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ABSTRACT

Thermal imaging is an important, though challenging, diagnostic for shockwave experiments. Shock-compressed
materials undergo transient temperature changes that cannot be recorded with standard (greater than ms response time)
infrared detectors. A further complication arises when optical elements near the experiment are destroyed. We have
designed a thermal-imaging system for studying shock temperatures produced inside a gas gun at Sandia National
Laboratories. Inexpensive, diamond-turned, parabolic mirrors relay an image of the shocked target to the exterior of the
gas gun chamber through a sapphire vacuum port. The 3000-5000-nm portion of this image is directed to an infrared
camera which acquires a snapshot of the target with a minimum exposure time of 150 ns. A special mask is inserted at
the last intermediate image plane, to provide dynamic thermal background recording during the event. Other wavelength
bands of this image are split into high-speed detectors operating at 900-1700 nm, and at 1700-3000 nm for time-
resolved pyrometry measurements. This system incorporates 90-degree, off-axis parabolic mirrors, which can collect
low f/# light over a broad spectral range, for high-speed imaging. Matched mirror pairs must be used so that aberrations
cancel. To eliminate image plane tilt, proper tip-to-tip orientation of the parabolic mirrors is required. If one parabolic
mirror is rotated 180 degrees about the optical axis connecting the pair of parabolic mirrors, the resulting image is tilted
by 60 degrees. Different focal-length mirrors cannot be used to magnify the image without substantially sacrificing
image quality. This paper analyzes performance and aberrations of this imaging diagnostic.
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1. INTRODUCTION

Mirrors are a cost-effective component in broadband infrared (IR) diagnostics, particularly in harsh environments. Lens-
based systems tend to be expensive (particularly at low f/#) and can only be optimized for a narrow wavelength range.
Diamond-turned mirrors, however, function over a wide spectral range, and have become competitive with lenses in both
cost and quality. This paper investigates the use of diamond-turned mirrors in an IR imaging system.

A key application for mirror-based optical relay systems is IR emission measurements during plate impact studies. These
experiments are performed in a light gas gun (Figure 1), which uses compressed nitrogen or helium to drive a projectile
into a target of interest at velocities of 100-600 m/s. For several microseconds after impact, the target undergoes
temperature rises of 100-1000 °K. Fast multichannel pyrometry and/or infrared imaging may be used to interrogate the
target before the ultimate destruction of the target and all optical components within the target chamber. Maximum light
throughput and anticipated hardware destruction are critical to the infrared relay design. A replaceable CaF, blast
window is placed in front of the expensive sapphire vacuum port window.
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Fig. 1. Gas gun for IR imaging. The projectile enters into the vacuum target chamber from the right. There are several
port openings in the target chamber for installing diagnostics. The debris catch tank has been opened on the left.

2. OPTICAL RELAY DESIGN

Off-axis parabolic mirrors combine the functionality of relay lenses and turning mirrors, though there is scant literature
regarding the use of such mirrors in imaging applications. Figure 2 illustrates the use of off-axis parabolic mirrors
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Fig. 2. Comparison of standard IR lens imaging to the 90-degree, off-axis parabolic mirror imaging.
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Fig. 3. Using only one parabolic mirror tilts the image.

A possible variation in IR imaging is to mix lenses
and mirrors as shown in Figure 3. In doing so, one
increases light collection and image size. However,
the image plane is now tilted at 45 degrees and is
thus unusable for thermal imaging cameras.

3. ORIENATATIONS OF 90-DEGREE, OFF-AXIS PARABOLIC MIRRORS

A pair of off-axis parabolic mirrors may be used to eliminate tilting of the image plane, but if these mirrors have the
correct rotations. Figure 4 shows a pair of 25.4-mm EFL, 1-inch-diameter, 90-degree, off-axis parabolic mirrors that
have been improperly rotated. Light from a 1-mm-diameter object is telecentric at f/3. The image plane is tilted at 60
degrees. Notice that the elliptical stop is tilted by 60 degrees. The ray tracing at the image plane shows that the image
quality of this tilted plane will be unacceptable for IR camera imaging. Inspection of the optical ray tracing shows that
rays from a single field point map onto different regions of each parabolic mirror. To achieve the best resolution without
tilting the image plane, the rays from a single field point must strike identical coordinates on each parabolic mirror. This
requires the orientation of the mirrors to be “tip to tip.”

Figure 5 shows proper rotation for this same pair of parabolic mirrors. The elliptical stop is still tilted by 60 degrees but
there is no tilt at the image plane. Image quality is diffraction-limited.

The image quality depends on the object size. Figure 6 shows a comparison of two different object diameters being
relayed. Two 150-mm EFL, 3-inch diameter, 90-degree, off-axis parabolic mirrors were used. Figure 7 shows the
Modulation Transfer Function (MTF) for 1- and 6.35-mm-diameter objects. The 1-mm-diameter object has near
diffraction-limited performance. Refocusing the 65-mm-diameter object by 0.4 mm optimized its MTF and made the
image quality acceptable for the IR camera.
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Fig. 4. The off-axis parabolic mirrors have incorrect orientations. The image plane is tilted at 60 degrees.
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Fig. 5. The off-axis parabolic mirrors have correct orientations. The image plane is not tilted.
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Fig 6. Ray tracing pairs of parabolic mirrors used for 1:1 imaging. All mirrors are identical. Better resolution is achieved for
the 1-mm object versus the 6.35-mm object. A 0.4-mm defocus was applied to the 6.35-mm image during optimization.

< 150-mm EFL,

3-inch-diameter,

elliptical stop tilted at 60 degrees

telecentric,
/2.6

off-axis parabolic mirrors

6.35-mm-diameter object

---------- DIFFRACTION LIMIT ---------- DIFFRACTION LIMIT
———Y axis ——Y axis
DIFFRACTION MTF j%ﬁ 0.125 mm DIFFRACTION MTF fﬁﬁ 0.79 mm
T§ 0.250 mm . 1.59 mm
§ J————
0.375 mm ¢ 2.38 mm
————x% 0500mm Ti 3.18 mm
1.0 1.0
9 9[
M-8 Y| M 8 ;((
o] O 4t
B.? B .7 I
L .6 C .6.
,_?_\.5 ,_?\.5
| .4 | 4]
Q.3 Q3
2 1-mm object diameter 2[ | 6.35-mm object diameter
A Al
2 4 6 8 10 12 14 16 18 20 22 24 2 4 6 8 10 12 14 16 18 20 22 24
SPATIAL FREQUENCY (CYCLES/MM) SPATIAL FREQUENCY (CYCLES/MM)

Fig. 7. Resolution depends on the object size.




Figure 8 shows how resolution will degrade with
incorrect rotation alignment of the mirrors. The
alignment tolerance of two 150-mm EFL, 3-inch-
diameter, 90-degree, off-axis parabolic mirrors is
+2 degrees. Light from a 6.35-mm-diameter object is
telecentric at f/2.6.

Using identical focal lengths in a 1:1 imaging
configuration provides a good image. However,
employing off-axis parabolic mirrors of different
focal lengths does not produce imaging as good as
that of optical lens systems. Figure 9 shows an
example of trying to achieve a 1.5x magnification in
the image by using parabolic mirrors that have focal
lengths of 100 and 150 mm. The ray tracing shows a
curved image plane and the MTF shows poor image
quality. The aberrations produced by the first
parabolic mirror are not quite cancelled out by the
second parabolic mirror. This is because the
footprints of different field points map onto different
curvatures on each parabolic mirror.
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Fig. 10. Typical distortion plot. Only about one half of the distortion can be eliminated by optimizing the air spacing
between the parabolic mirrors. There is very little distortion in the X direction.

Even though the image quality is good for the 1:1 imaging configuration, there is considerable distortion. Figure 10
shows a typical distortion plot. Distortion remapping is performed by the computer that controls the IR camera. A
special calibration procedure must be performed as part of the set up of each experiment. The amount of distortion is
proportional to the focal lengths of the parabolic mirrors used.

4. FINAL IMAGING/PYROMETRY DESIGN

IR imaging and pyrometry for the gas gun requires the use of mirrors for broadband spectral response. The IR camera
has 640 x 512 pixels with 20-pum pitch, providing a 12.8- x 10.24-mm image size. In this application, the goal is to
resolve 150 pm features inside a 6.35-mm-diameter object. Thus, only 1 part in 50 across the object needs to be
resolved. When using IR cameras experimenters typically record dark field images prior to the experiment and
optimistically hope that thermal drift during the actual experiment will be minimal. To overcome this concern, a special
mask to block a discrete portion of the image is inserted at the intermediate image plane. Thus, during the experiment,
part of the image will register dark field information. This dynamic background measurement will be recorded during
each experiment. Gas gun velocities range from 300-500 m/s. At the highest velocity of 500 m/s and image integration
of 500 ns, the target will move 250 um. Therefore, the depth of field should be greater than 500 um to allow for focusing
errors. It would be ideal if the best focus plane is placed 125 um in front of the target.
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Fig. 11. 3-D perspective view of thermal imaging.

The optical design for the gas gun experiments is shown in Figure 11. The system requires a single-frame IR camera as
well as two detectors that record the time history of the emissions at two different wavelength bands. Light is sent
through an expensive sapphire window protected by a throw-away, thin CaF, window. The off-axis parabolic mirror is
too massive to place in the path of the projectile; a blow-away, low-mass folding mirror is used. Commercial IR camera
lenses (50 and 100 mm EFLs) set up as a Fourier relay pair are used to magnify the intermediate image plane by 2x.
Custom singlet lenses, using ZnSe and CaF, are used to demagnify the light by 6x onto the high-speed detectors. Filters
are positioned where the light is collimated in front of the IR camera and the two detectors.

The low-mass folding mirror can be rotated 90 degrees for calibration work. Resolution and grid patterns are placed at
the virtual object distance and can be back-illuminated by IR lamps. The grid is used to map the distortions discussed in
the previous section and verify that there is no image tilt. This calibration exercise of pyrometry and imaging does not
interfere with the projectile delivery hardware.

5. SUMMARY

Using parabolic mirrors in imaging applications has advantages and limitations. Using a single off-axis parabolic mirror
is not useful for imaging applications because the image plane is tilted. Great care must be taken to align the pair of



parabolic mirrors to prevent image tilting. These parabolic mirrors are useful for collecting broadband emissions due to
the absence of chromatic aberrations. They can collect low f/# light. However, the resolution at the recording camera
depends on the object size, and therefore only relatively small object sizes can be imaged. There is distortion in the
image which must be mapped out. The pair of off-axis parabolic mirrors must have identical focal lengths.
Consequently, parabolic mirrors cannot be used to vary image magnifications.
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