [afC’f{’ + a1 5,0 + b’{’C{’?]
or
2
tjwe [a2CPE + b O + b2CH] Z(k) = (B} + b1 BY) . (3.69)
A stationary property of Z, i.e., 0Z/0a; = 0, yields
20
20,03 + b0 = —32—231, (3.70)
and, similarly from 0Z/9b; = 0, we have
a;C¥ + 2b,C% = —j%’Bf. (3.71)
Solving two linear algebraic equations, we obtain
Zy CBb —20% B
a; = 1_2_](:;_ 11 lbb 11 612 , (372)
scgct — (c)
bl — é C](:l]l.)Bf — 20{1fo (3-73)

J .
2k acgro - (c3)
Once the unknown coefficients a1(k) and b;(k) are determined, the impedance

functional can be calculated from the definition
Z(k) = a; B¢ + b, B. (3.74)
We can also calculate the longitudinal coupling impedance which may be written as

Z(k) = a, B> + b B>, (3.75)
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We first evaluate C?. The corresponding integral in angle variables becomes

2 2w , 1 2T 2w , oc p
/0 /0 040 Gaor = | / / 4840 c05(0 = 6) 3(2 = don) cosn(0 — #)
9 ’
__/ / > 9090 2(2 8on) cos (8 — 6")]

qdq

, TR Ji(ap)J1(qp’).-

From the orthogonal property of trigonometric functions, we get

/ ) / " 4648 Cop =7 [~ —2_1,(4p)Tu(ap)
o Jo e o V@-—k ! ! |

If we define
B= [ 2D s(4)edp,
/ V1 —(o/d)?
we have
ch=x[" ﬁq s .
A similar procedure yields
Ch =0,
aa 4 ot qdq ara arya q a a

where I§ and I§ are defined by

= [ 1= (8) Marde
I; = /od\/l—@)zb(qp)pdp-

Since C = 0, the unknown coefficients a; and b; are simplified to

.Zo B} Zo Bt

__J4kcaa’ bi=- e
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(3.76)

(3.77)

(3.78)

(3.79)

(3.80)

(3.81)

(3.82)

| (3.83)



We further note that

4jweaCo = djwe / / ( 1= p/d)) Geolp, 8]0, ) (an/l—(p'/d)z)deS'

(3.84)

which indicates that

CH = Cn/2, (3.85)
where Cy; is defined in Eq. (3.26), Section 3.3.2. We also note that B{ is equal to By
defined in Eq. (3.25), Section 3.3.2. Thus, we only need to evaluate Ct% and ‘B?.

Before we carry out the necessary integrals for 2, we note that if we define

Zo |Bf? . Zo|Bi[?

ZH(k) = a’lBI‘lz* = 4k C = JZk Cll (3’86)
7z Bb2
Z6(t) = bBY = —ioel il (3.87)
Z(k) can be written as
2(8) = Zs(k) + Zu(b), (3.89)

where Zy(k) is already calculated in Section 3.3.2. From this, we find that the
tangential fields in the hole due to electric field and magnetic field contribute to the
impedance separately.

In order to show the order of approximation, we adopt the following notation
ZW+M) = Z(N) 4 7). (3.89)

where M or N denotes the order of approximation or the number of terms used for
the trial field, and Z}{N) = ZN) is calculated in Section 3.3.2.

Using Sonine’s first finite integral formula, we evaluate I? as follows,

/ __o/d) Ji(gp)pdp

N
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/2
= d2/0 J1(qdsin §) sin® 8d0

(3.90)

(3.91)

2. JE J32(ed)
2 qd)
Substituting the above into Eq. (3.78), we obtain
b 2d3 ® 3/2 qd)
Ci1 = ——=dg.
VR
Introducing a new variable a = kd, we separate the above into two parts, that is,
2B i |
Ci = %—I 5 (h = b),
where
L= / J3/2(Q)Jl/2(q)d I, = Js/z(‘])J—uz(‘I)
0 q\/q7 —o? 0 Vg —ao?

From the product representation of the Bessel function

x/2
Ju(2)d,(2) = %./0 Ju+v (22 cos 0) cos(p — v)0d8, Re(p +v) > —1,

we find
2 (/2 J2(2q cos 8)
L = — / cos 0df —— g,
1 b g
_ J1(2g cos 6) 9
I, = / cos 20d8 / ——da
We first consider the real part of [;.
/2 J2(2q cos 0)
Rel;, = — 6de ——"dgq,
°h f cosdl | -

B /2 J3/2 (2cc cos 6)
_/ cos 0d0 3 2 cos 0)12635"

where we used the integral formula?

/NM (x2_22)u’dx —_ MJV——#—I(G'Z))

xu—l au+1 zu—u—l

1
> Z_ - —1.
a 0R6(2 4>>Reu> 1

2See reference [30], p. 417.
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(3.92)

(3.93)

(3.94)

(3.95)

(3.96)




When v is half of an odd integer, the function J,(z) has a finite representation in

terms of algebraic and trigonometric functions of z, i.e.,

2 [sinz
Jap2(2) =4[ — — (s ~— —cos z) .

Then
w2 1
Rel, = ! de sin(Za cosf) _ cos(2ccos )] .
xa? Jo 2 cos b
If we define
\_ [™/?sin(2a cos 6)
Fi(e) = /o 2cos @ 49,
we find
1 |F(e) =
Re 11 = Wa2 ,: o 2.]0(2(1)] .
Since

/2
Fl(a) = /0 cos(2a cos §)df = -;EJo(2a),

it follows that

Fi(a) = /0 Fl(t)dt = = / Jo(2t)dt = /:"Jo(t)dt.

Thus we finally obtain the finite representation of Re I; as

1 1 2a

We now consider the imaginary part of I.

72 J2(2q cos 9)
Iml, = ———/ cos dH/
1 war—g

/2 J2(2a cos G sin ¢)
= /0 cos 846 /0 dé

asin ¢

2 /2 7 S372(20c cos 8)
T ,/ cos 0df 2 (2 cos 0)1/263/7"
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(3.97)

(3.98)

' (3.99)

(3.100)

(3.101)

(3.102)

(3.103)




where we used the general Sonine’s first finite integral formula®

xf2
/ Ju(zsinf)sin' ™ 0df = , /%Sﬁ_;(z). (3.104)
0 V 2

S,(z) is Struve’s function which has a finite representation if v is half of an odd

integer, i.e.,

2 2
2 cos z) . (3.105)

S32(2) = Z (1 + — ——sinz—

27 z2  z P2

With the substitution of a finite representation of Struve’s functions, we obtain

1 /2 1-— 2 0 ’
Iml; = —— df | cos 8 — sin(2c cos 0) + cos(Za cos ) ,
na? Jo 20.cosd
_ 1 s Fz(a)
= 7ra2 [a — 250(20) + o ] ;
where we used
/2 T 1
/ sin(z cos #) sin® 0d6 = M_’-’lgu (2), (3.106)
o 2(3)
and F3(«) is defined as
/2 1 — cos(2a cos §)
Fyla) = /0 L. (3.107)

It is evident that F3(0) = 0 and that
, /2 T
Fi(a) = / sin(2c cos 6)df = —2—.5'0(201). (3:108)
0 ,
From these it follows that

Fie) = [" R =% ["suena == [ " So(t)dt. (3.109)

Accordingly

1 14 1 f2e
Imh=-—— [;a —250(20) + [ So(t)dt] . (3.110)

3See reference [30], p. 374.
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Following the similar procedure, we obtain a finite representation of I; as

Rel, = 2—1-a[2J1(2a)— /:a Jo(t)dt], (3.111)
Iml, = —51& [25'1(2a) _ /0 * So(t)dt]. (3.112)
(3.113)

Since I = I — I, we find that

_ 1 1 20 Jo(20)  Ji(@) ]

Bel = + (4a3 + Zx_) ./o Jo(t)dt — 202  a (3.114)
_ (L AN So(20) | Sife) 1

Iml = (4a3 + 2a) /o Solt)dt + 202 + a  ma (3:.115)

Substituting these equations into Eq. (3.91), we obtain the expression for C?. For

the small values of «, we may obtain a series expansion which can be written as

1 o 9ot 40? 4o®
I(a)—§(1+————+'--)—Jﬁ(l—g‘l'"')- (3.116)

We now need to calculate B? to complete the expression for the impedance. As-

suming H' = Hye™?%* e, where H, is the field at the hole center, we obtain

d 27 ]
Bij = HO'/O pdp d@.ﬂ_ cosge—JkpCOSO

° 1—(p/d)?
‘__(p/d)
j /0 P p)pdp
e o [T Jaa(kd)
= —]27rd Ho EW

With the substitution of C?2 and B! into the expression for ZI(;), Eq. (3.87), we
find

A .ZOWHg Jg/z(kd)
E = -
k2 I(kd)

(3.117)
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It may be interesting to compare Z ( )(k) and ZH expanded in powers of kd. We
find that

2Zod? HE 22
z®0 = i—é’;r———ﬁ(kd)‘1 (1+——(kd)2——---)+ 4Z°d2H°(kd)( +§(kd)2_...),
o _ 8Zd’Hg (19 270d B 2.
2 = 220kt (1- (k) + ) = 22T (k) (1 2(ka) ).

In the low frequency range, it is found

(3.118)

which is the same as the low frequency result found in Section 3.2.

Numerical results of Z}}) and Z}g ) are presented in Fig. 3.5. There we find that
the impedance of magnetic type, Zy, is mainly inductive (Im Z > 0), and the electric
type exhibits capacitive behavior (Im Z < 0).

Combining the two effects, we have numerical results of Z(®(k) which are shown
in Fig. 3.6. We note that the resonant frequency is located at kd = 1.35. We also
find that, at the resonant frequency, the imaginary part of the impedance is zero and
the real part has its maximum which is consistent with physical argument. With this
new result, we revise the circuit parameters, Eq. (3.62), found in Section 3.3.2 to the

new one
1.35¢
d

o

, @18, R~1.62Z,d*H}. (3.119)

Wr

When we use the trial field which consists of the three terms

2y 1/2 2\ 3/2
an:al(l—p—) ex+a2(1—£—) ex—‘}-bﬁ/d)— (3.120)

42 42 lm €9,

we have

7 =z7P + 7z, (3.121)
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Its numerical values are shown in Fig. 3.7.
In conclusion, we have shown that, with the inclusion of the tangential field due to
the incident electric field in the trial fields, the result is consistent with the physical

argument.
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Figure 3.5: Longitudinal coupling impedance, Z}})(kd) and Zg)(kd), for d/b = 0.5.
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Chapter 4

Longitudinal Impedance of a Hole
in the Accelerator Beam Pipe

4.1 Introduction

In this chapter, we evaluate the longitudinal coupling impedance of an aperture in
the accelerator beam pipe. Although the beam pipe can have an arbitrary cross-
section, we assume a beam pipe with a rectangular cross-section which is a good
approximation to the elliptical shape used in most of the electron accelerators and
storage rings.

Since the aperture connects two regions, inside and outside of the beam pipe, we
need to know the outside geometry to complete the specification of the problem. In
a real accelerator, the region outside the beam pipe coupled by an aperture is com-
pletely arbitrary; it can be a closed vacuum vessel, waveguide structure, transmission
line, or even a liner structure. Hence, in order to understand the fundamental charac-
teristics of an aperture coupling, we choose the simplest geometry which has as many
symmetries as possible.

These considerations result in the geometry of two equally shaped rectangular
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Figure 4.1: Rectangular wave guide coupled by a hole as a model to the accelerator
beam pipe with a hole.

waveguides coupled by a hole which is located in the center of the common wall.
Such a geometry is shown in Fig. 4.1.

In Section 4.2, we will estimate the impedance in the low frequency range using
Bethe’s small hole theory.

In Section 4.3, we will obtain the variational solutions of impedance using differ-
ent trial fields and the results will be compared in Section 4.4 with the numerical

calculation from the general wake potential program MAFIA-T3.

4.2 Low Frequency Solution

If the radius of a hole is much smaller than the wavelength, and the plane of the

hole is the symmetry plane, we can use Bethe’s result for the field inside hole (see
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Eq. (3.2)) which may be written as

2kz |
nxXE=——F7—— Wepro+] 2./d? — p? Hy, (4.1)

where d is the radius of the hole shown in Fig. 4.1, k = w,/€ofio is the free-space wave
number, and Zy = 377 2 is the characteristic impedance of free space.
Since we have already obtained a general expression for the impedance in the low

frequency range as
27Zod>H}

2(k) = =2

ok, " (4.2)

we only need to know the source field, Hp, at the hole center.
The electrostatic potential of line charge of density A located at z = 21,y = »1

satisfies the Poisson equation

8%d 9% A
5@ + —3_1/2_ = “;5(5” - z1)6(y — 1), (4.3)

where A/e can be written in terms of the drive current, Iy, as A/e = ZyIo.
For the rectangular waveguide with walls at z = *a, y = £b, the corresponding

Green’s function satisfies

*G  9'G

awz Lrwcy ay = —5($—$1)5(y yl)’ . (44)

with the boundary condition G = 0 at 2 = +a, y = £b. Expanding Green’s function

in single series, we assume

Gmw=§%mmm (4.5)

where a,(y) is the amplitude function and b,(z) is the basis function which is similar

to the Fourier series expansion of an arbitrary function. In a Cartesian coordinate
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system, we may choose b,(z) as

1 . nrm
bo(z) = NG sin %(x + a) (4.6)

which vanishes at z = +a and satisfies the orthonormal conditions,
/ " ba(2)bm(2)dz = Bum. (4.7)

Substituting Eq. (4.5) into Eq. (4.4), we obtain

i [dzzgy) - (12,%)2 an(y)] bu(z) = —8(z — 21)8(y — 1) (4.8)

1

Multiplying both sides of the equation and integrating, we obtain

Lonlt) (22 anie) = ~bm(e)6( = 1) (49)

Solving the above equation for a.,,(y) by the well-known procedure, we find the

potential function as

% gin 2T in 2T
8(z,y) = 2147, $ sin 25(x + a) sin 22 (z1 + a)

: nxb
T = nsinh 22

sinh 22(y + b)sinh 25(b—y1) y <y (4.10)
sinh 22(b — y) sinh ZX(y; + b) y > 1. '

We note that, if we assumed G = ¥ a,(2)bs(y), we would have an alternative expres-
sion with ¢ and b, z and y, z; and y; interchanged in the above equation.
Using the relation H, = —F,/Z, we obtain Hy at the center of the hole (z =

0, y=b z1=y1=0)
_b L
2a =, cosh 1"‘2”75 )

This series converges fast. With this, we have

Z(k)=jZ6‘f(Z 1 ) k. (4.12)

, nrb
neoqa COsh 27
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4.3 Variational Solution

The general expression for impedance in variational method was derived in the pre-

vious chapter and was shown to be

1 [fs. H - (n x B2)ds]’

Z(k) = —= 4.13
(¥) 2 [g,H* (nxE*)dS "’ (4.13)

where H® may be calculated as
He(r) = —jwe fg G (r]t') - (n x E*)dS". (4.14)

The dyadic Green’s function G,, is of magnetic type whose boundary condition should
satisfy n x V x G,, = 0 on the walls. The eigenfunction expansion of dyadic Green’s
function for a rectangular waveguide is developed by Tai [29]. He shows that G, can
be expanded as a double-infinite series of harmonic functions in Cartesian coordinates
(z,y,2). Since the convergence of a series of harmonic functions is very slow and the
Cartesian coordinate system suitable for the rectangular waveguide is not convenient
in describing a hole in the wall, we use the image principle to remove the guide walls,
enabling us to use the familiar free-space dyadic Green’s function.

Such a conversion of the geometry from a hole in a waveguide to infinite image
holes embedded in free-space is shown in Fig. 4.2. In the original problem, the
center of an equivalent magnetic surface current (replacing the hole closed by the
conducting wall) is located at the origin inside the waveguide. In the converted
problem, waveguide walls are replaced by an infinite array of image magnetic surface
currents (“image-source”) located at £ = +2na, n =1,2,3,--- and y = +4mb, m =

1,2,3,--- in addition to the original magnetic surface current (“self-source”).
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Figure 4.2: Hole in waveguide, its equivalent magnetic surface current and its images

in infinite space.
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Since we have two contributions to H® from the self- and image-sources, we sep-

arate H® into two parts, namely,

Ha = nglf + Ha (4.15)

image*

We note that, if the contribution from images is zero, the impedance functional Z(k)
is the same as the one for a hole in an infinite screen. The only difference is that the
source field of the driving beam must be evaluated for waveguide structure. Thus, we
calculate the contribution from the image-source and compare it with the contribution
from the self-source.

For this purpose, we use a simple trial field used in Section 3.3.2 which is rewritten

as

Jn=nxE= ¢(p) €z, ¢(P) =4/l - %:' (4°16)

If we define the denominator in Eq. (4.13) as

D= [ (Hiuy+Hin) - (0 X E*)dS = Doty + Dimager~ (417)
then
— ' '

Dself - ]we Lﬂ _[S'a ¢(p)(Gzz + Gzz)¢(p )deS ]weoll, (4.18)
where Cp,, is calculated in Eq. (3.40). For small kd, D,y has a series expansion in
the form

m2d? /1 3
Im D,y = ~ = ), .
T Dl 6Zo (a 5% + ) (4.19)
4rd? 9 3 ,
Re Dyoy = —27Z0a (1 ~ 5 +-- ) , (4.20)

with o = kd. In the low frequency range, the imaginary part of D,y is dominant
which results in Z(k) ~ jk. Thus, when we compare D,y with the contribution from

the image sources, Dinqge, We compare the imaginary part at the low frequency.
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For Djmage, We use the small hole approximation so that the image-source is re-
placed by the z-directed magnetic dipole moment M. The dipole moment may be

calculated using a general relation

JndS = — / vV - J,.dS = jw /S rpmdS = jwpM, (4.21)

Sa a
which results in jupM = ﬂ'efi—zex located at ¢ = 2na, n = 0,+1,£2,--- and y =
2mb, m = 0,+1,+£2, .., excluding the origin.

In order to calculate the magnetic field due to all image dipoles [9], it may be
convenient to use the Hertzian potential of magnetic type, II. Since the magnetic

dipole moment is z-directed, II has only an z component which satisfies the wave

equation
01,
0z?

For a row of dipoles located at y = +4mb, m = 0,1,2,- - -, the potential becomes

m=00 exp |—jk\/z% + (y — 4mb)? + 22
m=%% ploikye + F e (4.23)
AT 0 \/:1:2 + (y — 4mb)? + 22 .
For this infinite sum, we use Poisson’s sum formula defined as

S f(ne) =

n=—00

V2, + K, = —M and H, = k*11, +

(4.22)

1 & 2 oo :
=3 F(ED), Flw) = / F(t)e™tdt. (4.24)
(S PI L@ S
The required Fourier transformation is the integral of the type

o e—jkm

I = / e
oo (Je2+ (y —u)?
) oo e ikV2+22

equ/

du

e’ ——dz
-0 vV .’132 + 22

. oo .
= el / e—z(q cosh 8+k sinh ) do

e o)
— equ /oo e—w\/ q2—k? cosh(9+¢)d0
—00

= 269 Ko[\/q? — kz], (4.25)

77



where Ky(z) is the modified Bessel function of the second kind.

Thus, II; becomes

I, = 8Mb {Ko[]k\/:v2 + 22|+ 2 Z cos =

% Y Ko[TomVZE + 22]} (4.26)

m=1
where Lo, = [(mm/2b)% — k2]
The potential arising from all the image dipoles is obtained by replacing z by

z — 2na in Eq. (4.26). Excluding the contribution from the dipole at the origin,

M &
- 2 ' _ 24,2
I, = 87rbn_z_ooK0[]k\/(x 2na)? + 2%
47rbE > cos =Y I‘o,n\/(:z:—Qna,) + 22]
n=1m=1

M 2 expl—jki/2?2+ (y — 4mb)? + 22
L M [ \/ ( ) + 2]

m=1 \/:1:2 + (y — 4mb)? + 22

(4.27)

The first term is the contribution from the dipoles on the z-axis excluding the origin,
the second term is from the dipoles not on the axis, and the third term is from the
dipoles on the y-axis excluding the origin. |

Since the evaluation of H, involves derivatives with respect to = only, we may

place y and z equal to zero which results in

M oo [/ ) M o oo
O = o~ > Koljklz — 2nall + — Y > Ko[lom|z — 2nal]

n=-—00 47|’b n=1m=1

M &= exp|—1k/z? + (4mb)?
+g§: { ( )-.

m=1 z2 + (4mb)?

(4.28)

Assuming a low frequency in the range where [y, is real, we may neglect the
second term as Kg(z) decreases exponentially when z is real. But the first series

converges very slowly so that we transform the series into the form suitable for using
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Poisson’s sum formula,

M & . M )
o 3 Koljkle — 2nal] - 2= Koljklal] (4:29)

A necessary integral is!

[ e Koliky(z —wp + Pdu = TV (4.30)

— 00

from which we obtain

M ad ) M &%

where Iy, = /(n7/a)? — k2.

The final expression for II, becomes

M = &%z M &, exp|—jky/z2 + (4mb)?
_ _ 3 = =,  (4.32
II, 1626 n=}__:— To. 87TbKO[Jk|z” + I 1;:1 /(1:2 + (4mb)2 ( )

For the field, H,, we need 8%I1,/dz? which is given by

where r,, = /22 + (4mb)Z.
Thus, H, at the origin becomes
H, = I, + 8;::1;
- a2 T
NN PR R

1See reference [13], p. 736.
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Necessary formulas in evaluating the various geometric series in Eq. (4.33) are given

in Table 4.1.

If Ty, is approximately taken to be nw/a — k%a/27n, the first series has the dom-

inant part

RN ak? .M
8(1,6Z (a 27rn) JlGabk

n=1

which is readily summed to give

M ) B 1
87er 2a 2ns1n2a z2|’

plus a correction part
M & ak?
g (T =T 5 ).
Thus the first series becomes
M K 7k k?
§7—r_b [ (— — 5;) ——ln231n—+—— —~—Z;l( )}
For small z, the second term in H, becomes

M k2 k ]ka: 1

(4.34)

(4.35)

where ¥ = 0.577- - - is Euler’s constant. We notice that the singularity in x vanishes

as x goes to zero.

The third series can be summed to give

M [k? k2 bkt 4bk® wk?
— | — (ln4kb — 2 —_————atjl—-—]1.
o b[ (In In 2 sin 2kb) 1 3 +J( 3 1 )]
Finally, H, at the origin is given as
M 2 2
ReH, = = b[(ln4kb 21n2sln2kb+'y—-l)%—b—k4-——Z(-'
n=1
M ([ 4b
ImH, = ——(—k——k
" 8mb (Qak 3 k )
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Y e lf:,-, = —;- + % cot , O<z<m
Y5 nene —icscz—;i:—x—lz(l+933+§g—§—;+m), O<z<m
©€”  _lIn(l — ) = —In2sin £ 4 jI=2, 0<z<2r
‘1’°e—;1; -’;—2—’f(?‘fr—x)——j(zlnx—w—-%n-), O0<z<2rm
ey j(ZE-E )4 (Zhe-¥ -2 )4 T2k, O<z<2r
rE %
% 1.202056903
Table 4.1: Geometric Series
which is valid for low frequencies.
With this field, we obtain
22 (d
Im Dimage ~ ——nv (-) a, a=kd. (4.37)

97, \b

Comparing this with Dy, we see that the contribution to the impedance from

image sources is negligible in the low frequency range if the hole size is small compared

with the waveguide dimension, which is often the case in a typical accelerator beam

pipe.

Thus, for the hole in a rectangular waveguide, we use the same analytic formulas

obtained for the impedance of a hole in an infinite screen except that the source field

appearing in the formula, Eq. (3.56), must be evaluated in the waveguide which is

shown in Eq. (4.11).
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4.4 Comparison with Numerical Results

In order to verify our analytical results, we compare them with the numerical results
from MAFIA-T3 which is a 3-D wake potential program. As mentioned in Chapter
1, MAFIA-T3 simply calculates the wake potential of the charge distributed in space,
i.e., bunch potential. It assumes a bunch of charged particles in Gaussian distribution
moving with velocity equal to the speed of light.

One of the geometries used in the MAFIA-T3 simulation is shown in Fig. 4.3
where we use a waveguide of width 2a = 2 ¢m, height 2b = 1 em, the radius of a hole
d = 4 mm, and thickness of a hole plane ¢ = 1 mm. Although our method has been
developed for a hole in a zero thickness plane, the numerical program cannot handle
zero thickness.

The corresponding bunch potentia,l. together with the Gaussian bunch shape are
shown in Fig. 4.4. We observe that the wake potential has a long tail similar to a
damped harmonic oscillator. Such a long range wake potential results in an impedance
with narrow bandwidth at a well-defined resonant frequency. Resonance phenomena
are expected because the induced field in the hole bounded by the circular conducting
edge will support a standing wave. When the hole size is reduced to 1 mm, wake
potential is quickly damped out after the bunch traverses the hole. Such a short-
range wake is shown in Fig. 4.5. Because of the short range in time, it will exhibit a
broadband impedance in the frequency domain.

With this wake potential, we have to perform a Fourier transform in order to
obtain the coupling impedance. The first step is to calculate V(w) which is the direct

Fourier transform of bunch potential from MAFIA-T3. For d = 4 mm, the result is
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shown in Fig. 4.6.
After this step, we can obtain the coupling impedance by

Z(w) = ‘;—((:3)-, I(w) = exp [—%(waz/c)z] , (4.38)

where I(w) is the Fourier transform of the Gaussian bunch with rms bunch length o,.

In practice, Z(w) can be computed only up to some limiting frequency because of
the exponential factor in the equation. We choose the limiting frequency to be the
one for which the exponential factor is five. Results for a hole of radius 4 mm are
presented in Fig. 4.7 showing the resonance behavior with sharp peaks.

As a general rule, three-dimensional mesh programs such as MAFIA-T3 require
a large amount of CPU time and a considerable memory size. In order to reduce the
number of ‘meshes, we take advantage of the symmetry in geometry. For example,
instead of using full geometry as shown in Fig. 4.3 and running the program once

with the boundary condition,
tangential electric field Ej = 0 on the guide walls,

we may use only the bottom half of the geometry with two separate boundary condi-
tions, Ej = 0 and Hy; = 0 on the plane of the hole (symmetry plane). By doing this,
we can save both the number of meshes and the CPU time.

Three different results, one using full geometry and the other two using half ge-
ometry with Ej = 0 or Hj = 0 are shown in Fig. 4.8. We notice that the impedance
from the Ej = 0 boundary condition is completely negligible. In fact, if the thickness
becomes infinitesimal, its impedance should be zero. Thus, by utilizing the symmetry
configuration, we only use half geometry with boundary condition Hy = 0 and divide

the result by a factor of two in order to achieve the same result as the one from full
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geometry. All results from MAFIA-T3 calculations shown in the later figures were
obtained by this method.

We compare the coupling impedance from the variational method and from MAFIA-
T3 simulations for the holes with radius 1 mm, 2 mm, 4 mm. The result for the hole
with radius 1 mm is shown in Fig. 4.9. Since the ratio d/b = 0.2 is small, our vari-
ational result, based on the assumption that the interaction between the hole and
waveguide is small, is expected to be in good agreement with the numerical result
which includes the effect of waveguide structure. From the MAFIA-T3 results, we
find that the resonance occurs at the frequency kd = 1.8. The variational result shows
the resonance at kd = 1.35. Although the predictions of resonant frequency from the
two methods do not agree, results indicate that the resonance behavior is a property
of the hole because the frequency of the dominant propagating mode is 16 GHz for
the T'M;; mode, which is far below the resonant frequency. We also observe that the
variational result at the low frequency range is approximately a factor two larger than
the numerical one. This may be explained as the thickness effect. Gluckstern [11] has
shown that the coupling impedance of a hole in an infinite screen with finite thickness
is reduced by a certain factor, which depends on the ratio ¢/d, compared to one in a
zero-thickness screen. His result shows that the reduction factor for ¢/d = 1 is 0.567.
If we include this factor in the variational result, we have a better agreement with
the numerical one, as shown in Fig. 4.10. In this comparison we should note that, if
the hole size is small compared with the waveguide dimension, the characteristics of
coupling impedance can be explained by the consideration of a hole only.

For the hole with radius 2 mm, the numerical result presented in Fig. 4.11 exhibits

noisy peaks which, we believe, indicate the effects of the waveguide. However, its well-
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defined envelope shows the behavior of a broadband resonator with the resonance at
kd = 1.8, the same as the impedance for radius 1 mm. Except for the location bf the
resonant frequency, the result from the variational method shows good agreement in
magnitude. The reduction factor of 0.61 due to the thickness effect for t/d = 0.5 is
included in the variational result.

An interesting behavior is observed from the numerical results for the hole with
radius 4mm. Since the ratio of a hole radius and waveguide half width is compa-
rable, the waveguide effect may not be negligible any more. The result in Fig. 4.12
shows a strong interaction between hole and waveguide at the frequency of 16 GHz.
It corresponds to a dominant propagating mode of TMy;. T E,,, modes are not im-
portant because they do not contribute to the longitudinal coupling impedance. The
reduction factor 0.70 for t/d = 0.25 is taken into account in the variational result.

We have shown that the results from two different methods are in good agreement
when the hole is small compared with the waveguide dimension. It indicates that,
for a small hole, the effect from waveguide structure is minor because our variational
method does not take into account such an effect. We also find that the thickness

effect is not negligible unless ¢/d << 1.
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Figure 4.3: Geometry used in MAFIA-T3 simulation.
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Chapter 5

Summary and Conclusion

In this work, we have derived analytic formulas using a variational method for the
coupling impedance of a hole in an infinite screen and in a rectangular waveguide.
The waveguide is considered as a model geometry resembling a real accelerator beam
pipe. Utilizing Bethe’s solution for the tangential electric field as our assumed field
in the hole, we have shown that the coupling impedance can be expressed as a sum of
finite functional series. The functions appearing in the formula are all well tabulated
[1], enabling us to evaluate the numerical values readily.

When we compare our variational formula for the impedance with a well-known
low frequency formula, we find that the two results agree.

Finally we have compared our variational results with the impedance obtained by
the Fourier transform of the wake potential data from the program MAFIA-T3. We
have shown a good qualitative agreement between two different methods in a wide
frequency range.

Although one can in principle use MAFIA-T3 to calculate the impedance for a
realistic accelerator beam pipe with holes, it will be very difficult to interpret or

to understand the numerical data. In particular, when we try to parameterize the

96




impedance with a model, for example the broadband resonator model, we may not
know whether the exact shape of the beam pipe is important or not. If important,
we must include a beam pipe dimension as a parameter in order to fit the numerical
data. But we simply cannot answer such questions from numerical results alone.

From the analytical treatment presented in this work, we have shown that impor-
tant parameters such as the resonant frequency and the bandwidth of resonance peak
can be derived as functions of the dimensionless quantity kd, where k is the free-space
wave number and d is the radius of a hole. Since these two parameters together with
the slope of impedance at low frequency are enough to describe a resonator, our find-
ings are very useful in understanding a complicated behavior of impedance obtained
by numerical programs.

In conclusion, we have raised the treatment of the hole-coupling problem from the
analysis valid in the low frequency range to one valid in a wide range of ﬁéquencies.
By doing so we have succeeded in enlarging our understanding of the hole-coupling
problem.

As a further investigation, we may continue to develop a semi-analytical method
for the estimate of the coupling impedance of an arbitrarily shaped aperture in a
realistic beam pipe. This effort may have dual purposes. First, it can be used to
verify the purely analytical result, especially the one from an approximate method
such as a variational method which we considered in this work. Secondly, it may
enable us to calculate the impedance without a severe requirement on computer time

and memory which often limits the usefulness of the purely numerical method such

as the computer code MAFIA-T3.
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