USING SPARK AS A SOLVER FOR MODELICA

Michael Wettet, Philip Haves, Michael A. Moshief and Edward F. Sowéll
1Building Technologies Department, Environmental Energghhologies Division,
Lawrence Berkeley National Laboratory, Berkeley, CA 947128A.

2 Dept. of Mathematics, Computer Science and Physics, Chajpmiversity, CA 92866, USA.
3 Dept. of Computer Science, California State Universitylgfton, CA 92834, USA.

ABSTRACT the real space. This solution approach has shown to be
competitive for the simulation of air flow networks that

Modelica is an object-oriented acausal modeling lan X - ) .
guage that is well positioned to become a de-facto standl€ commonin building energy systems and typically dif-
ficult and time-consuming to solve (Sowell and Haves

dard for expressing models of complex physical systems, 001
To simulate a model expressed in Modelica, it needs to bg )-

translated into executable code. For generating run-time G|ven the §|9n|flcant adoption of the Modelica lan-
efficient code, such a translation needs to employ algeguage, its position to become a de-facto standard for mod-

braic formula manipulations. As the SPARK solver haseling of physical systems and its benefits for express-

been shown to be competitive for generating such cod.@19 large complex systems (Fritzson 2004) we investigate

but currently cannot be used with the Modelica Ianguaget,he _approaph.and benefits of rr_1aking Fhe SPARK so_lver
we report in this paper how SPARK’s symbolic and nu- available within the OpenModelica environment. Having
merical algorithms can be implemented in OpenModel_availableacomputationally efficient free open-source im-

ica, an open-source implementation of a Modelica modPlementation of Modelica will lower the barrier for adopt-

eling and simulation environment. We also report bench:"9 Modelica by the rather first-cost sensitive small engi-

mark results that show that for our air flow network sim- neering firms that are characteristic for the building indus

ulation benchmark, the SPARK solver is competitive with try..
Dymola, which is believed to provide the best solver for 1 NiS Paper addresses therefore

Modelica. 1. how SPARK can be used as a solver for the Open-
Modelica environment, enabling OpenModelica to
INTRODUCTION efficiently solve large, nonlinear sparse DAE sys-
In 1996, a consortium formed to develop Modelica, tems, and
an equation-based, object-oriented, acausal language for2. how SPARK compares in terms of reduction in prob-
modeling of large physical systems. The goal of the con-  lem size and execution speed with Dymola, which

sortium is to combine the benefits of existing modeling ~ contains what is believed to be the best symbolic and
languages and to define a new uniform language formodel ~ numerical solver for Modelica (Cellier and Kofman
representation (Mattsson and EImqvist 1997; Fritzsonand ~ 2006).
Engelson 1998). Over the past decade, the Modelica lamat the time of this writing, a prototype implementation of
guage has gained significant adoption in various industria§PARK in OpenModelica has been created.
sectors and has been used in demanding industrial appli- Our computational results are based on an air flow net-
cations. Itis well posed to become a de-facto standard fojork of a variable air volume flow system (VAV system)
modeling of complex physical systems that may containthat is described by Haves et al. (1996). The algebraic
hydraulic, thermal, control, mechanical, electrical,cele equation system is characteristic for the type of nonlinear
tronic or process-oriented subsystems. There are severgfuation systems encountered when simulating building
modeling and simulation environments that assist mOde|heating’ ventilation and air conditioning systems.
ers in developing models and that can translate models ex- We will also discuss benefits of having additional Mod-
pressed in the Modelica language into an executable praelica language constructs available that moves the bur-
gram. OpenModelica is an open-source implementatiojen of creating efficient run-time models from the model
of such an environment. user to the tool that automatically parses the Modelica
Over the past twenty years, the Simulation Problemmodel into executable code. Such a language construct
Analysis and Research Kernel (SPARK) has been demay allow a Modelica parser to automatically pick dif-
veloped (Sowell, Buhl, and Nataf 1989; SPARK 2003).ferent function inverses for the equation that relates-pres
SPARK uses the mathematical graph to describe and solv&ure drop and mass flow rate. In our experiments, making
nonlinear, deterministic, continuous differential alggb  available to the Modelica parser one or the other inverse
systems of equations (DAE systems) that are defined oled to a tenfold change in computation time.



In related work, Sowell and Haves (2001) comparediution sequence.
the computation time of SPARK and HVACSim+ (Park, Two reductions are performed on the digraptom-
Clark, and Kelly 1985), for a variable air volume flow ponent decompositionand small cutset discovery
system that serves six rooms. They attribute the 15 to 2Components are classified atrong or weak Weak
times faster computation time of SPARK to the graph de-components are topologically sorted sequences of nodes,
composition and cut set reduction. Wetter and Haugstetke., having no cycles (closed circuits, loops). A strong
ter (Wetter and Haugstetter 2006) showed for a multizoneomponent is strongly connected in a graph-theoretic
building energy model that Dymola was four times slowersense, meaning it comprises a maximal set of nodes
than TRNSYS (Klein, Duffie, and Beckman 1976). This and edges such that every node is reachable from every
despite the fact that the TRNSYS heat conduction modebther node, meaning that one or more cycles are present.
is based on conduction transfer functions (Seem 1987The set of components in the problem, including both
that often lead to much faster integration than the finiteweak and strong, along with edges between components,
difference scheme that was used in the Modelica model. defines a topologically sorteteduced grap¥ From

a numerical perspective weak components represent

SPARK METHODOLOGY strictly sequential computations, i.e., no iterations,

We will now give a brief description of the SPARK whereas strong components require simultaneous, itera-
methodology. See Sowell et al. (2004) for more detailstive solution. The reduced graph prescribes the overall
SPARK is best described in terms objects models  problem solution sequence, i.e., each component s solved
andproblems Here anobjectis an instance of an atomic in the topological sequence indicated by the reduced
clasg which is based upon a single equation involving graph, processing weak components sequentially and
the variables presented at its pofts.Atomic classes strong components iteratively. Note that at this point we
are acausal, i.e., there is no unique input or output sehave likely achieved the first stage of reduction since the
a characteristic achieved through provision of explicitlargest strong component is often far smaller than the
inverses for as many of the variables as possible. Aotal number of problem unknown variables.
SPARK modelis a collection of objects (instances of
atomic classes) linked together at their ports. The links The second stage of reduction is small cutset discovery.
represent the model variables. Like atomic classesHere we seek to identify a small set of nodes that break all
models are acausal. Finally, a SPARIKOblemis defined  cycles within the strong components using a contraction
when the user specifies an input set. algorithm similar to that described by Levy and Low

(1988). From the numerical perspective, the variables

Preprocessing of a SPARK problem begins by parsingorresponding to the nodes in the cutset comprise the
the input file, producing a more compact representation ifiteration vector. SPARK uses this vector and the equa-
which all macro classes have been resolved into atomitions in the strong component to compute a numerical
objects and redundant links are removed. Next, graphapproximation to the Jacobian used in Newton-Raphson
theoretic algorithms are used to construct an efficient nuiteration® For many problems, including flow networks,
merical solution sequence. Firstbgartite graphis con-  the Jacobian is significantly smaller than the total number
structed with one node set representing objects and thef variables in the strong component, thus achieving the
other representing variables. For each node in the objeaecond level of problem reduction.
set an edge is inserted for each of its ports that has been
provided an inverse, going to the corresponding node in The process described above often proceeds automati-
the variable node set. A matching algorithm is then usedtally, producing a viable solution without user interven-
to find acomplete matchingvhereby each object node is tion. However, sometimes no matching is found in a
matched to a single variable node and vice versa. Duringvell-posed problem simply because needed inverses were
the numerical stage, this matching indicates which equasmitted in the definitions of atomic classes. Or, a match-
tion will be used to calculate each variable. After match-ing may be found, but one that results in a solution se-
ing, adirected graph (digraphpf the problem is con- quence exhibiting poor convergence properties. To deal
structed, with each node representing an object and prawith issues like this, the SPARK language provides op-
ducing the variable to which it was previously matched.tional user specifications to guide the development of a
The digraph is used to determine the actual numerical sosolution sequence. For example, the key WRESI DUAL
allows the developer of an atomic class to usénaplicit

1A macro class is available to represent larger modeling etesn

We omit them in this discussion since they are resolved to thon- SNote that due to the definition of strong component, therebeano
stituent atomic classes before graph-theoretic proagssin cycles in the reduced graph.
2Multi-valued atomic classes are allowed, but are omitteck lier 4This is the basic solving method; several other strategiesem-

brevity. ployed if convergence is not progressing adequately.



inversewhen an explicit one is not available, and the keygebraic problems, we refer to Cellier and Kofman (2006)

words MATCH LEVEL and BREAK_LEVEL can be used to and Elmqvist, Otter, and Cellier (1995).

give hints to the matching and cutset algorithms. An-

other powerful feature iBREDI CT_FROM LI NK which al- APPROACH FOR IMPLEMENTING SPARK

lows an iteration variable to be initialized based on somd N OPENMODELICA

other problem variable, perhaps calculated from a simpli- To understand the potential for integrating the SPARK

fied auxiliary equation. Seasoned users often use thesmalyzer and solver into OpenModelica, one must first

features to improve solution efficiency. recognize that these components of SPARK are indepen-
dent of the SPARK language. The algebraic aspects of

DYMOLA METHODOLOGY SPARK analysis requires only that the DAE system of

When translating Modelica models into executableequations be presented in a general form that includes
code, Dymola usegartitioning andtearingto reduce the  two main specifications:

dimensionality of the system of equations. Partitioning
discovers which equations are coupled to each other and
hence need to be solved simultaneously. Partitioning can
conceptually be described as converting the structure in-
cidence matriX to block lower-triangular form. (Since
the memory requirements to store the structure incidence f- R" — R for somen € N

matrix is prohibitive for large system, the matrix is not i ' _ )

actually formed but rather used here for the sake of explalMPortantly but somewhat subtly, an inverse is r?ot re-
nation.) If partitioning yields a true lower-triangularfo quired to be explicit. That 'y :.f(.x, y) wheref: RT x
(i.e., a matrix with only scalars on the diagonal, and zeR - R for somen € N IS permissible and can be auto-
ros everywhere above the diagonal), then all equations Cawatlcally ggnerated using (HRESI DUAL keyword. The i
be solved individually. In general, however, the diagonala_nalyzer V‘_”" g_enerally_be ‘?‘t?'e_ to construct a more effi-
contains matrices, although their dimension is typicallyc'ent solution if fewer |mpI|C|t inverses are pre;ent, but
considerably smaller than the dimension of the originalspARK manages them with a graceful degradation of per-

system. The partitioning algorithm in Dymola is based on'©"Mance.
tri/e algorithmpof Tarjan ?1932)_ y The analyzer performs the matching described above.

To reduce the size of an individual coupled system c)fAfter the matching, the system is essentially a directed

equation, Dymola uses a process catieating Suppose graph in which a node represents an equation in the form
there is a system of equations with an unknona R", y= f(x) and an edge from such a node represents the ap-

with n > 1, and leix be partitioned into the two vectoxs pearance of the variablgin the independent variables

andx?. In tearing, the system of equation is rewritten in of anot.her INVErse. SPARK tr’1en pgr-for.ms the graph-
theoretic equivalent to Dymola’s partitioning algorithm,

e A bipartite dependency graph indicating which vari-
ables appear in which equations.

e For each individual equation occurring in the model,
a list of inverses, i.e., C++ functions that represent a
solution of the equation in the form= f(x) where

the form _
and finally constructs a small cut-set.
Lxt = f104), (1) The cut-set construction serves the same purpose as
0 fz(Xl,XZ), @) the tearing algorithm of Dymola. That is, it identifies a

subset of the variables occurring in a partition that breaks

whereL is a lower triangular matrix with constant non- &ll dependency cycles in the partition.

zero diagonals and? is called thetearing variable ) ) )

Now, the solver provides a guess value 8y obtainsxt ~ Integration of SPARK into the OpenModelica system

from (1) and computes a new value §érusing (2). This  involves the following main tasks.

procedure is repeated iteratively untfl converges to a 1. Constructing the bipartite graph of variables versus

solution. Dymola’s tearing algorithm guarantees that the  equations from a Modelica model.

selection of tearing variables never leads to a division by 2. Deriving, or in some way specifying, inverses of

zero at run-time, which is non-trivial to implement since equations.

parameter values can change after compilation. The de-3. Expressing heuristic informatidyATCH LEVEL and

tails of the tearing algorithm implemented in Dymola are BREAK LEVEL in the Modelica model, and commu-

unpublished. For a more detailed discussion of Dymola’s  nicating it to the SPARK analyzer.

algorithms, including its algorithms for index reduction The first of these is essentially a task of exploiting the

and inline integration, which have not been used in our alppenmodelica open source architecture to gain access to
SFor a system of equationgx) = 0, the structure incidence matrix ?nformation that. encodes Which p.rObIem Yariables appear

is a matrix whose elemerit, j) is 1 if f(-) depends o, and zero N Which equations. All of this information is already

otherwise. present in OpenModelica’s parser, so the task is simply




to extract it. The second task would, in principle, be NUMERICAL BENCHMARKS

implemented best using an open source symbolic algep;piem Definition

bra system such as SAGHn the first version, however, . ) _

we support the derivation of inverses for equations built 1N Simulation model represents the airflow network
from a short list of basic functions. For more complicated®f @ variable air volume flow system in building E 51 at
equations, we require the user to provide the inverses eX€ Massachusetts Institute of Technology. The models
plicitly in the form of annotations on equations. In later &€ described in detail by Haves et al. (1996). To facil-
versions, we anticipate integrating a full symbolic algebr 'tat€ the model implementation in SPARK, we modeled
system with the SPARK/OpenModelica system. For thethe pressure and mass flow (_Jllstnbutlon, bu_t not the tem-
third task, we again use Modelica annotations. BecausBerature, enthalpy and species concentration. In Haves

the annotations are maintained by OpenModelica’s symgt al. (1996) as well as in our implementations, .the air-
bol table, this is also a relatively simple task. flow network is described by a system of algebraic equa-

tions, i.e., the pressure dynamics of the room is neglected.

Although experienced SPARK users exploit All flow resistances are based on a partial model that
PREDI CT_FROM LINK and other features to improve computesn'= f(Ap) or its inverse (in an explicit form),
the numerical behavior of integration, these features ar&p = g(m), wheref(-) andg(:) are implemented using
not supported in the current integration of SPARK in the functions egSquar e2 andr egRoot 2 from the pack-
OpenModelica. We anticipate supporting these featureageMdel i ca_Fl uid 1.0B2. The medium, however, is
through the annotation mechanism of Modelica. implemented using a class of typecor d that defines the
density and viscosity
o . Fig. 1 shows the Dymola representation of the air flow
Currently, we have modified the OpenModelica parsernetV\?ork of the systemymodel. 'FI)'he red connectors are con-

:EE emit a form of thi.?'p?rt'te graé)h. This C(:nlfllrms tlhit ﬁant pressure boundary conditions. The green connectors
€ Open source architecture can be SUCCESSIUIly EXPIONeR oy signals, which are defined as ramps as shown

for this integration task. However, putting this informa- in Fig. 3. The blue lines are air flow paths, with dashed

tion in a format that is usable by SPARK is not yet com- lines indicating connections that connect the ports of dif-

plfetthed. AIS?’ tggnefratlont.of mversg_s ap&csg/gumcdatmqerem instances of a vectorized model of five rooms. The
of the annotated information regardihigTCH_ an five rooms have been vectorized to scale the problem size.

BREAK_LEVEL to the SPARK analyzer are not yet imple- We call this five rooms &uite and denote with the pa-

mented. The generation of inverses is a big design task, SAmetem., (12 5} how many instances we used
in the earliest version we will produce inverses by hand. Fig. 2 Sh(s)l:;VS thé f7I(.3.v.v’network of one suite. Since thefe

Two additional open issues remain to be resolved infS one more room at the end of the last suite (shown as
future versions. First, to be fully functional as a part of the modelr 0050 in Fig. 1), the number of rooms is be-
OpenModelica, the SPARK solver must communicate itstween six and 26, and is equal thNg;i + 1. The model
results and error messages back to OpenModelica via theas constant properties for the atmospheric pressure.
same API as the system’s native solver. In principle, th'SExperiments of Symbolic and Numerical Solver

will be possible, but we have deferred implementation un- . .

til we have an otherwise functioning prototype. Second, e conducted experiments using Dymola 6.0d and
the Modelica language supports discrete variables angrARK 2.10v7. The experiments were run on Windows
variables that are set via algorithms expressed in the ModXP ©n an Intel Core 2 Duo Processor 6600 @ 2.40 GHz.
elica language as opposed to being constrained by acausal ) . )

equations. SPARK provides limited indirect support for In Dymola, an integration algorithm needed to be
discrete variables via theREDI CT FROM LI NK feature. It  Selected even for the algebraic problem. We selected the
also provides algorithmic control over variables, but theEuler method. In Dymola and SPARK, we simulated
algorithms are expressed in C++. Thus these present si¢?€ problem on the time intervéle [0, 1] using a fixed
nificant design problems for the SPARK/OpenModelicaStep Size and output interval of01 seconds. We set
integration. In principle, a code generator can be impleihe solver tolerance to 16 and the number of suites to
mented to translate Modelica algorithms into C++ codeNsui = {1,2,...,5}. For the simulation witfe = 10°°,

usable by SPARK, but we have not yet engaged in the delhe maximum relative error between the supply fan mass
sign of such a translator. flow rate computed by Dymola and SPARK wa94%

for Nsyi = 1 and 1% forlNg,i = 5, which shows that both

"Future versions of our library will be based dbdel i ca. Medi a,
but we used a simpler implementation to facilitate the impatation
Sht t p: / / waw. sagemat h. or g/ of a model with identical physics in SPARK.




-0

IEES]
hedium

f 30 : ‘ ‘ ‘
> — supply
——return

00 0.2 0.4 0.6 0.8 1

time (s)
60 : :

—OSA
— VAV H

por_ash

Figure 2: Model of the air flow network of one suite as 0.2 04 0.6 0.8 1
implemented in Dymola. time (s)

Ygam N (degrees)
)]
L2

(

8
o

Figure 3: Control signals used in the numerical experi-

simulators implemented the same model. ments. The top figure shows the fan revolutions, and the
bottom figure the damper opening angle. OSA denotes the
In Dymola, we run the following experiments: outside air dampers and VAV denotes VAV box damper.

1. For the flow relation, we sdtrom dp = true for
all flow resistances. Hence, Dymola computes-
f(Ap).

2. For the flow relation, we sétrom dp = fal se for
all flow elements. Hence, Dymola computdp =

All SPARK cases were run with default values for solv-
ing methods, i.e., they employ non-sparse LU decomposi-
tion, method 2 For the problem with 5 suites, three other
methods have been tested: Gaussian gives about the same

9(rm). ) ) execution time and Sparse LU is a little slower. The SVD
In SPARK, we run the following experiments: method fails to solve at about time=0.73.
1. No use of the SPARKWATCH LEVEL keyword has
been made. Results
2. In the flow splitter, the SPARKATCH LEVEL key- Tab. 1 shows the dimension of the biggest nonlinear

word was set to aid the symbolic formula manipula- System of equations. For SPARK, there was only one
tion in tearing the equation graph.

8Note that the SPARK reference manual wrongly says the defaul
Gaussian.



times are shown vs. problem size, the latter expressed as

Table 1: Dimension of biggest nonlinear system of equar | mber of suites.

tions. For the SPARK, no ML denotes K&TCH_LEVEL

and with ML denotes withATCH_LEVEL. )
In Dymola, changing the value of the parameter

Neui SPARK Dymola from dp so that Dymola use&p = g(m) for all flow re-
no ML | with ML | m= f(Ap) | Ap=g(m) sistances yields a tenfold reduction in computation time

1 21 18 41 26 for Ngyi = 5. In view of this reduction in computation

2 36 34 71 47 time and in the dimensionality of the nonlinear system

3 51 50 101 66 of equations, a Modelica language extension that allows

4 66 65 131 87 a symbolic processor, instead of the user, to select the

5 81 80 161 106 most appropriate inverse for complicated functions that
the symbolic processor cannot invert automatically would
be desirable.

strong component with the dimension of the nonlinear In contrast, in SPARK atomic classes, a model
system of equations as shown in Tab. 1. In addition, therguilder routinely provides multiple inverses, and the
were three weak components. For Dymola, for the exmatching process determines which of these inverses
periments that use the functiom= f(Ap), the nonlinear gets selected for use in the numerical stage. As a
system of equations is solved for the pressure at ports gierformance-enhancing feature, a user can provide hints
the flow elements, whereas for the experiments that usgor the preferred matchings. Based on experience with
Ap = g(m), the unknowns are the mass flow rates andpressure/flow networks in general we reasoned that the
some pressures variables. There is one nonlinear systefinst resistance in each zone branch should be used to
of equations of the size shown in Tab. 1. In addition,calculate mass flow rate from pressure drop, since that
for all Dymola experiments, there are alsbii+1 one-  would allow the pressure drop across all others in the
dimensional system of equations for the flow coefficientsbranch to be calculated sequentially. To express this
of all variable air volume flow boxes. domain knowledge th&ATCH LEVEL key word on that

For the experiments withhp = g(rm), Dymola finds a  particular resistance in all zones was used to encourage
symbolic expression for all Jacobian matrices, as it doea matching that favored this strategy. The solution
for all one-dimensional algebraic equations. For the othesequence thereby determined used the expected matching
experiments, Dymola computes a numerical approximain all but one of the zones. Apparently, other portions of
tion for the largest Jacobian, i.e., the Jacobian with thehe system, e.g., the fans and mixing box, exert their own
dimension listed as in Tab. 1. SPARK always computes anfluence on the matching process, working against our
numerical approximation to the Jacobian. effort to impose a strategy based only on the zone flow
branches. Nonetheless, the found matching produced a
solution strategy that gave shorter solution times redativ
to the no-hint solutions.

12

—»— SPARK (no match level)

—+— SPARK (with match level
10H - €~ Dymola (Ap given) 2]
- Dymola (m given) Pt

Returning to the plot in Fig. 4, we can see that both
Dymola and SPARK yield solutions for all experiments.
Interestingly, the solution times for the two tools are
quite different if Dymola is instructed by the user to
usem = f(Ap), but become comparable for the other
configurations. We will now discuss reasons for the
different computation time.

tepy ()

To explain these difference, we consider the steps in the
solution process and their contribution to solution time.
When using Newton-based solution schemes for nonlin-
ear equations, as SPARK and Dymola do, the main com-
ponents of the time to perform a single Newton iteration

Figure 4: Comparison of computation time. are: (a) evaluation of functions (residuals or inversés), (
computation of the elements of the Jacobian, and (c) so-

Fig. 4 shows the computation time for Dymola and lution of the linear set to arrive at the next estimate of the
SPARK, both with a solver tolerance of 1 Run  break variables. Consequently, overall solution time can




be improved by more efficient performance of any one ofshow in Fig. 6 the average number of Newton iterations
these components or by reducing the number of Newtoras a function of cutset size. We see a weak effect of cut-
iterations. size, but a difference of about 1 to 2 iterations for each
Both programs do symbolic reduction in an effort to solution, or about 25% for the largest problem sizex-
reduce component (c), so we look first at this componentplaining about half of the observed 50% solution time re-
For Ngyi = 5, we observe that the largest cutset foundduction for that case. The underlying reason is probably
by Dymola drops from 161 to 106 when the selectionthat the new matching reversed the direction of calculation
of flow-pressure drop inverse is changed, resulting inaround circuits in the computation graph, thus improving
a 34% reduction in the size of the linear set. Sinceconvergence properties.
solution of linear systems is typicallp(n?) to O(n?),
one might expect the solution time to drop by a factor of A
10(=1/0.34%) to 25= 1/0.34%). We indeed observeda 1 .
. . . . H
tenfold reduction in computation time. 9 ol — T
8 .
The user intervention with SPARK changes the cutset 7 ° .
only from 80 to 81, so we should not expect much im- 6 t >
provementin component (c). This is the principal reason 0O 10 20 30 40 50 60 70 80 90 100
we see far less dramatic change in solution time. That number of break variables
which we do see must be due to either component (a),

(b), or reduction in Newton iterations. -Optional diag- Figure 6: Average number of Newton iterations with

EF’S“; rﬁportstﬁ"‘zwt LI‘S t‘l’ ;.r“’ef.“gate these possibilities, ey | pve (lower points) and withoutATCH LEVEL
1g. SNOWS tnhe total solution umes (upper CUI‘VGS), an upper points) and linear fit.

the time spent solving the linear set in the Newton step
(lower curves), what we have called the component (c) As a final step we analyze the number of function eval-
time. Note that the latter is essentially independent of P Y

.Uations for solving the stron mponent. In Fig. 7, th
user effect, as we should expect because the cutset Slggto S for solving the strong component 9.7, the

. R .~ Upper two curves are for the total number of evaluations,
changed very little. Thus all of the solution time reduction " :
while the lower two are for calculations related to updat-

was due to reduction of component (a) or (b). Moreover,.ng the break values. The two lower curves are essentially

we see that the component (c) time is a small fraction 0]Jthe same because the cutset size change was small. The

the total time, meaning that any further significant reduc-

) i glﬁerence between the upper and lower curves is more
tions must come from these components, or reduction o . . .

) . important, because it represents the function evaluations
the number of Newton iterations.

needed to calculate the numerical approximation to the Ja-
cobian. Since Dymola reportedly calculates the Jacobian

average number of Newton iterations

>

normalized computation time

10 A N matrices symbolically for the experiments withom.dp
: / = true, this suggests that the main difference in solution
08 / times may be attributable to that methodology.
06 S CONCLUSIONS
;// The work performed in developing a prototype
0.4 L SPARK/OpenModelica implementation confirms that the
0.2 . /,»/ OpenModelica software architecture can be used to emit
';:o/ s the bipartite graph for subsequent use by SPARK. The
0 > - + > prototype work did not reveal any fundamental problems
0 10 20 30 40 50 60 70 80 90 100 for such an integration, although significant design chal-

number of break variables lenges with regard to addressing discrete variables need to

Figure 5: Normalized SPARK solution time for the whole P& addressed.

simulation (upper two curves) and normalized time spent OUr r’1umerical experiments give us confidence that
to solve the linear system of equations of the Newton iterSPARK'S performance is for the solution of algebraic set

ation (lower two curves). The bold solid curves are with ©f €quations defined by the air flow problem comparable

MATCH.LEVEL specified, the thin dashed curves are with- With Dymola, which is believed to provide the best sym-
OUtMATCH.LEVEL specification. bolic and numerical solver for Modelica. In view of the

prototype work and the encouraging numerical results, we

The next step towards understanding the results we °Keep in mind that the system is solved at 101 steps in time.



A number of function evaluations

20-10°
18-10°
16-10° v
14-10°
12-10° ¥
10-1¢° v

e v

) ~ -

4. 18: o =

2.1 =

0-10° S —4 >

0 10 20 30 40 50 60 70 80 90100
number of break variables

Figure 7: Total number of SPARK function evaluations to
solve the strong component (upper two curves) and num-
ber of function evaluations to compute the residuals of
the strong component (lower two curves). The bold solid
curves are withVATCH LEVEL specified, the thin dashed
curves are withouMATCH LEVEL specification. The dif-

ference between the two sets of curves are the number of

function evaluations to compute the numerical approxi-
mation to the Jacobian.

believe that integrating SPARK into OpenModelica would
be a viable path for providing a free Modelica implemen-
tation to building energy analysts which are typically em-
ployed by small companies that are sensitive to software
costs, thereby decreasing the barrier for adopting Model-
ica by the building energy community.

ACKNOWLEDGMENT

This research was supported by the Assistant Secretary

for Energy Efficiency and Renewable Energy, Office of
Building Technologies of the U.S. Department of Energy,
under Contract No. DE-AC02-05CH11231.

REFERENCES

Cellier, Francois E., and Ernesto Kofman. 20@®on-
tinuous System Simulatio8pringer.

Elmqvist, H., M. Otter, and F. Cellier. 1995, June. “In-
line Integration: A New Mixed Symbolic/Numeric
Approach for Solving Differential- Algebraic Equa-
tion Systems."Keynote Address, Proc. ESM'9Bu-
ropean Simulation Multiconference, Prague, Czech
Republic, xxiii—xxxiv".

Fritzson, Peter. 2004.Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1John
Wiley & Sons.

Fritzson, Peter, and Vadim Engelson. 1998. “Modelica
— A Unified Object-Oriented Language for System
Modeling and Simulation.”Lecture Notes in Com-
puter Sciencevol. 1445.

Haves, P., L. K. Norford, M. DeSimone, and L. Mei.
1996. “A Standard Simulation Testbed for the Eval-
uation of Control Algorithms & Strategies.” Final
report 825-RP, ASHRAE, Atlanta, GA.

Klein, S. A., J. A. Duffie, and W. A. Beckman.
1976. “TRNSYS - A Transient Simulation Pro-
gram.” ASHRAE Transactior82 (1): 623—-633.

Levy, Hanoch, and David W. Low. 1988. “A contraction
algorithm for finding small cycle cutsetsJournal of
Algorithms9 (4): 470-493.

Mattsson, Sven Erik, and Hilding Elmqvist. 1997,
April. “Modelica — An international effort to de-
sign the next generation modeling language.” Edited
by L. Boullart, M. Loccufier, and Sven Erik Matts-
son,7th IFAC Symposium on Computer Aided Con-
trol Systems DesigrGent, Belgium.

Park, Cheol, Daniel R. Clark, and George E. Kelly.
1985, August. “An overview of HVACSIM+, a

dynamic building/HVAC/control systems simulation
program.” Proceedings of the 1st International
IBPSA ConferenceSeattle, WA, 175-185.

Seem, J. E. 1987. “Modeling of Heat Transfer in Build-
ings.” Ph.D. diss., University of Madison-Wisconsin.

Sowell, Edward F., W. Fred Buhl, and Jean-Michel
Nataf. 1989, June. “Object-Oriented Programmingg,
Equation-Based Submodels, and System Reduction
in SPANK.” Proceedings of the Second International
IBPSA Conference Vancouver, BC, Canada, 141-
146.

Sowell, Edward F., and Philip Haves. 2001. “Efficient
solution strategies for building energy system simu-
lation.” Energy and Building83 (4): 309-317.

Sowell, Edward F., Michael A. Moshier, Philip Haves,
and Dimitri Curtil. 2004, August. “Graph-theoretic
Methods in Simulation Using SPARK.” Technical
Report LBNL-55522, Lawrence Berkeley National
Laboratory, Berkeley, CA.

SPARK (Lawrence Berkeley National Laboratory and
Ayres Sowell Associates Inc.). 2008PARK, Refer-
ence ManualBerkeley, CA, USA: Lawrence Berke-
ley National Laboratory and Ayres Sowell Asso-
ciates Inc.

Tarjan, Robert. 1972. “Depth-First Search and Linear
Graph Algorithms.” SIAM Journal on Computing
(2): 146-160.

Wetter, Michael, and Christoph Haugstetter. 2006, Au-

gust. “Modelica versus TRNSYS — A Comparison
Between an Equation-Based and a Procedural Mod-
eling Language for Building Energy Simulation.”
Proc. of SimBuild IBPSA-USA, Cambridge, MA.



