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Summary Report for ITER Task - D4:
Activation Calculations for the Lithium Vanadium ITER Design

Hosny Attaya

EXECUTIVE SUMMARY

Detailed activation analysis for ITER has been performed as a part of ITER Task
‘D4. The calculations have been performed for the shielding blanket (SS/water) and for
the breeding blanket (Li/V) options. The activation code RACC-P, which has been
modified under ITER Task-D-10 for pulsed operation, has been used in this analysis. The
spatial distributions of the radioactive inventory, decay heat, biological hazard potential,
and the contact dose were calculated for the two designs for different operation modes
and targeted fluences.

A one-dimensional toroidal geometrical model has been utilized to determine the
neutron fluxes in the two designs. The results are normalized for an inboard and outboard
neutron wall loadings of 0.91 and 1.2 MW/m?, respectively.

The point-wise distributions of the decay gamma sources have been calculated
everywhere in the reactor at several times after the shutdown of the two designs and are
then used in the transport code ONEDANT to calculate the biological dose everywhere in
the reactor. The point-wise distributions of all the responses have also been calculated.
These calculations have been performed for neutron fluences of 3.0 MWa/m®, which
corresponds to the target fluence of ITER, and 0.1 MWa/m?, which is anticipated to
correspond to the beginning of the extended maintenance period.

The decay heat results show that a large fraction of this energy (50 to 90%) is
produced by photons. This implies that this energy would be transported to different
parts of the reactor, thus relieving the energy concentration at high intensity source
locations such as the first wall. Accurate modeling for the decay gamma transport is
required to produce realistic spatial distribution of the decay heat which may be used in
LOCA and LOFA analyses.

The results of the pulsed operation, using the new version of RACC, show large
reductions in the radioactivity and the decay heat for pure pulsed operation. The
continuous operation assumption, usually used in the radioactivity calculations,
overestimates the different activation responses at the final shutdown and for about one
week after shutdown by a factor of more than 2.




Introduction

Part of this design task is to perform activation calculations for the different parts

of ITER to provide information needed for the engineering design, maintenance
assessment, éafety analysis, and radwaste management. For this purpose, detailed
activation analyses have been carried out for the two ITER designs, the SS/water design
and the LiV (breeding) design. For both designs, the radial build, the neutron wall
loading, and the operation scenarios, used in these calculations, were provided by the

JCT.

The activation code RACC-P [1], which has been modified under ITER Task-D-
10 for pulsed operation [2], has been used in this analysis. The spatial distributions of the
radioactive inventory, decay heat, biological hazard potential, and the contact dose were
calculated for the two designs for different operation modes and targeted fluences. In this

report the activation results of the lithium vanadium breeding design (Li/V) are presented.

Calculational Procedure

There is no reliable multidimensional deterministic transport computer code that
is capable of adequately modeling the complicated tokamak geometry and calculating the
neutron flux, which is the key input for the activation calculations, accurately. On the
other hand, utilizing the neutron flux calculated by 3-D Monte Carlo methods in the
activation calculations would impregnate its results with the large statistical errors
inherent to the calculated Monte Carlo flux. Thus, for the activation calculations, a one-
dimensional cylindrical toroidal geometrical model has been used in the neutron transport
calculations. In this model, the cylinder axis is the vertical axis of the reactor, and the
inboard and the outboard blankets/shields are modeled with their midplane compositions.
The neutron source is extended between the midplane plasma boundaries. This allows for
the mutual neutronics coupling between the inboard and the outboard blankets/shields as

well as the geometrical toroidal effect on the calculated neutron flux.




It is important to realize the limitations of this modeling and to understand the
employed approximations in order to interpret the obtained activation results correctly.
The first obvious assumption in this model is the full coverage of the FW/blanket/shield,
i.e., no account is made for the large penetrations in the reactor. The second assumption
is the discount of any poloidal variations of the neutron wall loading, the neutron source
incident angle, and the radial build of the blanket/shield. The model deals with and
produces a\}erage vertical (poloidal) values representing part of the system rather than
localized values that could deviate considerably from the system average. Another
assumption is the nucleonics decoupling of that part of the system, modeled in the
calculations, from the rest of the system. The larger the modeled part is, the less effect
this assumption has. These assumptions, in general, tend to overestimate the

radioactivity.

3. Material Composition

The weight and the atomic compositions of the different materials used in these
calculations are given in Table 1. In this table, the mass density (gm/cc) and the atomic
density (atoms—barp/cc) are listed first for each material, then the mass and atomic

densities of each element are given in percentage or in ppm (marked by *).

Table 2 shows the volufne compositions of the different mixtures made ﬁp from the
basic materials (Table 1), and assigned to different geometrical zones. The names and

acronyms used in these two tables are keys to understanding all of the graphics outputs.




Table 1. Materials' compositions

SS316.L

Alloy Incl625 SS8316lw vicrdti r-epxy
7.855 :8.528-2 8.44 :8.632-2 7.855 :8.543-2 6.1 :7.235-2 1.9006 :8.421-2

H reriees Sreeneees 1.90 : 25.69

B *10.00 : * 51.30 * 10.00 : * 51.21 :

C 0.02 : 0.08 0.01 : 0.05 * 50.00 : 0.02

N 0.07 : 0.28 0.19 : 0.75 0.01 : 0.04

o) *20.00 : * 69.33 *20.00 : * 69.21 0.03 : 0.10

Mg | ... reeeenes Sevecreen :

Al 0.30 : 0.62 0.30 : 0.62

Si 0.46 : 0.91 0.10 : 0.20

P 0.03 : 0.05 *30.00 : * 53.63

S 0.01 : 0.02 *14.00 : *24.17

(o) R IO NS TR ooty SvoroR IPeOsvO SOUOUN

K * 500:* 7.09 * 5.00:* 7.08

Ti 0.04 : 0.05 0.04 : 0.05

\4 *40.00 : *43.55 *40.00 : *43.48

Cr 17.10 : 18.24 17.17 : 18.28

Mn 1.70 : 172 148 . 1.49

Fe 64.43 : 63.99 66.33 : 65.77

Co 0.03 : 0.03 0.03 : 0.03

Ni 13.20 : 12.47 12.14 : 11.45

Cu 0.10 : 0.09 0.10 : 0.09

As * 500:* 370 * 500:* 3.70

Zr *20.00: *12.16 *20.00:*12.14

Nb *20.00:*11.94 0.05 : 0.03

Mo 250 : 1.45 2.03 : 1.17

Ag *200:* 1.03 * 2.00:* 1.03

Cd *2.00:* 0.99 *2.00:* 0.99

Sn *20.00:* 9.34 *20.00:* 933

Sb * 5.00:* 228 * 5.00:* 227

Ba * 500:* 202 *500:* 202

Tb * 500:* 1.75 * 500:* 1.74

Ta * 500:* 1,53 *500:* 1.53

w *10.00:* 3.02 *10.00: * 3.01

Ir * 500:* 1.44 *500:* 144 | et

Pb * 8.00:* 2.14 *8.00:* 214 | ..

Bi *B00:* 212 | e Ll *BO0:* 212 | i tie ] e e

nb3sn bdc cube L_nak68 wC

9.  :5.455-2 252 :1.373-1 8.87461 :8.679-2 0.81691 :1.748-2

Be | i 050 : 342 | il

B 78.26 : 80.00 e ] e T

C 21.74 : 20.00 [OTO S

Na : 55.55 : 68.00

K T R 44.45 : 32.00

Ni 200 : 2.10 reieres evereens

Cu : 9750 : 9448 | i

Nb 70.13 : 75.00 eveee ] e e b s e,

Sn 29.87 : 25.00 e Senenas

W : 93.86 : 49.97




Table 2. Zonal volume compositions (%).

Mix: SSWP coil B4C_Pb Incon WNaK Cua SS_H20 39 H20
material % % % % % % % % %
ssd16-L | . | NN TR R [T - 60. 100. | ..
inclé26 [ ... 1 ... 1000 | v b s L e |
ss316lw 100. 47. N IS I R I [ R
r-epxy | ... 13.3 T I
nbdsn I 1V I I i I I [ I
bde | s ] 0. | e s e b e i ]
cube T I v IR R 100 | e | e |,
LnakfB | e | e b i 0. | s | i i
L e e 80. e | eereeee | e | e
L S A I [ I IR I 40. | ... 100.
cullR | ... ) 7 R R v vR Iever U NPT

bp | e b 60. 1 b b L
lhe | ... AN T D T e v I
Mix: Vall Li wC BeZ
Material % % % %
vdcrdti 100, | ... | s |
L P 100. | ...
Lt | ... 100 | coeeeen | s
belO0 | .| e | 100.




4. The Breeding Blanket (Li/V) Design

This is an alternative design option for ITER that. is aimed at tritium self-
sufficiency, reactor relevancy, and low activation materials. This design utilizes the self-
cooled liquid lithium concept for tritium Breeding and the vanadium alloy V4Cr4Ti for
structure. Beryllium, tungsten, tungsten carbide, and NaK are used in this design to

achieve the fequired breeding and to enhance the shielding performance.

4.1 Radial Build and Neutron Flux

The radial build of this design at the midplane is given in Table 3 which lists the
thickness, the mix name, the number of fine intervals, the radial extents, the cross section
area, and the mass of each zone. There are 28 zones in this model. The zone numbers are
used in many figures and this table should be consulted to identify the different zones.
Radioactivity calculations have been made for all zones (28 zones) and for all the fine
intervals (294 intervals) in order to determine accurate spatial distribution for the decay

heat and the ¥ source.

Table 4 lists the masses of different materials used in each zone and the total mass
of any material in the design. The masses are given in kg/cm. It should be emphasized
that these numbers are based on the simple 1-D model. In order to estimate the total mass
of the materials used in ITER, one has to multiply these numbers by an average height of
the machine. Also, it should be mentioned that, unlike the SS/Water design, we did not

include the outboard magnet in the calculations.

The transport code ONEDANT [3] has been used to calculate the neutron flux.
Figure 1 shows a schematic of the midplane radial build-up of ITER Li/V design together
with the neutron and photon fluxes. In this figure, for illustrative purpose and in order to
show the characteristics of these fluxes and the effects of the different materials on them,

all the photon groups are collapsed into only one group, and the neutron groups are




collapsed into 5 major energy groups whose lower energy limits are 10 MeV, 1 MeV, 0.12
MeV, 0.87 eV, and 10*eV. More detailed descriptions of the flux are shown in Figures 2
and 3 where isometric views of the inboard and the outboard neutron fluxes are shown as

a function of the radius and the lethargy.

Table 3. The radial build of the LiV design.

Zone DR mat intv R1 R2 Xs-area Mass
# cm cm cm m? kg
287.50 | vac 29 0.00 287.50
1 5.00 | SSWP 5 287.50 292.50 0.91106 71.56
2 84.40 | coil 85 292.50 376.90 17.74917 1057.96
3 0.10 | SSWP 1 376.90 377.00 0.02368 1.86
13.50 | vac 14 377.00 390.50
4 5.00 | B4C_Pb 5 390.50 395.50 1.23465 96.45
5 3.00 | Incon 3 395.50 398.50 0.74833 63.16
6 44,50 | WNaK 44 398.50 443.00 11.76424 1489.85
7 3.00 | Incon 3 443.00 446.00 0.83786 70.72
5.00 | vac 5 446.00 451.00
8 7.00 | Vall 7 451.00 458.00 1.99900 121.94
9 5.00 | Li 5 458.00 463.00 1.44670 7.27
10 12.00 | WC 12 463.00 475.00 3.53618 552.57
11 5.00 | Li 5 475.00 480.00 1.50011 7.54
12 0.50 | Vall 1 480.00 | 480.50 | 0.15087 9.20
13 6.00 | Li 6 480.50 486.50 1.82275 9.16
14 5.00 | BeZ 5 486.50 491.50 1.53624 28.42
15 4.00 | Li 4 491.50 495.50 1.24030 6.23
16 0.50 | Vall 1 495.50 496.00 0.15574 9.50
10.60 | vac 2 496.00 506.60
608.30 | source 61 506.60 | 1114.90
21.30 | vac 3 111490 | 1136.20
17 0.50 | Vall 1 1136.20 | 1136.70 0.35703 21.78
18 4.00 | Li 4 1136.70 | 1140.70 2.86187 14.38
19 5.00 | BeZ 5 1140.70 | 1145.70 3.59147 66.44
20 6.00 | Li 6 1145.70 | 1151.70 4.33050 21.76
21 0.50 | Vall 1 1151.70 | 1152.20 0.36190 22.08
22 5.00 | Li 5 1152.20 | 1157.20 3.62760 18.23
23 12.00 | WC 12 1157.20 | 1169.20 8.77032 1370.46
24 5.00 | Li 5 1169.20 | 1174.20 3.68100 18.50
25 7.00 | Vall 7 1174.20 | 1181.20 5.17980 315.97
41.50 | vac 42 1181.20 | 1222.70
26 3.00 | Incon 3 1222.70 | 1225.70 2.30756 194.76
27 49.50 | WNaK 50 122570 | 1275.20 | 38.89120 4925.27
28 3.00 | Incon 3 1275.20 | 1278.20 2.40652 203.11
Total 123.02365 | 10796.11
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4.2 Fine Mesh Results

As previously indicated, calculations have been made using fine mesh in order to
determine accurately the y source distribution to be used for the contact dose calculations.
Also, for any serious LOCA analysis, the spatial distribution of the decay heat is reqaired.
Figures 4-7 show the results of these calculations for the radioactivity, the decay heat, the
air-BHP, and the point-source contact dose, respectively. The latter is based on the dose
at one meter radius in the air from a point y source which is taken as the specific ¥y
intensity at each interval. Thus, these ¥‘s do not suffer any attenuation and the resultant
dose is useful only, in the context of a large system, in identifying the spatial distribution

of the 7y source intensity in the system.

As seen in these figures, there are orders of magnitude attenuation of the different

responses within thick zones. This indicates that using the average flux in a thick zone to

calculate the radioactivity of that zone would underestimate the activity level in the zone.
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Figure 3. Isometric view of the outboard neutron flux (logarithmic scale) as a function of the lethargy and radius (Li/V design).
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4.3  System Analysis

The total radioactivity, the total decay heat, and the total air biological hazard
potential of this design after operating up to a neutron fluence of 3 Mwa/m’ are shown as

a function of time after shutdown in Figs. 8-10. The inhalation biological hazard

potential (BHP,;,) for the public, is based on the US Federal Regulations (10CFR20).

There is about 15 MCi/cm after the shutdown. The isotopic contributions to this
activity are shown in the top part of the figure and the zonal contributions (see Table 3)
are shown in the bottom part. In this figure and similar ones, only isotopes or zones that
contribute more than 10% to the total response, at any time, are shown. The shadowed
area at the top represents the contributions of éll other isotopes or zones not shown in the

figure.

In this design, the radioactivity is dominated by the WC zones (No. 10, 23) for
about one year. Afterward and discarding the activity of the lithium zones, the
radioactivity is primarily due to the vacuum vessel (VV) which is designed of the Inconel
alloy (zones 5, 7, 26, and 28). In the calculations, it is assumed that the tritium produced
in the Li’s zones is not removed. Because of the production of the '°Be isoltope, which
has 1.51 10° years half life, in the beryllium zones (No. 14, and 19), these zones are the

dominant contributors to the very long-term radioactivity.

At shutdown, there is about 40 kW/cm of radiation power. About 40 to 90% of
this power is produced by photons. Usually, in the LOCA analyses [4,5], the decay heat
is assumed localized where it is produced. This lead; to a large concentration of heat that
in turn produces hot spots. The fact that a large fraction of this heat is generated by
photons, which have larger range than the charged particles, may level the heat

concentration throughout the system. The decay heat is also dominated by the WC zones

17




and the Inconel zones. The contributions of the vanadium alloy to the total decay heat is

about 18% and last only for less than one hour after shutdown.

The BHPj;; is dominated by the WC and the Inconel zones except in the very short

time after sh_utdown, where it is dominated by the Be and Li zones because of the

production of ®Li and °*He.
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4.4 Contact Dose .

The y sources have been calculated for all the fine mesh and for two neutron

fluences of 3 MWa/m* and 0.1 MWa/m? and for different times after shutdown. The Y
sources, at each time step after shutdown are then used in the ONEDANT code to

calculate the v flux and the dose equivalent rate everywhere in the reactor.

Figure 11 shows the dose distribution after the 3 Mwa/m? fluence. The effect of
the Inconel on the dose is evident. The four peaks in this figure are due to the Inconel.
To underscore this effect, another 7y transport calculation was made without the Inconel y
source and the results are shown in Fig. 12. Figure 13 shows the dose due only the

vanadium alloy’s 7y source

Figure 14 shows the dose distribution after the 0.1 MWa/m* fluence. The
recommended dose rate limit of 2.5 mrem/hr for a full time worker can not be achieved

anywhere for a long time after shutdown.
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4.5 Detailed Zones’ Results

For each zone in the design, the ra_dioactivity, the decay heat, the BHP,;, and the
point-source contact dose are shown in Appendix A. The zones are ordered (in Appendix
A) from the front (plasma side) to the back of the inboard and the outboard shields

respectively.

5. Summary and Conclusions

Detailed activation analysis for ITER has been performed as a part of ITER Task
D4. The calculations have been performed for the shielding blanket (SS/water) and for the
breeding blanket (Li/V) options. The activation code RACC-P, which has been modified
under ITER Task-D-10 for pulsed operation, has been used in this analysis. The spatial
distributions of the radioactive inventory, decay heat, biological hazard potential, and the
contact dose were calculated for the two designs for different operation modes and

targeted fluences.

A one-dimensional toroidal geometrical model has been utilized to determine the
neutron fluxes in the two designs. The results are normalized for an inboard and outboard

neutron wall loadings of 0.91 and 1.2 MW/m?, respectively.

The point-wise distributions of the decay gamma sources have been calculated
everywhere in the reactor at several times after the shutdown of the two designs and are
then used in the transport code ONEDANT to calculate the biological dose everywhere in
the reactor. The point-wise distributions of all the responses have also been calculated.
These calculations have been performed for neutron fluences of 3.0 MW a/m?®, which
corresponds to the target fluence of ITER, and 0.1 MWa/m’, which is anticipated to be

the beginning of an extended maintenance period.

The decay heat results show a large fraction of this energy (50 to 90%) is

produced by photons. This implies that this energy would be transported to different parts

27




of the reactors, relieving the energy concentration at high intensity source locations such
as the first wall. Accurate modeling for the decay gamma transport is required to produce

realistic spatial distribution of the decay heat which may be used in LOCA and LOFA

analyses.

The radioactivity, the decay heat, and the contact dose of the Li/V design is
dominated by the WC and the Inconel alloy.
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Appendix A

Li/V Design

Detailed Zones’ Results
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Figure 15. The specific radioactivity (top) and the specific decay heat (bottom) in zone #
16 (d_Vall - Li/V).
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Figure 16. The specific air-BHP (top) and the point-source contact dose (bottom) in zone
#16 (I_Vall - LVV).
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Figure 17. The specific radioactivity (top) and the specific decay heat (bottom) in zone #
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5%10

100 R e e g 10

2 10
7 1100
e ; 11003
X 50 i I
- ERUC
;i ] 10° al

=T ¥ 3 10

; 4107

.-' im h d wmo 'y dy hy ky
0 - M
10 100 100 10° 100 100 100 10" 100 10° 10°
Time [sec]
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Figure 19. The specific radioactivity (top) and the specific decay heat (bottom) in zone #
14 (I_BeZ - Li/V).
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Figure 20. The specific air-BHP (top) and the point-source contact dose (bottom) in zone
#14 (I_BeZ - LVYV).
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Figure 21. The specific radioactivity (top) and the specific decay heat (bottom) in zone #
13 (I_Li - L¥/V).
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Figure 23. The specific radioactivity (top) and the specific decay heat (bottom) in zone #
12 (I_Vall - LVV).

38




100 oo —— o A

% — /

1NN 50 _—_._._52k /
25 \ Y AR
T h d\wmo y dyy/l‘ly 1\<y>(\‘
10° 10' 10° 10° 10" 10° 10° 10" 10° 10’ 10° 10" 10°10°
Time [sec]
100
5
N 50
25

10° 10' 16° 10° 10* 10° 1¢° 10" 10° 10° 10° 10 10° 107
Time [sec]

12
Figure 24. The specific air-BHP (top) and the point-source contact dose (bottom) in zone
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Figure 25. The specific radioactivity (top) and the specific decay heat (bottom) in zone #
11 (I_Li - Li/V).
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Figure 26. The specific air-BHP in zone # 11 (I_Li - Li/V).
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Figure 27 . The specific radioactivity (top) and the specific decay heat (bottom) in zone #

10 _WC - Li/V).
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Figure 28. The specific air-BHP (top) and the point-source contact dose (bottom) in zone
#10 I_WC - Li/V).
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Figure 29. The specific radioactivity (top) and the specific decay heat (bottom) in zone #
9 (I_Li - Li/V).
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Figure 30. The specific air-BHP in zone # 9 (I_Li - Li/V).
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Figure 31. The specific radioactivity (top) and the specific decay heat (bottom) in zone # 8
(I_Vall - Li/V).
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Figure 32. The specific air-BHP (top) and the point-source contact dose (bottom) in zone
#8 (I_Vall - Li/V).
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Figure 33. The specific radioactivity (top) and the specific decay heat (bottom) in zone #
7 (I_Incon - Li/V).
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Figure 34. The specific air-BHP (top) and the point-source contact dose (bottom) in zone
# 7 (I_Incon - Li/V).
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Figure 35. The specific radioactivity (top) and the specific decay heat (bottom) in zone #
6 (I_WNaK - Li/V).
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Figure 36. The specific air-BHP (top) and the point-source contact dose (bottom) in zone
#6 (I_WNaK - Li/V).
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Figure 37. The specific radioactivity (top) and the specific decay heat (bottom) in zone #
5 (ILIncon - Li/V).
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Figure 38. The specific air-BHP (top) and the point-source contact dose (bottom) in zone
# 5 (I_Incon - LI/V).
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Figure 39. The specific radioactivity (top) and the specific decay heat (bottom) in zone #

4 (I_B4C_Pb - Li/V).
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Figure 40. The specific air-BHP (top) and the point-source contact dose (bottom) in zone
#4 (1_B4C_Pb - LV/V).
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Figure 41. The specific radioactivity (top) and the specific decay heat (bottom) in zone #
3 (I_SSWP-Li/V).
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Figure 42. The specific air-BHP (top) and the point-source contact dose (bottom) in zone
#3 (I_SSWP - Li/V).
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Figure 43. The specific radioactivity (top) and the specific decay heat (bottom) in zone #
2 (I_coil - LiYV).
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Figure 44. The specific air-BHP (top) and the pomt—source contact dose (bottom) in zone
#2 (I_coil - Li/V).
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Figure 45. The specific radioactivity (top) and the specific decay heat (bottom) in zone #
1 I_SSWP - Li/V).
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Figure 46. The specific air-BHP (top) and the point-source contact dose (bottom) in zone
#1 (I_SSWP - Li/V).
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Figure 47. The specific radioactivity (top) and the specific decay heat (bottom) in zone #

17 (O_Vall - LifV).
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Figure 48. The specific air-BHP (top) and the point-source contact dose (bottom) in zone
# 17 (O_Vall - Li/V).
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Figure 49. The specific radioactivity (top) and the specific decay heat (bottom) in zone #
18 (O_Li - Li/V).
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Figure 50. The specific air-BHP in zone # 18 (O_Li - Li/V).
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Figure 51. The specific radioactivity (top) and the specific decay heat (bottom) in zone #
19 (O_BeZ - Li/V).
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Figure 52. The specific air-BHP (top) and the point-source contact dose (bottom) in zone
#19 (O_BeZ - LVV).
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Figure 53. The specific radioactivity (top) and the specific decay heat (bottom) in zone #
20 (O_Li - Li/V). :
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Figure 54. The specific air-BHP in zone # 20 (O_Li - Li/V).




100

ao

60
[
N
!
40
20
0
100
80
60
2N
—
40

20 -

[ Ci/cc ]

[ W/ee ]

Time [sec]

21

Figure 55. The specific radioactivity (top) and the specific decay heat (bottom) in zone #

21 (O_Vall -

Li/V).
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Figure 56. The specific air-BHP (top) and the point-source contact dose (bottom) in zone
#21 (O_Vall - Li/V).
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Figure 57. The specific radioactivity (top) and the specific decay heat (bottom) in zone #
22 (O_Li- Li/V).
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Figure 58. The specific air-BHP in zone # 22 (O_Li - Li/V).
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Figure 59. The specific radioactivity (top) and the specific decay heat (bottom) in zone #
23 (O_WC - Li/V).
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Figure 60. The specific air-BHP (top) and the point-source contact dose (bottom) in zone
#23 (O_WC-LiV).
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Figure 61. The specific radioactivity (top) and the specific decay heat (bottom) in zone #

24 (O_Li- L¥/V).
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Figure 62. The specific air-BHP in zone # 24 (O_Li - Li/V).
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Figure 63. The specific radioactivity (top) and the specific decay heat (bottom) in zone #

25 (O_Vall - LiV).
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Figure 64. The specific air-BHP (top) and the point-source contact dose (bottom) in zone
#25 (O_Vall - Li/V).
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Figure 65. The specific radioactivity (top) and the specific decay heat (bottom) in zone #
26 (O_Incon - Li/V).
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Figure 66. The specific air-BHP (top) and the point-source contact dose (bottom) in zone
# 26 (O_Incon - Li/V).
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Figure 67. The specific radioactivity (top) and the specific decay heat (bottom) in zone #
27 (O_WNaK - Li/V).
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Figure 68. The specific air-BHP (top) and the point-source contact dose (bottom) in zone
#27 (O_WNaK - Li/V).
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Figure 69. The specific radioactivity (top) and the specific decay heat (bottom) in zone #
28 (O_Incon - Li/V).
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Figure 70. The specific air-BHP (top) and the point-source contact dose (bottom) in zone
# 28 (O_Incon - Li/V).
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