ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, IL 60439

ANL/MCS-TM-192

B oLk B S A
058 ° 8
2SS 54598
55 g8 S
3,082%
=] C R
Sezité
2 € =23 s
= “:,Q - o &
S22 0
s8=g5%
p2§T2s
2% _9.? g 2 5,
’ . B2RE 5D
ADIFOR 2.0 User’s Guide DgEEEs
1a1 88 %8
(Revision B) BpEEE“
BL88E°
o tg5-S%g
b 2 £25%%8
= o
Y g Sidgzs
< YEBESYF
S 3 CEER
. . . EZ

Christian Bischof,! Alan Carle,* Peyvand Khademi,' g =®558°%
(=3
Y < 848 1B -
Andrew Mauer,! and Paul Hovland * a &3 g 2= 3
LA R
g .8%-§
c2 2% 8 E
segecwe s 8

2D EER
< 3]
328858
PR
258857
B g8y g
. . . g% g'% 8
Mathematics and Computer Science Division g B2
. 2528
Technical Memorandum No. 192 2ES5, S
and 22288
: 5 60

Center for Research on Parallel Computation BO s

Technical Report CRPC-95516-S
April 1995

This work was supported by the Mathematical, Information, and Computational Sciences Division subpro-
gram of the Office of Computational and Technology Research, U.S. Department of Energy, under Contract
W-31-109-Eng-38, by the National Aerospace Agency under Purchase Order L25935D and Cooperative

Agreement No. NCCW-0027, and by the National Science Foundation, through the Center for Research on
Parallel Computation, under Cooperative Agreement No. CCR-9120008.

! Address: Mathematics and Computer Science Division, Argonne National Laboratory, 9700 S. Cass Ave.,
Argonne, IL 60439, {bischof, khademi, mauer, hovland}@mcs.anl.gov.

* Address: Center for Research on Parallel Computation, 6100 S. Main Str., Rice University, Houston, TX

77005-1892, carle@cs.rice.edu.
. Q g, -
%@ %%ﬁ] g ﬁ

07 THIE DOCUMENT 1S UNLIMITED

ent, recom-
f. The views

ly state or reflect t

T

ecessarily constitute of imply its endorse!

ed States Government o

expressed herein do not necessari

t 0
t or any agency thereof.

does no

by the Unit:

or otherwise

manufacturer,

r any agency thereo

mendation, or favoring

hose of the

and opinions of authors

United States Governmen

How to Get ADIFOR. 2.0

To retrieve the ADIFOR 2.0 automatic differentiation software, visit the ADIFOR group World Wide Web
home pages .

http://www.cs.rice.edu/fortran-tools/ADIFOR/adifor.html

or
http://vwuww.mcs.anl.gov/Projects/autodiff/adifor.html.

The home page contains a link to a request form for ADIFOR 2.0. Follow the instructions in the request
form to acquire the ADIFOR 2.0 software. The ADIFOR group home page also contains links to a Unix tar
format file containing the FORTRAN 77 source for the examples in this manual, and links to publications
related to ADIFOR.

Legal Notices

Copyright on the ADIFOR 2.0 preprocessor is held by Rice University. Copyright on the ADIntrinsics system
and the SparsLinC libraries is held by the University of Chicago.

ADIFOR 2.0 was prepared as an account of work sponsored by an agency of the United States Gov-
ernment, Rice University, and the University of Chicage. NEITHER THE AUTHOR(S), THE UNITED
STATES GOVERNMENT NOR ANY AGENCY THEREOF, NOR RICE UNIVERSITY, NOR THE UNI-
VERSITY OF CHICAGO, INCLUDING ANY OF THEIR EMPLOYEES OR OFFICERS, MAKES ANY
WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LEGAL LIABILITY OR RESPONSIBIL-
ITY FOR THE ACCURACY, COMPLETENESS, OR USEFULNESS OF ANY INFORMATION OR PRO-
CESS DISCLOSED, OR REPRESENTS THAT ITS USE WOULD NOT INFRINGE PRIVATELY OWNED
RIGHTS.

ii

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

Contents

Abstract
1 For ADIFOR 1.0 Users

2 Some Preliminaries
2.1 Configuration L e e e e e e e e e e e e e
2.2 How ADIFOR 2.0 Transforms a Program
2.2.1 Code Canonicalization Lo e

2.2.2 Variable Nomination L L e e
2.23 Code Generation i e e e e e
2.3 Functionality of ADIFOR 2.0-generated Code
24 AQuick Example L e e e
25 ARoadmap e e e e e e

3 Specifying Input for ADIFOR 2.0

3.1 Option Processing in ADIFOR 2.0
3.2 Compositions Lo e e e e e e e e e e e e e e e
3.3 Acceptable FORTRAN 77 Source Files

4 A Tutorial Example

5 Known Deficiencies

5.1 Intrinsics Passed as Procedure Parameters
5.2 Intrinsics Overridden by External Functions
5.3 [/O Statements That Contain Function Invocations

6 Advanced Topics

6.1 Computation Is Not Encapsulated in Procedure
6.2 Variables Other Than Parameters and Globals in AD_TOP
6.3 Variables That Are Overwritten J
6.4 Variables Involved in I/O Statements L 0 oo L

7 Pitfalls of Differentiating FORTRAN 77

8 Potential Problems

iii

vi

10
10
11
12

14

22
22
23
23

25
25
26
27
27

30

32

Revision B ' ADIFOR 2.0 User’s Guide April 29, 1995
9 ADIFOR 2.0 Options 34
9.1 Mandatory Options o v i e e e e e e e e e e e e e e e 34
9.2 Other OPLIONS . . .« o v i i e e e e e e e e e e e e e e e e e 34

A Seed Matrix Initialization 36
A1 Imtroduction L e e e e e e e e e e e e e e e 36
A.2 Case 1: Dense Jacobian, one independent, one dependent variable 36
A.3 Case 2: Dense Jacobian, multiple independent and multiple dependent variables 41
A.4 Case 3: Sparse Jacobian, one independent, one dependent variable 43
A.5 Case 4: Sparse Jacobian, two independent variables, one dependent variable 45
A.5.1 Approach 1 — Generate derivatives only forfnc 47

A.5.2 Approach 2 — Generate derivatives for fun L0 0L 48

A.6 Computing Gradients of Partially Separable Functions 50

B ADIntrinsics 1.0: Exception Handling Support for ADIFOR 2.0 53
Bl Imtroduction e e e e e e e e e e e e 53
B.1.1 What Is an Exception? e e e e e 53

B.1.2 What Code Is Needed? i 53

B.2 Redirecting Exception Handler Qutput, 54
B.3 Purse and Exception Handler Templates, 54
B.3.1 Exception Handler Modes 55

B.3.2 Fine-Grained Control of Exception Handler Modes 55

B.3.3 Ignoring Exceptionsina Reglon 56

B.3.4 Setting Exceptional Values o . 57

B.3.5 Overriding a Specific Instance of a Template e 58

B.3.6 Replacing All Instances of a Template 58

B.4 Writing Templates L. e e e e e e 58
B.4.1 Filenames of the Template Files 59

B.4.2 Format of the Template Files 59

B4.3 Typing Issues 0 e e e e e e e 59

B.5 Examples of Complicated Template Files, 60

C Sparse Derivative Support for ADIFOR 2.0 through the SparsLinC 1.0 Library 63
C.a1 Imtroduction L . . e e e e e e e e e e e e e e e e e e 63
C.2 Background e e e e e e e e e 64
C.3 Where Is SparsLinC Useful? 64
C.3.1 Definition of Sparsity e e e e 64

C.3.2 Sparse Derivative Problem Types 65

C.4 Usage of SparsLinC Access Routines 65
C.4.1 About SparsLinC 1.0 Routines and Their Names 65

C.4.2 Declaration of Sparse Variables 66

C.4.3 Initializing and Customizing SparsLinC 67

C.4.4 Initializing the Seed Matrix oo L. 68

C.4.5 Extracting Directional Gradient Vectors from SparsLinC 68

C.4.6 Adding the Contents of a Sparse Vector to a Dense Vector. 69

iv

Revision B ADIFOR 2.0 User’s Guide "~ April 29, 1995

C.4.7 Dumping the Contents of a Sparse Vector 70

C.4.8 Extracting Performance Information 70

C.4.9 Freeing Dynamically Allocated Memory 71

C.5 A Brief Tutorial Example 71
C.5.1 Invoking ADIFOR 2.0 to Generate Sparse Code 71

C.5.2 An Example Derivative Code Driver 72

C.5.3 Linking with SparsLinC 1.0 i e 73

C.6 Detailed Specification of Access Routines 73

D Changes in Naming Conventions between ADIFOR 1.0 and ADIFOR 2.0 80
Acknowledgments 81
Bibliography 82

ADIFOR 2.0 User’s Guide
(Revision B)

Argonne Technical Memorandum ANL/MCS-TM-192
CRPC Technical Report CRPC-95516-S

Christian Bischof

bischof@mcs.anl.gov

Peyvand Khadem:
khademi@mcs.anl.gov

Andrew Mauer
mauer@mcs.anl.gov

Paul Hovland

hovland@mcs.anl.gov

Mathematics and Computer Science Division
Argonne National Laboratory
9700 S. Cass Avenue., Argonne, IL 60439

Alan Carle

carle@cs.rice.edu

Center for Research on Parallel Computation, MS 41
Rice University
Houston, TX 77005-1892

Abstract

Automatic differentiation is a technique for computing the derivatives of functions described by computer
programs. ADIFOR implements automatic differentiation by transforming a collection of FORTRAN 77
subroutines that compute a function f into new FORTRAN 77 suborutines that compute the derivaties of
the outputs of f with respect to a specified set of inputs of f. This guide describes step by step how to use
version 2.0 of ADIFOR to generate derivative code. Familiarity with UNIX and FORTRAN 77 is assumed.

Chapter 1

For ADIFOR 1.0 Users

Users of ADIFOR 1.0 wishing to migrate to ADIFOR 2.0 should read at least the following sections of this
manual:
Section 2.1 describes the csh environment variables that you must set to invoke ADIFOR 2.0.

Section 2.4 succinctly presents all of the steps required to process a code with ADIFOR 2.0 and compile
and link a derivative-computing executable.

Chapter 3 describes the new options processing mechanism used by ADIFOR 2.0, and describes the new
format of compositions.

Appendix D describes important changes in naming conventions between ADIFOR 1.0 and ADIFOR 2.0.

After reading these sections, and trying out ADIFOR 2.0 for the first time, we strongly suggest that you
additionally read at least the following sections of the manual:

Chapter 5 documents the known deficiencies in our support for FORTRAN 77. The number of deficiencies
is greatly reduced from that in ADIFOR 1.0.

Chapter 8 provides a list of problems that users of ADIFOR 2.0 may encounter.

Chapter 9 defines all of the options to ADIFOR 2.0 and presents their default values.

Appendix B describes the new exception handling mechanism of ADIFOR 2.0.

Appendix C describes the SparsLinC library, which provides support for sparse derivative computations
within ADIFOR 2.0.

Chapter 2
Some Preliminaries

Automatic differentiation is a technique for computing the derivatives of functions described by computer
programs. See [13, 18] for an introduction to automatic differentiation. ADIFOR implements automatic
differentiation by transforming a collection of FORTRAN 77 subroutines that compute a function f into
new FORTRAN 77 subroutines that compute the derivatives of the outputs of f with respect to a specified
set of inputs of f. This paper describes step by step how to use version 2.0 of ADIFOR to generate derivative
code. Familiarity with UNIX! and FORTRAN 77 is assumed.

We strongly suggest that you, before reading this manual, have a look at the overview paper of ADI-
FOR 2.0 [4]. It provides an overview of the philosophy of ADIFOR, references of successful applications
of ADIFOR, and a perspective of how automatic differentiation relates to other approaches for computing
derivatives.

The ADIFOR 2.0 system consists of the ADIFOR 2.0 preprocessor, the ADIntrinsics template expander
and library, and the SparsLinC library. The Adifor2.0command invokes both the ADIFOR 2.0 preprocessor
and the ADIntrinsics template expander. Figure 2.1 presents a block diagram of the ADIFOR 2.0 process.
The process consists of three key steps:

1. Apply ADIFOR 2.0 to your FORTRAN 77 program to produce augmented code for the computation
of derivatives. ADIFOR 2.0 invokes the ADIntrinsics template expander directly.

2. Construct a derivative driver code that invokes the derivative code generated by ADIFOR 2.0 and
makes use of the computed derivatives.

3. Compile the FORTRAN 77 code generated by ADIFOR 2.0 and your derivative driver code, and link
these with the derivative support packages, i.e., the ADIntrinsics exception handling package (see
Appendix B), and (optionally) the SparsLinC sparse derivative package (see Appendix C).

The first step of this process can be performed on Sparc’s running SunOS 4.1.3, SunOS 5.3 (Solaris), and
IBM RS 6000°s running version 3.2.5 of AIX, though the FORTRAN 77 code generated by the ADIFOR 2.0
preprocessor should be able to be executed on any machine on which you have a FORTRAN 77 compiler.
We currently provide the necessary libraries for the second step precompiled for SunOS 4.1.3, SunOS 5.3,
and IBM RS 6000’s running version 3.2.5 of AIX, as well. Source code for the libraries is also provided in
case you need to compile them to execute on other architectures. A “C” compiler is required to compile the
SparsLinC library.

2.1 Configuration

To execute ADIFOR 2.0, set the environment variable AD_HOME to be the directory in which ADIFOR 2.0
is installed on your machine, the variable AD_ARCH to “sun4” (for a Sparc running SunOS 4.1.3 or SunOS
5.3) or “rs6000” (for an RS 6000 running AIX 3.2.5), and the variable AD_.0S to “SunOS-4.x” (for a Sparc

1UNIX is a trademark of AT&T.

Revision B ADIFOR. 2.0 User’s Guide April 29, 1995
FORTRAN| ADIntrinsiod FORTRAN
Analysis > ADIFOR 2.0 Template | Derivative
Cod Preprocessor p Code

ode Expander
Derivative | Compile
Computing and Link
Code _ |
User’s ADIntrinsics SparsLinC
Derivative Library Library
Driver

Figure 2.1. Block Diagram of the ADIFOR Process

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

setenv AD_HOME /usr/local/ADIFOR2.0
setenv PATH $AD_HOME/bin:$PATH
setenv MANPATH $AD_HOME/man:$MANPATH
setenv AD_ARCH sun4

setenv AD_0S Sun0S-4.x

Figure 2.2. Portion of .cshrc File

running SunOS 4.1.3) or “SunOS-5.x" (for a Sparc running SunOS 5.3) or “AIX” (for an RS 6000 running
AIX 3.2.5).

The directories “$AD_.HOME/bin” and “$AD_HOME/man” should be added to your execution and manual
paths, respectively. (The notation $X represents the value of the environment variable X.) We suggest
modifying your “.cshrc” file to define AD_HOME and to modify your execution and manual paths. Figure 2.2
shows a fragment of a “.cshrc” file that has been modified assuming that the ADIFOR 2.0 executables and
libraries have been installed into the directory /usr/local/ADIFOR2.0 on a Sparc running SunOS 4.1.3. The
rest of this manual assumes that you have set AD_HOME and modified your execution path and manual path
as just described.

The directory $AD_HOME contains the following subdirectories:

¢ bin: Contains Adifor2.0, the ADIFOR 2.0 preprocessor, and purse, the ADIntrinsics template ex-
pander. The template expander is responsible for expanding generic exception-handling macros in-
troduced by ADIFOR 2.0 into the appropriate FORTRAN 77 code. The purse executable is a perl
script, and we have provided perl in case it is unavailable on your system.

¢ templates: Contains the definition of the exception handling macros used by purse.

e docs: Contains postscript versions of relevant working notes and papers, including this manual.
¢ examples: Contains examples of programs proceséed with ADIFOR 2.0.

¢ man: Contains the man page for ADIFOR 2.0, purse, perl, ADIntrinsics, and SparsLinC.

¢ src: Contains the source for the ADIntrinsics and SparsLinC libraries.

e lib: Contains the precompiled versions of the ADIntrinsics and SparsLinC libraries.

You may want to consider compressing the files in the src and docs directories to save disk space.

2.2 How ADIFOR 2.0 Transforms a Program

In this section, we describe the mechanism used by ADIFOR 2.0 to transform your FORTRAN 77 code into
code that computes derivatives of dependent variables with respect to independent variables. The mechanism
has three key subtasks: code canonicalization, variable nomination, and code generation. Understanding
these three tasks will help you better understand the derivative code that ADIFOR 2.0 generates. We briefly
describe these subtasks in the next sections.

2.2.1 Code Canonicalization

In the code canonicalization phase, the FORTRAN 77 code is rewritten into a standard form. For example,
expressions appearing as arguments to function or subroutine calls and function calls appearing within
conditional tests are hoisted into assignments to new temporary variables. Statement functions are expanded
into in-line code. This phase also breaks up long right-hand sides of assignment statements into smaller pieces,
and rewrites them such that all variables appearing on the right-hand side of an assignment statement are of
the same type. The latter transformation is needed for the code to be able to link in the SparsLinC library
(see Appendix C).

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

2.2.2 Variable Nomination

ADIFOR 2.0 must decide which variables need to have “directional gradient objects” or “gradient objects”
associated with them. ADIFOR 2.0 associates a gradient object with every variable whose value may depend
on the value of a variable considered “independent” with respect to differentiation, and whose value impacts
a variable considered “dependent” with respect to differentiation. Such a variable is called active. Variables
that do not require derivative information are called passive.

ADIFOR 2.0 employs interprocedural analysis techniques to determine which variables in your code
are active. First, ADIFOR 2.0 derives a “local interaction graph” for each subroutine. This is a bipartite
graph where nodes representing input parameters or variables in common blocks are connected with nodes
representing output parameters or variables in common blocks whose values they influence.

Next, an interprocedural analysis is performed, which determines, in essence, all possible program paths
through which an independent variable can affect a dependent one and identifies intermediate variables that
are involved along such a path. This analysis involves computing a transitive closure of the whole program
graph composed from the local interaction graphs. In the presence of common blocks, equivalences, and
arbitrary control structures, this is a nontrivial and computationally intensive process.

2.2.3 Code Generation

After active variables have been nominated, derivative code is generated for each assignment statement
containing an active variable, and gradient objects are allocated. For assignment statements containing a
FORTRAN 77 intrinsic, a2 template is generated that will later be instantiated by the ADIntrinsics system.

2.3 Functionality of ADIFOR 2.0-generated Code

Consider a function func with an n-vector x as independent and an m-vector y as dependent variables. That
is, we have

subroutine func(n,x,m,y)
integer n, m
real x(n), y(m)

end

ADIFOR 2.0 inserts a gradient object g_x for x and g_y for y (as well as gradient objects for all other
active variables in func) and replaces each assignment statement involving an active variable with a few
assignment statements and a vector loop from 1 to g_p_. The interface of the code it generates is then

subroutine g_func(g_p_,n,x,g_x,1ldg_x,m,y,g_y,1dg_y)
integer n, m, g_p_
real x(n), y(m), g.x(1ldg.x,n), g_y(ldg_y,m)

end

So, for example, g_x(:,1) is the gradient object corresponding to x(i). If g_func is invoked with an
integer g_p_ and values for x and g-x, then it computes y and
oy T\T
y=(——X .
gy =(z_ xgx")
While somewhat inconvenient, the fact that the gradient dimension is the first dimension in the gradient
objects cannot be avoided if we want to be able to deal with assumed-size arrays (e.g., declared as real

x(*)).

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

program main

real x, y

read *, x

call squareroot(x, y)
print *, y

end

Figure 2.3. A Very Simple Program (main.f)

We now illustrate the flexibility inherent in the ADIFOR 2.0-generated code. First, recall the definition
of the Jacobian of func,

an Sy
d 8z, e Szyp
J=2¥ = : : € R™*",
d T . .
Bum 2ym
8z dzy

Second, let S = g xT. We refer to S as the “seed matrix.” The equation defining g-y above states that the
ADIFOR 2.0-generated code computes (J * .S)T, where the number of columns p of S corresponds to the
FORTRAN 77 variable g_p_in the generated code. Since most of the work of the derivative code is performed
in the gradient loops (which range from 1 to g.p.), the size of p has a direct impact on the runtime and
storage requirements for running the derivative code.

Properly initializing S, we can then obtain:

Full Jacobian: Choosing S as the n x n identity matrix, we compute the transpose of the full Jacobian
J. The complexity of the resulting derivative code is O(n) times that of the original function.
Jacobian-Vector Product: Choosing S = d € R"”, we compute the transpose of the Jacobian-vector

product Jd in a time that is a small multiple of the function evaluation time. Since

7d = lim func(z + hd) — func(z) 7
B0 h

this interface allows us to compute directional derivatives along arbitrary directions.

Selecting Derivatives: Choosing S = [es, ..., €10, €13], where e; is the ith canonical unit vector, i.e., an
n-vector of all zeros except for an entry of 1 in the ith position, we compute the transpose of the 5th
through 10th, and 13th columns of J.

See Appendix A for extensive information on seed matrix initialization.

2.4 A Quick Example

We demonstrate the use of ADIFOR 2.0, using its default configurations, with the very simple program
shown in Figures 2.3 and 2.4. Procedure squarerocot assigns the square root of the value of variable x
to variable y. We now show, with only limited explanation, the sequence of steps required to construct
a procedure that computes the derivative of squareroot at a user-specified value of x. A more detailed
description of the ADIFOR 2.0 process and of the various options available in ADIFOR 2.0 is presented in
Chapter 4.

1. Construct a composition simple.cmp that lists the names of all of the FORTRAN 77 source files that
constitute the example program. Figure 2.5 shows the composition we construct.

2. Construct a script file simple.adf that tells ADIFOR 2.0 to differentiate the procedure named
squareroot with the independent variable x and the dependent variable y, i.e., to generate code
to compute the derivative %, where y is computed from x by procedure squareroot. The script file
is shown in Figure 2.6.

April 29, 1995

Revision B ADIFOR 2.0 User’s Guide
subroutine squareroot{(x, y)
real x, ¥y
y = sqrt(x)
end
Figure 2.4. A Very Simple Program (squareroot.f)
main.f

squareroot.f

Figure 2.5. Script File (script.cmp) for Simple Example

AD_TOP = squareroot
AD_PMAX =1
AD_IVARS = x
AD_DVARS = y
AD_PROG = simple.cmp

Figure 2.6. Script File (script.adf) for Simple Example

subroutine g_squareroot(g_p., x, g.X, ldg_x, y, g.y, ldg_y)

real x, y
integer g_pmax_
parameter (g_pmax_ = 1)
integer g i_, g_p., ldg_y, ldg_x
real ri_p, r2_v, g.y(ldg_y), g_x(1dg_x)
if (g.p. .gt. g_pmax_) then
print *, ’Parameter g_p_ is greater than g_pmax_’
stop
endif
r2_v = sqrt(x)
if (x .gt. 0.0e0) then
ri_p = 1.0e0 / (2.0e0 * 1r2_v)
else
call ehufSV (9, x, r2_v, ri_p, ’g_squarerocot.f’, 32)
endif
dog i_=1, g p_
g-y(g-i) = ri_p * g x(g_i_)

enddo
y =12v
C ________
end

Figure 2.7. Derivative Code (g_squareroot.f)

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

program driver
real x,y
real g_x(1), g_y(1)

real *, x
g.x=1.0
call g_squareroot(i, x, g_x, 1, y, gy, 1)

print *, y
print *, g_y
end

Figure 2.8. Derivative Code Driver (driver.f) for the Very Simple Example

£77 -c driver.f

£77 -c g_squareroot.f

£77 -o driver driver.o g_squarerocot.o \
$AD_HOME/1lib/ReqADIntrinsics~$AD_ARCH.o \
$AD_HOME/1ib/1ibADIntrinsics-$AD_ARCH.a

Figure 2.9. Commands to Compile and Link Derivative Code Executable

3. Create, in the output_files subdirectory, the procedure g.squareroot, as shown in Figure 2.7, by
executing the command -
Adifor2.0 AD_SCRIPT=simple.adf.

Note that an exception handler is invoked when sqrt is invoked with a zero argument, as the derivative
of v is undefined.

4. Create the derivative code driver driver.f as shown in Figure 2.8. The driver invokes g_squareroot
with a user-specified value of x to compute the value of y and %Z'-

5. Compile and link driver.f, g squareroot.f and the ADIntrinsics exception handling archive using
the commands shown in Figure 2.9 to build the desired derivative computing executable.

2.5 A Roadmap

The rest of this manual is organized as follows:

Chapter 3 describes how to set up the inputs to the ADIFOR 2.0 preprocessor to enable it to generate
derivative code. The input to ADIFOR 2.0 takes the form of option bindings that are specified on
the command line or in startup files, and compositions, lists of FORTRAN 77 files that constitute the
program that contains the function to be differentiated.

Chapter 4 is devoted to a step-by-step description of how to process a code by using ADIFOR 2.0 and an
explanation of how ADIFOR 2.0-generated code should be incorporated into a program.

Chapter 5 documents the known deficiencies in ADIFOR 2.0°s support for FORTRAN 77. For each defi-
ciency, a workaround is presented.

Chapter 6 explains how to apply ADIFOR 2.0 in cases where the “function to be differentiated” does not
have the form expected by ADIFOR 2.0.

Chapter 7 covers some of the pitfalls associated with automatic differentiation of FORTRAN 77 programs.

8

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

Chapter 8 provides a list of problems that users of ADIFOR 2.0 may encounter.
Chapter 9 defines all of the options to ADIFOR 2.0 and presents their default values.

Appendix A describes seed matrix initialization, a powerful concept that provides users of ADIFOR 2.0
significant control over the computation performed by the generated derivative code, and allows one
to compute arbitrary directional derivatives.

Appendix B describes the ADIntrinsics template expander and library. ADIntrinsics provides user-customizable
handling of exceptions within ADIFOR 2.0.

Appendix C describes the SparsLinC library, which provides support for sparse derivative computations
within ADIFOR 2.0.

Appendix D describes changes in naming conventions between ADIFOR 2.0 and ADIFOR 1.0 and is
intended to be read only by users of ADIFOR 1.0.

Chapter 3

Specifying Input for ADIFOR 2.0

In order to apply ADIFOR 2.0 to a set of FORTRAN 77 procedures to generate derivative code, it is
necessary to tell ADIFOR 2.0 several key pieces of information:

1. The names of the files containing the FORTRAN 77 source code to be processed. The names of the
procedures are provided to ADIFOR 2.0 in a file referred to as a composition. ADIFOR 2.0 must be
told the name of the file containing the composition.

2. The name of the “top routine,” that routine whose invocation causes the function to be evaluated.
ADIFOR 2.0 determines the names of all of the routines that may be transitively invoked by the top
routine by examining the source code.

3. The names of the independent and dependent variables. The ADIFOR 2.0-generated code computes
the derivatives of the dependent variables with respect to the independent ones.

4. Values of numerous other options to ADIFOR 2.0 that control how vector operations in the ADIFOR-
generated code are implemented, what level of exception reporting for nondifferentiable FORTRAN 77
intrinsics is performed, and to what extent the code should be customized for particular execution
environments.

The names of the composition file, the top routine, and the independent and dependent variables, and
values for the various options, are provided to ADIFOR 2.0 in the form of bindings, as described in the
next section. Section 3.2 describes the format of compositions. Section 3.3 describes source files that are
acceptable for processing with ADIFOR 2.0 and describes some common deviations from the FORTRAN 77
standard that cause problems.

3.1 Option Processing in ADIFOR 2.0

This section describes ADIFOR 2.0’s option-processing mechanism. Information is provided to ADIFOR 2.0
as bindings. Bindings have the form
OPTION = VALUE,

OPTION = VALUEL,..., VALUEN.

The second form is used in defining list-valued options. Bindings may be provided as command line ar-
guments and, additionally, as lines in a “script” file. Bindings specified as command line arguments to
ADIFOR 2.0 may contain whitespace, consisting of a sequence of spaces and tabs, if they are quoted.

A script file is a sequence of lines. Blank lines are ignored. Each nonblank line contains a binding having
either of the two forms shown above. All characters on a line after the comment character ‘#’ are ignored.
There is no formal requirement for the name of the script file, but our informal convention is to use the .adf
extension. Bindings defined in script files may always use whitespace liberally.

10

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

AD_PROG = rosenbrock.cmp

AD_TOP = func

AD_IVARS = x

AD_DVARS = y

AD_PMAX = 2 # x has 2 elements
AD_OUTPUT_DIR = .

Figure 3.1. Example Script File (rosenbrock.adf)

All ADIFOR 2.0 options begin with an “AD_” prefix. Values of options are typically the names of files
(AD_PROG), the names of procedures in the program (AD_TOP), lists of names of variables in the program
(AD_IVARS and AD_DVARS), integers (AD_PMAX), Boolean values (AD_DUMP_CALLGRAPH), and switches (AD_FLAVOR
and AD_EXCEPTION_FLAVOR). For Boolean-valued options, false and 0 are considered to be equivalent, as are
true and 1. Section 9 documents all of the ADIFOR 2.0 options.

ADIFOR 2.0 processes bindings on its command line in the order that they are listed. As bindings are
processed, new bindings always override values defined by a previous binding for the same option. The option
AD_SCRIPT is used to specify the name of a script file. Whenever a binding for AD_SCRIPT is encountered, the
file identified as the value of AD_SCRIPT is opened, and the bindings in the file processed in order.

Relative path names specified as command line arguments to ADIFOR 2.0 are taken as relative to the
directory in which ADIFOR 2.0 was executed. Relative path names specified in bindings specified in a script
file are taken as relative to the directory containing the script file.

Now consider a sequence of examples using the script file rosenbrock.adf shown in Figure 3.1.

¢ Example 1
Adifor2.0 AD_PROG=rosenbrock.cmp AD_TOP=func \
AD_DVARS=y AD_IVARS=x AD_PMAX=2 AD_OUTPUT_DIR=.

This command defines AD_PROG to be the filename “rosenbrock.cmp”, AD_TOP to be name of the proce-
dure “func”, AD_IVARS to be the (single item) list “x”, AD_DVARS to be the (single item) list “y”, and
AD_PMAX to be the integer value 2. ADIFOR will place derivative files in the current directory (which
in UNIX is usually denoted by a dot).

¢ Example 2
Adifor2.0 AD_SCRIPT=rosenbrock.adf

This command defines exactly the same values for the same set of options.
¢ Example 3
Adifor2.0 AD_SCRIPT=rosenbrock.adf AD_PMAX=5

This command defines the exactly the same set of values for the same set of options, except for option
AD_PMAX whose value is overridden with the integer value 5.

3.2 Compositions

Compositions list the names of all of the source files to be processed by ADIFOR 2.0. A composition is a
list of pathnames to source files with zero, one, or more pathnames per line. All characters on a line after
the comment character ‘#’ are ignored. Multiple pathnames on the same line are delimited by commas and
whitespace, where whitespace is any sequence of spaces or tabs. Relative pathnames are taken to be relative
to the directory containing the composition.

11

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

The name of the composition must end with a “.cmp” extension. The name of each source file must
end with a “f” suffix. Each source file listed in a composition may contain the source for one or more
FORTRAN 77 routines.

Since ADIFOR 2.0 uses interprocedural analysis to reduce the cost of computing derivatives, a compo-
sition must describe a complete and consistent program. To be complete, a program must not have missing
entry points, i.e., the program must link without undefined external references. To be consistent, all proce-
dure interfaces in the program must agree as to the number of arguments and the types of the arguments
being passed. Many programs in use today have inconsistent interfaces. Fixing the inconsistencies may take
significant effort, but is usually an enlightening process.

In addition to being complete and conmsistent, your program must not be recursive. ADIFOR 2.0 will
complain if it encounters a recursive program and will print out the names of each of the routines that are
recursive. Recursion in FORTRAN 77 programs is usually, but not always, an indication of some underlying
error.

When ADIFOR 2.0 generates derivative code for a file somedir/foo.f, it places the generated source
code into a file g-foo.f in the subdirectory identified by the option AD_OUTPUTDIR of the directory in
which ADIFOR 2.0 was executed. Therefore, no two pathnames listed in a composition may have the
same basename, where the basename of somedir/foo.f is taken to be foo.f. ADIFOR 2.0 will complain if
multiple files in your program have the same basename.

In reality, it is necessary to submit to ADIFOR 2.0 only the portion of the program that defines the
function to be differentiated. This usually requires that you create a dummy main procedure that invokes
the routines to be differentiated (see Chapter 4).

3.3 Acceptable FORTRAN 77 Source Files

ADIFOR 2.0 recognizes standard FORTRAN 77 syntax extended with DO-ENDDO, IMPLICIT NONE, DOUBLE
COMPLEX, and INCLUDE. Variable names need not be limited to six characters. If a program uses non-
standard extensions, ADIFOR 2.0 will probably not accept them. In particular, ADIFOR 2.0 will not
accept nonstandard intrinsic or type conversion functions, such as arsin(), arcos(), and dfloat(). These
should be replaced with standard functions like asin(), acos(), and dble(). In any case, for portability
reasons, it is probably a good idea anyway to make sure that all code is standard-conforming. Also not
accepted are system calls such as etime(). In most cases, such calls do not affect function evaluation and
may be removed, commented out, or replaced with a syntactically correct but nonfunctional subroutine,
prior to processing with ADIFOR 2.0.

We strongly urge you to make sure that all of the files in your composition compile correctly and adhere to
the FORTRAN 77 standard before submitting them to ADIFOR 2.0 for processing. ADIFOR will complain
about syntax errors, but its error messages are likely to be more cryptic. ADIFOR 2.0 will also complain
about problems in your source code that the typical FORTRAN 77 compiler will fail to identify, specifically,
inconsistencies between callsites and the procedures they invoke, and inconsistencies between common block
declarations across procedures.

For example, in the following program fragment an integer+4 array of length 3 is passed to a subroutine
whose arguments were declared to be of type character=12.

12

Revision B ADIFOR. 2.0 User’s Guide April 29, 1995

program main
integer*4 x(3)

call func(x)

end

subroutine func(c)
character*12 c

end

The following program fragment declares common blocks to be of different length in different program
units.

program main

call funcl
call func?2

end
subroutine funcl
common /cmn/ x(10)

end

subroutine func2
common /cmn/ x(20)

end

The FORTRAN 77 language definition requires that each common block, other than the blank common
block //, must have the same size in each procedure in which it is declared. Another violation of the
FORTRAN 77 standard is the fact that the common block is not declared in the main program (from which
both subroutines are called. While this is usually not an issue, because of the nature in which global variables
are implemented, unexpected things could happen if a compiler exploited the liberty of the standard.

13

Chapter 4

A Tutorial Example

We demonstrate the use of ADIFOR 2.0 using the simple program shown in Figures 4.1 and 4.2. It
shows a simple Newton iteration being used to minimize Rosenbrock’s function. The routines DLANGE and
DGESV from the LAPACK package [1] are used to compute the norm of y and to solve the linear system
%s = —y. Our goal will be to replace the subroutine fprime, which approximates % by using central
divided differences, with an ADIFOR-generated derivative code. This complete example is provided in
$AD_HOME/examples/newton.

Rosenbrock’s function is used only for illustrative purposes. It is not indicative of the power of ADIFOR,
which has processed programs up to 60,000 lines in length, albeit using 280 Mb of virtual memory in the
process.

Step 1: Create a Composition File

Figure 4.3 presents composition rosenbrock.cmp for the example, assuming that newton, func, and
fprime have been stored into the files newton. f, func.f, and fprime.f, and that code for dlange and dgesv
and all of the routines that they invoke has been located.

As mentioned in Section 3.2, it is only really necessary to provide ADIFOR 2.0 with the source code that
defines the function to be differentiated. Figure 4.4 presents a dummy main program that directly invokes
procedure func. Note, in particular, that no variables have to be initialized in the dummy main program,
since we have no plans to execute this code. Figure 4.5 presents the composition rosenbrock-func-only.cmp
that includes this dummy main program.

Step 2: Determine Values for ADIFOR 2.0 Options

To compute a Jacobian for the Newton example, you must provide ADIFOR 2.0 with values for the
following options:

AD_PROG: The value of AD_PROG is the name of the “composition” to be processed. The name of the com-
position is communicated to ADIFOR 2.0 by specifying AD_PROG=composition-name on the command
line.

In this example, AD_PROG will be set to rosenbrock.cmp or rosenbrock-func-only.cmp.

AD_TOP: The value of AD_TOP is the name of the procedure that contains the function to be differentiated.
That procedure may then, transitively, invoke a set of other procedures. We refer to the procedure
that is invoked to evaluate the function as the top-level routine or TOP. The name of the procedure
TOP is communicated to ADIFOR 2.0 by using the command line option AD.TOP=procedure-name.
In Section 6 we will describe how to handle codes where the function to be differentiated does not
conveniently correspond to a procedure invocation.

14

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

PROGRAM NEWTON
DOUBLE PRECISION DUMMY,TOL, DLANGE
INTEGER INFO, N, IPIV(2)
DOUBLE PRECISION X(2),Y(2),YPRIME(2,2)
EXTERNAL DGESV, FPRIME, FUNC, DLANGE
TOL = 1.0E-12
WRITE (#,FMT=#) ’Input 2-element starting vector ’
READ (*,FMT=#) X(1),X(2)
CALL FUNC(X,Y)
10 IF (DLANGE(’1’,2,1,Y,2,DUMMY).LT.TOL) GO TO 20
CALL FPRIME(X,Y,YPRIME)
Y(1) = -Y(1)
Y(2) = -Y(2)
CALL DGESV(2,1,YPRIME,2,IPIV,Y,2,INF0)
X(1) = X(1) + Y(1)
X(2) = X(2) + Y(2)
CALL FUNC(X,Y)
WRITE (*,FMT=1000) ’Current Function Value:’,Y(1),Y(2)
GO TO 10
20 CONTINUE
WRITE (*,FMT=1000) ’Minimum is approximately:’,X(1),X(2)
1000 FORMAT (a,1x,2 (d15.8,2x))
END

Figure 4.1. A Simple Implementation of Newton’s Method

In this example, the function to be differentiated corresponds to the subroutine func, so we will set
AD_TOP to be func.

AD_IVARS and AD.DVARS: The values of AD_IVARS and AD_DVARS are comma-separated lists of independent

(input) and dependent (output) variables of TOP, respectively. AD_OVARS is a synonym for AD_DVARS.
A variable may be designated as independent, dependent, or both (if it is overwritten during the
execution of AD_TOP).

There is no way to nominate individual elements of a FORTRAN 77 array as being independent
and dependent, although it is possible to specify at run time that only derivatives with respect to
a particular set of elements should be computed (see Appendix A). Variables in the AD_IVARS and
AD_DVARS lists must have type real, double precision, complex or double complex. The independent
and dependent variables must be formal parameters of TOP, or global variables declared within
TOP. Again, in Section 6 we will describe how to handle codes in which the variables that logically
correspond to the independent and dependent variables are neither formal parameters nor global
variables in TOP.

In this example, in order to compute the derivatives of y with respect to x, we will set AD.DVARS to y
and AD_IVARS to x.

AD_PMAX: The value of AD_PMAX is the upper bound on the number of independent variables for which deriva-

tives can be computed simultaneously. It is necessary to specify this upper bound because FOR-
TRAN 77 does not provide a standard mechanism for dynamic memory allocation. It is introduced
as the first dimension of each of the gradient objects declared by ADIFOR 2.0. The value of AD_PMAX
is communicated by using the option AD_PMAX=integer-value.

In the Newton example, we choose to set AD.PMAX to 2, since x is an array with 2 elements and we
would like to compute derivatives with respect to x(1) and x(2). In general, in the invocation of
the routines generated by ADIFOR 2.0, we can use any value of g_p_ that is not larger than AD_PMAX.
This issue is explained in more depth in Appendix A. We also note that if subroutines using the same

15

Revision B ADIFOR 2.0 User’s Guide

April 29, 1995

SUBROUTINE FUNC(X,Y)
DOUBLE PRECISION X(2),Y(2)

Y(1) = 10.0* (X(2)-X({1)*X(1))
Y(2) = 1.0 - X(1)

RETURN

ERD

SUBROUTINE FPRIME(X,Y,YPRIME)

approximates derivatives of Func by central differences.

Qo oo

. Array Arguments ..
DOUBLE PRECISION X(2),Y(2),YPRIME(2,2)
c .. Local Scalars .
DOUBLE PRECISION H
c .. Local Arrays ..
DOUBLE PRECISION XH(2),YM(2),YP(2)
C .. External Subroutines ..
EXTERNAL FUNC

IF (X(1).EQ.0.0) THEN
H=1.0e-7
ELSE
H = X(1)%1.0e-7
END IF
XH(1) = X(1) - H
XH(2) = X(2)
CALL FUNC(XH,YM)
XH(1) = X(1) + H
XH(2) = X(2)
CALL FUNC(XH,YP)
YPRIME(1,1) (YP(1)-YM(1))/ (2.0%H)
YPRIME(2,1) = (YP(2)-YM(2))/ (2.0*H)

IF (X(2).EQ.0.0) THEN

H = 1.0e-7
ELSE

H = X(2)*1.0e-7
END IF
XH(1) = X(1)

XH(2) = X(2) - H

CALL FUNC(XH,YM)

XH(1) = X(1)

XH(2) = X(2) + H

CALL FUNC(XH,YP)

YPRIME(1,2) = (YP(1)-YM(1))/ (2.0+H)
YPRIME(2,2) = (YP(2)-YM(2))/ (2.0*H)

RETURN
END

Figure 4.2. Rosenbrock’s Function and Divided-Difference Approximations of the Jacobian

16

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

newton.f
func.f
fprime.f

LAPACK routines

dlange.f dgesv.f lsame.f dlassq.f
xerbla.f dgetrf.f dgetrs.f ilaenv.f
dgetf2.f dlaswp.f

BLAS routines
dtrsm.f dgemm.f idamax.f dswap.f dscal.f dger.f

Figure 4.3. Composition for Newton’s Method Example (rosenbrock.cmp)

PROGRAM MAIN

DOUBLE. PRECISION X(2),Y(2)
CALL FUNC(X,Y)

END

Figure 4.4. Dummy Main for Newton’s Method Example (dummy.f)

dummy . £
func.f

Figure 4.5. Composition for Newton’s Method Example (rosenbrock-func-only.cmp)

17

Revision B ADIFOR 2.0 User’s Guide Apnl 29, 1995

common blocks are processed separately with ADIFOR 2.0, it is essential to use the same value of
AD_PMAX in both cases, as otherwise the gradient object common blocks are declared inconsistently.

AD_OUTPUT.DIR: The value of AD_OUTPUT DIR specifies the name of the directory in which ADIFOR 2.0 places
the generated derivative code.
In the Newton example, we have chosen to set AD_OUTPUTDIR to be “.” so that the generated code
will be placed back into the directory in which ADIFOR 2.0 is executed.

Step 3: Invoke ADIFOR 2.0

When executed with the command:

Adifor2.0 AD_PROG=rosenbrock.cmp AD_TOP=func \
AD_DVARS=y AD_IVARS=x AD_PMAX=2 AD_OUTPUT_DIR=.

ADIFOR 2.0 creates the subdirectory AD_cache, which contains internal information created by ADIFOR 2.0.
Source files generated by ADIFOR 2.0 are placed in the working directory. If AD_OUTPUTDIR had been
unspecified, then the default value of output_files would have caused the generated files to be placed into
the subdirectory output.files. ADIFOR 2.0 emits the augmented code for procedure func into the file
g-func.f, whose source is shown in Figure 4.6. Note that usually an assignment statement in the original
code has been replaced by a few assignment statements and a vector loop of length g p.. When gp_1s
moderate, or the gradient objects always dense vectors, this is an efficient representation of this vector
operation. The SparsLinC library (see Appendix C) provides an alternative approach for expressing this
vector operation when the gradient objects are mostly sparse vectors.

Exactly the same processing process will be performed by executing the command

Adifor2.0 AD_SCRIPT=rosenbrock.adf

by using the script file that was shown in Figure 3.1.

Step 4: Incorporate ADIFOR-generated Subroutine

Incorporating the ADIFOR-generated subroutine into a program to compute derivatives requires the
following three steps:

1. Allocate the gradient objects in the calling module. The user should carefully check the
ADIFOR-generated code to determine which variables in common blocks and which arguments to the
top-level routine have been found to be active. For our small example, the declarations are

double precision g_x(PMAX,2), g_y(PMAX,2)

where PMAX is an integer constant (FORTRAN 77 PARAMETER) whose value is greater than or equal to
the value of AD_PMAX. In this case, we choose to set PMAX to 2.

2. Initialize the seed matrix. In order to compute the Jacobian of the function defined by func, the
gradient object for the independent variable x should be initialized to a 2 x 2 identity matrix. This
initialization amounts to saying that the derivative of each independent variable with respect to itself
is 1.0.

3. Call the ADIFOR-generated top-level subroutine. The ADIFOR-generated subroutine com-

putes both the function value and the value of the derivatives. So, in our example, we can replace the
calls to func and fprime by a single call to g-func.
In the call to the ADIFOR-generated top-level subroutine, the parameter g_p- should be set equal to
the length of the gradient objects, and all of the 1dg- variables should be set equal to the leading
dimension with which the corresponding gradient objects (g- variables) were actually declared. Thus,
for our simple example, the call would look like

18

Revision B ADIFOR 2.0 User’s Guide

April 29, 1995

subroutine g_func(g_p_, x, g_x, 1dg_x, y, g_y, ldg_y)
double precision x(2), y(2)

integer g_pmax_

parameter (g_pmax_ = 2)

integer g_i_, g_p., ldg_y, ldg.x

double precision d5_b, d2_b, g_y(ldg_y, 2), g_x(ldg_x, 2)
intrinsic dble

if (g_pmax_ .gt. g_p_) then
print *, ’Parameter g_pmax_ is greater than g _p_’
stop
endif
d2_b = dble(10.0)
d5_b = -d2_b * x(1) + (-d2_b) * x(1)
dog.i_=1, g_p_
g-y(g_i_, 1) =d5_b * g x(g_i_, 1) + d2_b * g_x(g_i_, 2)
enddo
y(1) = dble(10.0) * (x(2) - x(1) * x(1))
dog i_=1, g_p_
g-y(g_i_, 2) = -g x(g_i_, 1)
enddo

Figure 4.6. The ADIFOR-generated Code for Subroutine func

19

Revision B ADIFOR, 2.0 User’s Guide April 29, 1995

PROGRAM ADNEWTON

C .. Parameters ..
INTEGER PMAX
PARAMETER (PMAX=2)

C .. Local Scalars ..
DOUBLE PRECISION DUMMY,TEMP, TOL
INTEGER INFO

C .. Local Arrays ..
DOUBLE PRECISION G_X(PMAX,2),G_Y(PMAX,2),X(2),Y(2)
INTEGER IPIV(2)

C .. External Functions .
DOUBLE PRECISION DLANGE
EXTERNAL DLANGE

TOL = 1.0E-12

WRITE (*,FMT=#) ’Input 2-element starting vector ’
READ (*,FMT=x) X(1),X(2)

CALL FUNC(X,Y)

10 IF (DLANGE(’1’,2,1,Y,2,DUMMY).LT.TOL) GO TO 20

(3}

compute function and Jacobian at current iterate

G_X(1,1) = 1.0
G._X(1,2) = 0.0
G_X(2,1) = 0.0

G_X(2,2) = 1.0
CALL G_FUNC(2,X,G_X,PMAX,Y,G_Y,PMAX)

3]

transpose g_y

TEMP = G_Y(2,1)
G.Y(2,1) = 6_¥(1,2)
G_Y(1,2) = TEMP

c solve J * 8 = - f and update x = x + s
c
Y1) = -Y(1)
Y(2) = -Y(2)
CALL DGESV(2,1,G_Y,PMAX,IPIV,Y,2,INFO)
X(1) = X(1) + Y(1)
X(2) = X(2) + Y(2)

O

compute new function value

CALL FUNC(X,Y)
WRITE (*,FMT=1000) ’Current Function Value:’,Y(1),Y(2)
GO TO 10
20 CONTINUE
WRITE (*,FMT=1000) ’Root iz approximately:’,X(1),X(2)
1000 FORMAT (a,1x,2 (d15.8,2x))
END

Figure 4.7. The Driver for the Newton Program Using ADIFOR-generated Code
20

Revision B ADIFOR, 2.0 User’s Guide April 29, 1995

call g_func(2, x, g_x, PMAX, y, g_y, PMAX)

For our example, the new driver is shown in Figure 4.7.' As mentioned above, since ADIFOR-generated
derivative code computes the transpose of the Jacobian, we must retranspose g_y before passing it to dgesv.
Together with the subroutine func and the subroutine shown in Figure 4.6, the new program replaces the
program shown in Figure 4.1.

Step 5: Compile and Link

After a suitable driver has been developed, the ADIFOR-generated code, the driver, and any other
modules necessary to form a complete program should be compiled.

£77 -c adnewton.f
£77 -c g_func.f
£77 -c dlange.f
£77 -c dgesv.f
£77 -c ...

The compiled modules should then be linked together with the ADIntrinsics package to generate a

working executable.

£77 -o adnewton adnewton.o g_func.o dlange.o dgesv.o ... \
$AD_HOME/1ib/ReqADIntrinsics-$AD_ARCH.o \
$AD_HOME/1ib/1ibADIntrinsics-$AD_ARCH.a

The module ReqADIntrinsics-$AD_ARCH.o and archive libADIntrinsics-SAD_ARCH.a implement the
ADIFOR 2.0 exception handling mechanism. See Appendix B for more information on the ADIntrinsics
template expander and library.

1Some comments were removed to fit the program on one page.

21

Chapter 5
Known Deficiencies

In this section we describe several deficiencies in ADIFOR 2.0’s support of full FORTRAN 77. In each case,
it is relatively easy to “work around” each of these deficiencies. ADIFOR 2.0 flags each of these as being
“not supported” any time that they are encountered.

5.1 Intrinsics Passed as Procedure Parameters

ADIFOR 2.0 prohibits intrinsics, such as DSIN and DCOS, from being passed as procedure parameters as
shown in the standard-conforming FORTRAN 77 code:

subroutine bad(x0, x1)
double precision x0, x1
external integrate
intrinsic dsin

call integrate(dsin,x0, x1)
end

This deficiency can easily be circumvented by introducing a wrapper function for each intrinsic, which is
to be passed as a procedure parameter, and by then passing that wrapper routine as the procedure parameter
instead of the intrinsic. For example, the following code performs the same computation as the code shown
above by using a wrapper function MYDSIN for intrinsic DSIN:

subroutine good(x0, x1)
double precision x0, x1
external integrate, mydsin
call integrate(mydsin, x0, x1)
end

function mydsin(x)
double precision x
intrinsic dsin
mydsin = dsin(x)
end

22

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

5.2 Intrinsics Overridden by External Functions

ADIFOR. 2.0 prohibits external routines from overriding intrinsic functions as shown in the standard-
conforming FORTRAN 77 code:

subroutine bad(x,y)
external cos
double precision x, y, cos

c call user defined function with name '"cos"
y = cos(x0)
end

function cos(x)

end

Again, this deficiency can easily be circumvented by renaming the external function so that it does not
collide with the name of any intrinsic function, as follows:

subroutine good(x,y)
external mycos

double precision x, y, mycos
y = mycos(x0)

end

function mycos(x)

end

5.3 I/0O Statements That Contain Function Invocations

ADIFOR 2.0 prohibits I/O statements, READ, WRITE, and PRINT, from invoking functions and statement
functions as shown in the standard-conforming FORTRAN 77 code:

subroutine bad(y)

double precision y(10)

integer f

external £

read (3, 50) x, y(£(x))
50 format (...)

end

Modifying code that invokes functions from within I/O statements is very easy, but may change the
meaning of the [/O statements in ways that require other I/O statements in the program to be changed as
well. For example, the function call in the READ statement above can be removed from an 1/O statement by
rewriting the code as follows:

23

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

subroutine okay(y)
double precision y(10)
integer f, i
external £
read (3, 50) x
i=f(x)
read (3, 51) y(i)

50 format (...)

51 format (...)
end

Notice, however, that in the original code, the two elements that are read may come from the same line
of the input file, while in the new code, the two elements must come from different lines of the input file.

24

Chapter 6

Advanced Topics

Normally, ADIFOR 2.0 assumes that independent variables are passed into the top-level routine TOP, and
dependent variables are passed back out to the procedure that invoked TOP. Furthermore, it is assumed
that the values of the independent variables will be assigned before TOP is invoked. “Passing” is either
via procedure parameters or via global variables in common blocks. So, the normal ADIFOR 2.0 interface
cannot compute derivatives of the following:

e variables that are declared and computed in the main program,

s variables that are declared locally in the top-level routine or variables declared in a routine transitively
invoked by the top-level routine,

e variables that are assigned values during evaluation of AD_.TOP and then overwritten, and

e variables that are initialized by a READ statement.

This section describes some workarounds for these situations.

6.1 Computation Is Not Encapsulated in Procedure

Consider the following example:

program main

read(*,*) x(1)

t= result of some computation involving x(1)
read(*,*) x(2)

y= result of some computation involving x(1) and x(2)
end

To extract a procedure suitable for using ADIFOR. 2.0 to generate code for —-%— and , you should
ax(1) ax(

rearrange the computation so that both x(1) and x(2) are initialized first, then invoke a new procedure
that computes y from x(1) and x(2) and then returns the value of y as follows:

25

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

program main

read(*,*) x(1)
read(*,*) x(2)

y = compute(x(1), x(2))
end

function compute(x1, x2)
y = result of some computation involving x1 and x2
end

6.2 Variables Other Than Parameters and Globals in AD_TOP

Consider the following program:

program main
call foo(x,y)
end

subroutine foo(x,y)
a = x+1
y = x*x
b = x/2

If we want the derivative of y with respect to variable x, the code is appropriate as is. But, if we want
the derivatives of

e y with respect to variable a,

e b with respect to variable x, or

e b with respect to variable a,
we run into a problem. Specifically, we cannot nominate a local variable of subroutine foo as dependent or
independent, since it is not visible outside of foo. To avoid this problem, we make all “interesting” variables

in subroutine foo visible through parameter passing or common blocks. For example, program MAIN could
be rearranged to:

program main
call foo(x,y,a,b)
end

subroutine foo(x,y,a,b)

a = x+1
Y = X*X
b = x/2
end

or, alternatively,

26

Revision B ADIFOR, 2.0 User’s Guide April 29, 1995

program main
call foo(x,y)
end

subroutine foo(x,y)
common /globals/a,b
a = x+1

y = x*x

b = x/2

end

An alternative to this workaround is the buddy system discussed below.

6.3 Variables That Are Overwritten

Consider the following program:

program main
call foo(x,y)
end

gubroutine foo(x,y)
10 ¥ = X*X
20 Y=Yy *x

end

Say we want to compute the derivatives with respect to x of variable y at both the statement with label
10 and the statement with label 20. Nominating variable y as the dependent variable, will generate code
that computes only the derivative of y at the statement with label 20.

In order to avoid this problem, we can expand y into an array and modify the code to the code that
follows:

program main
real y(2)
call foo(x,y)
end

subroutine foo(x,y)
real y(2)

10 y(1) = x * x

20 y(2) = y(1) * x
end

6.4 Variables Involved in I/O Statements

Sometimes the values of independent variables are read or computed within the active subtree (that is,
within the subtree of procedures below the top-level subroutine). This procedure does not pose a problem,
as long as the independent variables are parameters or global variables in AD_TOP, and I/O functions are
handled properly. Unfortunately, we cannot automate the proper handling of I/O functions involving active
variables because, in general, we have no way to trace the flow of data values that are read or written to
files.

27

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

Without this information, we have no way of knowing whether the gradient object for a variable that is
involved in a READ statement should be set to 0.0 or initialized by reading in derivative values from the file
system. Similarly, we have no way of knowing whether we should write the values of the gradient objects
for variables involved in a WRITE statement to the file system. Therefore, ADIFOR 2.0 currently just echoes
I/O statements like READ and WRITE without introducing code to initialize or propagate the derivatives of
variables involved in the I/O statement. Because of the problems that this approach may cause, ADIFOR 2.0
generates a warning message whenever it processes a source file that contains an I/O statement involving
an active variable. The warning message is printed out to stderr as the code is processed, and embedded
as a comment just before the suspect /O statement.

Fortunately, in most of the cases that we have encountered, it is possible to use a scheme based on
“buddy variables” to modify the original function code in a manner that makes it possible for ADIFOR 2.0
to generate correct derivative code in the presence of I/O of active variables. As an example, consider trying
to process the following code to compute the derivative of e at the statement with label 20 with respect to
h at the statement with label 10:

program main
real lambda
read *, lambda
call foo(lambda)
end

subroutine foo(lambda)
real lambda, e, h
10 read *, h
e = h * lambda
20 write *, e
end

One approach to modifying this code would be to extract the READ statements in foo into main, and to
convert variables e and h into parameters to foo. As an alternative, consider modifying the original code
into the following code:

program main
real lambda, hbuddy, ebuddy
common /buddyvar/ hbuddy, ebuddy

read *, lambda
call foo(lambda)
end

subroutine foo(lambda)
real lambda, e, h, hbuddy, ebuddy
common /buddyvar/ hbuddy, ebuddy

h=0

10 read #, h
h = h + hbuddy
e = h * lambda

ebuddy = e
20 write *, e
end

and then nominating hbuddy as the independent variable, and ebuddy as the dependent variable. Initializa-
tion of hbuddy to 0.0, and g.hbuddy to 1.0, in the derivative driver for g foo then results in g_ebuddy being

28

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

assigned the derivative of e with respect to h. Notice that nominating hbuddy and ebuddy as the independent
and dependent variables forces variables h and e to be active. Since h is assigned the value 0.0 prior to the
read statement, g-h will be assigned the value 0.0. Therefore, since g_hbuddy is initialized to 1.0, g-h will
be assigned the value 1.0 just after the READ, as required to compute the derivative of e with respect to h.
Finally, the value of the computed derivative can be returned via the global variable g_ebuddy.

The scheme that we just described has three key components. The first component forces variables in
I/0 statements that depend on the independent variables and that are used to compute dependent variables
to be identified as active variables. The second component forces the derivatives of variables appearing in
READ statements to be initialized properly. Finally, the third component makes it possible to retrieve the
values of the derivatives for variables that appear in WRITE statements.

Chapter 7

Pitfalls of Differentiating
FORTRAN 77

Some operations that are allowed in FORTRAN 77 do not have any (or, at least not the expected) mathe-
matical meaning with respect to differentiation. Among these are:

¢ Derivatives of integers and characters

The derivative of an integer or character is meaningless. As a consequence, if an integer is assigned a
value from an active variable the integer variable does not become active. Thus, the gradient objects
of any variables that depend on these integers may not have the expected values. The same holds true
for characters.

¢ Equivalencing of variables of different types

The process of equivalencing variables that have different types such as in the following code fragment

real r(10)

double precision d(5)
complex z(5)
equivalence(r,d)
equivalence(r,z)

has no real mathematical meaning. Thus, if a program performs this operation, ADIFOR 2.0 will
generate the corresponding equivalences for the gradient objects of the equivalenced variables, but
they (and any gradient objects which depend on them) may have meaningless values. Note that this
form of equivalencing is nonportable anyway, since its results depend heavily on the floating-point
representation.

¢ Introducing points of nondifferentiability

Sometimes, for the sake of improving efficiency, a program tests the value of a variable to see whether

a function is being evaluated at a special point in space, and then computes the value of the function

based on that knowledge. For example, the following piece of code computes y = z*.

if ((x .eq. 0.0d0) .or. (x .eq. 1.0d0)) then
y=x

else
t = x*x
¥ o= tet

endif

30

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

If automatic differentiation is used to compute %, then the value of %|z=0 will be 1.0 (because the
statement y = z implies that ‘-j‘% = Z—‘; = 1) rather than the expected 0.0. Similarly, the value of
%],_—.1 will be 1.0 rather than 4.0. This “anomaly” stems from the fact that automatic differentiation
differentiates the statements executed in the course of program execution. This issue, as well as other
subtle pitfalls, is discussed in [11].

31

Chapter 8

Potential Problems

Users may encounter several problems while trying to process programs with ADIFOR 2.0. We provide a
brief explanation of each and possible solutions.

ADIFOR 2.0 may complain about errors in the original FORTRAN 77 source code

As discussed in Section 3.3, ADIFOR 2.0 may report that errors are present in your FORTRAN 77
program that typical FORTRAN 77 compilers will not detect. Inconsistencies in subroutine interfaces
and common blocks are the most frequently reported errors (see Section 3.3).

ADIFOR 2.0-generated code fails to link on a Sparc

Sun changed the interface to the internal I/O routines provided in 1ibF77.a between versions SC1.0
and SC2.0 of the £77 compilation system. The version of the ADIntrinsics library that we provide has
been compiled using version SC2.0. Unresolved references for entries beginning with three underscores,
such as __do_1.in, ._do.1l_out, __e rsle, .__s_rsle, and ___flushio, will be reported if you attempt
to compile your source files with version SC1.0 and link against the libraries we provide. If you do not
have access to version SC2.0, it may be necessary for you to recompile the ADIntrinsics library with
version SC1.0.

ADIFOR 2.0 may generate subscripted variables with more than 7 dimensions

If the source code being differentiated contains active variables that are declared as arrays with 7
dimensions, then ADIFOR 2.0, when generating dense derivative code, will insert gradient objects
with 8 dimensions. FORTRAN 77 limits the number of dimensions for arrays to 7. It is unlikely that
you will run into this problem, but if you do, then check your compiler to see whether it has an option
that will extend its limits.

ADIFOR 2.0 may generate variable names longer than 8 characters

ADIFOR 2.0 generates names for new variables that may be more than 6 characters long. FOR-
TRAN 77 limits the number of characters in a name to 6, but all compilers we have worked with
extend this limit. It is unlikely that you will run into this problem. H you do, then check your
compiler to see whether it has an option that will extend its limits.

ADIFOR 2.0 generates DO-ENDDO loop statements instead of introducing a labeled CONTINUE
statement to end each loop

The DO-ENDDO statement is not standard FORTRAN 77, but is accepted by all compilers that we have
encountered.

Unneeded labels and CONTINUE statements appear in the ADIFOR-generated subroutines
In addition to creating new labels and CONTINUE statements, ADIFOR preserves those present in the
original programs. There are two reasons for this functionality. The first reason is to ensure that any
references to these labels (by a computed GOTO, for example) in the original program remain properly
defined. Labels are also preserved to facilitate cross-referencing between the original and ADIFOR-
generated code. If a certain algorithm is present near a particular label in the original program, it will
be at the same location in the ADIFOR-generated code.

32

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

¢ By default, ADIFOR 2.0 inserts variables whose names contain ‘_’ characters

Some compilers may not permit ‘.’ characters to appear in variable names. This problem can be
avoided by setting the option AD_SEP to a character other than °_’.

33

Chapter 9

ADIFOR 2.0 Options

This section provides short descriptions of each of the ADIFOR 2.0 options. Default values for options are
presented within square brackets. Options that can be defined with a list of values are identified with a “¥”
superscript.

9.1

Mandatory Options

AD_DVARS*

List of names of the FORTRAN 77 variables that contain the dependent variables of the function to
be differentiated. Synonym for AD.DVARS.

AD_IVARS*® .

List of names of the FORTRAN 77 variables that contain the independent variables of the function
to be differentiated.

AD_OVARS*

AD_OVARS is a synonym for AD_DVARS. At least one of AD_.OVARS and AD_DVARS must be defined.

AD_PMAX (MANDATORY if AD_FLAVOR is dense (default))

Maximum number of independent variables of the function to be differentiated. The value of this
option is compiled into each of the ADIFOR 2.0-generated dense derivative code files and is used as
the first dimension of gradient objects for local and global variables.

AD_PROG

Name of composition file.

AD_TOP

Name of the top-level routine, the routine whose invocation is responsible for evaluating the function
that is to be differentiated.

9.2 Other Options

AD_ALLSAVED [0]

If set to true, then ADIFOR 2.0 will treat all local and global variables in your program as being
static variables, i.e., as if they had been listed in SAVE statements. Many FORTRAN 77 compilers
treat all local and global storage as being static, which means that variables always retain their value
between invocations of procedures. If your code assumes that all storage will be treated as static
storage by your compiler, then you must set AD_ALLSAVED to true to generate correct derivative code.

34

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

AD_CACHE [AD_cache]

Name of directory in which ADIFOR 2.0 stores information about your program as analysis is per-
formed. Permits incremental reanalysis of your code after changes to the source code or changes in
options.

AD_DUMP_CALLGRAPH [false]

If set to true, causes ADIFOR 2.0 to print out a callgraph for the program.

AD_EXCEPTION_FLAVOR [verbose]

May be set to terse, verbose, counting, or performance to control level of exception handler error
reporting. See Appendix B for more information.

AD_FLAVOR [dense]

ADIFOR 2.0 generates dense derivative code (i.e., expressing gradient objects loops as normal FOR-
TRAN 77 loops) if AD-FLAVOR is set to dense, and sparse derivative code (i.e., calls to the SparsLinC
library) if it is set to sparse. '

AD_OUTPUTDIR [output_files/]

Directory into which ADIFOR 2.0 places the augmented source code files.

AD_PREFIX [g]

Character that serves as initial character of gradient object names and derivative computing procedure
names. For example, by default, the gradient object for foo is g_foo.

AD_SCALAR_GRADIENTS [false]

If set to true and AD_FLAVOR is “dense”, then ADIFOR 2.0 ADIFOR 2.0 will generate code that
assumes that g_pmax_is 1. Executing this code provides an efficient means of generating J * », where
J is the Jacobian of the function being differentiated, and v is a vector.

AD_SCRIPT

Name of file containing additional definitions of bindings.

AD_SEP [])

Character that it used to separate components of ADIFOR 2.0 generated names. If AD_SEP is changed
to ’$’, then the gradient object for foo will be named g$foo.

AD_SUPPRESS_LDG [false]

If set to true and AD_FLAVOR is “dense”, then ADIFOR 2.0 will generate code that assumes that all
gradient objects are allocated with first dimensions set to g-pmax_. Leading dimension arguments will
not be passed as parameters throughout derivative code. Use of this option may allow the generated
code to be vectorized efficiently.

AD_SUPPRESS_NUM_COLS [false]

If set to true and AD_FLAVORis “dense”, then ADIFOR 2.0 will generate code that assumes that g_p_is
g-pmax., and hence does not pass g-p- as a parameter throughout derivative code. Use of this option
may allow the generated code to be vectorized efficiently.

AD_TEMPLATEDIR

Specifies a directory in which to search for ADIntrinsic template files. Only a single additional directory
may be specified. See Appendix B for more information.

35

Appendix A

Seed Matrix Initialization

A.1 Introduction

This appendix focuses on the proper and efficient use of ADIFOR-generated codes through detailed exami-
nation of seed matrix initialization for the following cases:

e Dense Jacobian, one independent, one dependent variable
¢ Dense Jacobian, multiple independent, multiple dependent variables
e Sparse Jacobian, one independent, one dependent variable
e Sparse Jacobian, two independent variables, one dependent variable

¢ Partially separable functions

In most of these cases, a “variable” denotes an array; thus, we shall be dealing with vector-valued func-
tions.

Note: The examples presented in Appendix A correspond to seed matrix initialization for the default
or “nonsparse” flavor of ADIFOR 2.0 (see AD_FLAVOR in Chapter 9). The differences between the sparse
and nonsparse ADIFOR 2.0-generated codes, which are discussed in Appendix C, impose differences in the
mechanics of seed matrix initialization in each case (see Section C.4.4 for details). Nonetheless, the general
seeding ideas presented here for the nonsparse case apply equally as well to the sparse case.

A.2 Case 1: Dense Jacobian, one independent, one depen-
dent variable

Our first example is adapted from Problem C2 in the STDTST set of test problems for stiff ODE solvers [10]
and was brought to our attention by George Corliss of Marquette University. The routine FCN2 computes
the right-hand side of a system of ordinary differential equations y' = yp = f(z,y) by calling a subordinate
routine FCN:
C File: FCN2.f

SUBROUTINE FCN2(M,X,Y,YP)

INTEGER N

DOUBLE PRECISION X, Y(M), YP(M)

INTEGER ID, INWT

DOUBLE PRECISION W(20)

COMMON /STCOMS5/YW, IWT, N, ID

CALL FCN(X,Y,YP)

36

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

RETURN
END

C File: FCN.f
SUBROUTINE FCN(X,Y,YP)

ROUTINE TO EVALUATE THE DERIVATIVE F(X,Y) CORRESPONDING TO THE
DIFFERENTIAL EQUATION:

DY/DX = F(X,Y) .
THE ROUTINE STORES THE VECTOR OF DERIVATIVES IN YP(*). THE
DIFFERENTIAL EQUATION IS SCALED BY THE WEIGHT VECTOR W(*)
IF THIS OPTION HAS BEEN SELECTED (IF S0 IT IS SIGNALLED
BY THE FLAG INWT).

aaaoaaaQa

DOUBLE PRECISION X, Y(20), YP(20)

INTEGER ID, IWT, N

DOUBLE PRECISION W(20)

COMMON /STCOMS /W, IWT, N, ID

DOUBLE PRECISION SUM, CPARM(4), YTEMP(20)
INTEGER I, IID

DATA CPARM/1.D-1, 1.DO, 1.D1, 2.D1/

IF (IWT.LT.O0) GO TO 40
DO 20I =1, N
YTEMP(I) = Y(I)
Y(I) = Y(I)*W(I)
20 CONTINUE
40 IID = MOD(ID,10)

c ADAPTED FROM PROBLEM C2
YP(1) = -Y(1) + 2.DO
SUM = Y(1)*Y(1)
DOSOI =2, N
YP(I) = -10.0DO+I*Y(I) + CPARM(IID-1)#*(2%+I)*SUM
SUM = SUM + Y(I)*Y(I)
50 CONTINUE

IF (IWT.LT.0) GO TD 680
D0660 I =1, N
YP(I) = YP(D)/W(D)
Y(I) = YTEMP(I)
660 CONTINUE
680 CONTINUE
RETURN
END

Most software for the numerical solution of stiff systems of ODEs requires the user to supply a subroutine
for the Jacobian of f with respect to y. Such a subroutine can easily be generated by ADIFOR. For the
purposes of automatic differentiation, the vector Y is the independent variable, and the vector YP is the
dependent variable. Then ADIFOR produces

subroutine g _fcn2(g_p_, m, x, y, g_y, 1dg_y, yp, g_yp, 1dg_yp)
C
c ADIFOR: runtime gradient index
integer g_p_

37

"Revision B ADIFOR 2.0 User’s Guide April 29, 1995

C ADIFOR: translation time gradient index
integer g_pmax_
parameter (g_pmax_ = 20)

c ADIFOR: gradient iteration index
integer g_i_

integer 1ldg.y

integer 1ldg_yp

integer n

double precision x, y(m), yp(m)
integer id, iwt

double precision w(20)

common /stcom5/ w, iwt, n, id

c ADIFOR: gradient declarations

double precision g_y(ldg_y, m), g_yp(ldg_yp, m)

if (g_p_ .gt. g_pmax_) then
print *, "Parameter g_p is greater than g_pmax."
stop

endif

call g_fen(g.p., x, ¥y, 8.y, 1dg_y, yp, 8.yp, 1ldg_yp)

return

end

subroutine g_fen{(g_p_, x, y, g.y, 1dg_y, yp, g&-yp, 1dg_yp)

c ADIFOR: runtime gradient index
integer g_p_

c ADIFOR: translation time gradient index
integer g_pmax_
parameter (g_pmax_ = 20)

c ADIFOR: gradient iteration index
integer g_i_

integer ldg_y

integer ldg_yp

ROUTINE TO EVALUATE THE DERIVATIVE F(X,Y) CORRESPONDING TO THE
DIFFERENTIAL EQUATION:

DY/DX = F(X,Y) .

THE ROUTINE STORES THE VECTOR OF DERIVATIVES IN YP(*). THE
DIFFERENTIAL EQUATION IS SCALED BY THE WEIGHT VECTOR W(x*)

IF THIS OPTION HAS BEEN SELECTED (IF SO IT IS SIGNALLED

BY THE FLAG IWT).

double precision x, y(20), yp(20)

integer id, iwt, n

double precision w(20)

common /stcom5/ w, iwt, n, id

double precision sum, cparm(4), ytemp(20)

integer i, iid

data cparm /1.d~1, 1.d0, 1.d1, 2.d1/ -

Qaoaoaoaaaa

C ADIFOR: gradient declarations
double precision g_y(ldg.y, 20), g_yp(ldg_yp, 20)
double precision g_sum(g_pmax_), g_ytemp(g_pmax_, 20)

38

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

if (g_p_ .gt. g_pmax_) then
print *, "Parameter g_p is greater than g_pmax."

stop
endif
if (iwt .1t. 0) then
goto 40
endif
do 99999, i =1, n
c ytemp(i) = y(i)

do g i_ =1, g_p_
g_ytemp(g_i_, i) = g y(g_i_, 1)

enddo
ytemp(i) = y(i)
C y(i) = y(@i) * w(i)

dog i_=1, g.p_
g-y(g_i_, i) = w(i) = g_y(g_i_, i)

enddo
y(i) = y(i) * w(i)
20 continue
99999 continue
40 iid = mod(id, 10)
c ADAPTED FROM PROBLEM €2
C yp(1) = -y(1) + 2.40

dog i_ =1, g p_
g-yp(g_i_, 1) = -g_y(g_i_, 1)

enddo
yp(1) = -y(1) + 2.40
c sum = y(1) = y(1)

dog.i_ =1, g_p_
g-sum(g_i) = y(1) * g_y(g_i_, 1) + y(1) * g_y(g_i_, 1)
enddo
sum = y(1) * y(1)
do 99998, i = 2, n
c yp(i) = -10.0d0 * i * y(i) + cparm(iid - 1) * (2 #* i) * sum
dog i_=1, g p_
g-yp(g_.i_, i) = cparm(iid - 1) # (2 ** i) * g_sum(g_i_) + -1
*0.0d0 * i * g_y(g_i_, i)
enddo
yp(i) = -10.0d0 * i * y(i) + cparm(iid - 1) * (2 ** i) * sum
c sum = sum + y(i) * y(i)
do 8_i__ =1, g.P-~
g-sum(g_i) = g sum(g_i) + y(i) * g_y(g_i_, i) + y(i) * g_y
*(g_i_, i)
enddo
sum = sum + y(i) * y(i)
50 continue
99998 continue
if (iwt .1t. 0) then

goto 680
endif
do 99997, i =1, n
c yp(i) = yp(i) / w(i)

dog.i_=1, g p_
gyplg_i_, i) = (1 / w(i)) * g_yp(g_i_, i)
enddo

39

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

yp(i) = yp(i) / w(i)
c y(i) = ytemp(i)
do g i_ =1, g_p.
gy(g_i_, i) = g_ytemp(g_i_, i)

enddo
y(i) = ytemp(i)
660 continue
99997 continue
680 continue
return
end

The derivative objects g-y and g_yp are declared as matrices with 20 columns (since both y and yp were
declared as vectors of length 20) and leading dimension 1dg.y and 1dg yp, respectively. The parameter g_p
denotes the actual length of the gradient objects in a call to g_fcn2. Since Fortran 77 does not allow dynamic
memory allocation, derivative objects for local variables are statically allocated with leading dimension
pmax, whose value was selected by the user during the invocation of ADIFOR. A variable and its associated
derivative object are treated in the same fashion; that is, if x is a function parameter, so is g.x. Derivative
objects corresponding to locally declared variables or variables in common blocks are declared locally or in
common blocks as well.

Subroutine g fecn?2 relates to the Jacobian

Sypy ... Gup
EEY 8Ym
Jyp = : :
Bypm ... Sybm
aYy 8Ym

as follows: Given input values for gp., m, x, y, gy, 1dg-y, and 1dg yp, the routine g fcn2 computes
both yp and g-yp, where
T\WT
g-yp(l:gp-,1:m) = (Jyp(g-y(1:gp-,1:m)7))".
The superscript T denotes matrix transposition. The user must allocate g_yp and g.y with leading dimensions
1ldg-yp and 1ldg.y that are at least g_p_. While the implicit transposition may seem awkward at first, this is
the only way to handle assumed-size arrays (like real a(*)) in subroutine calls.

Assume that m and g_p are 20 and that 1dg-yp and 1dg.y are at least 20. Then we can compute the
derivative matrix Jyp simply by initializing g_y to the identity:

sk ok ek ok ok ok ok
* Approach 1 *
B T T
DO 10 I =1, M
DOSJ=1,
G_Y(I,D
] CONTINUE
G_Y(I,I) = 1.0DO
10 CONTINUE
call g_fcn2(20, m, x, y, g_.y, ldg_y, yp, g_yp, 1dg_yp)

M
= 0.0D

On exit from g.fcn2, the variable g_yp contains the transpose of the Jacobian J,,. Note that for this program
to work, g fcn2 must have been generated with AD_PMAX at least 20.

Alternatively, we could have computed the Jacobian one column at a time:

Ak KRRk A

* Approach 2 *

e 3 e e o e e e e e e ok ok

DO10I=1, M

40

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

*
* initialize first row of G_Y to i-th unit vector
*

p0s5J=1, M

G_Y(1,J) = 0.0D
s CONTINUE

G_Y(1,I) = 1.0D0
*
* call ADIFOR-generated derivative code
*

call g_fen2(1, m, x, y, g.y, 1dg_y, yp, g-yp, ldg_yp)
*
* store ith column of the Jacobian in ith row of Jactrans array
*

DO 15 J = 1,M
JACTRANS(I,J) = G_YP(1,D)
15 CONTINUE
10 CONTINUE

Even though g yp(i,j) as computed in Approach 1 equals jactrans(i,j) computed in Approach 2,
the second method is significantly less efficient. This inefficiency arises from the fact that the value of yp
itself is computed once in the first approach, but m times in the second approach. Thus, it is usually best to
compute as large a slice of the Jacobian as memory restrictions will allow. However, in this case, AD_.PMAX =
1 is sufficient, and, as a result, the memory requirements of the ADIFOR-generated code can be expected
to be more modest, roughly 1/20th of the memory requirements of the previous code. In this fashion, the
ADIFOR interface provides a mechanism for accomodating memory/runtime tradeoffs. An example of a
parallel “derivative stripmining” technique based on this approach is presented in [6].

A.3 Case 2: Dense Jacobian, multiple independent and
multiple dependent variables

The second example involves a code that models adiabatic flow [19], a commonly used module in chemical
engineering. This code models the separation of a pressurized mixture of hydrocarbons into liquid and vapor
components in a distillation column, where pressure (and, as a result, temperature) decrease. This example
was communicated to us by Larry Biegler of Carnegie-Mellon University.

In its original version, the top-level subroutine

subroutine aifl (kf)
integer kf

has only one argument. All other information is passed in common blocks. For demonstration purposes, we
changed the interface slightly to

subroutine aifl(kf,feed,pressure,liquid, vapor)
integer kf
real feed(*), pressure(*), liquid(*), vapor(*)

copying the values passed in those arguments into the proper common blocks in aifl. As our first example,

assume that we are interested in 68';";:? and %"f“e”e‘: !, In this case, ADIFOR generates

! Actually, it is sufficient to compute one or the other, since, because of conservation laws, %l}_qc%g; + %—v;% equals

the identity matrix.

41

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

subroutine g_aifl(g_p., kf, feed, g_feed, ldg_feed, pressure,
3 liquid, g_liquid, ldg_liquid,

$ vapor, g.vapor, ldg_vapor)

integer g_p., kf, 1dg_feed, ldg_liquid, ldg_vapor

real feed(#), g_feed(ldg_feed,*), pressure(*),

$ liquid(#), g_liquid(ldg_liquid,*),

$ vapor (%), g_vapor(ldg_vapor,#*)

In our example, the feed was a mixture of the hydrocarbons N-butane, N-pentane, 1-butene, cis-2-butene,
trans-2-butene, and propylene, so the length of feed, 1iquid, and vapor was six, with feed(1) corresponding
to the N-butane feed, and so on. If we set g_p-=6 and initialize g feed to a 6 x 6 identity matrix, then on
exit g-liquid(i, j) contains

9 (component j in liquid)
8 (component ¢ in feed) ’

which predicts by what amount the liquid portion of substance j will change if the feed of component i
changes.

Suppose that we also wish to treat the pressure at the various inlets as being independent, and (because
of the conservation law) decide not to declare “vapor” as being dependent, ADIFOR generates

subroutine g_aifl(g_p_., kf, feed, g_feed, ldg_feed,
$ pressure, g_pressure, ldg_pressure,
$ liquid, g_liquid, ldg_liquid, vapor)

The initialization is a little more complicated this time. Assuming that we have 3 feeds (so pressure has
three elements), the total number of independent variables is 6 + 3 = 9. g_liquid measures the sensitivity
of the 6 substances with respect to changes in the 9 independent variables. Thus,

(8 liquid Bliquid)
Jliquid =

Opressure’ O feed

is a 6 X 9 matrix. ADIFOR computes

liquid = { Jiiqus g-feed” ’
g-1iquid = { Jiiquid g-pressure’)

If we wish to compute the whole Jacobian J, then

g_feedT
g-pressure”
must be initialized to a 9 x 9 identity matrix. Thus, g.feed?” must contain the first six rows of a 9 x 9

identity matrix (since there are six variables in the feed), and g_pressure” must contain the last three rows
of a 9 x 9 identity matrix. This configuration is achieved by initializing

—

(= e I e T e i == P e R = A = N

e
—

co~O0O o OO o

g-feed = , and g pressure =

"

O OO OO0 O O
(= = I = Y 2~
oo ~o0o O
[~ == e P e R L — I = R =~ R o}
SO O O0COO®
(== i =R e I v T e I = 2~

N—
—

-_-Oo o0 OoO0CcCoO oo

42

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

A.4 Case 3: Sparse Jacobian, one independent, one depen-
dent variable

From the previous discussion, ADIFOR may seem to be well suited for computing dense Jacobian matrices,
but rather expensive for sparse Jacobians. A primary reason is that the forward mode of automatic differen-
tiation upon which ADIFOR is mainly based (see [4]) requires roughly g_p_ operations for every assignment
statement in the original function. Thus, if we compute a Jacobian J with n columns by setting g-p_- = n,
its computation will require roughly n times as many operations as the original function evaluation, inde-
pendent of whether J is dense or sparse. However, it is well known [8, 12] that the number of function
evaluations that are required to compute an approximation to the Jacobian by finite differences can be much
less than n if J is sparse. Fortunately, the same idea can be applied to greatly reduce the running time
of ADIFOR-generated derivative code as well. This section suggests a technique for exploiting sparsity in
derivative computions if the sparsity pattern is known a priori. Appendix C describes the the SparsLinC
library, which, in conjunction with ADIFOR 2.0, allows exploitation of sparsity without a priori knowledge,
and even computes the sparsity pattern of the Jacobian as a byproduct of the derivative computation.

The idea is best understood with an example. Assume that we have a function

fi
f2
F= fa :Z€R4r—>y€R5
fa
fs
whose Jacobian J has the following structure (symbols denote nonzeros, and zeros are not shown):
®)
O <&
J= A <
A O
A O

That is, the function f; depends only on 11, f2 depends only on z; and r4, and so on. The key idea in
sparse finite difference approximations is to identify structurally orthogonalcolumns j; of J- that is, columns
whose inner product is zero, independent of the value of z. In our example, columns 1 and 2 are structurally
orthogonal, and so are columns 3 and 4. This means that the set of functions that depend nontrivially on
z1, and the set of functions that depend nontrivially on z» are disjoint.

To exploit this structure, recall that ADIFOR (ignoring transposes) computes J - S, where S is a matrix
with g_p. columns. For our example, setting S = Isx4 will give us J at roughly four times the cost of
evaluating F', but if we exploit the structural orthogonality and set

1 0

1 0
§= 0 1 ’

01

the running time for the ADIFOR code is roughly halved. Note that the ADIFOR-generated code remains
unchanged.

As a more realistic example, we consider the swirling flow problem, part of the MINPACK-2 test problem
collection [2}, which was made available to us by Jorge Moré of Argonne National Laboratory. Here we
solve a nonlinear system of equations F(z) =0 for F : R™ — R™. The swirling flow code has the form

subroutine dswirl3(nxmax,x,fvec,fjac,ldfjac,job,eps,nint) -
integer nxmax, ldfjac, job, nint
double precision x(*), fvec(*), fjac(ldfjac,*), eps

Like all codes in the MINPACK-2 test collection, it is set up to compute the function values (in fvec) and,
if desired, the analytic first-order derivatives (in fjac) as well. The vectors x and fvec are of size nxmax =

43

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

14#nint. For example, for nint = 4, the Jacobian of F is of size nxmax = 56 and has the structure shown
in Figure A.1.

Figure A.1. Structure of the swirling flow Jacobian, n = 56
The derivative subroutine produced by ADIFOR is

subroutine g_dswrl3 (g_p_, nxmax, x, g_x, ldg_x,
$ fvec, g_fvec, ldg_x,
$ fjac, ldfjac, 1, eps, nint)

If we initialize g_x to a 56 x 56 identity matrix, and let g_p_=56, and if 1dg_x is at least 56, then on exit
from g_dswrl3, g fvec will contain the transpose of %—;3, stored as a dense matrix. As it turns out, less
than 7 % of the total operations performed with gradient objects in the ADIFOR code involve nonzeros. On
the other hand, by using a graph-coloring algorithm designed to identify structurally orthogonal columns
(we used the one described in [7]), we can determine that this Jacobian can be grouped into 14 sets of
structurally orthogonal columns, independent of the size of the problem. In our example, columns 1, 16,
31, and 51 were in the first group; columns 2, 17, 37, and 43 were in the second group; and so on. We can
take advantage of this fact by initializing the first column of g_xT such that it has 1.0 in rows 1, 16, 31, and
51; by initializing the second column of g_x¥ such that it has 1.0 in rows 2, 17, 37, and 43; and so on. The
structure of g_x* thus initialized is shown in Figure A.2 together with the resulting compressed Jacobian
g-fvec”. Note that instead of g_p.= 56 we now can get by with g_p_= 14, a sizeable reduction in cost.

Assuming that color(i) is the “color” of column i of the Jacobian and that nocolors is the number of
colors (in our example we had 14 colors), the following code fragment properly initializes g.x, calls g-dswrl3
to compute the compressed Jacobian, and then extracts the Jacobian.

n = 14*nint
doi=1,n
do j = 1, nocolors
gx(j,i) =0
enddo
g-x(color(i),i) = 1
enddo

call g_dswrl3 (nocolors, nxmax, x, g_x, pmax,
+ fvec, g_fvec, pmax,

44

April 29, 1995

Revision B ADIFOR 2.0 User’s Guide
o, oy
o s338s
. .
L
% 8ggsgese
o I
o, . 33 s53s
° ° $3. 3388
Lo a
Figure A.2. Left: Structure of (gx)T Right: Structure of (g_fvec)”
+ fjac, 1dfjac, 1, eps, nint)
c job = 1 indicates that only the function value is to be computed in
c dswrl3.
c nonzero(j,i) is TRUE if the (j,i) entry in the Jacobian is nonzero,
c and FALSE otherwise.

doi=1,n
do j=1, n
if (nonzero(j,i)) then
jac(j,i) = g_fvec(color(i},j)
else
jac(j,i) = 0.0
endif
enddo
enddo

Experimental results using this approach on a sunite of problems from the MINPACK test set collection

are presented in [3].

A.5 Case 4: Sparse Jacobian, two independent variables,

one dependent variable

The coating thickness problem, conveyed to us by Janet Rogers of the National Institute of Standards and
Technology, presents many alternatives for using ADIFOR-generated subroutines. The code for this problem

is (in abbreviated form) shown below:

SUBROUTIRE fun(n,m,np,nq,
+ beta,xplusd,ldxpd,
+ £,1df)

¢ Subroutine Arguments

45

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

c ==>n number of observations

c ==>m number of columns in independent variable

c ==> np number of parameters

c ==> nq number of responses per observation

c ==> beta current values of parameters

c ==> xplusd current value of independent variable, i.e., x + delta
c ==> ldxpd leading dimension of xplusd

c <== £ predicted function values

c ==> 1ldf leading dimension of £

Variable Declarations
INTEGER i,j,k,1df,ldxpd,m,n,np,nq,numpars
INTEGER ia, ib
DOUBLE PRECISION beta(np),f(1df,nq),xplusd(ldxpd,m)

(4]

double precision par(20),fn(2)

do 10 k=1,np
par(k) = beta(k)
10 continue

do 100 i=1,n
do 20 j=1,m
par(np+j) = xplusd(i,j)
20 continue

¢ compute function values (fn) given parameters (par)
call fnc(par,fn)

£(i,1) = fn(1)
£(i,2) = fn(2)

100 continue
return
end

subroutine fnc(x,fn)

integer m,np,nq

parameter (np=8,m=2,nq=2)

integer i

double precision x(np+m),fn(nq)
double precision beta(np),xplusd(m)

do 10 i=1,np
beta(i) = x(i)
10 continue
do 20 i=1,m
xplusd (i) = x(np+i)
20 continue

¢ compute first of multi-response observations

fn(1) = beta(l)
+ + beta(2)*xplusd(1)

46

Revision B ADIFOR, 2.0 User’s Guide April 29, 1995

+ + beta(3)*xplusd(2)
+ + beta(4)*xplusd(1)*xplusd(2)

¢ compute second of multi-response observations

fn(2) = beta(s)

+ + beta(6)*xplusd(1)

+ + beta(7)*xplusd(2)

+ + beta(8)*xplusd(1)*xplusd(2)
return
end

The special format of this code is due to its embedding in the ODRPACK software for orthogonal distance
regression. We are interested in the derivatives of £ with respect to the variables beta and xplusd. We shall
explore various ways to do this in some detail.

A.5.1 Approach 1 — Generate derivatives only for fnc

The easiest approach is to generate the derivative code only for fnc, since it is clear from the code that
£(i,1:2) depends only on beta(1:np) and xplusd(i,1:m). ADIFOR then produces

subroutine g_fnc(g_p_, x, g_x, ldg_x, fn, g_fn, ldg_fn)

integer m, np, nq

parameter(np = 8, m = 2, nq = 2)

double precision x(np+m), fn(nq), g_x(1dg_x,np+m), g_fn(ldg_fn,nq)

If inside fun we replace the call to fnc with a call to g_fnc, always initializing g x to a 10 x 10 identity
matrix before the call, then

o _ O0f(1,3) , -
g-fn(k,j) = abeta(k),k—l,...&] =1,2.
and S£(i.
g-fn(k,j) = £(i,3) kE=9,10.

~ 9 xplusd(i,k — np)’

Closer inspection reveals that the 10 x 2 array g_fn always has the following structure (numbers are used
to uniquely identify nonzero elements):

1 o0
(20
30
4 0
0 5
0 6
0o 7
0 8
9 10
\ 11 12/

In other words, fn(i, 1) depends only on beta(1:4), and fn(i,2) depends only on beta(5:8). Hence, we
can compute a compressed version of g_fn at reduced cost by merging rows 1 and 5, 2 and 6, 3 and 7, and 5
and 8 of g_fn. Keeping in mind that g_fn is the transpose of the Jacobian, this is an especially simple case
of the compression strategy outlined in the preceding section. This is achieved by initializing

47

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

i 0 001 0 0 O0 0 O
¢ 1 0 0 01 0 0 0 O
_ ¢ 01 0 0 01 0 0 O
&X=190o 00 1000 10 0]’
¢ 0 0 0 ¢ 0 0 O 1 O
0 0 0 0 ¢ 0 0 0 0 1
which results in
1 5
2 6
3 7
g-in= 4 8
9 10
11 12

All the nonzero values of the Jacobian are now computed at roughly 60% of the cost of the previous approach.

On a SPARC-compatible Solbourne 5E/900 with a clock resolution of 0.01 seconds, executing fun took
0.01 seconds, computing derivative values using g-fnc without compression took 0.06 seconds, and exploiting
the structure of g.fn through the initialization of g_x shown above reduced that time to 0.03 seconds.

A.5.2 Approach 2 — Generate derivatives for fun

An alternative method of applying ADIFOR is to process subroutine fun. ADIFOR detects the interpro-
cedural data dependence between fun and fnc and therefore generates g_fun as well as g_fnc, with g_fnc
called properly within g_fun. We obtain

subroutine g_fun(g_p_,n,m,np,nq,beta,g_beta,ldg_beta,
$ xplusd,g_xplusd,ldg_xplusd,ldxpd,f,g_f,ldg_f,1df)
integer g_p_, n, m, np, nq, ldg_beta,ldg_xplusd,ldxpd,ldg_f,ldf
double precision beta(ap), g_beta(ldg_beta,np),
$ xplusd (1dxpd,m), g_xplusd(ldg_xplusd,ldxpd,m),
$ £(1df,nq), g_f(1dg_f,1df,nq)

Now we have three-dimensional derivative objects, which somewhat complicates the initialization of g xplusd
and the interpretation of the results in g f. However, this is not too difficult if we keep in mind that we

wish to initialize
g_betaT
g_xplusdT

to an identity matrix. The number of elements in xplusd is n*m, and the number of elements in beta is np.
For the coating thickness problem, n=63, m=2, and np=8. Hence, the identity matrix should be 134 x 134.
This is also the value we shall use for g_p_. Initialization of g_beta follows the scheme outlined in Section A.3;
that is, the first 8 rows should be an 8 x 8 identity matrix, and the remaining 126 rows should be initialized
to zero. How to initialize g xplusd is less readily apparent, for it is not immediately obvious how to form
a 126 x 126 identity matrix from a three-dimensional structure. However, if one looks at the way Fortran
stores two-dimensional structures in memory, a simple scheme for storing the Jacobian develops. In Fortran,
element (7,¢) in an n X m array is stored as if it were element = * (i — 1) + 5 of a one-dimensional array.
Thus, "we can apply this technique to map the 126 columns of the Jacobian that should be initialized to the
identity onto g_xplusd. Specifically, element (np + k, j,) is initialized to 1 if and only if k = 63 % (¢ — 1) + 7.
The following code segment accomplishes this initialization.

¢ n=63, m=2, np=8

48

Revision B ADIFOR, 2.0 User’s Guide April 29, 1995

g-P- = np + m¥n
do 44i=1, np
do 144 j = 1, g p_
g.beta(j,i) = 0.0
144 continue
g_beta(i,i) = 1.0
44 continue
do45i=1, m
do 145 j =1, n
do 245k =1, g p_
g.xplusd(k,j,i) = 0.0
245 continue
g_xplusd(np+((i-1)*n)+j,j,i) = 1.0
145 continue
45 continue

When initialized in this manner, ADIFOR computes

T
of 9f
f£f=1{J; = —_—, e .
g (f <3beta 9 wplusd
However, the performance of this approach is poor, since we totally ignore the sparsity structure of the
Jacobian. As a result, the computation of J; takes 0.77 seconds on a Solbourne 5E/900. A better way

to find the Jacobian of f using g-fun is to take note of the structures used by fun. From this, it becomes

o] ¥
MY is nonzero only when i = k. As a consequence, we may change the

obvious that Bepius k]

§-P = np + m*n

g_xplusd(np+((i-1)*n)+j,j,i) = 1.0
to the much simpler

gp=np+m

g_xplusd(np+i,j,i) = 1.0

with the understanding that g_f (np+i, j,k) (i = 1..m) represents 51—;’%%?]7]. This is equivalent to initializing

1 6 0 0 0 0 0 O 0 0
(0 1 0 0 0 0 0 O \ (0 0 \
0 01 0 0 0 O O 0 0
0 0 01 0 0 0 O 0 0
0 0 0 01 0 0 O 0 0
g-beta = 00000 1 0 0 , and g_xplusd[n] = 0 0
0 0 0 0 0 0 1 O 0 0
¢ 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 O 1 0
\o 000000 o) \ o 1/

This implementation is much more efficient than that described in the preceding paragraph and more closely
mimics the behavior of the original subroutine fun. As a consequence, the time required to execute g_fun
using this initialization is 0.07 seconds. ’

49

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

As discussed in Section A.5.1, only half of the derivatives of £ with respect to beta are nonzero. Specif-
ically, 8%%;—37 is nonzero for j = 1..4 and zero for j = 5..8, while a—i&%ﬁ}j is zero for j = 1..4 and nonzero for

j =5..8. This information can be used to further compress the Jacobian. The initialization

1 0 0 01 0 0 O 0 0
0 1 0 0 0 1 0 O 0 0
0 0 1 0o 0 0 1 o0 0 0
g-beta= 0001000 11 and g.xplusd[n] = 0 0
0 0 0 0 0 0 O0 O 1 O
O 0 0 0 06 0 0 O 0 1

compresses the Jacobian into only 6 columns. Columns 1 through 4 represent the nonzero derivatives of
£ with respect to beta, while columns 5 and 6 correspond to the derivatives of £[i,j] with respect to
xplusd[i,1..2], as above. This initialization may be accomplished with the following code fragment.

¢ n=63, m=2, np=8
halfnp = 4
g-p-=4+n
do 44 i = 1, halfnp
do 144 j = 1, g_p_
g-beta(j,i) = 0.0
g_beta(j,i+halfnp) = 0.0
144 continue
g.beta(i,i) = 1.0
g.beta(i,i+halfnp) = 1.0
44 continue
do 45 i=1, m
do 145 j =1, n
do 245k =1, g_p_
g_xplusd(k,j,i) = 0.0
245 continue
g_xplusd(halfnp+i,j,i) = 1.0
145 continue
45 continue

This approach is efficient, capable of computing all derivatives in 0.03 seconds. However, it has the disad-
vantage that the initialization routine might have to be changed if fnc or np is altered.

A.6 Computing Gradients of Partially Separable Functions

A particular class of functions that arises often in optimization contexts is that of the so-called partially
separable functions [9, 14, 15, 16, 17]. That is, we have a function f: R™ — R that can be expressed as

nf
flz) = Zﬁ(z).

Usually each f; depends on only a few (say, ni) of the z’s, and one can take advantage of this fact in
computing the (sparse) Hessian of f.

As was pointed out to us by Andreas Griewank, now at the University of Dresden, this structure can be
used advantageously in computing the (usually dense) gradient V f of f.

Assume that the code for computation of f looks as follows:

subroutine f(n,x,fval)

50

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

integer n
real x(n), fval, temp

fval = 0

call f1(n,x,temp)
fval = fval + temp

......

call fnb(n,x,temp)
fval = fval + temp

return
end

If we submit £ to ADIFOR, it generates
subroutine g_fn(g_p_,n,x,g x,ldg_x,fval,g_fval,ldg_fval).

To compute V f, the first (and only) row of the Jacobian of f, we set g-p- = n and initialize g xtoan xn
identity matrix. Hence, the cost of computing V f is of the order of n times the function evaluation.

As an alternative, we realize that with f : R™ — R™ defined as

we have the identities

flz)= eTg(:z:), and hence Vf(z) = el Jy,
where e is the vector of all ones, and J, is the Jacobian of g. We can get the gradient of f by computing Jg
and adding up its rows. The corresponding code fragment for computing f is

subroutine f(n,x,fval)
integer n
real x(n)

integer nf, i
parameter (nf = <whatever>)

real gval(nf)

call g(n,x,gval)

fval = 0
do i = 1,nb
fval = fval + gval(i)
enddo
return
end

It may not appear that we have gained anything, since J, is nf x n. If we initialize g.x in
gubroutine g_g(g_p_,n,x,g_x,ldg_x,gval,g_gval,ldg_gval)

51

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

to an n X n identity matrix, then the computation of J, still takes about n times as long as the computation

of g (or f).
The key observation is that the Jacobian Jg is likely to be sparse, since
(VA"
Jg = ,
(Vf nb)T

and each of the fi’s depends only on n; of the z’s. By using the graph coloring techniques described in
Section A.4, we can compute J; at a cost that is proportional to the number of columns in the compressed
Jg, and then add up its (sparse) rows. As a result, we can compute Vf at a cost that is potentially much
less than n times the evaluation of f. Alternatively, we can employ the SparsLinC library (see Appendix
C), which will exploit sparsity even if the Jacobian contains a few dense rows (in this case, its chromatic
number is n, and nothing has been gained).

52

Appendix B

ADIntrinsics 1.0: Exception
Handling Support for ADIFOR
2.0

B.1 Introduction

B.1.1 What Is an Exception?

In ADIFOR parlance, an “exception” is an event that occurs when an elementary function is evaluated at
a point where the function result is defined, but the derivative is not. For instance, the square root of zero
is zero, but the derivative of the square root function at zero is not defined.

For most functions, there are several reasonable interpretations of what should be done when an exception
occurs. ADIFOR 2.0 is programmed to choose one of those, but only a human can decide whether this choice
is the correct one for any given instance. When an exception occurs, you should examine your code to make
sure that ADIFOR. 2.0 has done something reasonable in your case.

A discussion for different approaches for handling exceptions as well as the choice of default values for
exceptional situations is discussed in [5].

B.1.2 What Code Is Needed?

If you are not interested in customizing the exception handler in your program, you need only make sure that
you call the routine ehrpt (for exception handler report) to report any exceptions that may have occurred.
This call should occur after all of the ADIFOR 2.0-generated code has run. A good place for it is right after
your top-level subroutine.

program main

£...1

call ADIFOR_GENERATED_CODE ()
[...1

call EHRPT
return
end

In addition, one file and one library must be added to your link step. These are
1. the file $AD_HOME/1ib/ReqADIntrinsics-$AD_ARCH.o, and

53

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

2. the library $AD_HOME/1ib/1ibADIntrinsics-$AD_ARCH.a.

A sample link line may appear as follows:

£77 -0 executable sub.o main.o \
$AD_HOME/1ib/ReqADIntrinsics-$AD_ARCH.o \
-L$AD_HOME/1lib -1ADIntrinsics-$AD_ARCH

B.2 Redirecting Exception Handler Output

To direct the exception handler output to a different unit, open the unit in your driver program, and then
call ehsup with two parameters: -1, and then the unit number. The driver is also responsible for closing this
unit before the program terminates. Failure to do so may result in a loss of output that has been buffered
but not written to the file.

call ehsup (-1, UNIT-NUMBER)
A segment of the user code might resemble this fragment.

open (UNIT=13, FILE=’adifor-errors.out’)
call ehsup (-1, 13)

[... Useful Work .,.]

close(13)

B.3 Purse and Exception Handler Templates

To provide a flexible means of customization of the exception handling mechanism in ADIFOR 2.0, we have
split derivative code generation into two components — ADIFOR 2.0 generates code containing invocations
of “templates,” which are then expanded into explicit Fortran code by the purse postprocessor. To users,
these two components look like a single step, since ADIFOR 2.0 invokes purse directly.

By default, purse expands templates based on the set of template definitions stored in files in the
directory $AD_HOME/templates. If necessary, users can create new templates or modify default ones as
necessary. In order to modify default templates, all that is necessary is to place the modified template into a
directory (say ‘new-templates’, or the current directory, ‘.’). ADIFOR 2.0 must then be instructed where to
find the new template file by setting the AD_.TEMPLATE DIR option to be the name of the directory containing
the new template file.

The user can customize the exception handling in several different ways:

1. By directing ADIFOR 2.0 to use the verbose, counting, terse, or performance exception handling mode
for error reporting.

By setting the exception handling mode on a fine-grained level.

By ignoring exceptions in a particular region of code.

By changing the values returned by the exception handler.

By overriding the template expansion for a particular intrinsic with a user’s own template, locally.

@ e W o

By overriding the template expansion for a particular intrinsic with the user’s own template, globally.

Each of the mechanisms is now described.

54

Revision B ADIFOR. 2.0 User’s Guide April 29, 1995

B.3.1 Exception Handler Modes

The exception handler operates in four modes: verbose, counting, terse, and performance. In verbose mode,
every time an exceptional condition occurs, a message is written to the program’s error unit {unit number
zero, which usually outputs to the screen) indicating the function, the arguments to the function, and the
file name and line number containing this function evaluation. This information allows one to track down
exactly where the exception is occurring and decide whether it is generating appropriate results. Counting,
terse, and performance modes provide a decreasing amount of information about exceptions that occur.

Counting mode maintains a running total of each type of exception that occurs, as shown in Figure B.1.

Exception(s) occurred evaluating ABS : 100 times.
Exception(s) occurred evaluating POWER: df/dx : 5 times.
Exception(s) occurred evaluating ACOS first deriv : 17 times.

Figure B.1. Counting Mode Error Report

Terse mode indicates whether any exceptions of a given type occurred. This mode may be useful for
vectorizing compilers, where the recurrence required for counting may inhibit vectorization. A sample terse
mode output is given in Figure B.2.

Exception(s) occurred evaluating ABS
Exception(s) occurred evaluating POWER: df/dx
Exception(s) occurred evaluating ACOS first deriv

Figure B.2. Terse Mode Error Report

Performance mode contains no exception checking at all. One should only use performance mode after
running the code with another mode and being sure that no exceptions occur. Performance mode assumes
that no exceptions occur, and may not give correct derivative information if they do occur. No report is
made, since no exceptions are tracked.

The exception handling mode may be chosen at the time ADIFOR 2.0 is run by setting the AD_EXCEPTION_FLAVOR
variable to one of: performance, terse, counting, or verbose.

B.3.2 Fine-Grained Control of Exception Handler Modes

Fine-grained control over exception handler modes is achieved by embedding directives in the user’s code.
These directives are reasonably simple to use, but a brief explanation of their syntax and some warnings
about their use is appropriate.

Note: These directives have a reasonably intuitive syntax:

¢ any comment character (C, ¢, or *) may be used to begin the comment line;

¢ spaces cannot appear in the middle of a keyword, but may appear around parentheses and
commas;

e the directives can appear in upper or lower case, as can the keywords (arguments) given;
and

¢ zero or more whitespace characters may appear between the comment character and the
beginning of the directive, but no spurious “garbage” should appear in the line, even after
column 72.

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

Warning: Directives affect only the parts of the program that are literally after them. In
particular, a directive cannot change the mode in which an invoked procedure runs. The example
below shows incorrect usage of the AD_EXCEPTION_LEVEL directive.

This is an incorrect use of the AD_EXCEPTIDN_LEVEL directive.

C
C it has no effect on the subroutine "slow_func”.
C
C AD_EXCEPTION_LEVEL(PERFORMANCE)
call slow_func
C AD_EXCEPTION_LEVEL(DEFAULT)

The verbosity level can be dynamically set with the AD_EXCEPTION_LEVEL() directive. Valid levels are
verbose, counting, terse, performance, and “default,” which restores the exception level to the one with which
ADIFOR 2.0 was run. For example, to guarantee verbose exception reporting around a certain region, the
user might use the following code:

C AD_EXCEPTION_LEVEL(VERBOSE)
[... Interesting Code Here ...]
c AD_EXCEPTION_LEVEL(DEFAULT)

Warning: Terse mode is incompatible with both counting mode and verbose mode. Do not
switch from verbose or counting mode to terse mode anywhere in your program. Doing so will
cause the summary information reported to be incorrect.

B.3.3 Ignoring Exceptions in a Region

To ignore exceptions in a region, bracket the region with the directives AD_EXCEPTION_BEGIN_IGNORE and
AD_EXCEPTION_END_IGNORE. “Ignoring” exceptions simply means that no exceptional information is printed
out; it does not mean that the exception handler is disabled. Disabling the exception handler (that is, using
performance mode) is not an option, because at exceptional points the performance mode may return a
value different than that returned by the exception handler.

C AD_EXCEPTION_BEGIN_IGNORE()
[... Exceptions to be Ignored Here ...]
c AD_EXCEPTION_END_IGNORE()

Warning: These directives do not nest. This means that any AD_EXCEPTION_END_IGNORE cancels
all previous AD_EXCEPTION_BEGIN_IGNORE commands, regardless of how many preceded the end
ignore.

Here is an example showing how the ignore directives do not nest.

c AD_EXCEPTION_BEGIN_IGNORE()

[... Exceptions are Ignored Here ...]
C AD_EXCEPTION_BEGIN_IGNORE()

[... Exceptions are Ignored Here ...]
C AD_EXCEPTION_END_IGNORE()

[... Exceptions are REPORTED Here ...]
C AD_EXCEPTION_END_IGRORE()

[... Exceptions Continue to be Reported Here ...]

Note: Currently, the “ignore” mode is implemented by placing the exception handler in counting
mode for the given region.

56

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

B.3.4 Setting Exceptional Values

It is possible to override the default values for the exceptions. This overriding is precision-specific, so it is
done through a routine ehsup#, where * is one of s, d, ¢, or z, for single, double precision, complex, or
double complex, respectively.

To override an exceptional value, one needs to know two facts: the integer that represents the intrinsic
for which the exception is occurring, and the integer “offset” of the exceptional condition whose return value
is to be altered. The integer representing the intrinsic can be found in Table B.1. Almost all intrinsics have
only a single exceptional condition, and therefore have an offset of one. Those that do not follow this rule
are discussed below.

Before discussing multiple exceptional conditions, let us examine a brief example of setting an exceptional
value. Suppose one wishes to change the exceptional value of ABS at zero (for both real and double precision)
so that the partial derivative of ABS(x) with respect to x at zero is one. First, one would look in Table B.1
to find that the integer representing ABS is 3. ABS has only one exceptional value, so the offset used to set
9(ABS(z))/dz is one. Having figured out all of this information, one would use the following two calls to set
the desired partials-of ABS.

c Set single precision partial of abs
call ehsups (3,1,1.0e0)
C Set double precision partial of abs

call ehsupd (3,1,1.0d40)

The SQRT4CABS “function” is a dummy intrinsic generated by ADIFOR 2.0 to handle the complex ABS
function. Let z = z + iy. The complex ABS(z) function is rewritten as

abs(z) = SQRT4CABS(z2 + y°)

By default, SQRT4CABS has the same exceptional behaviour as SGRT.

Multiple Exceptional Values

As mentioned above, not all functions have only one exceptional value. The following functions have more
than one possible exception: SQRT, ASIN, ACOS, and POWER (POWERBASE, POWEREXP, POWERBOTH). For the first
three, SQRT, ASIN, and ACOS, the user can set both the first and second derivatives at the exceptional point.
An offset of one is used for the first derivative and two for the second derivative. The POWER operator is
more complicated, so it is explained in the next section.

Multiple Exceptional Values: The POWER Operator

The POWER operator for real arithmetic has two exceptional conditions, as listed below.
1. fiforr=0,0<y<1, and
2. fyoforz <0,0orz=0and y=0.

The first condition may be set using either POWERBOTH with an offset of one, or POWERBASE with an offset of
one. The second may be set by using POWERBOTH with an offset of two, or POWEREXP with an offset of one.

The POWER operator for complex arithmetic has two different exceptional conditions. These are

1. an exception occurred at 0°, or

2. an exception occurred at 0¥ with Re(y) < 0.

These values are returned for all derivatives (both first and second) at the point where the exception occurred.
The values can be set using any one of POWERBOTH, POWERBASE, or POWEREXP; they are offset one and two,
respectively.

57

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

Intrinsic Numerical Value
AINT 1
ANINT 2
DNINT 2
ABS 3
MOD 4
SIGN 5
DIM 6
MAX 7
MIN 8
SQRT 9
POWERBASE 10
POWEREXP 11
POWERBOTH 12
ASIN 13
ACOS 14
SQRT4CABS 15

Table B.1. Intrinsic Functions

B.3.5 Overriding a Specific Instance of a Template

The experienced user may wish to replace a given instance of an intrinsic’s exception handling template with
their own. To do so, provide the name of the intrinsic to be overriden and the name of the new exception
handling template to be used. For example:

C AD_EXCEPTIUN_OVERRIDE_INTRINS:_[C_BEGIN(SIN ,MYSIN)
[...AD Code...]
C AD_EXCEPTION_QVERRIDE_INTRINSIC_END(SIN)

You can either bracket the code to be overriden with BEGIN and END directives as above, or use a special
“ONCE” directive to indicate that the overriding should only happen to the next matching intrinsic encoun-
tered.

c AD_EXCEPTION_OVERRIDE_INTRINSIC_ONCE(SIN,MYSIN)

In addition to using this directive, you must create an exception handler template file for the new
intrinsic, and use the AD_TEMPLATE DIR option to ADIFOR 2.0 to tell it to search the named directory before
searching the default directory. See the next section for more information about writing templates.

B.3.6 Replacing All Instances of a Template

To replace all instances of a given template with another, create a template file with the same name as the
one to be overridden and use the AD_TEMPLATEDIR option to ADIFOR 2.0 to tell it to search the named
directory before searching the default directory. See B.4 for more information writing templates.

B.4 Writing Templates

Writing a template is a relatively simple process; it may well be worth your while to write a template in
order to change the behavior of the exception handler at some point.

58

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

B.4.1 Filenames of the Template Files

Each intrinsic has one or two template files: <intrinsic>.Tand (if the intrinsic supports complex arguments)
c<INTRINSIC>.T.The *.T files contain the template for real and double precision, and the c*.T files contain
the template for complex and double complex code. Note that many routines are meaningful only in real
arithmetic and do not have complex counterparts.

B.4.2 Format of the Template Files

Each of these files will be written in a very specific way so that the code will be readable to a human but
simple for purse to modify. The code should be legal Fortran 77: it must be indented to column 7, and any
directives should be expressed in comments. The function inputs will be denoted by x and y in the code,
and the function resnlt will be denoted by z. First derivatives with respect to x and y will be fx and £y,
respectively. Second derivatives will be £xx, £xy, and £yy. No other variables can be used in the code, since
it will be embedded in an unknown context.

As an example, this is the template derivative code file for the square root function for real numbers.
Note that it is correctly indented, legal (looking) Fortran 77.

c PERFORMANCE _FVAL
z = sqrt(x)
if (x .gt. 0.0) then
C PERFORMANCE_FIRST
fx = 1.0 / (2.0 * 2)
c PERFORMANCE_SECOND
fxx = fx / (2.0 * x)
else
call EXCEPTION_HANDLER
endif

Most of the details should be obvious from this example. To generate performance mode code {with no
error checking), we merely insert the statements that are preceded by a comment with the string “PER-
FORMANCE?” in it. The phony call to “EXCEPTION_HANDLER” is transformed into the appropriate

exception handler call by purse.

In a few rare cases, we actually want to generate different code for first- and second-order derivatives,
to avoid recomputation of some quantities. In this case, we use the C preprocessor-style #ifdef FIRST,
#ifdef SECOND, and #ifdef PERFORMANCE directives. (The #else directive will switch between the cases, as
one would expect.) Since the file is not really processed with the C preprocessor, most of the niceties have
been omitted as the following warning makes clear. An example of a complicated template file using these
features is included in Appendix B.5.

Warning: These C preprocessor style directive cannot be nested, and the only things that are
permissible to check are FVAL, FIRST, SECOND, and PERFORMANCE.

Note: Everything within an #ifdef PERFORMANCE branch is emitted in performance mode. The
#else branch is emitted in an ordinary mode. If one tests #ifndef PERFORMANCE, the #else
branch (if any) is emitted in performance mode.

It is clear that we can generate second-order derivative code merely by copying the given code and
making a few substitutions. To generate first-order derivative code, we omit all lines containing the strings
fxx, £xy, or £fyy. To generate function values, we put ourselves in performance mode and omit all first- and
second-order partials.

B.4.3 Typing Issues

To help compilers get the correct type for numerical constants, such as 1.0, that appear in the template
code, we allow a “macro” TYPE to appear in the code. It will expand to give the correct precision to the

59

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

number it contains. For example, given the code below,
fx = TYPE(1.0) / (x*x + y*y)

for a double-precision expansion, we output
fx = 1.0d0 / (x*x + y*y)

Whitespace is allowed after the TYPE and before and after the argument. For safety, we do not expand a
lowercase type, but abort with an error. No parentheses are allowed in the parameter, but nore should
appear in a number in any case.

Note: No complex TYPE() parameters are permitted at this time. When a TYPE macro is
expanded in a complex context, it becomes a complex number whose real part is the value given
and whose imaginary part is zero. Also note that it is not possible to “fake” a complex number
not of this form by writing

(TYPE(1.0), TYPE(7.0))
because if this is expanded in a complex context, it will become:

(1.0, 0.0), (7.0, 0.0))

B.5 Examples of Complicated Template Files

Figure B.3 shows an example of a template file that produces different code for first and second derivatives.

Figure B.4 shows an example of a template file with C preprocessor style directive that control when
performance-mode code should be output. Recall that if a line is not preceded by a comment containing the
string PERFORMANCE, and it is not in the “true” branch of a PERFORMANCE ifdef, it is not emitted in performance
mode. This means that if we were to move the #ifdef] so that it just enclosed the exception handler call,
every other line would need to be preceded by a comment containing the string “PERFORMANCE”. An

example of this style is given in Figure B.5.

60

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

C PERFORMANCE
z = acos(x)

#ifdef FIRST
if (abs(x) .1lt. TYPE(1.0)) then
o} PERFORMANCE
fx = TYPE(~1.0) / sqrt ((TYPE(1.0)-x)*(TYPE(1.0)+x))
else
call EXCEPTION_HANDLER
endif
#endif /#* FIRST */

#ifdef SECOND
if (abs(x) .1t. TYPE(1.0)) then
C Use fxx as scratch space!
c PERFORMANCE
fxx = (TYPE(1.0) - x) * (TYPE(1.0) + x)
c PERFORMANCE
fx = TYPE(-1.0) / sqrt (fxx)
C PERFORMANCE
fxx = x * fx / £xx
else
call EXCEPTION_HANDLER
endif
#endif /* SECOND */

Figure B.3. Template File with Cases for First, Second Derivatives

61

Revision B

ADIFOR 2.0 User’s Guide

PERFORMANCE
z = abs(x)

PERFORMANCE
fxx = TYPE(0.0)

#ifdef PERFORMANCE

#else

if (x .gt. TYPE(0.0)) then

fx = TYPE(1.0)
else if (x .1lt. TYPE(0.0)) then

fx = TYPE(~1.0)
else

This is the current NoLimit default

fx = TYPE(0.0)

stop ’ADIFOR Exception: x = 0 in abs(x).’

endif

if (x .gt. TYPE(0.0)) then
fx = TYPE(1.0)
else if (x .1t. TYPE(0.0)) then
£x = TYPE(~1.0)
else
call EXCEPTION_HANDLER
endif

$endif

April 29, 1995

Figure B.4. Template File with Performance-Mode Controlling Directives

PERFORMANCE
z = abs(x)

PERFORMANCE
fxx = TYPE(0.0)

PERFORMANCE
if (x .gt. TYPE(0.0)) then
PERFORMANCE
fx = TYPE(1.0)
PERFORMANCE
else if (x .lt. TYPE(0.0)) then
PERFORMANCE
fx = TYPE(-1.0)
PERFORMANCE
else

#ifdef PERFORMANCE

C This is the current NoLimit default
fx = TYPE(0.0)
c stop ’ADIFOR Exception: x = 0 in abs(x).’
#elsze
call EXCEPTION_HANDLER
#endif

Figure B.5. Template File with Performance-Mode Controlling Directives, Alternative Style

62

Appendix C

Sparse Derivative Support for
ADIFOR 2.0 through the
SparsLinC 1.0 Library

C.1 Introduction

SparsLinC 1.0 (Sparse Linear Combinations) is a library of C routines that provide an implementation of
the “vector linear combination”:

k
w=za;*v;, (C.1)
szl
employing sparse data structures. Here w and the »; are vectors, the o; are scalar multipliers, and £k is
referred to as the arity. This operation is the fundamental computational kernel for first-order automatic
differentiation.

SparsLinC utilizes dynamic data structures to represent only the nonzero information contained in each
vector and performs the vector linear combinations on these sparse representations of the vectors. By doing
so, it avoids storing zero values and performing computation with zeros, at the cost of introducing some
overhead associated with maintaining sparse data structures.

One way of representing a sparse vector with nnz nonzeros in Fortran is by means of two arrays, each of
length nnz, one an integer array containing the indices of the nonzero entries, and the other a floating-point
array of appropriate precision, containing the corresponding values. So, for example, the 7-vector

(11.0, 0, 33.0, 44.0, 0, 0, 77.0)

would be represented by

Index Array: [1 | 3 [4 T 7 |
Value Array: [11.0 | 33.0 [44.0 [77.0 |

We will refer to this 2-array representation of the vector as the Fortran Sparse Format. The cor-
responding nonsparse representation, which we will call the Fortran Nonsparse Format, would be a
floating-point array of length 7, containing zeros in entries 2, 5, and 6. Lastly, there is the SparsLinC
Sparse Format, which is the internal SparsLinC representation of the vector.

In addition to reducing the space required to store derivative values and the time required to compute
derivatives, SparsLinC is also useful for uncovering the sparsity features of a problem. For example, the
detection of the sparsity pattern of Jacobians is of interest in a number of computations. The computation

63

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

of the Jacobian using SparsLinC yields the sparsity pattern of the Jacobian as a natural consequence of the
work it does in computing the Jacobian, and thus provides all the information needed for a sparse equation
solving routine, for example. We anticipate that this feature of SparsLinC will be further strengthened in
future releases with the addition of diagnostic capabilities about the “sparsity behavior” of a computation.

From the user’s point of view, using SparsLinC is very simple. Much of the task of interfacing ADI-
FOR 2.0-generated code and SparsLinC is done automatically and is transparent to the user. Section C.5.1
describes how to invoke ADIFOR 2.0 to generate derivative code that uses the SparsLinC library. Such code
will be referred to as “sparse derivative code.” We will refer to derivative code generated by ADIFOR 2.0
in the default case (i.e., with do-loop implementation of vector linear combinations, rather than calls to
SparsLinC routines) as “nonsparse derivative code.”

Section C.2 provides some background information necessary to understand the use of SparsLinC with
ADIFOR. 2.0. Section C.3 defines the notion of sparsity and discusses computational scenarios where sparsity
exists and can be exploited by SparsLinC for faster, less memory-intensive code. In the tutorial example
given in Chapter 4, Step 4 describes, for the nonsparse (default) case, how to incorporate the ADIFOR 2.0-
generated derivative code in the derivative code driver. Section C.4 outlines how this is done in the sparse
derivative code driver by calling the appropriate SparsLinC Access Routines. These routines are the
subset of SparsLinC routines that allow the user to set up and configure SparsLinC, pass data to it, and
extract results and performance measures from it. Section C.5 describes how to build a sparse derivative
code by using ADIFOR 2.0 and SparsLinC. Section C.6 contains detailed description of the SparsLinC access
routines.

C.2 Background

In ADIFOR 2.0, an active variable is one that lies on a dependency path from the independent to the
dependent variables (the independents and dependents themselves are also considered to be active). Active
variables are the ones for which we compute directional derivatives with respect to a set of (not necessarily
normalized) directions specified via the seed matrix. In the simplest case, each unit direction is defined by
one of the independent variables, which is equivalent to setting the seed matrix to be the identity.

We define the term directional gradient vector to be the set of directional derivatives of any scalar
active variable with respect to all directions specified in the seed matrix. The term scalar active variable
here refers both to active variables declared as scalars in the user’s Fortran source code and to the individual
elements of active variables that are declared as arrays. The directional gradient vectors appear as vector
operands in the vector linear combinations equation (C.1).

C.3 Where Is SparsLinC Useful?

The main rationale for the development of SparsLinC is to make derivative computation run faster and use
less memory. But not every problem will result in faster code if SparsLinC is used. The potential gain
depends, to a large extent, on the inherent sparsity present in any particular derivative computation.

C.3.1 Definition of Sparsity

In a nonsparse representation, a directional gradient vector V would be declared as an array of length p,
where p is the number of directions (i.e., the number of columns in the seed matrix).! We denote the number
of nonzeros in V' at a given point ¢ during the execution by V; nn.. The percentage of zero entries or sparsity
of V; is defined as

22 4 100%. (C.2)

‘/t.sparsity = (1 -

! For the sake of clarification, we note that p denotes the same quantity as the Fortran variable g-P-, used elsewhere
in this document.

64

Revision B ; ADIFOR 2.0 User’s Guide April 29, 1995

A good measure for the overall sparsity present in a derivative computation is the median of the
sparsities of all directional gradient vectors during the entire execution of the derivative code.

A necessary (but not sufficient) condition for SparsLinC to improve the runtime performance of derivative
computation is that the number of directions with respect to which we wish to compute derivatives be
“large”. This is perhaps an obvious, but nonetheless significant, point, since if the number of directions
is small, directional gradient vectors will be short and any strategy to exploit sparsity will be defeated by
the overhead associated with implementing that strategy. The determination of what is considered a large
sparse problem is to a great extent dependent upon the nature of the problem; however, in our experience,
the threshold at which our strategy becomes effective is 20-30 directions.

Another important issue concerning sparsity in derivative computations is that the sparsity of the final
result (the nonzero structure of the final directional gradient vectors of the dependents) is only a lower
bound on the sparsity of the intermediate directional gradient vectors; that is, the overall sparsity of the
problem may be (and often is very) much higher than that of the final derivative result. In general, sparsity
diminishes as the computation proceeds, because for all vector linear combinations, the nonzero index set of
the resulting left-hand-side vector is the union of index sets of the right-hand-side vectors.? As a consequence,
in many problems, there may be a lot of “hidden” sparsity that can be exploited by using SparsLinC.

C.3.2 Sparse Derivative Problem Types

The numerical computation of gradients and Jacobians is an important step in the solution of many non-
linear problems, such as constrained optimization, mesh computations, and the solution of systems of stiff
differential and algebraic equations. In many instances, these problems require derivative computations that
have inherent sparsity. Two examples are gradients of partially separable functions and sparse Jacobians.

A function is partially separable if it can be represented as

f@)=>_ fi(=), (C.3)

i=1

where m is the number of partitions, and where each component function, fi(z), is typically a function of
just a few of the elements of z, implying that each of the corresponding directional gradient vectors, V fi(z),
will be sparse, even though the aggregate f depends on all of 1, leading to a dense final gradient V f(z). Any
f with a sparse Hessian belongs to this class of problem [14], regardless of whether the partially separable
structure is expressed explicitly in the code.

For many Jacobian computations, the final Jacobian is itself sparse, implying that there is much sparsity
to be exploited in the intermediate computations. As discussed above, every intermediate directional gradient
vector is at least as sparse as (and often much sparser than) the final Jacobian.

C.4 Usage of SparsLinC Access Routines

This section outlines the SparsLinC access routines and their use in the derivative code driver. These routines
allow the user to set up and configure SparsLinC, pass data to it, and extract results and performance
measures from it.

C.4.1 About SparsLinC 1.0 Routines and Their Names

SparsLinC provides multiprecision arithmetic support, meaning that the underlying vectors can be repre-
sented in REAL, DOUBLE PRECISION, COMPLEX, or DOUBLE COMPLEX precision. The routines involving a vector
or vectors have a prefix letter designating the “precision” of the operation. For each precision-dependent

2This discussion precludes the possibility of the occurrence of numerical zeros resulting from exact cancellation
(e.g., @ + (—@)} and zero multipliers. In our experience, exact cancellation rarely occurs in derivative computation,
and currently, SparsLinC does not check for it (i.e., numerically zero vector entries are treated like nonzero entries).
SparsLinC does, however, check for zero multipliers, and vectors with zero multipliers are not referenced.

65

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

SparsLinC routine, all instantiations of the routine have the same interface, meaning that they have the
same arguments, in the same order, and with identical declarations except for the types of the vectors and
multipliers (as an example, see the declaration of VALVEC in the definition of the [S,D,C,Z]SPSD routines in
Section C.6).

Here is a summary of the naming conventions we have adopted for SparsLinC routines:

o The first letter will be an “S”, “D”, “C”, “Z”, or “X” indicating, respectively, whether the routine
manipulates vectors in REAL, DOUBLE PRECISION, COMPLEX, or DOUBLE COMPLEXprecision or whether it
is a nonnumeric utility routine.

o The second and third letters will be “SP”, to denote that the routine is in the SParse library.

¢ The last two or three letters will be an abbreviation of the task performed by the routine.

We use the shorthand, “[S,D,C,Z] name” to refer to all four precision instantiations of a routine name.

C.4.2 Declaration of Sparse Variables

In Section C.2 we introduced the concept of directional gradient vectors. In the case of the nonsparse invo-
cation of ADIFOR 2.0, these vectors are implemented as Fortran arrays. In the following examples in this
and subsequent sections (C.4.2 - C.5.2), assume that x is the independent variable (i.e., all 1000 entries of x
are independent variables), f is the dependent variable, and w is an active variable we need to access in the
derivative code driver:

REAL x(1000), £(5), w

In the nonsparse case, the derivative code generated by ADIFOR 2.0 (assuming the ADIFOR 2.0 options
AD_PREFIX and AD_SEP have the default bindings of “g” and “_”, respectively) will contain the following
declarations:

REAL g_x(g_pmax_,1000), g_f(g_pmax_,5), g_w(g_pmax_)

By contrast, in the sparse case, the derivative code generated by ADIFOR 2.0 will contain the following
declarations:

INTEGER g_x(1000), g_£(5), g_w

Note that the Fortran interface to SparsLinC declares each directional gradient vector to be an INTEGER.
This is because each Fortran INTEGER gradient variable will be interpreted by SparsLinC to be a pointer to
the sparse representation of the corresponding vector.

It is usually possible to clip-and-paste the declarations for the directional gradient vectors, and possibly
the declarations of COMMON blocks that contain directional gradient vectors, from the code generated by
ADIFOR 2.0. This is true for both nonsparse and sparse applications of ADIFOR 2.0. Just be aware that
the declarations for the directional gradient vectors in the nonsparse and sparse codes are different.

Parenthetically, if you want to compare the sparse and nonsparse approaches for a particular problem, it
is often good coding practice to write one driver for both, with preprocessor directives specifying the parts
where the two differ. For example, for the above declaration, the following code could appear in the driver:

#ifdef NON_SPARSE
REAL g_x(g_pmax_,1000), g_f(g_pmax_,5), g_w(g_pmax_)
#elif SPARSE
INTEGER g_x(1000), g_£(5), g_w
#endif

We use this format, wherever applicable (i.e., wherever corresponding sparse and nonsparse codes are
present), in the rest of this discussion. (On most Unix systems, filenames ending with “.F” are interpreted
by makefiles as Fortran files with preprocessor statements. Users unfamiliar with preprocessor directives can
consult the “man” pages for “cpp”, the C preprocessor.}

66

Revision B ADIFOR 2.0 User’s Guide - April 29, 1995

C.4.3 Initializing and Customizing SparsLinC

SparsLinC data structures must be initialized before any computation can be performed. To this end, the
user must call the routine XSPINI before all other calls to any SparsLinC (except for calls to XSPCNF, which
must precede the call to XSPINI, as described below) or ADIFOR 2.0-generated routines. XSPINI takes no
arguments and is called as follows:

CALL XSPINI

The routine XSPCNF provides a means of tuning SparsLinC data structures for a particular problem at
hand. Most sparse vectors maintained by SparsLinC are stored in what is commonly referred to as the “single
subscript” and “compressed subscript” scheme. The single subscript scheme is the one already introduced
in the Fortran context in Section C.1. In the compressed subscript scheme, in contrast, we keep track of
nonzero index ranges, representing the vector of Section C.1 by

Index Array: [[1,1] [[3,4] [[7,7] |
Value Array: | 11.0 | 33.0 [44.0 [77.0 |

This representation is more efficient than the single-subscript representation when sparse vectors contain a
good portion of contiguous nonzero index ranges. A contiguous nonzero index range is a range of indices
wherein all the corresponding values are nonzeros. For example, for our vector above, the largest such range
has size 2 and contains elements 3 and 4. This scenario commonly arises when computing Jacobians with
banded structure or gradients of partially separable functions. SparsLinC automatically converts a vector
from the single-subscript to the compressed-subscript representation when the number of nonzeros in the
vector exceeds a certain threshold switch_threshold, say.

Either way, since the size to which vectors can grow is not known a priori, SparsLinC must provide,
for the value and index arrays, a data structure capable of represemting vectors of arbitrary size. The
data structure currently employed in SparsLinC is a linked list of arrays each of which has a fixed number
of entries. Let us denote this number of entries with SSbucket size for the single subscript scheme and
CSbucket_size for the compressed subscript scheme.

SparsLinC allows the user to adjust these values using the XSPCNF routine. For example, the sequence
of calls

CALL XSPCNF(1,10)
CALL XSPCNF(2,500)
CALL XSPCNF(3,20)

sets SSbucket_size to 10, CSbucket_size to 500, and switch.threshold to 20. This would be appropriate,
for example, for computing the gradient of a partially separable function (see Section C.3.2), where each
V fi usually contains about 20 nonzeros, and the number of independent variables is greater than 500.

While XSPINI assigns default values to these parameters and hence there is, from a functional perspective,
no need to call XSPCNF, we encourage experimenting with these parameters and welcome feedback. Our
experiments have shown that SparsLinC performs best if CSbucket size is close in value to the size of
the largest contiguous nonzero index range present in the problem. The tradeoff is between runtime and
memory, where a larger value of CSbucket _size is likely to result in faster runtime, but also the dynamic
allocation of more memory. In all cases, SSbucket_size should be set smaller (and usually much smaller)
than CSbucket_size and should not exceed switchthreshold. We are working on a facility to trace and
assimilate SparsLinC runtime information tc aid with SparsLinC performance tuning.

The user should pay heed to the following important note: XSPCNF may be called only before calling
XSPINI to set SSbucket.size and CSbucket.size. This is because once XSPINI is called, the array dimen-
sions set via these options cannot be modified. Calling XSPCNF to set SSbucket_size and CSbucket size,
after a call to XSPINI, will result in a runtime error. Calls to XSPCNF to set switch_threshold can be made
at any time.

67

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

C.4.4 Initializing the Seed Matrix

Each of the precision-specific SparsLinC routines [S,D,C,Z]SPSD converts a precision-specific sparse vector
stored in the Fortran Sparse Format into a corresponding vector in the SparsLinC Sparse Format. In the
following example, for the purpose of demonstration, we initialize columns 19 and 20 of g_x (corresponding
to the derivatives of x(19) and x(20)), in both the nonsparse and sparse ways (assume that the arrays,
INDVEC and VALVEC are declared appropriately):

#ifdef NON_SPARSE
gx(7,19) = 2.0
g.x(19,19) = 1.0
g_x(20,20) = 1.0

#elif SPARSE

INDVEC(1) = 7

VALVEC(1) = 2.0
INDVEC(2) = 19
VALVEC(2) = 1.0

CALL SSPSD(g.x(19),INDVEC,VALVEC,2)
CALL SSPSD(g_x(20),20,1.0,1)
#tendif

Note also that a vector must be initialized in a “one-shot” fashion; hence, for example, the following
piece meal approach would be an incorrect initialization of g_x(19):

INDVEC(1) = 7

VALVEC(1) = 2.0

CALL SsSPsD(g_x(19),INDVEC,VALVEC,1)
INDVEC(1) = 19

VALVEC(1) = 1.0

CALL SSPSD(g_x(19),INDVEC,VALVEC,1)

Because of the “destructive copy” feature of SPSD (see Section C.6), the above would be equivalent to
having made only the second of the two calls.

C.4.5 Extracting Directional Gradient Vectors from SparsLinC
SparsLinC provides two sets of precision-specific interfaces for extracting vector results:
{s,D,C,Z]1SPXDQ (XVEC, INLEN, VPTR, OUTLEN, INFO)

extracts sparse_object(VPTR) into the Fortran Nonsparse Format vector XVEC. INLEN is the size of XVEC.
The returned value OUTLEN is the largest index in the nonzero index set in sparse_object(VPTR). The value
of INFO is used to indicate whether XVEC was sufficiently large to store all of the nonzero elements in
sparse_object(VPTR). If OUTLEN is less than INLEN, then XVEC (CUTLEN+1:INLEN) is set to zero.

[s,D,C,Z]sPXsq (INDVEC, VALVEC, INLEN, VPTR, OUTLEN, INFO)

extracts sparse_object(VPTR) into the Fortran Sparse Format vector represented by the two arrays INDVEC and
VALVEC. INLENis the size of the arrays INDVEC and VALVEC. The returned value QUTLEN is the number of nonze-
ros in sparse_object(VPTR). The value of INFO is used to indicate whether XVEC was sufficiently large to store all
of the nonzero elements in sparse-object(VPTR). If QUTLEN is less than INLEN, then VALVEC (OUTLEN+1:INLEN)
and INDVEC (OUTLEN+1:INLEN) are not referenced.

In the following code segments, we show examples of the usage of these extraction routines along with
the corresponding necessary declarations (there is no equivalent ADIFOR 2.0 nonsparse extraction, since in
that case the output variables are already in Fortran Nonsparse Format).

68

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

SPXDQ Example

PARAMETER (in_len_xd = g_pmax_)
INTEGER out_len_xd(5), info_xd(5)
REAL g_f_xd(in_len_xd,5)

pPoOi=1,5
CALL SSPXDQ(g_f_xd(1,i), in_len_xd, g_f(i),
out_len_xd(i), info_xd(i))
ENDDO

in_len_xd is a user-defined value specifying the leading dimension of the Fortran nonsparse column
vectors of g_£f_xd, i.e., it is the user’s estimate of what is the largest index of nonzero value in the vector to
be extracted. In this case, by setting in_len_xd = g_pmax_, we have ensured ourselves that the SparsLinC
Sparse Format vector will always “fit” into the Fortran Nonsparse Format vector. (In the next example we
will discuss the case of underestimating memory requirements.)

Note that as specified above, g_f_xd is defined identically to the nonsparse g_£ in Section C.4.2. Given
Fortran’s column order array storage, the above call to SSPXDQ causes g_f_xd to be aligned exactly with the
nonsparse g_f.

SPXSQ Example

PARAMETER (in_len_xs = 40)
INTEGER g_f_ind_xs(in_len_xs,5), out_len_xs(5), info_xs(5)
REAL g_f_val_xs(in_len_xs,5)

Doi=1,5
CALL SSPXSQ(g_f_ind_xs(1,i), g_f_val_xs(1,i), in_len_xs, g_f(i),
out_len_xs(i), info_xs(i})
ENDDO

Here, our choice of in_len_xs = 40 implies that we have made the assumption that there are at most
40 nonzeros in any row of the Jacobian %5 (i.e., given our declaration of z in Section C.4.2, we assume that
the least sparse directional derivative vector is 96% sparse). To make sure that our memory requirement

assumption holds, we add the following code:

max_len_xs = 0
poi=1,5
IF (info_xs(i) .NE. O .AND. out_len_xs(i) .GT. max_len_xs) THEN
max_len_xs = out_len_xs(i)
END IF
ENDDO

Now max_len_xs is encoded with the information we need. That is, if zero, our assumption was true,
else, max_len_xs is equal to the true number of nonzeros in the least sparse row of the Jacobian and we
know how much memory is really needed to extract all nonzero derivative values.

C.4.6 Adding the Contents of a Sparse Vector to a Dense Vector

Two SparsLinC routines are provided for adding a SparsLinC Sparse Format vector to a Fortran Nonsparse
Format vector.

[s,D,C,Z]SPXMQ (XVEC, INLEN, MULT, VPTR, OUTLEN, INFO)
adds to XVEC the contents of sparse_object(VPTR) multiplied by MULT (i.e., XVEC = XVEC + MULT #* sparse_object(VPTR)).

[s,D,C,Z]SPXAQ (XVEC, INLEN, VPTR, OUTLEN, INFO)

69

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

is identical to SPXMQ, except that the multiplier is assumed to be one (i.e., XVEC = XVEC +
sparse_object(VPTR)). Note that SPXMQ and SPXAQ are functionally very similar to the SPXDQ routine, the
only difference being that SPXDQ “assigns to” XVEC while SPXMQ and SPXAQ “add to” XVEC the contents of the
sparse vector. Note also, that the interfaces of SPXAQ and SPXDQ are identical.

C.4.7 Dumping the Contents of a Sparse Vector
SparsLinC provides a set of precision-specific interfaces for dumping a sparse vector to a file.
{s,b,C,Z]SPPRQ (VPTR, EXT)

writes the number of nonzeros as well as index/value pairs of sparse_object(VPTR) to stdout or a file. EXT
is an INTEGER in the range [0,999] and specifies the destination of the output: if zero, output is written to
stdout; otherwise, output is written to the file SPPRQ.EXT.

SPPRQ can be a useful routine during debugging, to quickly check the values of a derivative vector
somewhere in the code. It also has the advantage of not requiring that the user provide memory in which
to extract the nonzero values in the sparse vector.

Admittedly, the interface of SPPRQ is rather crude. This is because we have avoided passing string argu-
ments, because of the inconsistency of the Fortran-to-C string-passing protocols on different platforms.

SPPRQ Example

DOi=1, 2
CALL SPPRQ(g_£(i), 6)
ENDDO

The above code prints the nonzero derivative information in g_£(1) and g_£(2) into the file “SPPRQ.6”
in the current directory. Assume that g_f£(1) g_£(2) contain 4 and 2 nonzero values, respectively. Then
the following is an example of what might be the contents of “SPPRQ.6’ subsequent to the execution of the
above code: .

Number of nonzeros = 4

Index Value
4 ~4.892400e-01
S 6.523200e+00
6 -1.630800e+00
188 -2.030000e+01

Number of nonzeros = 2

Index Value
37 3.812800e+00
256 1.000000e+00

Note that the vectors are printed out in the order in which the corresponding SPPRQ was called, and
there is no identification in the file denoting which set of numbers belong to which vector. This task is left
to the user.

C.4.8 Extracting Performance Information
In addition to providing derivative information, SparsLinC can also provide information about its own per-

formance. Because of the system-specific nature of timing routines, runtime measures are best arrived at by
enveloping the appropriate system calls around the call to the top level subroutine. For example:

70

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

CALL timer(t1)

CALL g_top_foo(x, g_x, ...)
CALL timer(t2))
t_elapsed = t2 - t1

An implementation of timer that returns elapsed user time as a real value is provided in the
$(AD_HOME)/1ib/libtimer-$(AD_ARCH) .a archive, which can be linked into your executable by adding one
of the following to your link line:

.. =L$AD_HOME/1ib -ltimer-$AD_ARCH
or
... $AD_HOME/1lib/libtimer-$AD_ARCH.a

The SparsLinC routine XSPMEM returns how many kilobytes of memory have been dynamically allocated
in the process of computing derivatives:

REAL USEDKB

CALL XSPMEM(USEDKB)

C.4.9 Freeing Dynamically Allocated Memory

The routine XSPFRA frees all dynamically allocated memory in SparsLinC. Freeing memory might be useful
if after finishing the derivative computation, the user wishes to perform some further memory-intensive
computation. There are no arguments, and the call is simply

CALL XSPFRA
XSPFRA has the effect of leaving “dangling pointers”, meaning that the Fortran INTEGER gradient variables,
which are interpreted by SparsLinC as pointers, will retain the values (addresses) they contained before
XSPFRA was called. However, after the call to XSPFRA, the memory pointed to by these pointers will no longer
be under SparsLinC control. Any attempt to use these variables as pointers (e.g., by using them as pointer

arguments to some SparsLinC routine) will likely cause a segmentation fault. For this reasom, no calls to
any SparsLinC routine should be made after XSPFRA.

C.5 A Brief Tutorial Example

SparsLinC is designed to be easy to use. There are three basic steps to be followed:

1. Applying ADIFOR 2.0 to generate sparse derivative code. (Section C.5.1),
2. Writing the “Sparse” derivative code driver. (Section C.5.2), and
3. Linking all the Fortran code with SparsLinC 1.0. (Section C.5.3).

C.5.1 Invoking ADIFOR 2.0 to Generate Sparse Code

In order for ADIFOR 2.0 to create derivative code in which vector linear combinations are performed by
means of calls to SparsLinC 1.0 routines, the following ADIFOR 2.0 option must be specified in either the
ADIFOR 2.0 command line or the script file:

AD_FLAVOR=sparse

71

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

C.5.2 An Example Derivative Code Driver

The derivative code driver is a user-generated Fortran program that invokes the derivative code generated
by ADIFOR 2.0 (see Step 4 in the tutorial in Chapter 4). In general, the sparse derivative code driver
is analogous to the nonsparse derivative code driver and differs from the latter in only a few places. The
following is an example derivative code driver, based on the code fragments shown throughout Section C.4:

PROGRAM DRIVER
REAL x(1000), £(5), w

#ifdef NON_SPARSE
REAL g_x(g_pmax_,1000), g_f(g_pmax_,5), g_w(g_pmax_)
#elif SPARSE
INTEGER g_x(1000), g_£(5), g_w
PARAMETER (in_len_xs = 40)
INTEGER g_f_ind_xs(in_len_xs,5), out_len_xs(5), info_xs(5)
REAL g_f_val_xs(in_len_xs,5)
REAL USEDKB
#endif

CCC We assume some statements at this point initialize the independent
CCC variables.

#ifdef SPARSE
cce Tuning of SparsLinC parameters (optional) and mandatory initialization
CALL XSPCNF (1, 20)
CALL XSPCNF (2, 500)
CALL XSPCNF (3, 10)
CALL XSPINI
#endif

CCC Initializing the seed matrix as identity.

#ifdef NON_SPARSE
DO i=1,1000
D0 j=1,1000
g-x(i,j) = 0.0d0
ENDDO
g_x(i,i) = 1.0do
ENDDO
#elif SPARSE
DO i=1,1000
CALL SSPSD(g_x(i),i,1.d0,1)
ENDDQ
#endif

#ifdef NON_SPARSE)

CALL g_top_foo(g_p_, x, g_x, 1ldg_x, £, g_f, 1ldg_f,

+ v, g_v, ldg_w, non_active_var)
#elif SPARSE

CALL g_top_foo(x, g_x, £, g_f, v, g_v, non_active_var)
#endif

#ifdef SPARSE
DDi=1,5

72

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

CALL SSPXsQ{g_f_ind_xs(1,i), g_f _val_xs(i,i), in_len_xs, g_£f(i),
out_len_xs(i), info_xs(i))

ENDDO
max_len_xs = 0
DOi=1,5

IF (info_xs(i) .NE. 0 .AND. out_len_xs(i) .GT. max_len_xs) THEN
max_len_xs = out_len_xs(i)
ENDIF
ENDDO

CALL XSPMEM(USEDKB)
#endif

Taking a close lock at the calls to the top level routine, g_top_foo,in the nonsparse and sparse derivative
code driver, we realize that the only differences between the sparse and nonsparse calls are that there is
never a need to pass a leading dimension argument along with each gradient variable argument, and also
there is no need to pass a value for g_p_, the runtime nonsparse directional gradient vector size. Note
that, regardless of whether ADIFOR 2.0 is invoked in the sparse or nonsparse mode, it generates the same
subroutine name.

C.5.3 Linking with SparsLinC 1.0

To use SparsLinC, you must link a machine-specific version of the SparsLinC library into your executable
by adding one of the following to your link line:

... -L$AD_HOME/1ib -1SparsLinC-$AD_ARCH
or

... $AD_HOME/1ib/1libSparsLinC~-$AD_ARCH.a

C.6 Detailed Specification of Access Routines

This section contains the detailed description of the SparsLinC 1.0 access routines discussed in Section C.4.

We adopt the convention that for a Fortran INTEGER variable VPTR, acting as a pointer to a SparsLinC
Sparse Format vector, the sparse derivative object pointed to by VPTR is called sparse_object(VPTR). Also,
to save space, only the calling sequence for one particular floating-point precision is provided.

SSPSD, DSPSD, CSPSD, ZSPSD

SUBROUTINE SSPSD (VPTR, INDVEC, VALVEC, LEN)

73

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

Purpose

Conversion of a vector in Fortran Sparse Format into a vector in SparsLinC Sparse For-
mat. The Fortran Sparse Format vector is given by the two arrays, INDVEC(1:LEN) and
VALVEC(1:LEN), representing the indices and values of a sparse vector z (say), respectively.
 is copied into sparse_object(VPTR), which is the vector in SparsLinC Sparse Format. The
indices in INDVEC need not be in any particular order (internally, SPSD performs an ascend-
ing order sort). However, INDVEC and VALVEC must be identically aligned. That is, if in the
Fortran Nonsparse Format z has a nonzero entry at index ¢ with value v, then for some 7J,
INDVEC(J) = ¢ and VALVEC(J) = v. SPSD performs a destructive copy. That is,
if sparse_object(VPTR) had been previously allocated (via SPSD or as a result of be-
ing an output argument of some other SparsLinC routine), the previous information in
sparse_cbject(VPTR) is lost, and the dynamically allocated memory where that information
resided is deallocated.

Arguments

VPTR (output) INTEGER
Upon exit, sparse_object(VPTR) contains a copy of the sparse vector repre-
sented by INDVEC and VALVEC.

INDVEC (input) INTEGER array, dimension (LEN)
Indices of the nonzero values of the sparse vector. (We assume that indices
are > 1; therefore, INDVEC entries < 0 would be incorrect and would result
in a runtime error.)

VALVEC (input) REAL [DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX] array, di-
mension (LEN)
Nonzero values of the sparse vector.

LEN (input) INTEGER

LEN > 0 is the number of nonzeros in the sparse vector. If LEN = 0, VPTR
is initialized to point to the vector of all zeros and INDVEC and VALVEC are
not referenced.

SSPXDQ, DSPXDQ, CSPXDQ, ZSPXDQ

SUBROUTINE SSPXDQ (XVEC, INLEN, VPTR, QUTLEN, INFQ)

Purpose
Extracts sparse_object(VPTR) into the Fortran Nonsparse Format vector XVEC.
Arguments
XVEC (output) REAL [DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX] array,
dimension (INLEN)
On exit, if INFO = 0, XVEC(1:INLEN) will contain a dense representation
of sparse_object(VPTR). If OUTLEN < INLEN, then XVEC(OUTLEN+1:INLEN) is
initialized to all zeros. If INFO # 0, XVEC is not referenced.
INLEN (input) INTEGER
Length of XVEC.
VPTR (input/output) INTEGER

Pointer to the SparsLinC Sparse Format vector. If VPTR equals NULL, it is
initialized to point to the vector of all zeros (which is why it might be an
output argument).

74

Revision B

OUTLEN

INFO

(output) INTEGER

Largest index in the nonzero index set in sparse_object(VPTR). This value
will always be returned, whether XVEC is initialized or not. See the descrip-
tion of INFO below.

(output) INTEGER

If INLEN < OUTLEN, INFO will be set to -1, and XVEC is not referenced.
Otherwise, INFO is set to 0, and XVEC(1:INLEN) is initialized to a Fortran
Nonsparse Format copy of sparse_object(VPTR).

Purpose

Arguments
; INDVEC

VALVEC

INLEK

VPTR

OQUTLEN

INFO

SSPXSQ, DSPXSQ, CSPXSQ, ZSPXSQ

SUBROUTINE SSPXSQ (INDVEC, VALVEC, INLEN, VPTR, OUTLEN, INFO)

Extracts sparse_object{VPTR) into the Fortran Sparse Format vector represented by the two
arrays, INDVEC and VALVEC.

(output) INTEGER array, dimension (INLEN)

On exit, if INFO = 0, INDVEC (1 : OUTLEN) contains the indices of the nonzero
entries of sparse_object(VPTR). If INFO = 0 and OUTLEN < INLEN then
INDVEC (OUTLEN+1: INLEN) is not referenced. If INFO # 0, INDVEC is not
referenced.

(output) REAL [DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX] array,
dimension (INLEN)

On exit, if INFO = 0, VALVEC(1:0UTLEN) will contain the nonzero en-
tries of sparse.object(VPTR). If INFO = 0 and OUTLEN < INLEN then
VALVEC (OUTLEN+1: INLEN) is not referenced. If INFO # 0, VALVEC is not
referenced.

(input) INTEGER
Length of INDVEC and VALVEC.

(input/output) INTEGER

Pointer to the SparsLinC Sparse Format vector. If VPTR equals NULL, it is
initialized to point to the vector of all zeros (which is why it might be an
output argument).

(output) INTEGER

Number of nonzeroes in sparse_object(VPTR). This value will always be re-
turned, whether INDVEC and VALVEC are initialized or not. See the descrip-
tion of INFOD below.

(output) INTEGER

If INLEN < OUTLEN, INFO will be set to -1, and INDVEC and VALVEC are
not referenced. Otherwise, INFO is set to 0, and INDVEC(1:0UTLEN) and
VALVEC(1:0QUTLEN) are initialized to the Fortran Sparse Format copy of
sparse_object(VPTR). '

75

ADIFOR 2.0 User’s Guide April 29, 1995

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

SSPXMQ, DSPXMQ, CSPXMQ, ZSPXMQ

SUBROUTINE SSPXMQ (XVEC, INLEN, MULT, VPTR, OUTLEN, INFO)

Purpose

Adds the weighted contents of sparse_object(VPTR) to the Fortran Nonsparse Format
vector XVEC, where MULT is the multplicative weight (i.e., XVEC = XVEC + MULT =
sparse-object(VPTR)). For example, say XVEC is a vector of length 7 containing all ones,
MULT = 2.0, and sparse.object{(VPTR) is as follows:

Index Array: [1 | 3 [4 | 7 |
Value Array: [11.0 | 33.0 [44.0 | 77.0 |

Subsequent to the call to this routine, XVEC would contain the following:

(23.0, 1.0, 67.0, 89.0, 1.0, 1.0, 155.0)

Arguments

XVEC (input/output) REAL [DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX]
array, dimension (INLEN)
On exit, if INFO = 0, XVEC(1:INLEN) will have added to it the weighted
contributions of the values in sparse_object(VPTR), with MULT specifying the
weight. If INFO # 0, XVEC is not modified.

INLEN (input) INTEGER
Length of XVEC.

MULT (input) REAL [DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX]
Multiplier.

VPTR (input/output) INTEGER
Pointer to the SparsLinC Sparse Format vector. If VPTR equals NULL, it is
initialized to point to the vector of all zeros (which is why it might be an
output argument).

OUTLEN (output) INTEGER
Largest index in the nonzero index set in sparse_object(VPTR). This value
will always be returned, whether XVEC is modified or not. See the descrip-
tion of INFO below.

INFO (output) INTEGER

If INLEN < OUTLEN, INFO will be set to -1, and XVEC is not modified. Other-
wise, INFO is set to 0, and XVEC(1:INLEN) is modified as described above.

SSPXAQ, DSPXAQ, CSPXAQ, ZSPXAQ

SUBROUTINE SSPXAQ (XVEC, INLEN, VPTR, OUTLEN, INFO)

76

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

Purpose
Adds the contents of sparse_object(VPTR) to the Fortran Nomsparse Format vector XVEC
(i.e., XVEC = XVEC + sparse_object(VPTR)). (SPXA is identical to the SPXMQ routine with MULT
= 1.0; see the documentation for SPXMQ.)

Arguments

XVEC (input/output) REAL [DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX]
array, dimension (INLEN)
On exit, if INFO = 0, XVEC(1:INLEN) will have added to it the values in
sparse_object(VPTR). If INFO # 0, XVEC is not modified.

INLEN (input) INTEGER
Length of XVEC.

VPTR (input/output) INTEGER
Pointer to the SparsLinC Sparse Format vector. If VPTR equals NULL, it is
initialized to point to the vector of all zeros (which is why it might be an
output argument).

OUTLEN (output) INTEGER
Largest index in the nonzero index set in sparse_object(VPTR). This value
will always be returned, whether XVEC is modified or not. See the descrip-
tion of INFO below.

INFO (output) INTEGER

If INLEN < OUTLEN, INFO will be set to -1, and XVEC is not modified. Other-
wise, INFO is set to 0, and XVEC(1:INLEN) is modified as described above.

SSPPRQ, DSPPRQ, CSPPRQ, ZSPPRQ

SUBROUTINE SSPPRQ (VPTR, EXT)

Purpose

Writes number of nonzeros as well as index/value pairs of sparse_object(VPTR) onto stdout
or a file, with the following format:

Number of nonzeros = . . .
Index Value

Arguments
VPTR (input/output) INTEGER
Pointer to the SparsLinC Sparse Format vector. If VPTR equals NULL, it is
initialized to point to the vector of all zeros (which is why it might be an
output argument).
EXT (input) INTEGER

Must be in the range {0,999]. If EXT = 0, output written is to stdout. Oth-
erwise EXT is converted to its ASCII equivalent and used as the extension
appended to the filename “SPPR.” and output is written to this file.

77

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

XSPCNF

SUBROUTINE XSPCKF (OPT, VAL)

Purpose

Allows user to customize SparsLinC for each run. The following table specifies for each
parameter its name, option number, default value, and range of allowable values. “SS-
bucket_size” and “CSbucket_size” are the number of entries per array in the linked list
representation of a single-subscript and compressed-subscript vector respectively. For all
vector linear combinations, if at the conclusion of the computation the left-hand-side vector
has an SS representation and the number of its nonzero entries exceeds “switch_threshold”,
the vector is converted to a CS representation.

Name QoPT Default Range
SSbucket_size 1 8 >1
CSbucket_size 2 32 >1
switch_threshold 3 16 >1

XSPCNF with OPT = 1 or OPT = 2 may be called only before calling XSPINI. Calling
XSPCNF with OPT = 1 or 2 after a call to XSPINI will result in a runtime error. Calls to
XSPCNF with OPT = 3 can be made at any time.

Arguments
OPT (input) INTEGER
Specifies the option number associated with a given parameter as given in
the above table.
VAL (input) INTEGER
The new value for the parameter specified by OPT.
XSPMEM

SUBROUTINE XSPMEM (USEDKB)

Purpose

Reports how many kilobytes of memory have been allocated dynamically in SparsLinC.
Arguments

USED (output) REAL.

The number of kilobytes of storage allocated for SparsLinC data structures.

78

Revision B ADIFOR 2.0 User’s Guide April 29, 1995

XSPINI
SUBROUTINE XSPINI

Purpose

Initializes the sparse data structures by dynamically allocating memory for some SparsLinC-
internal global variables. It must be called before any of the other SparsLinC routines
(except for calls to XSPCNF with OPTs 1-15) and needs to be called no more than once (when
called more than once, all but the first call act as no-ops).

Arguments

none

XSPFRA
SUBROUTINE XSPFRA

Purpose

Frees all memory allocated for C sparse vector data structures. Note: all pointers to
sparse directional gradient variables (VPTR’s) are left dangling.

Arguments

none

79

Appendix D

Changes in Naming Conventions
between ADIFOR 1.0 and
ADIFOR 2.0

ADIFOR 1.0 and ADIFOR 2.0 create external names differently. Specifically, by default, ADIFOR. 2.0 now
uses a separator character of “.” in all generated names. Also, since ADIFOR 2.0 no longer attempts to
clone procedures based on calling context, the derivative computing procedure for a procedure foo will be
named g foo, assuming that AD_ PREFIX and AD_SEP have not been modified from their defaunit values.

Make sure that you make any names of derivative computing procedures and gradient common blocks that
appear in your derivative driver code correspond to the new naming conventions. You will be reminded by
the linker if the names of procedures in your derivative driver are inconsistent. YOU WILL NOT SEE ANY
WARNING, HOWEVER, IF YOU FAIL TO MAKE THE NAMES OF GRADIENT COMMON BLOCKS
BE CONSISTENT BETWEEN YOUR DRIVER AND THE GENERATED DERIVATIVE CODE.

80

Acknowledgments

We thank Andreas Griewank- of the University of Dresden and George Corliss of Marquette University .
for their invaluable contributions in getting the ADIFOR project started. We are grateful to the users of
ADIFOR 1.0 for putting up with the shortcomings of this system and for providing us with valuable feedback.
In particular we acknowledge Larry Green and his colleagues at the Multidisciplinary Optimization Branch at
NASA Langley, Joe Manke of Boeing Computing Services, Gordon Pusch at Argonne National Laboratory,
and Janet Rogers of the National Institute for Science and Technology. We are also indebted to John Dennis
of Rice University, Jorge Moré of Argonne National Laboratory, Ken Kennedy of Rice University, Gerald
Marsh of Argonne National Laboratory and Mani Salas and Tom Zang, both of NASA Langley, for their
support of our work. We also acknowledge the contributions of Heike Baars, Brad Homann, Ernesto Diaz,
Fred Dilley, Moe El-Khadiri, Tim Knauff, Aaronr Ross, and Vitaly Shmatikov during their student internships
at Argonne National Laboratory. Lastly, we thank Judy Beumer, Mike Fagan, and Gail Pieper for their
careful reading of the manuscript and their suggestions for improving the presentation of this document.

81

Bibliography

(1]

[4]

(5]

(7]
(8]

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz, A. Greenbaum, S. Hammarling,
A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK User’s Guide Release 2.0. SIAM, Philadelphia,
1994.

B. M. Averick, R. G. Carter, J. J. Moré, and G. L. Xue. The MINPACK-2 test problem collection.
Technical Report ANL/MCS-TM-150 (Revised), Mathematics and Computer Science Division, Argonne
National Laboratory, 1992.

Brett Averick, Jorge Moré, Christian Bischof, Alan Carle, and Andreas Griewank. Computing large
sparse Jacobian matrices using automatic differentiation. SIAM Journal on Scientific Computing,
15(2):285-294, 1994.

Christian Bischof, Alan Carle, Peyvand Khademi, and Andrew Mauer. The ADIFOR 2.0 system for the
automatic differentiation of Fortran 77 programs, 1994. Preprint MCS-P481-1194, Mathematics and
Computer Science Division, Argonne National Laboratory, and CRPC-TR94491, Center for Research
on Parallel Computation, Rice University.

Christian Bischof, George Corliss, and Andreas Griewank. ADIFOR exception handling. Technical Re-
port ANL/MCS-TM-159, Mathematics and Computer Science Division, Argonne Natjonal Laboratory,
1991. -

Christian Bischof, Larry Green, Kitty Haigler, and Tim Knauff. Parallel calculation of sensi-
tivity derivatives for aircraft design using automatic differentiation. In Proceedings of the 5th
AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA 94-
4261, pages 73-84. American Institute of Aeronautics and Astronautics, 1994.

Thomas F. Coleman. Large Sparse Numerical Optimization, volume 165 of Lecture Notes in Computer
Science. Springer-Verlag, New York, 1984.

Thomas F. Coleman, Burton S. Garbow, and Jorge J. Moré. Software for estimating sparse Jacobian
matrices. ACM Transactions on Mathematical Software, 10(3):329-345, 1984.

A. R. Conn, N. I. M. Gould, and P. L. Toint. An introduction to the structure of large scale nonlinear
optimization problems and the LANCELOT project. Report 89-19, Namur University, Namur, Belgium,
1989.

Wayne H. Enright and John D. Pryce. Two FORTRAN packages for assessing initial value methods.
ACM Trans. Math. Software, 13(1):1-22, 1987.

Herbert Fischer. Special problems in automatic differentiation. In Andreas Griewank and George F.
Corliss, editors, Automatic Differentiation of Algorithms: Theory, Implementation, and Application,
pages 43-50. STAM, Philadelphia, 1991.

D. Goldfarb and P.L. Toint. Optimal estimation of Jacobian and Hessian matrices that arise in finite
difference calculations. Mathematics of Computation, 43:69-88, 1984.

Andreas Griewank. On automatic differentiation. In Mathematicel Programming: Recent Developments
and Applications, pages 83-108, Kluwer Academic Publishers, Amsterdam, 1989.

82

Revision B ADIFOR 2.0 User’s Guide Apnil 29, 1995

(14]

(18]

(19]

Andreas Griewank and Philippe L. Toint. On the unconstrained optimization of partially separable
objective functions. In M. J. D. Powell, editor, Nonlinear Optimization 1981, pages 301-312, Academic
Press, London, 1981.

Andreas Griewank and Philippe L. Toint. Partitioned variable metric updates for large structured
optimization problems. Numerische Mathematik, 39:119-137, 1982.

M. Lescrenier. Partially separable optimization and parallel computing. Ann. Oper. Res., 14:213-224,
1988.

J. J. Moré. On the performance of algorithms for large-scale bound constrained problems. In T. F.
Coleman and Y. Li, editors, Large-Scale Numerical Optimization, pages 31-45. SIAM, Philadelphia,
1991.

Louis B. Rall. Automatic Differentiation: Techniques and Applications, volume 120 of Lecture Notes in
Computer Science. Springer Verlag, Berlin, 1981.

J. M. Smith and H. C. Van Ness. Introduction to Chemical Engineering. McGraw-Hill, New York, 1975.

83

