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We propose a new way of using geometric transitions to study metastable vacua in string

theory and certain confining gauge theories. The gauge theories in question are N = 2

supersymmetric theories deformed to N = 1 by superpotential terms. We first geomet-

rically engineer supersymmetry-breaking vacua by wrapping D5 branes on rigid 2-cycles

in noncompact Calabi-Yau geometries, such that the central charges of the branes are

misaligned. In a limit of slightly misaligned charges, this has a gauge theory description,

where supersymmetry is broken by Fayet-Iliopoulos D-terms. Geometric transitions relate

these configurations to dual Calabi-Yaus with fluxes, where HRR, HNS and dJ are all non-

vanishing. We argue that the dual geometry can be effectively used to study the resulting

non-supersymmetric, confining vacua.
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1. Introduction

In the interest of finding controllable, realistic string vacua, it is important to find

simple and tractable mechanisms of breaking supersymmetry in string theory. A powerful

method which has been put forward in [1] consists of geometrically engineering metastable

vacua with D-branes wrapping cycles in a Calabi-Yau manifold, and using geometric tran-

sitions and topological string techniques to analyze them. In [1], metastable vacua were

engineered by wrapping D5 branes and anti-D5 branes on rigid 2-cycles in a Calabi-Yau.

The non-supersymmetric vacuum obtained in this fashion was argued to have a simple

closed-string dual description, in which branes and antibranes are replaced by fluxes. In

[2], geometric transitions were used to study the physics of D-brane theories that break

supersymmetry dynamically. Namely, the authors showed that the instanton generated

superpotential that triggers supersymmetry breaking can be computed by classical means

in a dual geometry, where some of the branes are replaced by fluxes (For an alternative

approach see [3]).

In this paper, we propose another way to use geometric transitions to study supersym-

metry breaking. As in [1], we consider D5 branes wrapping rigid cycles in a noncompact

Calabi-Yau X . If b2(X) > 1, supersymmetry can be broken by choosing the complexified

Kähler moduli so as to misalign the central charges of the branes,

Zi =

∫

S2

i

J + iBNS .

Since the 2-cycles wrapped by the D5 branes are rigid, any deformation of the branes

costs energy, and the system is guaranteed to be metastable.1 In the extreme case of anti-

aligned central charges, we recover the brane/antibrane configurations of [1,5]. For slightly

misaligned central charges, the system has a gauge theory description in terms of an N = 2

quiver theory deformed to N = 1 by superpotential terms [6,7], and with Fayet-Iliopoulos

D-terms turned on [8,9,10].2 The latter trigger spontaneous supersymmetry breaking in

the gauge theory.

We argue that the dynamics of this system is effectively captured by a dual Calabi-Yau

with all branes replaced by fluxes. Turning on generic Kähler moduli on the open-string

1 Supersymmetry breaking by missaligning the central charges of D5 branes wrapped on rigid

curves was also studied in [4], in the context of compact Calabi-Yau manifolds.
2 Some geometric aspects of supersymmetry breaking by F-terms in this context were recently

discussed in [11].
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side has a simple interpretation in the dual low-energy effective theory as turning on a

more generic set of FI parameters than hitherto considered in this context, but which are

allowed by the N = 2 supersymmetry of the background. On-shell, this breaks some or all

of the N = 2 supersymmetry. Geometrically, this corresponds to not only turning on HNS

and HRR fluxes on the Calabi-Yau, but also allowing for dJ 6= 0 [12,13].3 Moreover, we

show that the Calabi-Yau geometries with these fluxes turned on have non-supersymmetric,

metastable vacua, as expected by construction in the open-string theory.

The paper is organized as follows: In section two, we review the physics of D5 branes

on a single conifold and the dual geometry after the transition, paying close attention

to the effect of Fayet-Iliopoulos terms. In section three, we consider the case of an A2

geometry where misaligned central charges lead to supersymmetry breaking. We provide

evidence that the dual geometry correctly captures the physics of the non-supersymmetric

brane system. We show that the results are consistent with expectations from the gauge

theory, to the extent that these are available. We also comment on the relation of this

work to [2], and point out some possible future directions. In an appendix, we lay out

the general case for larger quiver theories. We show that in the limit of large separations

between nodes, the theory has metastable, non-supersymmetric vacua in all cases where

they are expected.

2. The Conifold

In this section, we consider N D5 branes on the resolved conifold. We will first review

the open-string theory on the branes, and then discuss the dual closed-string description.

Our discussion will be more general than the canonical treatment in that we will consider

the case where the D5 branes possess an arbitrary central charge.

2.1. The D-brane theory

To begin with, let us recall the well-known physics of N D5 branes wrapping the

S2 tip of the resolved conifold. This geometry can be represented as a hypersurface in

C4[u, v, z, t],

uv = z(z −mt).

3 For another example of supersymmetry breaking by turning on HNS , HRR and dJ fluxes,

see [14].

2



The geometry has a singularity at the origin of C4 which can be repaired by blowing up a

rigid IP1. This gives the IP1 a complexified Kähler class

Z =

∫

S2

(J + iBNS) = j + i bNS . (2.1)

The theory on the D5 branes at vanishing j reduces in the field theory limit to a d = 4,

N = 1, U(N) gauge theory with an adjoint valued chiral superfield of mass m. The bare

gauge coupling is given by
4π

g2
YM

=
bNS
gs

, (2.2)

for positive bNS . In string theory, the tension of the branes generates an energy density

related to the four dimensional gauge coupling by

V∗ =
2N

g2
YM

= N
bNS
2πgs

. (2.3)

Turning on a small, nonzero j can be viewed as a deformation of this theory by a

Fayet-Iliopoulos parameter for the U(1) center of the gauge group [8,9]. This deforms the

Lagrangian by

∆L =
√

2ξTrD (2.4)

where D is the auxiliary field in the N = 1 vector multiplet and

ξ =
j

4πgs
, (2.5)

where the factor of gs comes from the disk amplitude. This deformation (2.4) breaks the

N = 1 supersymmetry which was linearly realized at j = 0. In particular, turning on j,

increases the energy of the vacuum: integrating out D from the theory by completing the

square in the auxiliary field Lagrangian,

LD =
1

2g2
YM

TrD2 +
√

2ξTrD,

raises the vacuum energy to

V∗ = N
bNS
2πgs

(

1 +
1

2

j2

b2NS

)

. (2.6)

Supersymmetry is not broken however. At nonzero j, a different N = 1 supersymme-

try is preserved4 – one that was realized nonlinearly at vanishing j [15,16]. Which subgroup

4 This is true even in the field theory limit, despite the presence of the constant FI term.

Namely, a second, nonlinearly realized supersymmetry is present in the gauge theory as long as

there is only a constant energy density [15]. We thank A. Strominger for explaining this to us.
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of the background N = 2 supersymmetry is preserved by the branes is determined by Z

in (2.1), the BPS central charge in the extended supersymmetry algebra.5 For any Z, the

open-string theory on the branes has an alternative description which is manifestly N = 1

supersymmetric, with vanishing FI term and with a bare gauge coupling related to the

magnitude of the central charge [7],

1

g̃2
YM

=

√

b2NS + j2

4πgs
. (2.7)

Geometrically, this is just the quantum volume of the resolving IP1. As such, the central

charge also determines the exact tension of a single D5 brane at nonzero j, so

V∗ = N

√

b2NS + j2

2πgs
. (2.8)

For small Kähler parameter,

j ≪ bNS ,

this agrees with the vacuum energy in the field theory limit (2.6).

For any j, the theory is massive; it is expected to exhibit confinement and gaugino

condensation at low energies, leaving an effective U(1) gauge theory in terms of the center

of the original U(N) gauge group. We’ll show next that the strongly coupled theory has a

simple description for any value of Z in terms of a large N dual geometry with fluxes.

2.2. The geometric transition at general Z

We’ll now discuss the large N dual geometry for general values of the central charge Z.

Special cases (either vanishing j or vanishing bNS) have been considered in the literature,

but the present, expanded discussion is, to our knowledge, new.6 We’ll see that the dual

geometry exactly reproduces the expected D5 brane physics. From the perspective of

the low-energy effective action, the consideration of general central charge corresponds

to turning on a more general set of N = 2 FI terms than previously considered in this

context. Geometrically, this will lead us to consider generalized Calabi-Yau manifolds, for

which dJ is nonvanishing in addition to having HNS and HRR fluxes turned on. This

5 Strictly speaking, the central charge of N branes is NZ. In this paper, we will always take

the number of branes N to be positive, so that we interpolate between the branes and antibranes

by varying Z.
6 See related discussion in [7].

4



will provide a local description of the physics for each set of branes in the more general

supersymmetry-breaking cases of sections three and four.

To begin, let us recall the large N dual description of the D5 brane theory at vanishing

j. This is given in terms of closed-string theory on the deformed conifold geometry,

uv = z(z −mt) + s. (2.9)

This is related to the open-string geometry by a geometric transition which shrinks the

IP1 and replaces it with an S3 of nonzero size,

S =

∫

A

Ω,

where A is the 3-cycle corresponding to the new S3, and the period of the holomorphic

three-form over A is related to the parameters of the geometry by S = s/m. The D5 branes

have disappeared and have been replaced by N units of Ramond-Ramond flux through the

S3,
∫

A

HRR = N. (2.10)

There are Ramond-Ramond and Neveu-Schwarz fluxes through the dual, noncompact B-

cycle as well,

α =

∫ Λ0

B

(HRR + iHNS/gs) = bRR + ibNS/gs, (2.11)

which corresponds to the complexified gauge coupling of the open-string theory,

α =
θ

2π
+

4πi

g2
YM

.

The B-cycle is cut off at the scale, Λ0, at which α is measured.7 The dependence of α

on the IR cutoff in the geometry corresponds to its renormalization group running in the

open-string theory.

If it were not for the fluxes, the theory would have N = 2 supersymmetry, with S

being the lowest component of an N = 2 U(1) vector multiplet. That theory is completely

described by specifying the prepotential, F0(S), which can be determined by a classical

geometry computation,
∫

B

Ω =
∂

∂S
F0.

7 For simplicity, the IIB axion is set to zero in this paper.
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The presence of nonzero fluxes introduces electric and magnetic Fayet-Iliopoulos terms in

the low-energy theory for the U(1) vector multiplet and its magnetic dual [17,18,19,20].

The effect of the fluxes (2.10),(2.11) can also be described in the language of N = 1

superspace as turning on a superpotential for the N = 1 chiral superfield with S as its

scalar component,

W(S) =

∫

X

Ω ∧ (HRR + iHNS/gs).

For the background in question, this takes the form

W(S) = αS −N
∂

∂S
F0. (2.12)

In terms of the parameters of the D-brane theory, S is identified with the vev of the gaugino

condensate. One way to see this is by comparing the superpotentials on the two sides of

the duality. The αS superpotential on the closed string side corresponds to the classical

superpotential term α
4
TrWαW

α on the gauge theory side.

What does the FI term deformation of the D-brane theory correspond to in the closed-

string theory? To begin with, let us address this question from the perspective of the low-

energy effective action. We know that the U(1) gauge field after the transition coincides

[6,21] with the U(1) gauge field that is left over after the SU(N) factor of the gauge group

confines. This suggests that we should simply identify Fayet-Iliopoulos D-terms on the two

sides. More precisely, the Lagrangian of the theory after the transition can be written in

terms of N = 1 superfields,

S = S +
√

2θψ + θθF, (2.13)

Wα = −iλα + θαD +
i

2
(σµνθ)αFµν (2.14)

as an N = 2 action deformed to N = 1 by the superpotential (2.12),

L =
1

4π
Im

(

∫

d2θd2θ̄ S̄ ∂F0

∂S +

∫

d2θ
1

2

∂2F0

∂S2
WαWα + 2

∫

d2θ W(S)
)

. (2.15)

The Fayet-Iliopoulos deformation (2.4) should produce an additional term in this La-

grangian,

∆L =
j

2
√

2πgs
D, (2.16)

corresponding to an FI term as in (2.5). Note that on the D-brane side, the center of mass

U(1) corresponds to 1/N times the identity matrix in U(N), so that the normalization of

(2.16) precisely matches (2.4).

6



We now show that the deformation (2.16) leads to precisely the physics that we expect

on the basis of large N duality. After turning on the FI term, the effective potential of the

theory becomes

V =
1

4π
GSS̄

(

|∂SW|2 + |j/gs|2
)

+ const. (2.17)

where

GSS̄ =
1

2i
(τ − τ̄), τ =

∂2

∂S2
F0.

We have also shifted the potential by an (arbitrary) constant, which we choose to be the

tension of the branes at vanishing j,

const. = N
bNS
2πgs

,

for convenience. We can then rewrite (2.17) as

V =
i

2π(τ − τ̄)

(

|α−Nτ |2 + |j/gs|2
)

+ const.

=
i

2π(τ − τ̄)
|α̃−Nτ |2 + const.

(2.18)

where

α̃ = bRR +
i

gs

√

b2NS + j2

and the constant has shifted. As expected from the D-brane picture, the effective potential

of the theory with the FI term turned on and with gauge coupling (2.2) is the same as

that of the theory without the FI term and with gauge coupling (2.7).

In this simple example, the prepotential is known to be given exactly by

2πiF0(S) =
1

2
S2

(

log(
S

Λ2
0m

) − 3

2

)

.

The vacuum of the theory is determined by the minimum of (2.18), which occurs at

α̃−Nτ = 0, (2.19)

or, in terms of the expectation value of the gaugino bilinear, at

S∗ = mΛ2
0 exp(2πiα̃/N). (2.20)
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Finally, we note that the energy in the vacuum (2.20) is larger than that in the j = 0

vacuum by the constant that enters (2.18), so

V∗ = N

√

b2NS + j2

2πgs
, (2.21)

which is precisely the tension of the brane after turning on j. This is a strong indication

that we have identified parameters correctly on the two sides of the duality.

It is easy to see that in the vacuum, neither the F-term

∂SW 6= 0,

nor the D-term vanishes. Nevertheless, as will now show, this new vacuum preserves half

of the N = 2 supersymmetry of the theory we started with, though not the one manifest

in the action as written. Defining the SU(2)R doublet of fermions

Ψ =

(

ψ
λ

)

,

the relevant part of the supersymmetry transformations of the N = 2 theory are

δΨi = X ijǫj

where X is a matrix of F- and D-terms, shifted by an imaginary part due to the presence

of a “magnetic” FI term (see for example [1] and references therein)

X =
i√
2

(

−Y1 − iY2 +N Y3

Y3 Y1 − iY2 +N

)

(2.22)

where the N = 2 auxiliary fields are identified with the auxiliary F-term of S in (2.13)

and the D-term of the gauge field in (2.14) according to

(Y1 + iY2) = 2iF Y3 =
√

2D.

Note that the triplet ~Y = (Y1, Y2, Y3) transform like a vector of the SU(2)R symmetry of

the N = 2 theory. In the vacuum (2.19)

X =
iN

√

2(b2NS + j2)

(

bNS −
√

b2NS + j2 j

j −bNS −
√

b2NS + j2

)

.

The supersymmetry manifest in (2.15) corresponds to ǫ1, and it is clearly broken in the

vacuum for nonvanishing j, since neither the F- nor the D-term vanish. However, the
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determinant of X vanishes, and so there is a zero eigenvector corresponding to a preserved

supersymmetry.

So far, we have identified turning on j with turning on an FI term in the low-energy

effective action. It is natural to ask what this corresponds to geometrically in the Calabi-

Yau manifold? In [17,18] (following [22,23]) it was shown that turning on a subset of the

FI terms of the low-energy N = 2 theory arising from IIB compactified on a Calabi-Yau

manifold corresponds to turning on HNS and HRR fluxes in the geometry. This is what

we used in (2.12). The question of what corresponds to introducing the full set of FI

terms allowed by N = 2 supersymmetry was studied, for example, in [12,13]. To make the

SU(2)R symmetry of the theory manifest, we can write the triplet of the N = 2 FI terms

as

E =
i√
2

(

−E1 − iE2 E3

E3 E1 − iE2

)

where (E1, E2, E3) transform as a vector under SU(2)R and enter the action as

1

4π
Re(TrXĒ)

These are given in terms of ten dimensional quantities by8

E1 =

∫

B

HNS/gs, E2 =

∫

B

HRR, E3 =

∫

B

dJ/gs.

Note that this agrees precisely with what we have just derived using large N duality.

Just as the bare gauge coupling
∫

S2 BNS/gs = bNS/gs gets mapped to
∫

B
HNS/gs after the

transition due to running of the coupling, SU(2)R covariance of the theory demands that

turning on
∫

S2 J/gs = j/gs before the transition get mapped to turning on
∫

B
dJ/gs after

the transition. Moreover, we saw in this section that the latter coupling gets identified

as a Fayet-Iliopoulos D-term for the U(1) gauge field on the gravity side. This exactly

matches the result of [12,13], since E3 is the Fayet-Iliopoulos D-term parameter. It is

encouraging to note that [12,13] reach this conclusion via arguments completely orthogonal

to ours. Finally, we observe that an SO(2) ⊂ SU(2)R rotation can be used to set the

Fayet-Iliopoulos D-term E3 = j/gs to zero, at the expense of replacing E1 = bNS/gs by

E1 =
√

b2NS + j2/gs, and this directly reproduces (2.18).

8 This follows from equation (3.53) of [13] up to an SU(2)R rotation and specializing to a local

Calabi-Yau. More precisely, to derive this statement one needs to look at the the transformations

of the N = 2 gauginos, not the gravitino as in [13], but these are closely related. See, for example,

[23].
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3. An A2 Fibration and the Geometric Engineering of a Metastable Vacuum

By wrapping D5 branes on rigid IP1’s in more general geometries with b2(X) > 1,

we can engineer vacua which are guaranteed to be massive and break supersymmetry by

choosing the central charges of the branes to be misaligned. Since the D-brane theories

experience confinement and gaugino condensation at low energies, we expect to be able to

study the dynamics of these vacua in the dual geometries where the branes are replaced

by fluxes.

In this section, we’ll consider the simple example of an A2 singularity fibered over the

complex plane C[t]. This is described as a hypersurface in C4,

uv = z(z −mt)(z −m(t− a)). (3.1)

This geometry has two singular points at u, v, z = 0 and t = 0, a. The singularities are

isolated, and blowing them up replaces each with a rigid IP1. The two IP1’s are independent

in homology, and the local geometry near each of them is the same as that studied in the

previous section.

Consider now wrapping N1 D5 branes on the IP1 at t = 0 and N2 branes on the IP1

at t = a. If the central charges of the branes,

Zi =

∫

S2

i

J + iBNS = ji + ibNS,i (3.2)

are aligned (e.g., if the Kähler parameters ji both vanish), the theory on the branes has

N = 1 supersymmetry. At sufficiently low energies, it reduces to a U(N1) × U(N2) gauge

theory with a bifundamental hypermultiplet Q, Q̃, a pair of adjoint-valued chiral fields Φ1,2

and a superpotential given by

W =
m

2
TrΦ2

1 −
m

2
TrΦ2

2 − aTrQQ̃+ Tr(QΦ1Q̃−QQ̃Φ2). (3.3)

For a small relative phase of the central charges, e.g., by deforming the theory at vanishing

Kähler parameters ji by

ji/bNS,i ≪ 1, (3.4)

we expect this to have a pure gauge theory description at low energies in terms of the

supersymmetric theory with Fayet-Iliopoulos terms for the two U(1)’s.

Misaligning the central charges such that

Z1 6= c12Z2, (3.5)
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for any positive, real constant c12, should break all the supersymmetries of the background.

Nevertheless, for large enough m and a, the vacuum should be stable. Since the theory

is massive, we expect it to exhibit confinement at very low energies, with broken super-

symmetry. Nevertheless, as we’ll now argue, the dynamics of the theory can be studied

effectively for any ji in the dual geometry, where the branes have been replaced by fluxes.

3.1. Large N dual geometry

The Calabi-Yau (3.1) has a geometric transition which replaces the two IP1’s by two

S3’s,

S2
i → S3

i i = 1, 2.

The complex structure of the geometry after the transition is encoded in its description as

a hypersurface,

uv = z(z −mt)(z −m(t− a)) + ct+ d, (3.6)

where c, d are related to the periods, S1,2, of the 3-cycles, A1,2, corresponding to the two

S3’s,

Si =

∫

Ai

Ω,
∂

∂Si
F0 =

∫

Bi

Ω.

As before, Bi are the noncompact 3-cycles dual to Ai, and F0 is the prepotential of the

N = 2 theory. The prepotential in this geometry is again given by an exact formula,

2πiF0 =
1

2
S2

1 (log(
S1

Λ2
0m

) − 3

2
) +

1

2
S2

2 (log(
S2

Λ2
0m

) − 3

2
) − S1S2 log(

a

Λ0
).

The theory with Ni D5 branes on the IP1
i before the transition is dual to a theory with Ni

units of RR flux through S3
i after the transition:

∫

Ai

HRR = Ni.

There are additional fluxes turned on through the noncompact, dual B-cycles,

αi =

∫

Bi

(HRR + iHNS/gs) = bRR,i + ibNS,i/gs,

corresponding to running gauge couplings, and

∫

Bi

dJ/gs = ji/gs
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corresponding to Fayet-Iliopoulos terms. The fluxes generate a superpotential,

W =

∫

X

Ω ∧ (HRR + iHNS/gs)

or

W =
∑

i

αiSi −Ni
∂

∂Si
F0,

and Fayet-Iliopoulos D-terms,

∆L =
∑

i

ji

2
√

2πgs
Di,

where Di are auxiliary fields in the two N = 1 vector multiplets.

Large N duality predicts that for misaligned central charges (3.5), the fluxes should

break all supersymmetries, and moreover, that the non-supersymmetric vacuum should be

metastable. We’ll now show that this indeed the case. The tree-level effective potential of

the theory is

V =
1

4π
Gik̄

(

∂iW∂kW + jijk/g
2
s

)

+ const,

where

Gik̄ =
1

2i
(τ − τ̄)ik τik =

∂2

∂Si∂Sk
F0,

and the Kähler metric is determined by the off-shell N = 2 supersymmetry of the back-

ground. We have shifted the zero of the potential energy by the tension of the branes at

vanishing ji,

const. =
∑

i=1,2

Ni
bNS,i
2πgs

.

In the case at hand,

τ11 =
1

2πi
log(

S1

Λ2
0m

), τ22 =
1

2πi
log(

S2

Λ2
0(−m)

),

whereas τ12 is a constant9 independent of the Si,

τ12 = − 1

2πi
log(a/Λ0).

It is straightforward to see that the critical points of the potential correspond to solutions

of
Re(αi) +Re(τik)N

k =0

GjiGjk
(

Im(αi)Im(αk) + jijk/g
2
s

)

= (N j)2.

9 For convenience, we will take τ12 to be purely imaginary.
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The first equation fixes the phase of Si’s, and the second their magnitude. Consider the

case where the two nodes are widely separated, namely, where the sizes Si of the two S3’s

are much smaller than the separation a between them. In this limit, the equations of

motion can be easily solved to obtain

SN1

1,∗ =(Λ2
0m)N1(

a

Λ0
)N2 cos θ12 exp(2πiα̃1) + . . .

SN2

2,∗ =(−Λ2
0m)N2(

a

Λ0
)N1 cos θ12 exp(2πiα̃2) + . . .

(3.7)

where θij is the relative phase between the central charges Zi and Zj . We can see that

in the limit where the Zi are aligned, this reduces to the simple case without FI terms

where the effective gauge coupling has been replaced with the parameter α̃i. The case of

anti-aligned central charges was studied in [1,5]. The weak coupling limit of two widely

separated nodes, in which our approximation is justified, corresponds to

Si,∗ ≪ a < Λ0. (3.8)

Si,∗’s should be identified with the vev’s of gaugino condensates on the branes, and are

the order parameters of the theory. This is the case even in the presence of FI terms,

as explained in the previous section. For small FI terms, this relies only on the off-shell

N = 1 supersymmetry of the theories on both sides of the duality and a comparison of

superpotentials. In [1] it was conjectured that this also holds in the brane/antibrane case,

where the central charges are anti-aligned and supersymmetry is maximally broken. It

is natural, then, that the above limit should correspond to the the theory being weakly

coupled at the scale of the superpotential (3.3).

In the same limit, the vacuum energy is given by

V∗ = N1

√

b2NS,1 + j21

2πgs
+N2

√

b2NS,2 + j22

2πgs
+

1

4π2
N1N2 log(

a

Λ0
)(1 − cos θ12) + . . . (3.9)

Note that in the limit of aligned central charges, the potential energy is simply the brane

tension. This is in fact true exactly, and is related to the fact (which will demonstrate

later on) that in this case supersymmetry is preserved. For any other value of the angle,

there is an additional attraction. In the extreme case, when we increase θ12 from zero to

π, we end up with a brane/antibrane system on the flopped geometry. We can view this

as varying one of the Zi’s until the BNS field through that cycle goes to minus itself.
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Fig. 1. The A2 geometry from in the text, drawn in the T -dual NS5 brane picture. The D5

branes map to D4 branes and appear as red lines. The NS5 branes are drawn as blue lines/points.

At θ12 = 0 the system is supersymmetric. For any other value of θ12, supersymmetry is broken.

Varying θ12 continuously from zero to π produces a geometry which is related to the original A2

geometry by a flop.

This is a flop, and by comparing to [5], it follows that the solution we found above for

θ12 = π precisely corresponds to a brane/antibrane system in the flopped geometry.

To see that supersymmetry is broken by the vacuum at nonvanishing θ12, we write the

action (2.15) in an N = 2 invariant way in terms of N = 2 chiral multiplets Ai consisting

of N = 1 chiral multiplets Si, and Wα
i ,

Ai = (Si,Wα
i )

or

Ai = Si + θaΨa,i + θaθbXab,i +
1

2
ǫab(θ

aσµνθb)Fµν + . . . .

The appropriate N = 2 Lagrangian is given by

L =
1

4π
Im

(

∫

d4θd4x F0(Ai)
)

+
1

4π
Re(Xab

i Ē
i
ab)

where Xab
i is defined as in (2.22). Then, the relevant supersymmetry variations of the

fermions are given by

δǫΨ
a
i = Xab

i ǫb, (3.10)

and at the extrema of the effective potential,

Xi =
i√
2

(

N i +GikIm(αk) −Gikjk/gs
−Gikjk/gs N i −GikIm(αk)

)

. (3.11)

The equations of motion imply that the determinants of both X1,2 vanish. For each node,

then, X i has one zero eigenvalue. It can be shown (see the general discussion of appendix

14



A), that (3.10) and (3.11) imply that a global supersymmetry is preserved if and only if

the central charges (3.2) are aligned, i.e., if a positive real constant c12 exists such that

Z1 = c12Z2.

This is exactly as expected from the open-string picture, and provides a nice test of the

large N duality conjecture for general central charges.

Now we’ll show that the vacuum is indeed metastable. Consider the masses of bosonic

fluctuations about the non-supersymmetric vacuum. As was found to be the case in [5],

the Hessian of the scalar potential can be block diagonalized. After changing variables to

bring the kinetic terms into their canonical form, the eigenvalues become

M2
φ1,2

=
(a2 + b2 + 2abv) ±

√

(a+ b)2(a− b)2 + 4abv(a+ b)(b+ a)

2(1 − v)2

M2
φ3,4

=
(a2 + b2 + 2abv cos θ) ±

√

(a+ b)2(a− b)2 + 4abv(a+ b cos θ)(b+ a cos θ)

2(1 − v)2

(3.12)

where we’ve adopted the notation of [1] in defining

a =
N1

2πG11|S1|
, b =

N2

2πG22|S2|
,

and

v =
G2

12

G11G22
,

with all quantities evaluated in the vacuum. In addition, we’ve introduced a new angle,

which is defined by the equation

~Y 1 · ~Y 2 = N1N2 cos θ,

where ~Y i are related to X i as in (2.22) for each i. In the limit (3.8),

θ = θ12 + O(v),

so we can treat this as being the same as the phase which appears in (3.7),(3.9). Note that

in the limit

cos θ → 1, (3.13)
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we recover the results for a supersymmetric system, with the masses of bosons becoming

pairwise degenerate. The other extreme of anti-aligned charges can be shown to correspond

to

cos θ → −1,

where the results of [5] should be recovered. Indeed by plugging in and rearranging terms

we recover the mass formulas from page 25 of [5]. These then provide exact values for the

tree-level masses of the component fields in the supersymmetry-breaking vacuum. For any

θ, the masses of the bosons are all positive as long as

v < 1.

This, in turn, is ensured as long as the metric on moduli space is positive definite in the

vacuum. So indeed, the system is metastable, as expected.

To get a measure of supersymmetry breaking, let’s now compare the masses of the

bosons and the fermions in this vacuum. The fermion masses arise from the superspace

interaction which appears as

1

4π
Im

(
∫

d4θd4x
1

2
Fijk(Ψi

aθ
a)(Ψj

bθ
b)(Xk

cdθ
cθd)

)

,

where Fijk = ∂i∂j∂kF0. For the geometry in question, the prepotential is exact at one-

loop order, and the third derivatives vanish except when all derivatives are with respect

to the same field. We can then write the fermion mass matrices for a given node (and

non-canonical kinetic terms) as

M i
ab =

1

16π2Si
ǫacX

i
cdǫdb

Performing a change of basis to give the fermion kinetic terms a canonical form, we can

diagonalize the resulting mass matrix and obtain the mass eigenvalues. There are two zero

modes,

Mλ1,2
= 0,

corresponding to two broken supersymmetries. In addition there are two massive fermions,

which we label by ψi,

Mψ1,2
=

(a+ b) ±
√

(a− b)2 + 2abv(1 + cos θ)

2(1 − v)
. (3.14)

16



Note that in the supersymmetric limit (3.13), the masses of ψ1 and ψ2 match those of

φ1,3 and φ2,4, which have become pairwise degenerate. For small misalignment, and large

separation of the two nodes, the mass splittings of bosons and fermions are easily seen to

go like
M2
φ −M2

ψ

M2
φ +M2

ψ

∼ vθ2
12,

where v goes to zero in the limit of large separation, and θ12 measures the misalignment

of the central charges.

3.2. Gauge theory limit

In the gauge theory limit (3.4), the vacuum energy (3.9) reduces to

V∗ =
∑

i

Ni
bNS,i
2πgs

(1 +
1

2

j2i
b2NS,i

) +
1

8π2
N1N2 log(

a

Λ0
)
( j1
bNS,1

− j2
bNS,2

)2

+ . . . . (3.15)

The first terms are classical contributions, as we saw in section two. The last term comes

from a one-loop diagram in string theory, with strings stretched between the two stacks of

branes running around the loop.

To begin with, consider the Abelian case,10

U(1) × U(1),

when the gauge theory has no strong dynamics at low energies. We should be able to

reproduce (3.15) directly in the field theory by computing the one-loop vacuum amplitude

in a theory with FI terms turned on. We can write the classical F- and D-term potential

of the gauge theory as

Vtree = |FΦ1
|2+|FΦ2

|2+|FQ|2+|FQ̃|2+
1

2
g2
YM,1(|q|2−|q̃|2−

√
2ξ1)

2+
1

2
g2
YM,2(|q̃|2−|q|2−

√
2ξ2)

2,

where

FΦ1
= mφ1 − qq̃ FΦ2

= mφ2 − qq̃ FQ = q̃(a+ φ2 − φ1) FQ̃ = q(a+ φ2 − φ1)

10 Although the rank of the gauge group is not large in this case, the geometric transition is still

expected to provide a smooth interpolation between the open- and closed-string geometries. For

a recent review, see [2], and references therein. It is natural to expect that for small deformations

by FI terms that break supersymmetry, the two sides still provide dual descriptions of the same

physics.
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and φi, q, q̃ are the lowest components of the corresponding chiral superfields. The gauge

theory quantities are related to those of the string theory construction by

1

g2
YM,i

=
bNS,i
4πgs

, ξi =
ji

4πgs
.

The identification between the field theory FI term and the string theory parameter is

expected to hold only for small ji/bNS,i. For nonzero ξ1,2, supersymmetry appears to be

broken since the two D-term contributions cannot be simultaneously set to zero with the

F-terms. In fact, we know that if the central charges are aligned, this is just a relic of

writing the theory in the wrong superspace.

For large m, a, this potential has a critical point at the origin of field space. At this

point, all the F-terms vanish, and there is pure D-term supersymmetry breaking. The

spectrum of scalar adjoint and gauge boson masses is still supersymmetric at tree-level,

since the only contribution to the masses in the Lagrangian is the FI-dependent piece

for the bifundamentals. This means that the only relevant contribution to the one-loop

corrected potential is from the bifundamental fields. The scalar components develop a

tree-level mass which is simply given by11

m2
q = a2 + r, m2

q̃ = a2 − r (3.16)

while the fermion masses retain their supersymmetric value,

m2
ψq

= m2
ψq̃

= a2.

We have defined the constant

r =
√

2(ξ2g
2
YM,2 − ξ1g

2
YM,1) =

√
2(

j2
bNS,2

− j1
bNS,1

). (3.17)

The one-loop correction to the vacuum energy density is given by

V (1−loop) =
1

64π2





∑

b

m4
b log

m2
b

Λ2
0

−
∑

f

m4
f log

m2
f

Λ2
0



 ,

11 One can easily check that for small r, the masses agree with what we expect from string

theory. The bifundamental matter is the same as for the 0− 4 system, with small B-fields turned

on along the D4 branes. See, e.g., [24,25].
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where mb,f are the boson and the fermion masses, and Λ0 is the UV cutoff of the theory.

The limit in which we expect a good large N dual is when the charged fields are very

massive, r ≪ a2, and at low energies the theory is a pure gauge theory. Expanding to the

leading order in r/a2, the one-loop potential is then given by

V = Vtree +
1

16π2
r2 log

a

Λ0
.

We have omitted the Λ0 independent terms which correspond to the finite renormalization

of the couplings in the Lagrangian and are ambiguous. We see that this exactly agrees

with effective potential (3.9),(3.15) as computed in the dual geometry, after the transition.

In the general, U(N1) × U(N2) case, we have a strongly coupled gauge theory at low

energies. Nevertheless, since in the (Ni, N̄i) sector supersymmetry is preserved, the one-

loop contribution of that sector to the vacuum energy density should vanish beyond the

classical contribution. Thus, we expect that only the bifundamental fields contribute to

the vacuum energy at this level. The one-loop computation then goes through as in the

Abelian case, up to the N1N2 factor from multiplicity, once again reproducing the answer

(3.15) from large N dual geometry.

3.3. Relation to the work of [2]

We close with a comment on the relation to the work of [2], to put the present work

in context. The A2 model at hand is the same as the geometry used to engineer the Fayet

model in [2]. More precisely, the authors there engineered a “retrofitted” Fayet model.

The parameter a that sets the mass of the bifundamentals was generated by stringy or

fractional gauge theory instantons, and thus was much smaller than the scale set by the FI

terms, which were taken to be generic. That resulted in F-term supersymmetry breaking

which was dynamical.

In the present context, we still have a Fayet-type model, but we find ourselves in a

different regime of parameters of the field theory, where r/a2 < 1, with r defined in terms

of the FI parameters as in (3.17). Outside of this regime, the vacuum at the origin of field

space, with Q and Q̃ vanishing, becomes tachyonic even in the field theory, as can be seen

from (3.16). Once this becomes the case, the large N dual presented here is unlikely to

be a good description of the physics. For example, for N1 = N2 = N and r/a2 > 1, it

was found in [2] that the theory has a non-supersymmetric vacuum where all the charged

bifundamental fields are massive and the gauge symmetry is broken to U(N). This may
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still have a description in terms of some dual geometry with fluxes, but not the one at

hand. This may be worth investigating.

Thus, unlike the models of [2], those considered here break supersymmetry sponta-

neously but not dynamically. It would be nice to find a way to retrofit the current models

and to generate low scale supersymmetry breaking in this context. This would require

finding a natural way of obtaining small FI terms. The mechanism of [2] does not apply

here, since the terms in question are D-terms and not F-terms. This may be possible in

the context of warped compactifications,12 and compact Calabi-Yau manifolds, perhaps

along the lines of [29].
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Appendix A. Fayet-Iliopoulos Terms for ADE Singularities

The largeN duality we studied in the previous sections should generalize to other ADE

fibered geometries. In this appendix we’ll demonstrate that the large N dual geometries

for these more general spaces have some of the same qualitative features. Consider the

ADE type ALE spaces
Ak : x2 + y2 + zk+1 = 0

Dr : x2 + y2z + zr−1 = 0

E6 : x2 + y3 + z4 = 0

E7 : x2 + y3 + yz3 = 0

E8 : x2 + y3 + z5 = 0

which are fibered over the complex t plane, allowing the coefficients parameterizing the de-

formations to be t dependent. The requisite deformations of the singularities are canonical

12 The effects of warping in the context of [1] have been studied in [26]. In [27], the authors

constructed supergravity solutions that were subsequently interpreted in [28], to correspond to

D5 branes on the conifold with Fayet-Iliopolous terms turned on, i.e. the theory we studied in

section two. We thank Y. Nakayama for pointing out to us the latter work.
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(see [7] and references therein). In fibering this over the t plane, the zi become polynomi-

als zi(t). At a generic point in the t plane, the ALE space is smooth, with singularities

resolved by blowing up r independent 2-cycle classes

S2
i , i = 1, . . . r

where r is the rank of the corresponding Lie algebra. This corresponds to turning on

Kähler moduli

Zi =

∫

S2

i

(J + iBNS) = ji + ibNS,i.

The 2-cycles S2
i intersect according to the ADE Dynkin diagram of the singularity. Con-

sider now wrapping Ni D5 branes on the i’th 2-cycle class. The theory on the branes is

an N = 2 quiver theory with gauge group

∏

i

U(Ni),

with a bifundamental hypermultiplet Qij , Qji for each pair of nodes connected by a link

in the Dynkin diagram. The fibration breaks the supersymmetry to N = 1 by turning on

superpotentials Wi(Φi) for the adjoint chiral multiplets Φi,

W ′
i (t) =

∫

S2

i,t

ω2,0,

which compute the holomorphic volumes of the 2-cycles at fixed t. The superpotentials

Wi(t) can be thought of as parameterizing the choice of complex structure of the ALE

space at each point in the t plane. The full tree-level superpotential of the theory is given

by

W =
∑

i

TrWi(Φi) +
∑

i<j

Tr(QijQjiΦi −QijΦjQji)

where the latter sum runs over nodes that are linked.

For vanishing ji, the structure of the vacua of the theory was computed in [7]. For

each positive root eI of the lie algebra,

eI =
∑

I

niIei

for positive integers niI , one gets a rigid IP1 at points in the t-plane

t = aI,p,
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where

W ′
I(aI,p) =

∑

i

niIW
′
i (aI,p) = 0. (A.1)

Here I labels the positive root and p runs over all the solutions to (A.1) for that root. The

choice of vacuum breaks the gauge group down to

∏

I,p

U(MI,p)

where

Ni =
∑

I

MI,pn
i
I .

Turning on generic Fayet-Iliopoulos terms for the U(1) centers of the gauge group factors,

∆L =
∑

i

ji

2
√

2πgs
TrDi,

breaks supersymmetry while retaining (meta)stability of the vacuum as long as ji is much

smaller than the mass of all the bifundamentals in the vacuum.

The ALE fibrations have geometric transitions in which each IP1 is replaced by a

minimal S3. The leading order prepotential F0 for all these singularities was computed in

[30], and is given by

2πiF0(S) =
1

2

∑

b

S2
b

(

log
( Sb
W ′′
I (ab) Λ2

0

)

− 3

2

)

+
1

2

∑

b6=c

eI(b) · eJ(c) Sb Sc log
(abc

Λ0

)

+ . . . ,

(A.2)

where the sum is over all critical points

b = (I, p),

and I(b) = I denotes the root I to which the critical point labeled by b corresponds. We

are neglecting cubic and higher order terms in the SI,p, which are related to higher loop

corrections in the open string theory. Above, eI · eJ is the inner product of two positive,

though not necessarily simple, roots. Geometrically, the inner product is the same as

minus the intersection number of the corresponding 2-cycles classes in the ALE space.

In addition, there are fluxes turned on in the dual geometry which are determined by

holography:
∫

Aa

HRR =Ma

∫

Ba

(HRR +
i

gs
HNS) = bRR,I(a) +

i

gs
bNS,I(a) ,

∫

Ba

dJ = jI(a).
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The theory on this geometry without fluxes is an N = 2, U(1)k gauge theory, where k is the

number of S3’s. The effect of the fluxes on the closed-string theory in this background was

determined in [12,13]. The result is a set of electric and magnetic N = 2 Fayet-Iliopoulos

terms, which enter the N = 2 superspace Lagrangian,

L =
1

4π
Im

(
∫

d4θ F0(Aa)

)

+
1

4π
Re(~Y a · ~Ea).

with

~Ea =

(

bNSa
gs

, bRR,a ,
ja
gs

)

,

and where the auxiliary fields ~Y a are shifted by the magnetic FI term,

~Ma = ( 0 , Ma , 0 ).

The auxiliary field Lagrangian then has the form

Laux =
1

8π
GabRe(~Y )a ·Re(~Y )b +

1

4π
Re(τab)Re(~Y )a · ~M b +

1

4π
Re(~Y )a · ~Ea

and integrating out the auxiliary fields sets them equal to their expectation values,

~Y a = −Gab
(

~Eb +Re(τbc) ~M
c
)

+ i ~Ma

or, to be more precise,

−Gab~Y b =
(

bNSa /gs , b
RR
a + τ̄abM

b , ja/gs
)

.

We can make contact with the more familiar form of this action and its scalar potential by

reducing to N = 1 superspace. There, the auxiliary fields ~Y a get identified with auxiliary

fields of the vector and chiral multiplets corresponding to the a’th S3, and the fluxes give

rise to the usual flux superpotential

W =
∑

a

αaSa −Ma∂Sa
F0(S).

In addition, there are Fayet-Iliopoulos terms for the U(1)’s, and the total scalar potential

is given by

V =
1

4π
Gab

(

∂aW∂bW + jajb/g
2
s

)
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where

αa = bRR,a + ibNS,a/gs.

There are vacua at the field values which satisfy

∂aV ∼ FabcGceGbd
(

(αe − τ̄emM
m)(ᾱd − τ̄dnM

n) + jejd/g
2
s

)

= 0.

At one-loop order, the prepotential has nonvanishing third derivatives only when all deriva-

tives are with respect to the same field. The vacuum condition can be simplified to this

order, and upon considering the equation as two real equations for the real and imaginary

part, the conditions become

(bRR,a −Re(τab))M
b =0

GacGad (bNS,cbNS,d + jcjd) = (Mags)
2.

The first of these can be solved easily for the phases of the Sa. Moreover, we see that it is

equivalent to the condition that the real part of the auxiliary fields Y a2 vanish for all a in

the N = 2 superspace Lagrangian,

GabRe(Y
b
2 ) = 0.

In light of that result, the second condition can be written as

~Ya · ~Ya = 0. (A.3)

Since the supersymmetry transformations are

δǫΨa = Xaǫ+ . . .

where

Xa =
i√
2

(

−Y a1 − iRe(Y2)
a +Ma Y a3

Y a3 Y a1 − iRe(Y2)
a +Ma

)

,

(A.3) is precisely the condition that there exists some supersymmetry transformation on

each node which is locally preserved by the vacuum. Of course, for supersymmetry to be

conserved globally, these supersymmetry transformations must match for all nodes. The

condition for this to be the case is

Y a1
Ma

=
Y b1
M b

Y a3
Ma

=
Y b3
M b

,
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which, along with the requirement that the metric on moduli space be positive definite in

the vacuum, requires that

Za = cabZb

for a positive, real constant cab. This conforms to our intuition from the open-string

picture that preserving supersymmetry should require that the complex combination of

the FI terms and gauge couplings should have the same phase on each node.

We can also see that the vacuum we just found is metastable, as we expect based on

large N duality. Consider the Hessian of the potential,

4π∂a∂cV =
1

8π2SaScg2
s

(

GiaGacGcj(biNSb
j
NS + jijj) −GacMaM cg2

s

)

,

4π∂a∂c̄V =
1

8π2SaS̄cg2
s

(

GiaGacGcj(biNSb
j
NS + jijj) +GacMaM cg2

s

)

,

and similarly for complex conjugates. The eigenvalues of the Hessian are manifestly pos-

itive in the limit where Gab vanishes for a 6= b, which corresponds to widely separated

nodes, and where the matrix ∂∂V is diagonal. Moreover, the determinant of the Hessian

is strictly positive for any Gab, so the one-loop Hessian remains positive definite for any

Gab.

Finally, we can compute the value of the vacuum energy in the limit where the branes

are far separated. The relevant limit in this more general case is

Sa,∗ ≪ abc < Λ0.

The vacuum energy is then given by

V∗ =
∑

b

M b

√

b2NS,b + j2b

2πgs
− 1

8π2

∑

b6=c

eI(b) · eJ(c)M
bM c log

abc
Λ0

(1 − cos θbc)

which reduces to the one-loop value in the gauge-theory limit, as in the A2 case.
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