skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A nanostructure-initiator mass spectrometry-based enzyme activity assay

Journal Article · · Proceedings of the National Academy of Sciences
OSTI ID:935404

We describe a Nanostructure-Initiator Mass Spectrometry (NIMS) enzymatic (Nimzyme) assay in which enzyme substrates are immobilized on the mass spectrometry surface by using fluorous-phase interactions. This 'soft' immobilization allows efficient desorption/ionization while also enabling the use of surface-washing steps to reduce signal suppression from complex biological samples, which results from the preferential retention of the tagged products and reactants. The Nimzyme assay is sensitive to subpicogram levels of enzyme, detects both addition and cleavage reactions (sialyltransferase and galactosidase), is applicable over a wide range of pHs and temperatures, and can measure activity directly from crude cell lysates. The ability of the Nimzyme assay to analyze complex mixtures is illustrated by identifying and directly characterizing {beta}-1,4-galactosidase activity from a thermophilic microbial community lysate. The optimal enzyme temperature and pH were found to be 65 C and 5.5, respectively, and the activity was inhibited by both phenylethyl-{beta}-d-thiogalactopyranoside and deoxygalactonojirimycin. Metagenomic analysis of the community suggests that the activity is from an uncultured, unsequenced {gamma}-proteobacterium. In general, this assay provides an efficient method for detection and characterization of enzymatic activities in complex biological mixtures prior to sequencing or cloning efforts. More generally, this approach may have important applications for screening both enzymatic and inhibitor libraries, constructing and screening glycan microarrays, and complementing fluorous-phase organic synthesis. The interest in leveraging mass spectrometry for studying enzyme activities in complex biological samples derives from its high sensitivity and specificity; however, signal suppression and significant sample preparation requirements limit its overall utility (1). Here we describe a Nanostructure-Initiator Mass Spectrometry (NIMS) enzymatic (Nimzyme) assay, which uses the fluorous liquid-coated surface of NIMS (2) to noncovalently attach enzyme substrates by means of fluorous tags. Enzymes play essential roles in a wide range of cellular processes and account for >20% of all drug targets (3). In addition, enzymes have found great utility in organic synthesis because they can efficiently catalyze chemical transformations that are difficult and inefficient to catalyze using conventional synthetic approaches. Furthermore, enzymatic transformations are particularly useful in reactions requiring multiple functional groups or stereo/regiochemically defined products (4). These properties make them particularly well suited for the synthesis and degradation of carbohydrates (5). Indeed, enzymatic approaches have found widespread applications in glycobiology (6, 7) and are of intense interest for the utilization of plant biomass for biofuels (8).

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
Life Sciences Division
DOE Contract Number:
DE-AC02-05CH11231
OSTI ID:
935404
Report Number(s):
LBNL-793E; TRN: US200815%%703
Journal Information:
Proceedings of the National Academy of Sciences, Journal Name: Proceedings of the National Academy of Sciences
Country of Publication:
United States
Language:
English