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Abstract

This paper provides a brief introduction to automatic differentiation and relates it to the tangent
linear model and adjoint approaches commonly used in meteorology. After a brief review of the
forward and reverse mode of automatic differentiation, the ADIFOR automatic differentiation tool
is introduced, and initial results of a sensitivity-enhanced version of the MM5 PSU/NCAR mesoscale
weather model are presented. We also present a novel approach to the computation of gradients that
uses a reverse mode approach at the time loop level and a forward mode approach at every time
step. The resulting “pseudoadjoint™ shares the characteristic of an adjoint code that the ratio of
gradient to function evaluation does not depend on the number of independent variables. In contrast
to a true adjoint approach, however, the nonlinearity of the model plays no role in the complexity
of the derivative code.

1 Introduction

Let F(p) denote the (vector-valued) output of a model F produced by a particular (vector-valued) input
p. Employing the Taylor expansion of F' around a reference state p,, we have

d F(p,) 19*F(po) F(po)
dp

where the higher-order terms HO(p,, Ap) satisfy ||H0(po,Ap)|| = O(l|&p][?). Hence, the value of
the first- and second-order derivatives (we also interchangeably use the terms first- and second-order
sensitivities) allows us to derive a first- or second-order approximation of the change of F in response
to a perturbation of the input p from its base state p,. In particular, the first-order Taylor series
approximation

F(po + O&p) = F(po) + —5—AOp + (A ) ———O8p+ HO(p,, Ap), (1)

9 F(p,)
dp
provides a linear approximation to the (usually nonlinear) behavior of F' around the point p,.
Derivatives provide a way for computing a relatively simple approximation of F, thus allowing one

to inexpensively explore the behavior of f in the neighborhood of p,. Hence, derivatives are ubiquitous
in numerical computing.

F(p,) + Ap (2)
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There are four main approaches to computing derivatives:

By Hand: One can differentiate the code by hand and thus arrive at a code that also computes deriva-
tives. However, handcoding of derivatives for a large code is a tedious and error-prone process,
although it is likely to result in the most efficient code.

Divided Differences: We approximate the derivative of F' with respect to the ith component of p at
a particular point pg by either one-sided differences

9 F(p) _ F(po = h * ;) — F(po)
Bp: L, ~ : ()

=Po

or central differences

?F_(P)_‘ ~ Flpoth+e)— Flpo—h=e:) @
api P=Ppo 2h )

Here e; is the ith Cartesian basis vector. From (1) it can be easily seen that this approach leads to a
first- or second-order approximation of the desired derivatives. Divided difference approximations

have the advantage that we need only the function as a “black box.” A disadvantage, however, is
that their accuracy is hard to assess (see, e.g., [13]).

Symbolic Differentiation: Symbolic manipulators like Maple, Macsyma, or Reduce provide powerful
capabilities for manipulating algebraic expressions but are, in general, unable to deal with con-
structs such as branches, loops, or subroutines that are inherent in computer codes. Therefore,
differentiation using a symbolic manipulator still requires considerable human effort to break down
an existing computer code into pieces digestible by a symbolic manipulator and to reassemble the
resulting pieces into a usable derivative code.

Automatic Differentiation: Automatic differentiation techniques rely on the fact that every function,
no matter how complicated, is executed on a computer as a (potentially very long) sequence of
elementary operations such as additions, multiplications, and elementary functions such as sin and
cos (see, for example, [15, 28]). By applying the chain rule

rest) (790 )

over and over again to the composition of those elementary operations, one can compute, in a
completely mechanical fashion, derivatives of F' that are correct up to machine precision (18]. The
techniques of automatic differentiation are directly applicable to computer programs of arbitrary

length containing branches, loops, and subroutines. We also note that, unlike handcoding or
symbolically assisted approaches, automatic differentiation enables derivatives to be updated easily
when the original code changes.

70 _, = (25

In this paper, we explore different ways of computing first-order derivatives employing automatic
differentiation tools. The paper is structured as follows. In the next section we explore the relationship
between the tangent linear model and the adjoint approach for computing a gradient from a derivative
point of view. In Section 3, we briefly review the forward and reverse mode of automatic differentiation



when viewing the automatic differentiation as a code rewriting problem. We then briefly describe the
ADIFOR tool for the automatic differentiation of Fortran 77 programs, and present some preliminary
results from a sensitivity-enhanced version of MM5 developed with ADIFOR. We then suggest a novel
approach to computing large gradients which we call the “pseudoadjoint” approach. It combines what
we consider to be the good features of the forward and reverse modes while trying to avoid some of their
shortcomings. Lastly, we summarize our results.

2 The Tangent Linear Model and the Adjoint

Two approaches are typically employed in the computation of the linearized model (2)—the tangent linear
model (TLM) and the adjoint. They form the basis of the following commonly employed techniques.

Sensitivity analysis techniques — here one tries to asses the sensitivity of the responses of a com-

putational model with respect to perturbations in its parameters or initial conditions (see, for
example, [27, 25, 26, 35]).

Data assimilation techniques — here one tries to adjust the initial state of a model to best reproduce
some observed behavior (see, for example, [34, 33, 36]).

A collection of papers on this subject can be found in [24].
To illustrate the tangent linear model and the adjoint, we assume that the state X of the system at
time ¢ satisfies the simple equation

X(t) = HX(t— 1), t=0,...T ©)
and that prognostic and diagnostic variables are the same. Further, let
0H
J(@) = — (7
X X=X(i)

be the n x n Jacobian of H with respect to the state at time step 7. The tangent linear model (TLM)
describes the linearized evolution of errors about the trajectory of a particular nonlinear solution. De-
noting by 6.X(t) the sensitivity of the state at time ¢ with respect to perturbations in the initial state
X(0), we have

§X(1) = J(0)*8X(0)
5X(2) = J(1)*6X(1) = J(1)* J(0)* 6X(0) -
6X(t) = JE-1)%6X(t—1)=J(@t~1)*---%J(0)*6X(0).
Here 6X(t) should be interpreted as a column vector. The tangent linear model is defined as
X(T) + 6X(T). ()

Comparing this with (2), we see that the TLM and the first-order Taylor approximation with Ap = §X(0)
are identical. We also point out that by initializing 6X;(0) = 1, 6X;(0) = 0 for § # ¢, 6X(T) can be



interpreted as the sensitivity of all output variables X(T) with respect to a unit change in the ith
component X;(0) of the initial state. In the literature the expression “development of the TLM?” is used
somewhat loosely to denote either a code for 6X(T") or X(T') + 6X(T') as the computation of §X (i) and
X () is usually intertwined.

In contrast, the adjoint integrates the model back in time. Denote the sensitivity of the final state
with respect to a change in an intermediate state by 6X(2). Then

SX(T=1) = 8X(T)+J(T~1)
5X(T ~2) SX(T — 1) % J(T —2) = 5X(T) * J(T ~ 1) * J(T = 2)

(10)

FX@W = SR 4I(T—1) % J(t)

Here 6.X (t) should be interpreted as a row vector. In particular, initializing 6 X;(T) = 1, 6X;(0) = 0 for
j#Fi 60X (0) can be interpreted as the sensitivity of the ith component of the final state with respect to
a unit change in all components of the initial state. That is, 6X (0) is the gradient

9 X;(T)
8 X(0)
and hence can be viewed as another approach for computing the derivatives required for the first-order

linear approximation (2).
Let e; be the ith canonical unit vector, namely, e;({) = 1, and e;(j) = 0 for j # i. Then

5X(0) =

5X(0) = ej and 5X(T) =

implies
70X(T) _ 0Xi(T)
1 aX(0) 7 T ax;(0)°
Hence, combining TLM and adjoint codes, we have many possibilities for computing the same derivative
values [8].

To summarize, if we discount numerical instabilities arising from the complementary stability behav-
ior of forward- and backward-integration of dynamical systems (see, for example, [32]), when properly
initialized, the tangent linear model and the adjoint will compute the same sensitivities and provide a

mechamsm for developing a linear approximation of the model. The computational complexity of these
two approaches is quite different, though, as we will see in the next section.

VI<t<T: 5X() #6X(t)=e

3 Automatic Differentiation

Traditionally, two approaches to automatic differentiation (AD) have been developed: the so-called for-
ward and reverse modes. These modes are distinguished by how the chain rule is used to propagate
derivatives through the computation. The forward mode accumulates the derivatives of intermediate
variables with respect to the independent variables, corresponding to the forward sensitivity formal-
ism [11, 12], whereas the reverse mode propagates the derivatives of the final values with respect to



y(1) = 1.0
y(2) = 1.0
doi=1,n
it (x(i) > 0.0) then
y(1) = y(1) © x(i)
else
y(2) = y(2) © x(i)
endif
enddo

Figure 1: Sample Code Fragment

intermediate variables corresponding to the adjoint sensitivity formalism [11, 12]. In either case, auto-
matic differentiation produces code that computes the values of the analytical derivatives accurate to
machine precision.

We illustrate the difference between these two approaches by deriving code for computing o

az(l:n
from the code fragment shown in Figure 1, considering the cases where “O” is either “#” or “+.”

3.1 The Forward Mode

The forward mode of automatic differentiation computes derivatives as shown in Figure 2, much in the
way that the chain rule of differential calculus is usually taught. We use the notation Vs to denote
the derivative object associated with the program variable s. We can easily convince ourselves that by
initializing Vx(i) to the ith canonical unit vector of length n, on exit Vy(i) contains the gradient
aaz' {‘n 3- In this case, each statement involving a derivative object is really a vector instruction involving
n-vectors. On the other hand, if we are interested only in sensitivities with respect to x(3), say, we
initialize Vx(i) = 0.0 for ¢ # 3 and Vx(3) = 1.0. In this case, then, each statement involving a
derivative object is a scalar instruction, and we emerge with Vy(i) = :;’((;)) In general, if we view the
derivative vectors V as row vectors, the linearity of differentiation implies that the forward mode allows
us to compute arbitrary linear combinations of columns of the Jacobian

ay(1y K2 ¢))

d_y — az(1) dz(n) (11)
="\ g
in that
Yy(1) P V(1)
y =Y : . 12
(W )=a2+| -
Vz(n)



Vy(1) =0 Vy(1) =0
y(1) = 1.0 y(1) = 1.0
Vy(2) =0 Vy(2) =0
y(2) = 1.0 y(2) = 1.0
do i=1,n doi=1,n
if (x(i) > 0.0) then if (x(i) > 0.0) then
Vy(1) = Vy(1) + Vx(i) Vy(1) = x(1)*Vy(1) + y(1)*Vx(i)
y(1) = y(1) + x(i) y(1) = y(1) * x(i)
else else
Vy(2) = Vy(2) + Vx(i) Vy(2) = x(1)*Vy(2) + y(2)*Vx(i)
y(2) = y(2) + x(3) y(2) = y(2) * x(i)
endif endif
enddo enddo
Forward Mode for ¢ = + Forward Mode for O = %

Figure 2: Forward Mode Code for Code Fragment of Figure 1

In particular, initializing Vx(i) = d(i), we compute the directional derivative

dy .. yz+h+d)—~y(z)
A @

Forward mode code is easy to generate, preserves any parallelizable or vectorizable structures within
the original code, and is readily generalized to higher-order derivatives [4]. If we wish to compute m
directional derivatives, then running forward-mode code requires at most on the order of m times as
much time and memory as the original code.

We also note that what we called the forward mode is the approach often employed when deriving
the tangent linear model of a computer code by hand. This should not come as a surprise. Applying the
forward mode of automatic differentiation to a code computing (6) will result in the same derivatives as
the TLM accumulation (8) when VX;(0) = 6X;(0),i=1,...,n.

3.2 The Reverse Mode

In contrast, the so-called reverse mode of automatic differentiation computes adjoint quantities — the
derivative of the final result with respect to an intermediate quantity. To propagate adjoints, we have
to be able to reverse the flow of the program, and remember or recompute any intermediate value that
nonlinearly impacts the final result.

Let 5 denote the adjoint of a particular variable s. As a consequence of the chain rule it can be shown
(see, for example, [18]) that the statement s = f(v, w) in the original code implies

v o= g
T += £5
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y(1) = 1.0
y(2) = 1.0
doi=1,n
if (x(i) > 0.0) then
jump(i) = ’left’
yivalue(i) = y(1)
y(1) = y(1) © x(i)
else
jump(i) = ’right’
y2value(i) = y(2)
y(2) = y(2) O x(1)
endif
enddo

Figure 3: Code Fragment of Figure 1 Modified in Preparation for Reverse-Mode Code Generation

in the reverse mode code. The notation a += b is shorthand for a = a + b. When f is a linear

elementary operation such as addition or subtraction, -g—:- = -‘.‘;’—‘: = 1, and hence %3 and g% do not
depend on the values of their operands. On the other hand, when f is a nonlinear operation such as

a multiplication, both -g—: and %‘L— do depend on the values of their operands, and one must remember

either these derivative values or the values of the operands. To be able to reverse the flow of the program,
one must also remember intermediate values that were overwritten, and trace how branches were taken.
To this end, we transform the code from Figure 1 to the form shown in Figure 3, where we generate
a trace of the branch history in the “jump” array, and save intermediate values of the variables y(1)
and y(2) in yivalue(:) and y2value(:). We are now in a position to automatically generate reverse
mode code for this computation. The result is shown in Figure 4. We use the notation § to denote the
derivative object associated with the program variable s. - .

We can easily convince ourselves that when we initialize y(1) = 1.0, y(2) = 0.0, and all other

derivative objects to zero, then by running the codes in Figures 3 and 4, we emerge with x(i) = %%.
Similarly, initializing y(1) = 0.0, y(2) = 1.0, and all other derivative objects to zero, we compute

x(i) = g—;é%. In general, if we view the adjoint vector associated with a program variable as column
vector, the linearity of differentiation implies that

(=D, 2m) = (¥, 1 )+ 2L, (14)

where g—% is as defined in equation (11). That is, reverse mode code allows us to compute arbitrary
linear combinations of the rows of the Jacobian. Initializing y(i) = d(i), we compute the derivative

o (dTa*xy(z)) . (15)



doi=mn to1l step -1 doi=nto 1l step -1
if (Jlmp(i?_i’leﬁ:’) then if (jump(i) = ’left’) then
y(1) += y(1) y(1) += x(i)*y(1)
x(i) += y(1) x(i) += yivalue(i)#*y(1)
else else
7(2) += ¥(2) ¥(2) += x(D*y(2)
x(1i) += y(2) x(i) += yivalue(i)*y(2)
endif endif
enddo enddo
Reverse Mode for ¢ = + Reverse Mode for O = «

Figure 4: Reverse Mode Code Generated from Code in Figure 3

Note that it is quite an involved process to generate reverse mode code. While the complexity of the
forward-mode code generation in Figure 2 changed minimally when we considered an addition instead
of a multiplication, the reverse mode code is very sensitive to this change: there is no need to save the
intermediate values of y(1) and y(2) when © = +, but we must save them when & = *, at the expense
of an extra O(n) memory locations. Extra storage is required to remember the way the branches were
taken, regardless of whether the loop computed a multiplication or addition. Hence, the reverse mode
can, in extreme cases, require as much memory for the tracing of intermediate values and branches as
there are floating-point operations being executed during the run of the program. However, its running
time is roughly m times that of the function when computing m linear combinations of the rows of the
Jacobian. This is particularly advantageous for gradients, since then m = 1.

We also note that what we called the reverse mode of automatic differentiation is what is usually
performed by hand when deriving an adjoint code. Applying the reverse mode of automatic differentia-
tion to a code computing (6) will result in the same derivatives as the adjoint accumulation (10) when

XM =5X(D),i=1,...,n

4 The ADIFOR Automatic Differentiation Tool and an Ap-
plication to the MM5 Mesoscale Weather Model

There have been various implementations of automatic differentiation; an extensive survey can be found
in [22]. In particular, we mention GRESS [20], and PADRE-2 [23] for Fortran Programs and ADOL-C [17]
for C programs. GRESS, PADRE-2, and ADOL-C implement both the forward and reverse mode. To
save control flow information and intermediate values, these tools generate a “trace” of the computation
by writing down the particulars of every operation performed in the code. The interpretation overhead
associated with using this trace for the purposes of automatic differentiation and its potentially very
large size can be a serious computational bottleneck [31].



4.1 The ADIFOR (Automatic Differentiation of Fortran) Tool

Recently, a “source transformation” approach to automatic differentiation has been explored in the
ADIFOR (2], ADIC [7], and ODYSSEE [29, 30] tools. ADIFOR and ODYSSEE transform Fortran 77
code and ADIC transforms ANSI-C code. By applying the rules of automatic differentiation, these tools
generate new code, which, when executed, computes derivatives without the overhead associated with
trace interpretation schemes. ADIFOR. and ADIC mainly use the forward mode. In contrast, ODYSSEE
employs the reverse mode.

Given a Fortran subroutine (or collection of subroutines) describing a “function,” and an indication
of which variables in parameter lists or common blocks correspond to “independent” and “dependent”
variables with respect to differentiation, ADIFOR, performs a data flow analysis to determine which
statements in the code have to be augmented with derivative computations and then produces Fortran
77 code that computes the derivatives of the dependent variables with respect to the independent ones.
ADIFOR produces portable Fortran 77 code, and accepts almost all of Fortran 77; in particular, it
can deal with arbitrary calling sequences, nested subroutines, common blocks, and equivalences. The
ADIFOR-generated code tries to preserve vectorization and parallelism in the original code and employs
a consistent subroutine-naming scheme, which allows for code tuning, the exploitation of domain-specific
knowledge, and the use of vendor-supplied libraries.

ADIFOR employs a hybrid forward/reverse mode approach to generating derivatives. For each
assignment statement, it uses the reverse mode to generate code that computes the partial derivatives
of the result with respect to the variables on the right-hand side and then employs the forward mode to
propagate overall derivatives. For example, the single Fortran statement

¥ = x(1) * x(2) * x(3) * x(4) * x(5)

gets transformed into the code segment shown in Figure 5. Note that none of the common subexpressions
z(i)*z(j) are recomputed in the reverse mode section for ﬁ%i' The variable g¢p$ denotes the number
of (directional) derivatives being computed. For example, if g3p$ = 5, and g$x(1:5,1:5) isthe 5x 5
identity matrix (i.e., g$x(i,j) = g%g%) then upon execution of these statements, g$y(1:5) equals
%. On the other hand, assume that we wished only to compute derivatives with respect to a scalar

parameter s, so g8p$ = 1, and, on entry to this code segment, g$x(1,i) = a—;gz, i=1,...,5. Then

the do-loop in Figure 5 implicitly computes %-"L = f—i—"é%"i without ever forming g—’é’- explicitly. Note that
the cost of computing y is amortized over all the derivatives being computed. Thus, this approach is
more efficient than the normal forward mode or a divided-difference approximation when more than a
few derivatives are computed at the same time.

We also see that ADIFOR-generated code provides the directional derivative computation possibilities
associated with the forward mode of automatic differentiation [6]. Instead of simply producing code to

compute the Jacobian J, ADIFOR produces code to compute J * S, where the “seed matrix” S is
initialized by the user. Thus, if S is the identity, ADIFOR computes the full J acobian; whereas if S is
just a vector, ADIFOR computes the product of the Jacobian by a vector. In [5] the flexibility of the

ADIFOR interface is exploited in a “stripmining” approach to decrease turnaround time for derivative
computations by spawning several independent subprocesses computing parts of the desired gradient
or Jacobian. The seed matrix also provides a powerful mechanism for decreasing the computational
complexity of derivative codes through judicious use of the chain rule [8, 21]. The running time and



81 = x(1) * x(2) )

o R *
;z; - ;g; . :EZ; Reverse Mode for computing %&7:
34 = x(5) * x(4) 9
1$5 = r$4 * x(3) ) r$jbar=ﬁ)-,i=1,m,4
r3lbar = r$5 * x(2)
r$2bar = 135 * x(1) 83 = 9y
r33bar = r$4 * r$1 dx(5)
r$4bar = x(5) * r$2 )
do g3i$ = 1, g%p$
g3y(g%i8) = r¥1bar * g3x(g$is,1)
+ r$2bar * g3x(g$i$,2) Forward Mode:
+ r33bar * g¥x(g3i$,3) Assembling Vy from ﬁ% and Vz(i),
+ r84bar * g3x(g$i8,4) i=1,...,5.
+ 83 * g¥x(g%is, 5)
enddo
y = 83 * x(5) } Computing function value

Figure 5: Sample Segment of an ADIFOR-generated Code

storage requirements of the ADIFOR-generated code are roughly proportional to the numbers of columns
of S, which equals the g$p$ variable in the sample code above.

ADIFOR has been successfully applied to codes from various domains of science. Experiences with
meteorological codes, for example, have been reported in [10, 25, 26, 27]. Typically, ADIFOR-generated
code runs two to four times faster than one-sided divided difference approximations when one computes
more than 5-10 derivatives at one time. The superior performance is due to the reverse/forward hybrid
mode and a dependence analysis that tries to avoid computing derivatives of expressions that do not affect
the “dependent variables”. We also note that in order to take full advantage of reduced complexity of
ADIFOR-generated code, it is advantageous to compute several directional derivatives at the same time

— so the ADIFOR-generated code may require significantly more memory than the original simulation
code.

4.2 First Results with a Sensitivity-Enhanced Version of the MM5 Meso-
scale Weather Model

The development of a sensitivity-enhanced version of the Fifth-Generation Penn State/NCAR mesoscale
weather model (MMS5) [14] using the ADIFOR automatic differentiation tool is in progress. ADIFOR
expects code that complies with the Fortran 77 standard. MM5 does not comply with this standard —
in particular, it makes much use of “pointer variables.” We circumvented this difficulty by developing
an MM35-specific tool to map the pointer handling to standard-conforming Fortran77 code acceptable to
ADIFOR, and to remap ADIFOR’s output to obtain the desired sensitivity-enhanced code.

To date, we have developed sensitivity-enhanced versions of the nonhydrostatic dynamics and most
of the physics, including the Blackadar high-resolution planetary boundary layer parameterization, the
Grell and Kuo cumulus parametrizations, the Dudhia long- and short-wave radiation scheme, and the

10



models representing explicit moisture with treatment of mixed phase processes (ice), shallow convection,
and dry convective adjustment.

To verify our ADIFOR-generated sensitivities, we used the sensitivity-enhanced version of MM5
to compute the time-evolution of first-order perturbations of pressure, temperature, water vapor, and
convective rain, in response to perturbations in the initial-pressure data. Our perturbation scheme
introduces an artificial perturbation parameter €. To properly address the leapfrog scheme employed in
MMS5, we perturb the pressure® on the two initial time-slices ¢y and ¢; as follows:

pl(z) y)z:to; E) = (1 + E) pl(zy y:z)tO)

Pz, y,z,t5€) = (146 plz,v,2,t) (16)

Then ¢ parameterizes a family of perturbed solutions for the MM5 variables, with the unperturbed
solution obtained at € = 0. Any quantity (Q, say) influenced by the initial pressure therefore acquires
an implicit dependence on e. Pressure, temperature, water vapor, and convective rain, are particular
instances of such quantities. By definition, the first-order perturbation-theoretic sensitivity of @) is

0Q(z,y,2,t; €)

6Q(z,y,z,1) .= 5

(17)
€=0
Given our choice of the perturbation of p/, §Q(z, v, z,t) can be interpreted as the sensitivity of Q to a
uniform relative change in the initial pressure fields. We note that both p’(¢¢) and p’(¢;) were perturbed,
since a leapfrog timestepping approach is employed in MM5.

The sensitivity 6Q(z, y, z,t) can easily be computed by using automatic differentiation. We slightly
modify MMS5 to include € as an input parameter entering into the computation of the initial pressre, as
shown above. We then employ an automatic differentiation tool (ADIFOR, in our case) to differentiate
the code with respect to €. Finally, we evaluate the sensitivity-enhanced code at € = 0. In this fashion,
we can compute quantities equivalent to those obtained in the tangent linear model without any further
hand-modification of the code.

We compared the results of our perturbation AD-based method with the results of perturbing the
initial-pressure data by one part in 103 in the fully nonlinear model, which corresponds to choosing
¢ = %1073 in Equation (16). For each of pressure (MM5 variable ppa), temperature (ta), water vapor
(qva), and convective rain (rainc), we computed the following quantities:

¢ Its value using the initial pressure distribution.
e Its sensitivity 6Q(z,y, 2,t) provided by the ADIFOR-generated code.

e An approximation to this sensitivity via a central divided-difference approximation (4). Hence, for
example, choosing @) = ppa, we also compute the values ppa,. obtained by a relative perturbation
of the initial pressure distribution by ¢ = 103, as in Equation (16). We then computed the
second-order divided difference approximation §ppa to Sppa:

. ppa, — ppa_
Sppa(z,y, 7,t,€) 1=

2Following standard notation, p’ = p — po is the deviation of the absolute pressure p from the reference-state pressure
Poj; this is the quantity actually computed by MM5 in nonhydrostatic mode.

11



o The difference .
AQ :=46Q —6Q
between the divided-difference approximation and the first-order sensitivity. It follows from (1)
that, assuming that the model is continuously differentiable in the vicinity of the base state, AQ
should be of the order O(¢®) and hence negligible except for areas of high nonlinearity. It should

be noted, however, that there is no guarantee that the model is continuously differentiable~—in
particular, in light of the switching behavior in the moisture physics modeling.

We note that for this particular case the ADIFOR-generated code exhibits run times and storage
requirements on the order of twice those of the original MM5 code, and hence it obtains first-order
sensitivities at about two-thirds the cost of the divided-difference approximation.

The data set we had at our disposal for testing purposes uses a 28 x 25 x 23 grid, without nesting.
We ran the model for 12 time steps of 4 minutes each, terminating at 48 minutes. In Figure 6, for the
final time-step, we show for surface pressure

e the value of the forecast variable,

e the sensitivity of the forecast variable with respect to a uniform relative change of the pressure at
time zero, and

o the difference between the first-order sensitivity and the divided-difference approximation.

We mention that this perturbation may violate some consistency conditions enforced by the MMS5 pre-
processors. We would have had to perturb the vertical wind velocity as well, in order not to excite sound
waves. This issue will also be addressed by generating sensitivity-enhanced versions of the MM5 pre-
processors. We did observe these waves, but they quickly propagate out of the system. At any rate, the
purpose of this exercise was to validate our ADIFOR-generated derivatives. Since pressure couples with
all the other variables, it still is an appropriate choice to check the correctness of the ADIFOR-generated
derivative propagation code.

The upper left plot in Figure 6 shows the value of ppa after the twelfth time step, the upper right
plot shows the sensitivity éppa, and the bottom plots shows Appa. Pressure is in Pascals, and §ppa
and Appa are in Pascals per unit e. The labels in the legend denote the boundaries between contour
intervals.

As we can see, excellent first-order agreement is achieved everywhere for surface pressure. We see
that the fractional differences between the first-order sensitivity and its divided-difference approximation
are only a few parts in 103. Since the perturbation is the sensitivity times ¢, it follows that the absolute
differences between the tangent-linear and fully nonlinear models of the surface-pressure field are only
of the order of a few parts in 105.

5 Pseaudoadjoints

Let us now assume that we have a computation where we repeatedly update a (large) state X and at
the end use a merit function that summarizes the relevant features of the final state in a few numbers.
That is, we can view the computation as follows:

x0) L xp &L . A xm R, | (18)
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Figure 6: Plot showing the surface-pressure field ppa (upper left), the first-order sensitivity ppa (upper

right), and the difference Appa (bottom)
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where, as in (6), H denotes the update operator and R denotes the merit function. We further assume
for simplicity that 1 = dim(r) < n := dim(X).
We are interested in efficiently evaluating the gradient

ar _ ar 8 X(T) 6 X(1)
3X(©) X “aX(T -1 X 3x(0) (19)

A forward-mode based approach like that used in ADIFOR will require a run time that is proportional
to n, whereas a reverse mode approach might require a run time that is comparable to a few function
evaluations. Of course, the complexity of the reverse mode approach greatly depends on the operator
H. If H is “mostly linear,” then applying the reverse mode to H does not require much storage for
intermediate values. A “highly nonlinear” H, on the other hand, may pose considerable storage demands.

Let us further assume that

. g—}} can be computed easily (often it is a weighted sum of squares) and that

) %j% is sparse. This situation is fairly typical because of the local nature of stencil-based approxi-

mations,

5.1 Exploiting Sparsity in Forward-Mode Derivative Computations

Forward-mode approaches can be used advantageously to compute large sparse Jacobians. One can
employ a so-called compressed Jacobian approach, which, given the sparsity pattern of the Jacobian,
derives a graph coloring that identifies which columns of the Jacobian can be computed with the same
directional derivative. To illustrate, let us assume that we have a function

f
f2
F=| f3s |:zeR*>yeRS
fa
fs
whose Jacobian J has the following structure (symbols denote nonzeros, and zeros are not shown):
O
O <
J = A <
A O
A O

Columns 1 and 2, as well as columns 3 and 4, are structurally orthogonal. In divided-difference approx-
imations one could exploit that structure by perturbing both z; and z» in one function evaluation, and
both z3 and z4 in the other. In an automatic differentiation system like ADIFOR, one can exploit this
fact by setting

(= R e
_——O O



which results in the computation of the compressed Jacobian

JS=

>>>O0O
0ooo

at roughly half the cost. For most grid problems, the width p of the compressed Jacobian is independent
of the problem size and depends only on the local stencil chosen. Experimental results with this approach
in computing large sparse Jacobians as they arise in large-scale nonlinear equations have been reported
in [1].

This compressed Jacobian approach is also applicable to the computation of gradients of so-called
partially separable functions [19], which are functions f that can be represented in the form

np
f(z) =) fil=), (20)

i=1

where each of the component functions f; has limited support. Hence, the gradients V f; are sparse,
even though the final gradient V f is dense. It can be shown (19] that any function with a sparse Hessian
is a partially separable one. The computation of the gradient of a partially separable function can be
reduced to the problem of computing a sparse Jacobian [9] by realizing that the gradient of f can easily
be obtained by summing the rows of the sparse Jacobian -‘g, where
fi(z)
G(z) = : . (21)
frp(z)

Another approach is based on the realization that the workhorse of any mainly forward-mode
first-order automatic differentiation approach is a “vector linear combination,” for example, Vy(1)

= x(1)*Vy(1) + y(1)*Vx(i) in Figure 3. Here Vy(1) and Vx(i) are vectors of length p, where, as

in Subsection 4, p denotes the number of directional derivatives to be computed, and y(1) and x(i) are
scalars. This operation is a particular instantiation of

k
w= Ea; * v;, (22)

i=1

where w and v; are vectors of length p, the «; are scalar multipliers, and k is referred to as the “arity.”

If the initial seed matrix is sparse (e.g., the identity), then, if we ignore exact numerical cancellation,
the left-hand side vector w in (22) has no fewer nonzeros than any of the vectors on the right-hand
side. Hence, if the final derivative objects, which correspond to a row of the Jacobian J or a component
gradient V f;, are sparse, all intermediate vectors must be sparse. That is, by expressing the derivative
linear combinations with algorithms and data structures tailored toward to sparse vectors, we can exploit
sparsity in a transparent fashion, even if the sparsity pattern of the derivative matriz is not known
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beforehand. Also note that the sparsity structure of J or VJ; is computed as a byproduct of the
derivative computation.

‘The SparsLinC (Sparse Linear Combination) Library [3, 8] addresses the scenario where p is large
and most of the vectors involved in vector linear combination are sparse. It provides support for sparse
vector linear combination, in a fashion that is well suited to the use of this operation in the context of
automatic differentiation. SparsLinC, which is written in ANSI C, includes the following features:

Three data structures for sparse vectors: SparsLinC has different data structures for a vector con-
taining only one nonzero, a few nonzeros, or several nonzeros.

Efficient Memory Allocation Scheme: SparsLinC employs a “bucket” memory allocation scheme
which, in effect, provides a buffered memory allocation mechanism.

Polyalgorithms: SparsLinC switches between vector representations in a transparent fashion and pro-
vides special support for the “+=" operation w = &y * w + a5 * v, which occurs frequently when
computing gradients of partially separable functions, as suggested by (20).

Full Precision Support: single and double precision computations are provided for both real- and
complex-valued computations.

In this fashion, SparsLinC can adapt to the dynamic nature of the derivative vectors, efficiently rep-
resenting derivative vectors that grow from a column of the identity matrix (often occurring in the
ADIFOR seed matrix) to a dense vector, such as V f in (20). We also mention that almost no memory is
allocated for derivative objects that are all zeros. SparsLinC will be fully integrated in the forthcoming
release of the ADIFOR. 2.0 system.

Note that neither the run time of the compressed Jacobian nor that of the SparsLinC approach is
affected by nonlinearities in the program. That is, changing all additions in the code to multiplications
does not increase the required storage, and the run time increases at most by a factor of two.

5.2 Pseudoadjoints

Now, coming back to the problem of computing a—,{{"'(.i)" we realize that if we consider the computation

of g—i—f as a “black box,” we can interpret equation (19) as a series of matrix-matrix and vector-matrix
multiplications, namely,

R — e ¢ * *.
= s

where the vector on the left-hand side corresponds to 3—?{’('55, the vector on the right-hand side corresponds
to EaTr'l X=X(T), and the matrices on the right-hand side correspond to

. OH .
J(i) := —67|X=x(,-),z= L,...,.T-1.

An automatic differentiation tool that employs the forward mode throughout can be interpreted as

accumulating this product from the right, forming a large matrix corresponding to ?9})(:%‘ , Which then
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is multiplied by the vector ﬁ'ﬂ- to result in the final gradient. Obviously, it would be much more
advantageous to accumulate the product from the left, computing ﬂ?’s,i =1T,...,1 through a series
of matrix-vector multiplies. The first approach can be interpreted as the forward mode in an algebra
where H and R are elementary operators, the latter one as the reverse mode in this algebra.

However, using the approaches outlined in the previous subsection, we are in a position to inex-
aH

pensively compute £, with predictable storage and runtime requirements that do not depend on the
nonlinearity of the model. Hence, by storing all intermediate derivatives J () in a forward sweep. we
can compute d—;’@- through a series of sparse matrix-vector multiplies at a runtime complexity that is
of the order

T * runtime(a—};) + T * runtime(sparse matrix-vector multiply)
and the storage complexity is of the order
7]
d
If we only store snapshots of X in the forward pass and regenerate individual Jacobians g—f{-] X=X(i)
when needed, the runtime complexity is of the order

T+ storage(—i).

T+ runtime(g—;{) + T # runtime(H) + T * runtime(sparse matrix-vector multiply)

and storage complexity that is of the order
storage(g—g-) + T = storage(X).

When we employ the snapshotting scheme proposed by Griewank [16] to regenerate the X (i) from a
series of checkpoints, the time complexity of the latter approach becomes of the order

T * runtime(%%) + T *(1+ log(T)) # runtime(H)
+ T xruntime(sparse matrix-vector multiply)

and storage complexity is of the order
storage(g—i) + (1 + log(T)) = storage(X).

Given that we can compute sparse Jacobians efficiently, at a storage and memory cost that is a moderate
multiple of the cost for evaluating H itself, the last approach may be an attractive approach to developing
a gradient code. It shares with a “usual” adjoint the characteristic that the ratio of gradient to function
evaluation does not depend on the number of input parameters. This approach capitalizes on the
advantages of the forward mode (efficient computation of sparse Jacobians with predictable complexity
independent of the nonlinearity of the model) and the reverse mode (lower arithmetic complexity). It
also avoids the drawbacks of the forward mode (the ratio of gradient to function evaluation depends on
the number of input variables) and the reverse mode (a highly nonlinear model may lead to excessive
storage demands).
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Figure 8: Parallel Derivative Computation

However, if execution time is of the essence, we can do even better by exploiting chain rule associa-
tivity to break the time dependency in the derivative computation. To illustrate this idea, we consider
the situation shown in Figure 7: G cannot start before F has been computed, and H has to wait for
the completion of G. That is, none of these processes may execute in parallel. This is not the case in
derivative computations, however, because of the associativity of the derivative chain rule. For example,
we could proceed as in Figure 8. That is, at the same time that we spawn a process to compute F, we
spawn a process to compute %f_-, and at the same time that we start with computation of G, we spawn
a process to compute %:7. Lastly, the computation of ‘;—';’ is initiated. Under the assumption that the
computation of derivatives takes significantly longer than the simulation itself, we will, in the end, have
the three derivative processes running in parallel. When they have finished, we simply accumulate their
outputs to arrive at the desired result, ‘;—':. Thus, if we are willing to duplicate the computation of y and
z, we can in this fashion arrive at a coarse-grained parallel schedule that, with minimal synchronization
requirements, could be mapped to a network of workstations.

In particular, if we now apply this idea to our problem (18), we could, if enough memory and
processors were available, spawn processes to independently compute J(i) in parallel, and would only
have to wait for an additional run time of the order of

. H . . .
runtime( g-)?) + T * runtime(sparse matrix-vector multiply),

to obtain the desired gradient m‘?{"w.
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6 Conclusions and Future Work

This paper gave a brief introduction into automatic differentiation and related it to the tangent linear

model and adjoint approaches commonly used in meteorology. We briefly reviewed the forward and
reverse mode of automatic differentiation and introduced the ADIFOR. automatic differentiation tool.
We also presented first results of a sensitivity-enhanced version of the MMS5 PSU/NCAR mesoscale
weather model, thus demonstrating that automatic differentiation can generate results equivalent to a
tangent linear model for sophisticated weather models, with minimal recourse to laborious and error-
prone hand-coding.

We presented a novel approach to the computation of gradients, which used a reverse mode approach
at the timestep level and a forward mode approach at every time step. The resulting “pseudoadjoint”
shared the characteristic of an adjoint code that the ratio of gradient to function evaluation did not
depend on the number of independent variables, but, in contrast to a true adjoint approach, the nonlin-
earity of the model played no role in the complexity of the derivative code. Lastly, we motivated how
chain rule associativity could be employed to break time dependencies in the derivative computation.

The pseudoadjoint strategy is a particular instantiation of what we call a “hybrid mode,” where both
forward and reverse modes of automatic differentiation are employed at various levels in the derivative
computation. The strategy employed in the ADIFOR and ADIC tools is a particularly simple instance of
such a hybrid strategy which, in some sense, is at the opposite spectrum of the “pseudoadjoint” approach
suggested here. In the pseudoadjoint approach suggested in Section 5 we are using the reverse mode
at the outermost loop level, and a forward based technique in the rest, whereas ADIFOR and ADIC
employs the reverse mode at the lowest level, within the scope of an assignment statement. Clearly,
there are many other alternatives, and we are beginning to explore them in a systematic fashion with
an eye toward capitalizing on the benefits of the forward and reverse mode approaches while avoiding
their respective drawbacks.
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