Geometric Transitions and D-term SUSY Breaking*

Mina Aganagicl’2 and Christopher Beem'

lUniversity of California, Berkeley, CA 94720, USA
’Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

November 2007

*This work was supported in part by the Director, Office of Science, Office of High Energy Physics, of
the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct
information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees,
makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of
California.



arXiv:0711.0385v2 [hep-th] 7 Nov 2007

UCB-PTH-07/22

Geometric Transitions and D-term SUSY Breaking

Mina Aganagic and Christopher Beem

Department of Physics, University of California, Berkeley, CA 94720

We propose a new way of using geometric transitions to study metastable vacua in string
theory and certain confining gauge theories. The gauge theories in question are N = 2
supersymmetric theories deformed to NV = 1 by superpotential terms. We first geomet-
rically engineer supersymmetry-breaking vacua by wrapping D5 branes on rigid 2-cycles
in noncompact Calabi-Yau geometries, such that the central charges of the branes are
misaligned. In a limit of slightly misaligned charges, this has a gauge theory description,
where supersymmetry is broken by Fayet-Iliopoulos D-terms. Geometric transitions relate
these configurations to dual Calabi-Yaus with fluxes, where Hrr, Hyg and dJ are all non-
vanishing. We argue that the dual geometry can be effectively used to study the resulting

non-supersymmetric, confining vacua.
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1. Introduction

In the interest of finding controllable, realistic string vacua, it is important to find
simple and tractable mechanisms of breaking supersymmetry in string theory. A powerful
method which has been put forward in [[[] consists of geometrically engineering metastable
vacua with D-branes wrapping cycles in a Calabi-Yau manifold, and using geometric tran-
sitions and topological string techniques to analyze them. In [[, metastable vacua were
engineered by wrapping D5 branes and anti-D5 branes on rigid 2-cycles in a Calabi-Yau.
The non-supersymmetric vacuum obtained in this fashion was argued to have a simple
closed-string dual description, in which branes and antibranes are replaced by fluxes. In
B], geometric transitions were used to study the physics of D-brane theories that break
supersymmetry dynamically. Namely, the authors showed that the instanton generated
superpotential that triggers supersymmetry breaking can be computed by classical means
in a dual geometry, where some of the branes are replaced by fluxes (For an alternative
approach see [g]).

In this paper, we propose another way to use geometric transitions to study supersym-
metry breaking. As in [[l]], we consider D5 branes wrapping rigid cycles in a noncompact
Calabi-Yau X. If bo(X) > 1, supersymmetry can be broken by choosing the complexified

Kahler moduli so as to misalign the central charges of the branes,
Z; = / J+1iBng.
52

Since the 2-cycles wrapped by the D5 branes are rigid, any deformation of the branes
costs energy, and the system is guaranteed to be :rnetastable.EI In the extreme case of anti-
aligned central charges, we recover the brane/antibrane configurations of [[Il,f]. For slightly
misaligned central charges, the system has a gauge theory description in terms of an N = 2
quiver theory deformed to N/ = 1 by superpotential terms [([q], and with Fayet-Iliopoulos
D-terms turned on [E,E,E The latter trigger spontaneous supersymmetry breaking in
the gauge theory.

We argue that the dynamics of this system is effectively captured by a dual Calabi-Yau

with all branes replaced by fluxes. Turning on generic Kéhler moduli on the open-string

1 Supersymmetry breaking by missaligning the central charges of D5 branes wrapped on rigid
curves was also studied in [[], in the context of compact Calabi-Yau manifolds.

2 Some geometric aspects of supersymmetry breaking by F-terms in this context were recently
discussed in [[LT].



side has a simple interpretation in the dual low-energy effective theory as turning on a
more generic set of FI parameters than hitherto considered in this context, but which are
allowed by the N' = 2 supersymmetry of the background. On-shell, this breaks some or all
of the N' = 2 supersymmetry. Geometrically, this corresponds to not only turning on Hyg
and Hrp fluxes on the Calabi-Yau, but also allowing for dJ # 0 [,]E Moreover, we
show that the Calabi-Yau geometries with these fluxes turned on have non-supersymmetric,
metastable vacua, as expected by construction in the open-string theory.

The paper is organized as follows: In section two, we review the physics of D5 branes
on a single conifold and the dual geometry after the transition, paying close attention
to the effect of Fayet-Iliopoulos terms. In section three, we consider the case of an As
geometry where misaligned central charges lead to supersymmetry breaking. We provide
evidence that the dual geometry correctly captures the physics of the non-supersymmetric
brane system. We show that the results are consistent with expectations from the gauge
theory, to the extent that these are available. We also comment on the relation of this
work to [J], and point out some possible future directions. In an appendix, we lay out
the general case for larger quiver theories. We show that in the limit of large separations
between nodes, the theory has metastable, non-supersymmetric vacua in all cases where

they are expected.

2. The Conifold

In this section, we consider N D5 branes on the resolved conifold. We will first review
the open-string theory on the branes, and then discuss the dual closed-string description.
Our discussion will be more general than the canonical treatment in that we will consider

the case where the D5 branes possess an arbitrary central charge.

2.1. The D-brane theory

To begin with, let us recall the well-known physics of N D5 branes wrapping the
S? tip of the resolved conifold. This geometry can be represented as a hypersurface in
C*[u,v, 2, ],

wv = z(z — mt).

3 For another example of supersymmetry breaking by turning on Hys, Hrr and dJ fluxes,

see [[[4].



The geometry has a singularity at the origin of C* which can be repaired by blowing up a
rigid IP'. This gives the IP* a complexified Kihler class

VA :/ (J+iBN5> =7J+1bys. (2.1)
52

The theory on the D5 branes at vanishing j reduces in the field theory limit to a d = 4,
N =1, U(N) gauge theory with an adjoint valued chiral superfield of mass m. The bare

gauge coupling is given by
41 . b NS

9}2/]\/[ Js

for positive byg. In string theory, the tension of the branes generates an energy density

: (2.2)

related to the four dimensional gauge coupling by
2N b
_ s

912/]\/[ B 2795'

V.= (2.3)

Turning on a small, nonzero j can be viewed as a deformation of this theory by a
Fayet-Iliopoulos parameter for the U(1) center of the gauge group [B8]. This deforms the
Lagrangian by

AL = V26 TrD (2.4)

where D is the auxiliary field in the A/ = 1 vector multiplet and

f=1m (2:5)

where the factor of g5 comes from the disk amplitude. This deformation (P.4) breaks the
N = 1 supersymmetry which was linearly realized at j = 0. In particular, turning on j,
increases the energy of the vacuum: integrating out D from the theory by completing the

square in the auxiliary field Lagrangian,

Lp=-5—TrD?+ V2£TrD,
29y m
raises the vacuum energy to
b 1 52
v, = NNS <1+—§—). (2.6)
27gs 2byg

Supersymmetry is not broken however. At nonzero j, a different N' = 1 supersymme-

try is preservedﬂ — one that was realized nonlinearly at vanishing j [[[5,[d]. Which subgroup

4 This is true even in the field theory limit, despite the presence of the constant FI term.
Namely, a second, nonlinearly realized supersymmetry is present in the gauge theory as long as

there is only a constant energy density [[[§]. We thank A. Strominger for explaining this to us.

3



of the background N = 2 supersymmetry is preserved by the branes is determined by Z
in (.1)), the BPS central charge in the extended supersymmetry algebra.ﬂ For any Z, the
open-string theory on the branes has an alternative description which is manifestly AV = 1
supersymmetric, with vanishing FI term and with a bare gauge coupling related to the

magnitude of the central charge [[],

§}2/M dmgs

L Vs 2 (2.7)

Geometrically, this is just the quantum volume of the resolving IP'. As such, the central

charge also determines the exact tension of a single D5 brane at nonzero j, so

b2 ;2
v, = Ni\/g?fg-i_j. (2.8)

For small Kahler parameter,

J < bns,

this agrees with the vacuum energy in the field theory limit (2.G).

For any j, the theory is massive; it is expected to exhibit confinement and gaugino
condensation at low energies, leaving an effective U(1) gauge theory in terms of the center
of the original U(N) gauge group. We’ll show next that the strongly coupled theory has a

simple description for any value of Z in terms of a large N dual geometry with fluxes.

2.2. The geometric transition at general Z

We’ll now discuss the large N dual geometry for general values of the central charge Z.
Special cases (either vanishing j or vanishing byg) have been considered in the literature,
but the present, expanded discussion is, to our knowledge, neW.E We'll see that the dual
geometry exactly reproduces the expected D5 brane physics. From the perspective of
the low-energy effective action, the consideration of general central charge corresponds
to turning on a more general set of N' = 2 FI terms than previously considered in this
context. Geometrically, this will lead us to consider generalized Calabi-Yau manifolds, for

which dJ is nonvanishing in addition to having Hyg and Hgrp fluxes turned on. This

5 Strictly speaking, the central charge of N branes is NZ. In this paper, we will always take
the number of branes N to be positive, so that we interpolate between the branes and antibranes
by varying Z.

6 See related discussion in [f.



will provide a local description of the physics for each set of branes in the more general
supersymmetry-breaking cases of sections three and four.
To begin, let us recall the large N dual description of the D5 brane theory at vanishing

j. This is given in terms of closed-string theory on the deformed conifold geometry,
wv = z(z — mt) + s. (2.9)

This is related to the open-string geometry by a geometric transition which shrinks the

P! and replaces it with an S® of nonzero size,

s=[ o
A

where A is the 3-cycle corresponding to the new S3, and the period of the holomorphic
three-form over A is related to the parameters of the geometry by S = s/m. The D5 branes
have disappeared and have been replaced by N units of Ramond-Ramond flux through the
S3
/ HER = N, (2.10)
A

There are Ramond-Ramond and Neveu-Schwarz fluxes through the dual, noncompact B-

cycle as well,

Ao
o= / (Hrr +1HNs/gs) = brr + ibns/9s, (2.11)
B

which corresponds to the complexified gauge coupling of the open-string theory,

0 473

21 912/M.

o =

The B-cycle is cut off at the scale, Ag, at which « is measured.l The dependence of «
on the IR cutoff in the geometry corresponds to its renormalization group running in the
open-string theory.

If it were not for the fluxes, the theory would have N = 2 supersymmetry, with S
being the lowest component of an A/ = 2 U(1) vector multiplet. That theory is completely
described by specifying the prepotential, F4(S), which can be determined by a classical

0
| a=55

" For simplicity, the IIB axion is set to zero in this paper.

geometry computation,
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The presence of nonzero fluxes introduces electric and magnetic Fayet-Iliopoulos terms in
the low-energy theory for the U(1) vector multiplet and its magnetic dual [[7,L8,I9,20].
The effect of the fluxes (R.10),(B.11) can also be described in the language of N' = 1
superspace as turning on a superpotential for the N = 1 chiral superfield with S as its

scalar component,

W(S) = / QA (HRR 4+ iHNS /g,).
X
For the background in question, this takes the form

0
W(S) = aS = N o= Fo. (2.12)

In terms of the parameters of the D-brane theory, S is identified with the vev of the gaugino
condensate. One way to see this is by comparing the superpotentials on the two sides of
the duality. The «S superpotential on the closed string side corresponds to the classical
superpotential term FTrW,W® on the gauge theory side.

What does the FI term deformation of the D-brane theory correspond to in the closed-
string theory? To begin with, let us address this question from the perspective of the low-
energy effective action. We know that the U(1) gauge field after the transition coincides
[6,2T] with the U(1) gauge field that is left over after the SU () factor of the gauge group
confines. This suggests that we should simply identify Fayet-Iliopoulos D-terms on the two
sides. More precisely, the Lagrangian of the theory after the transition can be written in
terms of N = 1 superfields,

S =S+ V20 + 00F, (2.13)

Wa = —ida + 0uD + %(U“”Q)QFHV (2.14)
as an N = 2 action deformed to N' = 1 by the superpotential (P-17),

2
L= %Im(/ 20426 8270 | [ g2 L9 T0

— 3 > W Wa + 2/d2e W(S)). (2.15)

The Fayet-Iliopoulos deformation (R.4) should produce an additional term in this La-
grangian,

J
AL = D, 2.16
227 g, ( )

corresponding to an FI term as in (£.J). Note that on the D-brane side, the center of mass

U(1) corresponds to 1/N times the identity matrix in U(N), so that the normalization of

(B-18) precisely matches (£.4)).



We now show that the deformation (B.1q) leads to precisely the physics that we expect
on the basis of large N duality. After turning on the FI term, the effective potential of the

theory becomes

1 _
V= EGSS (10sWI? + 14/9s|%) + const. (2.17)
where
1 - 0?
Gss—E(T—T), T—ﬁfu

We have also shifted the potential by an (arbitrary) constant, which we choose to be the

tension of the branes at vanishing j,

b
const. = N3 ,
2mgs
for convenience. We can then rewrite (2.17) as
V= m <|a — N7|* + U/gs|2) + const.

Z. (2.18)
o m‘& — NT|2 + COnst.

- v .
a:bRR-I-g— b?vs-i‘jz

S

where

and the constant has shifted. As expected from the D-brane picture, the effective potential
of the theory with the FI term turned on and with gauge coupling (B.2) is the same as
that of the theory without the FI term and with gauge coupling (B.7)).

In this simple example, the prepotential is known to be given exactly by

The vacuum of the theory is determined by the minimum of (.1§), which occurs at
a— N1 =0, (2.19)
or, in terms of the expectation value of the gaugino bilinear, at

S, = mA32 exp(27wia/N). (2.20)

7



Finally, we note that the energy in the vacuum (B.20)) is larger than that in the j = 0
vacuum by the constant that enters (B.1§), so

b2 12
V, = Niw, (2.21)

which is precisely the tension of the brane after turning on j. This is a strong indication
that we have identified parameters correctly on the two sides of the duality.

It is easy to see that in the vacuum, neither the F-term
dsW # 0,

nor the D-term vanishes. Nevertheless, as will now show, this new vacuum preserves half
of the N’ = 2 supersymmetry of the theory we started with, though not the one manifest

in the action as written. Defining the SU(2)r doublet of fermions

_ (Y
@_(A,
the relevant part of the supersymmetry transformations of the A/ = 2 theory are
SV = X,

where X is a matrix of F- and D-terms, shifted by an imaginary part due to the presence

of a “magnetic” FI term (see for example [[]] and references therein)

i (—Yl —iYo + N Ys ) (2.92)

X=— Y3 Y, —iYs+ N

where the NV = 2 auxiliary fields are identified with the auxiliary F-term of S in (.13)
and the D-term of the gauge field in (E:I4) according to

(Y1 +iYs) = 2%F Y3 =+/2D.

Note that the triplet ¥ = (Y7, Y5, Y3) transform like a vector of the SU(2)z symmetry of
the V' = 2 theory. In the vacuum (R.19)

v N (bNg— bas + 2 j )
)

25 + /7 j ~bys — Vs + 7

The supersymmetry manifest in (2.15) corresponds to €1, and it is clearly broken in the

vacuum for nonvanishing j, since neither the F- nor the D-term vanish. However, the

8



determinant of X vanishes, and so there is a zero eigenvector corresponding to a preserved
supersymmetry.

So far, we have identified turning on 5 with turning on an FI term in the low-energy
effective action. It is natural to ask what this corresponds to geometrically in the Calabi-
Yau manifold? In [[7,[§ (following [B2R]]) it was shown that turning on a subset of the
FI terms of the low-energy N/ = 2 theory arising from IIB compactified on a Calabi-Yau
manifold corresponds to turning on Hyg and Hgrp fluxes in the geometry. This is what
we used in (B.I). The question of what corresponds to introducing the full set of FI
terms allowed by N = 2 supersymmetry was studied, for example, in [[3,[3]. To make the
SU(2)g symmetry of the theory manifest, we can write the triplet of the N' = 2 FI terms

E:i<_E1_iE2 E3 )

as

Es Ey —iEs

where (F1, Fo, E3) transform as a vector under SU(2)r and enter the action as
L Re(mrx B)
— Re(Tr
4

These are given in terms of ten dimensional quantities byE

ElZ/ Hns/9s, E2:/ Hrgr, E3=/ dJ/gs.
B B B

Note that this agrees precisely with what we have just derived using large N duality.
Just as the bare gauge coupling [, Bns/gs = bns/gs gets mapped to [, Hys/gs after the
transition due to running of the coupling, SU(2)r covariance of the theory demands that
turning on [, J/gs = j/gs before the transition get mapped to turning on [, d.J/g, after
the transition. Moreover, we saw in this section that the latter coupling gets identified
as a Fayet-Iliopoulos D-term for the U(1) gauge field on the gravity side. This exactly
matches the result of [[J[[J], since E3 is the Fayet-Iliopoulos D-term parameter. It is
encouraging to note that [I3,[J] reach this conclusion via arguments completely orthogonal
to ours. Finally, we observe that an SO(2) C SU(2)r rotation can be used to set the
Fayet-Iliopoulos D-term E3 = j/gs to zero, at the expense of replacing F1 = byg/gs by
Ey = /b3 + j2/gs, and this directly reproduces (E-18).

8 This follows from equation (3.53) of up to an SU(2)r rotation and specializing to a local
Calabi-Yau. More precisely, to derive this statement one needs to look at the the transformations

of the N = 2 gauginos, not the gravitino as in [[[J], but these are closely related. See, for example,

B3



3. An A, Fibration and the Geometric Engineering of a Metastable Vacuum

By wrapping D5 branes on rigid IP"’s in more general geometries with by(X) > 1,
we can engineer vacua which are guaranteed to be massive and break supersymmetry by
choosing the central charges of the branes to be misaligned. Since the D-brane theories
experience confinement and gaugino condensation at low energies, we expect to be able to
study the dynamics of these vacua in the dual geometries where the branes are replaced
by fluxes.

In this section, we’ll consider the simple example of an As singularity fibered over the

complex plane C[t]. This is described as a hypersurface in c?,
wv = z(z —mt)(z —m(t — a)). (3.1)

This geometry has two singular points at w,v,z = 0 and ¢ = 0,a. The singularities are
isolated, and blowing them up replaces each with a rigid IP'. The two IP!’s are independent
in homology, and the local geometry near each of them is the same as that studied in the
previous section.

Consider now wrapping N1 D5 branes on the P! at ¢t = 0 and N, branes on the P!

at t = a. If the central charges of the branes,
;= / J+1Bys =7 + Z'bNSJ' (3.2)
S2

are aligned (e.g., if the Kéhler parameters j; both vanish), the theory on the branes has
N =1 supersymmetry. At sufficiently low energies, it reduces to a U(N7) x U(Nz) gauge
theory with a bifundamental hypermultiplet Q, Q, a pair of adjoint-valued chiral fields D9
and a superpotential given by

m

2

m

W = 5

Trd? — —Trd2 — aTrQQ + Tr(Qd:1Q — QQ,). (3.3)

For a small relative phase of the central charges, e.g., by deforming the theory at vanishing
Kahler parameters j; by
ji/bNS,i <1, (34)

we expect this to have a pure gauge theory description at low energies in terms of the
supersymmetric theory with Fayet-Iliopoulos terms for the two U(1)’s.

Misaligning the central charges such that

Z1 # c1222, (3.5)

10



for any positive, real constant c;2, should break all the supersymmetries of the background.
Nevertheless, for large enough m and a, the vacuum should be stable. Since the theory
is massive, we expect it to exhibit confinement at very low energies, with broken super-
symmetry. Nevertheless, as we’ll now argue, the dynamics of the theory can be studied

effectively for any j; in the dual geometry, where the branes have been replaced by fluxes.

3.1. Large N dual geometry

The Calabi-Yau (B7]) has a geometric transition which replaces the two IP*’s by two
537,
S? — S3 i=1,2.

(2 7

The complex structure of the geometry after the transition is encoded in its description as
a hypersurface,

wv = z(z —mt)(z —m(t —a)) +ct +d, (3.6)

where ¢, d are related to the periods, S 2, of the 3-cycles, A; 2, corresponding to the two

537,
S-—/Q a]—"—/(l
i A, ’ aSZ 0 — B, .

As before, B; are the noncompact 3-cycles dual to A;, and F is the prepotential of the

N = 2 theory. The prepotential in this geometry is again given by an exact formula,

S 3. 1.,
[\g—m)_§)+552(10g(

SQ 3 i

L~ 1 5
2miFy = 5 S5 (log( A%m) 2) S1.S5 log(AO).

The theory with N; D5 branes on the ]P% before the transition is dual to a theory with N;
units of RR flux through S? after the transition:

/ Hrpr = N;.
A;

There are additional fluxes turned on through the noncompact, dual B-cycles,

o = / (Hrr +1HNs/gs) = brr,i + ibns,i/gs,
B,

7

corresponding to running gauge couplings, and

/ dJ/gs :ji/gs
B,

7

11



corresponding to Fayet-Iliopoulos terms. The fluxes generate a superpotential,

W= / QA (Hrn + iHys/gs)
X

or

0

8—5[}—0’

W = Z OéiSZ' — NZ
and Fayet-Iliopoulos D-terms,

AL= Z \/_Wgs

where D; are auxiliary fields in the two A/ = 1 vector multiplets.

Large N duality predicts that for misaligned central charges (B.5), the fluxes should
break all supersymmetries, and moreover, that the non-supersymmetric vacuum should be
metastable. We’ll now show that this indeed the case. The tree-level effective potential of
the theory is

V= ﬁG”ﬂ <3¢W3}€—W+jijk/gg) + const,
where
G~E:i<7'—7_')ik: Tik:ifo
ik 9 98;08,”
and the Kahler metric is determined by the off-shell N/ = 2 supersymmetry of the back-
ground. We have shifted the zero of the potential energy by the tension of the branes at

vanishing j;,

b s
const. = Z N; NS

In the case at hand,

_Ll (Sl> _Ll ()
=508 AZm” T2 T 5 08 AZ(—m)”

whereas T12 is a constantg independent of the Si7
7 og(a/Ng).
12 20 g 0

It is straightforward to see that the critical points of the potential correspond to solutions

of
Re(a;) + Re(rig) N¥ =0

G GIF (Im(o)Im(on) + Jiju/92) = (N7)?.

9 For convenience, we will take 712 to be purely imaginary.

12



The first equation fixes the phase of S;’s, and the second their magnitude. Consider the
case where the two nodes are widely separated, namely, where the sizes S; of the two S3’s
are much smaller than the separation a between them. In this limit, the equations of

motion can be easily solved to obtain

S{\fi =(AZm)™ (i)N2 08012 exp(2miciy ) + . . .

Ao
a
So: =(—A(2)m)N2(A—0

(3.7)
YN1eos012 oy (Dmidiy) + . . .

where 0;; is the relative phase between the central charges Z; and Z;. We can see that
in the limit where the Z; are aligned, this reduces to the simple case without FI terms
where the effective gauge coupling has been replaced with the parameter &;. The case of
anti-aligned central charges was studied in [[Jj]. The weak coupling limit of two widely

separated nodes, in which our approximation is justified, corresponds to
Si’* < a <. (38)

Si «'s should be identified with the vev’s of gaugino condensates on the branes, and are
the order parameters of the theory. This is the case even in the presence of FI terms,
as explained in the previous section. For small FI terms, this relies only on the off-shell
N = 1 supersymmetry of the theories on both sides of the duality and a comparison of
superpotentials. In [[l] it was conjectured that this also holds in the brane/antibrane case,
where the central charges are anti-aligned and supersymmetry is maximally broken. It
is natural, then, that the above limit should correspond to the the theory being weakly
coupled at the scale of the superpotential (B.3).

In the same limit, the vacuum energy is given by

\/Phsa Tt VP2 T3 1 a
V* =N —+N2 NlNglog(—>(1—008912>+... (39)

! 27 g, 27 g, + 472 Ao

Note that in the limit of aligned central charges, the potential energy is simply the brane
tension. This is in fact true exactly, and is related to the fact (which will demonstrate
later on) that in this case supersymmetry is preserved. For any other value of the angle,
there is an additional attraction. In the extreme case, when we increase 615 from zero to
m, we end up with a brane/antibrane system on the flopped geometry. We can view this

as varying one of the Z;’s until the Byg field through that cycle goes to minus itself.

13
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Fig. 1. The Ay geometry from in the text, drawn in the T-dual NS5 brane picture. The D5
branes map to D4 branes and appear as red lines. The NS5 branes are drawn as blue lines/points.
At 612 = 0 the system is supersymmetric. For any other value of 62, supersymmetry is broken.
Varying 612 continuously from zero to m produces a geometry which is related to the original As

geometry by a flop.

This is a flop, and by comparing to [[], it follows that the solution we found above for
012 = 7 precisely corresponds to a brane/antibrane system in the flopped geometry.

To see that supersymmetry is broken by the vacuum at nonvanishing 615, we write the
action (2.17) in an N' = 2 invariant way in terms of A/ = 2 chiral multiplets A; consisting
of N =1 chiral multiplets S;, and W,

A = (S, W)
or
1
A, =8S; + 9“\11(171 + Qangabﬂ' + §eab(9“a/‘”0b)FW + ...

The appropriate N/ = 2 Lagrangian is given by

— i 40 14 . i ab i
L= 1 Im(/d 0d*x ]:o(Az)) + 47TR6(X1' E})

7

where X@ is defined as in (B27). Then, the relevant supersymmetry variations of the

fermions are given by
6V = X ¢y, (3.10)

and at the extrema of the effective potential,

1 N + G*Im(az) ~G%* 351/ 9s )
V2 ( ~G% 1. /g, N — G*Im(ay) ( )

The equations of motion imply that the determinants of both X!+2 vanish. For each node,

then, X* has one zero eigenvalue. It can be shown (see the general discussion of appendix
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A), that (B-I0) and (B.11]) imply that a global supersymmetry is preserved if and only if

the central charges (B.J) are aligned, i.e., if a positive real constant ci5 exists such that
Zl = 61222.

This is exactly as expected from the open-string picture, and provides a nice test of the
large N duality conjecture for general central charges.

Now we’ll show that the vacuum is indeed metastable. Consider the masses of bosonic
fluctuations about the non-supersymmetric vacuum. As was found to be the case in [{],
the Hessian of the scalar potential can be block diagonalized. After changing variables to

bring the kinetic terms into their canonical form, the eigenvalues become

(a® 4+ b? + 2abv) £ /(a + b)2(a — b)2 + 4abv(a + b)(b + a)

M3, =
1,2 2(1 —v)?
M2 — (a® 4+ b* + 2abv cos 0) + /(a + b)%(a — b)2 + 4abv(a + bcos 0) (b + a cos 0)
34 2(1 —v)?
(3.12)

where we’'ve adopted the notation of [[l] in defining

N1 N2

a=——— b= ——,
27TG11‘51| 27TG22‘SQ|

and

2
v — Gy
- 9
G11G22

with all quantities evaluated in the vacuum. In addition, we’ve introduced a new angle,

which is defined by the equation
Yl.y2 = N1 N5 cosb,
where Y are related to X' as in (B:22) for each 4. In the limit (B.§),
0 =012+ O(v),

so we can treat this as being the same as the phase which appears in (B.7),(B.9). Note that
in the limit

cosf — 1, (3.13)
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we recover the results for a supersymmetric system, with the masses of bosons becoming
pairwise degenerate. The other extreme of anti-aligned charges can be shown to correspond
to

cosf — —1,

where the results of [f] should be recovered. Indeed by plugging in and rearranging terms
we recover the mass formulas from page 25 of [[]. These then provide exact values for the
tree-level masses of the component fields in the supersymmetry-breaking vacuum. For any

0, the masses of the bosons are all positive as long as
v <1

This, in turn, is ensured as long as the metric on moduli space is positive definite in the
vacuum. So indeed, the system is metastable, as expected.

To get a measure of supersymmetry breaking, let’s now compare the masses of the
bosons and the fermions in this vacuum. The fermion masses arise from the superspace

interaction which appears as

1 1 - ;
Im ( / d*0d*x 5@-,3(m;@a)(wgeb)(xﬁdeced)) :
where Fj;i, = 0;0;0,Fo. For the geometry in question, the prepotential is exact at one-
loop order, and the third derivatives vanish except when all derivatives are with respect
to the same field. We can then write the fermion mass matrices for a given node (and
non-canonical kinetic terms) as

i 1

— 1
= g2, oo

Performing a change of basis to give the fermion kinetic terms a canonical form, we can
diagonalize the resulting mass matrix and obtain the mass eigenvalues. There are two zero
modes,

M)\l,g = 07

corresponding to two broken supersymmetries. In addition there are two massive fermions,

which we label by 1,

My, , (a+0b)+£+/(a ;(lla)i—;fabv(l + cos0) | (3.14)
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Note that in the supersymmetric limit (B.13J), the masses of 11 and 9 match those of
¢1,3 and ¢9 4, which have become pairwise degenerate. For small misalignment, and large
separation of the two nodes, the mass splittings of bosons and fermions are easily seen to

go like

2 2
7M¢ Yy ~ vl
2 2 g
Mg+ M

where v goes to zero in the limit of large separation, and 612 measures the misalignment

of the central charges.

3.2. Gauge theory limit

In the gauge theory limit (B.4)), the vacuum energy (B.9) reduces to

bns,i 1 g7 1 a J1 J2 \?
V, =S N NSy = Ji +—N1N210g—< . ) Y. (315
; " 2mg, U5 b?vs,i) 8 (Ao) bnsi  bns:2 (319
The first terms are classical contributions, as we saw in section two. The last term comes
from a one-loop diagram in string theory, with strings stretched between the two stacks of
branes running around the loop.

To begin with, consider the Abelian cause,E
U(1l) x U(1),

when the gauge theory has no strong dynamics at low energies. We should be able to
reproduce (B.I9) directly in the field theory by computing the one-loop vacuum amplitude
in a theory with FI terms turned on. We can write the classical F- and D-term potential

of the gauge theory as

1 i 1 )
Viree = |Fo, [*+[Fo, "+ Fol*+|Fg |+ 503 a1 (g —1d1* =V 261)*+ 5 03 a2 (10 —lal*—V/262)?,

where

Fo, =mo1 —qq Fs, = m¢p2 — qq Fo=qla+ ¢2 — ¢1) FQIQ(@+¢2—¢1)

10" Although the rank of the gauge group is not large in this case, the geometric transition is still
expected to provide a smooth interpolation between the open- and closed-string geometries. For
a recent review, see [ff], and references therein. It is natural to expect that for small deformations
by FI terms that break supersymmetry, the two sides still provide dual descriptions of the same

physics.
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and ¢;, ¢, q are the lowest components of the corresponding chiral superfields. The gauge

theory quantities are related to those of the string theory construction by

L bns,i ¢ = Ji
932/1\/[,2' dmgs’ " dmgs
The identification between the field theory FI term and the string theory parameter is
expected to hold only for small j;/bng,;. For nonzero &; o, supersymmetry appears to be
broken since the two D-term contributions cannot be simultaneously set to zero with the
F-terms. In fact, we know that if the central charges are aligned, this is just a relic of
writing the theory in the wrong superspace.

For large m, a, this potential has a critical point at the origin of field space. At this
point, all the F-terms vanish, and there is pure D-term supersymmetry breaking. The
spectrum of scalar adjoint and gauge boson masses is still supersymmetric at tree-level,
since the only contribution to the masses in the Lagrangian is the FI-dependent piece
for the bifundamentals. This means that the only relevant contribution to the one-loop
corrected potential is from the bifundamental fields. The scalar components develop a
tree-level mass which is simply given by

m2 =a’+r, mZ:=a’—r (3.16)

while the fermion masses retain their supersymmetric value,

2 2 2
qu_ml/’é_a'

We have defined the constant

r = V26agiars — E103a) = V22— — 1), (3.17)
bns2  bnsi

The one-loop correction to the vacuum energy density is given by

2
my

1 m?
(1—loop) _ 4 7 4 —
Vv P) — i zb:mb log A2 zf:mflog Az

1 One can easily check that for small r, the masses agree with what we expect from string
theory. The bifundamental matter is the same as for the 0 — 4 system, with small B-fields turned
on along the D4 branes. See, e.g., [R427].
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where my, s are the boson and the fermion masses, and Ag is the UV cutoff of the theory.
The limit in which we expect a good large N dual is when the charged fields are very
massive, r < a2, and at low energies the theory is a pure gauge theory. Expanding to the
leading order in r/a?, the one-loop potential is then given by

1 5 a
= Viree —r°l U
Vo= Viree T g2 o8 1

We have omitted the Ay independent terms which correspond to the finite renormalization
of the couplings in the Lagrangian and are ambiguous. We see that this exactly agrees
with effective potential (B.9),(B-13) as computed in the dual geometry, after the transition.

In the general, U(N7) x U(N2) case, we have a strongly coupled gauge theory at low
energies. Nevertheless, since in the (IV;, N;) sector supersymmetry is preserved, the one-
loop contribution of that sector to the vacuum energy density should vanish beyond the
classical contribution. Thus, we expect that only the bifundamental fields contribute to
the vacuum energy at this level. The one-loop computation then goes through as in the
Abelian case, up to the N1 N, factor from multiplicity, once again reproducing the answer

(BI9) from large N dual geometry.

3.3. Relation to the work of [3/

We close with a comment on the relation to the work of [P], to put the present work
in context. The A model at hand is the same as the geometry used to engineer the Fayet
model in [JJ]. More precisely, the authors there engineered a “retrofitted” Fayet model.
The parameter a that sets the mass of the bifundamentals was generated by stringy or
fractional gauge theory instantons, and thus was much smaller than the scale set by the FI
terms, which were taken to be generic. That resulted in F-term supersymmetry breaking
which was dynamical.

In the present context, we still have a Fayet-type model, but we find ourselves in a
different regime of parameters of the field theory, where r/a? < 1, with r defined in terms
of the FI parameters as in (B-I7). Outside of this regime, the vacuum at the origin of field
space, with Q and Q vanishing, becomes tachyonic even in the field theory, as can be seen
from (B.IG). Once this becomes the case, the large N dual presented here is unlikely to
be a good description of the physics. For example, for Ny = Ny = N and r/a® > 1, it
was found in [[] that the theory has a non-supersymmetric vacuum where all the charged

bifundamental fields are massive and the gauge symmetry is broken to U(N). This may
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still have a description in terms of some dual geometry with fluxes, but not the one at
hand. This may be worth investigating.

Thus, unlike the models of [P, those considered here break supersymmetry sponta-
neously but not dynamically. It would be nice to find a way to retrofit the current models
and to generate low scale supersymmetry breaking in this context. This would require
finding a natural way of obtaining small FI terms. The mechanism of [J] does not apply
here, since the terms in question are D-terms and not F-terms. This may be possible in
the context of warped Compactiﬁcations,@ and compact Calabi-Yau manifolds, perhaps
along the lines of [R9].
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Appendix A. Fayet-Iliopoulos Terms for ADE Singularities

The large N duality we studied in the previous sections should generalize to other ADE
fibered geometries. In this appendix we’ll demonstrate that the large N dual geometries

for these more general spaces have some of the same qualitative features. Consider the
ADE type ALE spaces

A 2?24+ y2+ =0
D, : 2yt 42 =0
Fg 24yt + 2t =0
E; 2+ 4yt =0
Eg : x2+y3+z5:0

which are fibered over the complex t plane, allowing the coefficients parameterizing the de-

formations to be t dependent. The requisite deformations of the singularities are canonical

12 The effects of warping in the context of [[[] have been studied in [B§. In [27], the authors
constructed supergravity solutions that were subsequently interpreted in [R§], to correspond to
D5 branes on the conifold with Fayet-Iliopolous terms turned on, i.e. the theory we studied in

section two. We thank Y. Nakayama for pointing out to us the latter work.
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(see [] and references therein). In fibering this over the t plane, the z; become polynomi-
als z;(t). At a generic point in the ¢ plane, the ALE space is smooth, with singularities

resolved by blowing up r independent 2-cycle classes
SZ, i=1,...r

where r is the rank of the corresponding Lie algebra. This corresponds to turning on
Kahler moduli

Z; = / (J +iBns) = ji +1ibns,i-
52

The 2-cycles S? intersect according to the ADE Dynkin diagram of the singularity. Con-
sider now wrapping N; D5 branes on the i’th 2-cycle class. The theory on the branes is

an N = 2 quiver theory with gauge group
[T,

with a bifundamental hypermultiplet Q;;, @;; for each pair of nodes connected by a link
in the Dynkin diagram. The fibration breaks the supersymmetry to N’ = 1 by turning on
superpotentials W;(®;) for the adjoint chiral multiplets ®;,

Wit = [ w0,
S

E
which compute the holomorphic volumes of the 2-cycles at fixed t. The superpotentials
W;(t) can be thought of as parameterizing the choice of complex structure of the ALE
space at each point in the t plane. The full tree-level superpotential of the theory is given
by
W =Y Tri(®:) + > Tr(Qi;Q;i®:i — Qi ®,;Q;:)
i i<j

where the latter sum runs over nodes that are linked.

For vanishing j;, the structure of the vacua of the theory was computed in [[]. For

each positive root e; of the lie algebra,
er = anfel
I
for positive integers n@, one gets a rigid IP! at points in the ¢-plane

t = CLLp,
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where

1(ary) an J(ar ) =0. (A.1)

Here I labels the positive root and p runs over all the solutions to ([A.]]) for that root. The

choice of vacuum breaks the gauge group down to
H U(M; ,p>
Ip

where
Ni=> " Mj,ni.
I
Turning on generic Fayet-Iliopoulos terms for the U(1) centers of the gauge group factors,

Ji
AL = T’I“Di,
; 2\/§7rgS

breaks supersymmetry while retaining (meta)stability of the vacuum as long as j; is much

smaller than the mass of all the bifundamentals in the vacuum.
The ALE fibrations have geometric transitions in which each P! is replaced by a
minimal S3. The leading order prepotential Fy for all these singularities was computed in

B7], and is given by

2miFo(S) :% S s (m(ﬁ) - g) 5 D €1t €a(0) SbSe 1og(A0) +o

b b;éc
(A.2)

where the sum is over all critical points

b=(I,p),

and I(b) = I denotes the root I to which the critical point labeled by b corresponds. We
are neglecting cubic and higher order terms in the Sy ,, which are related to higher loop
corrections in the open string theory. Above, e; - e is the inner product of two positive,
though not necessarily simple, roots. Geometrically, the inner product is the same as
minus the intersection number of the corresponding 2-cycles classes in the ALE space.

In addition, there are fluxes turned on in the dual geometry which are determined by

/ Hrr =M,
Aa

/ (Hrr + —HNnNs) = brr,1(a) + —ONS,1(a) » / dJ = jr(a)-
B, s B,

S

holography:
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The theory on this geometry without fluxes is an A" = 2, U(1)* gauge theory, where k is the
number of S’s. The effect of the fluxes on the closed-string theory in this background was
determined in [[3[3]. The result is a set of electric and magnetic N' = 2 Fayet-Iliopoulos

terms, which enter the N/ = 2 superspace Lagrangian,

o 1 4 a i a5
L= EIm (/d 6 Fo(A )) + 47TR6(Y E,).

with

N bNS 'a
Ea:(a 7bRR,a7j_)7

S S

and where the auxiliary fields Y are shifted by the magnetic FI term,
M*=(0, M*,0).

The auxiliary field Lagrangian then has the form

Lowe = —GapRe(Y)? - Re(Y)? + — Re(14)Re(Y)* - M + —Re(Y)* - E,
s 47 47

and integrating out the auxiliary fields sets them equal to their expectation values,
Yo = —Geb (Eb + Re(Tbc)MC) +iM®
or, to be more precise,
—Ga Y = (b5 /g5, bER + 7 M" | ja/gs) -

We can make contact with the more familiar form of this action and its scalar potential by
reducing to NV = 1 superspace. There, the auxiliary fields yea get identified with auxiliary
fields of the vector and chiral multiplets corresponding to the a’th S3, and the fluxes give

rise to the usual flux superpotential
W =" .S, — Mads, Fo(S).

In addition, there are Fayet-Iliopoulos terms for the U(1)’s, and the total scalar potential
is given by
1 -
V= -G (0VOW + jajv/92)
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where

Qg = bRR,a + 2.bNS,a/gs'

There are vacua at the field values which satisfy
8z:L‘/r ~ fachcede ((Oée o 716771Mm)<o_éd - 7_—1171"]\471) +j€jd/g§) = 0.

At one-loop order, the prepotential has nonvanishing third derivatives only when all deriva-
tives are with respect to the same field. The vacuum condition can be simplified to this
order, and upon considering the equation as two real equations for the real and imaginary

part, the conditions become

(brR,a — Re(Tap)) M? =0
GG (bns,cbns,d + jeja) = (Mags)®.

The first of these can be solved easily for the phases of the S®. Moreover, we see that it is
equivalent to the condition that the real part of the auxiliary fields Y3 vanish for all a in

the N = 2 superspace Lagrangian,
GapRe(YY) = 0.
In light of that result, the second condition can be written as
Y, Y, =0. (A.3)

Since the supersymmetry transformations are

0V, = Xae+ ...
where
Y — L Y —iRe(Y2)* + M Yy
a V2 Y3 Y —iRe(Y2)* + M )’

(A.3) is precisely the condition that there exists some supersymmetry transformation on
each node which is locally preserved by the vacuum. Of course, for supersymmetry to be
conserved globally, these supersymmetry transformations must match for all nodes. The
condition for this to be the case is

Yy o Yy 2 YD

Mea M Me — Mb’
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which, along with the requirement that the metric on moduli space be positive definite in
the vacuum, requires that
Za = Cabe

for a positive, real constant c,,. This conforms to our intuition from the open-string
picture that preserving supersymmetry should require that the complex combination of
the FI terms and gauge couplings should have the same phase on each node.

We can also see that the vacuum we just found is metastable, as we expect based on

large N duality. Consider the Hessian of the potential,

1 ia yacyeq (10 j .. acyransc 2
4700V = ¢ o (GGG by sbhys + iss) — G MM g?).

1 ia yac ey (10 j .. acyransc 2
471'8@85‘/: m(G G GJ( NSbgVS +]Z]]>+G MM gs>,

and similarly for complex conjugates. The eigenvalues of the Hessian are manifestly pos-
itive in the limit where G, vanishes for a # b, which corresponds to widely separated
nodes, and where the matrix 0V is diagonal. Moreover, the determinant of the Hessian
is strictly positive for any Ggp, so the one-loop Hessian remains positive definite for any
Gap-

Finally, we can compute the value of the vacuum energy in the limit where the branes

are far separated. The relevant limit in this more general case is
Sa,* L ape < AO-

The vacuum energy is then given by

27 872 0

Vs s 1
V*:ZMI’ : Zel(b)-eJ(C)MbMClog%(l—COSch)
b

b#c

which reduces to the one-loop value in the gauge-theory limit, as in the A, case.
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