The component-based application for GAMESS

by

Fang Peng

A thesis submitted to the graduate faculty
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science
Program of Study Committee:
Ying Cai, Major Professor
Masha Sosonkina, Co-Major Professor

Mark Gordon
Ricky A. Kendall

Iowa State University
Ames, lowa
2007

Copyright © Fang Peng, 2007. All rights reserved.



il

TABLE OF CONTENTS

TABLE OF CONTENTS ..ottt ierteeeteteenmeneeesres e rece e s s eaeees oot e sesasssss e ssans 1i
LIST OF FIGURES ..ottt ettt et es ettt saast st cnnas e es e s e ssess st sms st sban e e snesnsnnnin 11i
LIST OF TABLES ...ttt et eeserns et stene st e cc s shess s s os e es e o e e aes b sasssssss sassssnsasaens v
ABSTRACT ..ottt see e e et b et shes et sbebesbe st sre b ebe st s e cas et nranssanaaanis PO
CHAPTER 1. INTRODUCTION ..ottt seeeenennes oo sseceacm e see e 1
1.1 Common Component ArchiteCtire ........cooviiiiiviiiiviinnie s, 4
1.2 Quantum CRemMISITY .ccovicieiie et eeens ceem s st a s enssn s nesaesmsnnnaseaens 5
CHAPTER 2. BACKGROUND ......coctvirinmrintimmrerer e cnrcamem s sess s ses s tsass s sasssssssssssssesnes 8
2.1 Quantum Chemistry Caloulations ........coieviiceiinicinnine e 9
211 BASIC TBIIMIS cueereeeiee e eeie ettt e et e e ste et seat s b s e s s s e e e e e 11
2.1.2  Other iMportant CONCEPLS ..eertireemtecoreririeecereeee e s cree e et et b e satssa s nsnr s 12

2.2 GAMESS ..ottt et e et ettt et st a et e r e a e 16
22,1 GAMESS SUCIUIES oot eteicre sttt en s cae e san e een e e s s assae e e res 19
222 DD coiictiieciasraaseee e seeme e st b b skt er et et eaa et eb e s b ne e enees 22
CHAPTER 3. COMPONENTS IMPLEMENTATION FOR GAMESS ........c.ccovvinviinincnn, 25
3.1 CCA Chemistry INterfaces .. ..cvcerierercecreic sttt e 26
3.2 Mechanisms of Creating GAMESS CCA Components..........ovimininininiinicncnnnne. 30
3.2.1 GAMESS/DDI MeChamiSm.......ccureeiereriinianierenrieierrtase s seeseesieseessesesssssssssnesnees 31
3.2.2 GAMESS/DDI/MPI MEChAMISIT ....overmmicirt et eicsi s 34

3.3 GAMESS CCA COMPONEINTS ...cviieeirmiiareitiicieeesesiesestiaeessessisessnsiesassassssasssssssasssresans 36
3.3.1 The design of GAMESS wrapper functions ........cccocecvniiinnisnnnenccincceeecens 37
3.3.2 The design of GAMESS CCA COMPONENLS.....ccovvrrirrceiriicriiiinsnnsnisnsnensnesnness 43
3.3.3  The structure of GAMESS CCA COMPONENLS ....evrevmeririineriirecrccnnerneneecacene 43
CHAPTER 4. INTEGRATION ...ttt eeeseeseessenene e esesnarn e nees e e e emcanenis 46
4.1 The Integration of the Integral Calculation........c.occcvnivcieiniiniiciccc, 47
4.2 The Design of the GAMESS Client-Side .......ccoorirveninniicireccereeeee e 50
CHAPTER 5. PERFORMANCE EVALUATION. ..o 55
5.1 TAU Performance TOoIS......cccoorriiiiaiiieniiinmeeeecer e e s et 55
5.2 Test the Performance Overhead of the CCA Framework ... 56
5.3 The Load Balance in Two-Electron Integral Computations...........cccvvevcecriennnninnins 57
5.4 Performance Evaluation for Integral Computations .......c.coovvvvivivcinincnienccnnecenns 61
CHAPTER 6. DISCUSSION AND CONCLUSION ..o s 66
ACKNOWLEDGEMENTS ..ottt srar et aes st senes s b ne s 70
REFERENCE ....c.oooiieieicirtrtecrieseeeeesenaesaeseersse s ctsacan s aseescs e sme e i saesa st st sncrse st bbb assns 71
APPENDIX A. THE GAMESS CLIENT-SIDE INTERFACE ...........cccovviiirieeniienne 73

APPENDIX B. THE COMMENTS FOR THE COMMON BLOCK “NSHEL” ................. 85



it

LIST OF FIGURES

Figure 1. Tllustration of SCF calculations ‘ 14
Figure 2. Memory allocation in GAMESS 20
Figure 3. The execution sequence of GAMESS main subroutine 22
Figure 4. DDI communication mechanism 23
Figure 5. The execution sequence of the DDI kickoff program 24
Figure 6. The structure of CCA chemistry integral interfaces 28
Figure 7. An example of using MolecularInterface 29
Figure 8. An example of using CCA chemistry components 30
Figure 9. The GAMESS/DDI communication model 33
Figure 10. The GAMESS/DDI/MPI communication model 35
Figure 11. The componentization of one-electron integral calculations in GAMESS 42
Figure 12. The componentization of two-electron integral calculations in GAMESS 42
Figure 13. The structure of GAMESS CCA components 45
Figure 14. The client-side design for GAMESS computations 54
Figure 15. The scalability of the GAMESS energy calculation with & without CCA 57
Figure 16. The loop structure in GAMESS TWOEI subroutine 58
Figure 17. The performance of the load balance in GAMESS TWOEI subroutine 60

Figure 18. The package dependence 68




iv

LIST OF TABLES

Table 1. The subroutines for computing integrals

Table 2. The wall-clock time (sec) for the energy calculation with & without CCA
Table 3. Test the dynamic load balance in GAMESS CCA components

Table 4. Test GAMESS integral computations

Table 5. Wall-clock times (sec) for two-electron integral computations

Table 6. Wall-clock times (sec) for a computation with GAMESS & MPQC

40
57
61

. 63

64
65



CHAPTER 1. INTRODUCTION

High performance scientific simulations in a wide range of areas, such as quantum
chemistry, climate, high energy physics, earth observation and bioinformatics, often solve
very complicated problems and require a large amount of resources. Most of the underlying
progréms for the scientific simulations have been under development for a long period of
time; used different computing languages and programming models. As the new algorithms,
methodology, and programming models in an area being created and upgraded, the
corresponding scientific programs become more and more complicated. While each program
is complicated by its own, the complexity can be hard to manage when several programs
need to cooperate to perform the same task. The language interoperability also becomes an
issue. ‘ :

The Component Based Software Engineering (CBSE) aims to manage the complexity
of a software system by using “plug-and-play” components. Those components are deployed
based on software functionality and can interact with each other on component-based
frameworks through the well-defined interfaces. The users are able to use the components
without knowing which programming languages are used for implementing each component.
The existing commercial available component-based frameworks include Microsoft's
Component Object Model (COM) [1], the Object Management Group's Common Object
Request Broker Architecture (CORBA) Component Model [2], and Sun's Enterprise
JavaBeans [3]. However, none of those frameworks can handle high-performance
architectures which are required for scientific programs.

Common Component Architecture (CCA) [4] was just designed for High
Performance Computing (HPC). CCA offers an opportunity for scientific packages to
dynamically interact with each other without manually dumping files, converting data
formats or painstakingly coupling codes on a case-by-case basis. With CCA, scientists are
able to construct new computations or improve the performance of their software by using
components provided by other research groups through well-defined interfaces. This
" potential of interoperability encourages application scientists from different scientific

domains to explore mechanisms to couple existing packages that offer different computing



ABSTRACT

GAMESS, a quantumn chemistry program for electronic structure calculations, has
been freely shared by high-performance application scientists for over twenty years. It
provides a rich set of functionalities and can be run on a variety of parallel platforms through
a distributed data interface. While a chemistry computation is sophisticated and hard to
develop, the resource sharing among different chemistry packages will accelerate the
development of new computations and encourage the cooperation of scientists from
universities and laboratories. Common Component Architecture (CCA) offers an
environment that allows scientific packages to dynamically interact with each other through
components, which enable dynamic coupling of GAMESS with other chemistry packages,
such as MPQC and NWChem. Conceptually, a computation can be constructed with “plug-
and-play” components from scientific paékages and require more than componentizing
functions/subroutines of interest, especially for large-scale scientific packages with a long
development history. In this research, we present our efforts to construct components for
GAMESS that conform to the CCA specification. The goal is to enable the fine-grained
interoperability between three quantum chemistry programs, GAMESS, MPQC and
NWChem, via components. We focus on one of the three packages, GAMESS; delineate the
structure of GAMESS computations, followed by ourapproaches to 1ts component
development. Then we use GAMESS as the driver to interoperate integral components from
the other two packages, and show the solutions for interoperability problems along with
preliminary results. To justify the versatility of the design, the Tuning and Analysis Utility
(TAU) components have been coupled with GAMESS and its components, so that the
performance of GAMESS and its components may be analyzed for a wide range of system

parameters.
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capabilities. Without such a component model, data exchange between two scientific
packages can only be accomplished through a large amount of file recoding.

The standards of CCA are defined by the CCA Forum [5], a group of scientists from
different national laboratories and academic institutes who are researchers in the high
performance computing community. The CCA Forum aims to define the standards for the
component-based frameworks for the high performance computing. 1t has developed several
tastes of CCA frameworks, the supporting infrastrocture and some general-purpose
components. The lénguage interoperability of CCA is enabled by Babel [6], a tool for solving
the interoperability of components that are implemented in different programming languages
such as FORTRAN, C, C++, Python, and Java. Babel relies on the Scientific Interface
Definition Language (SIDL) for defining interfaces for scientific components.

Quantum chemistry is one of the scientific disciplines that are actively involved in
exploring the interoperability capability offered by CCA. The complexity in quantum
chemistry computations results in a large number of noncommercial packages devéIOped by
research laboratories and universities (The General Atomic and Molecular Electronic
Structure System - GAMESS [7], MPQC [8], and NWChem [9] are three major quantum
chemistry programs from DOE), each with unique capabilities and deficiencies. The
development of a new method is usually very time-consuming thus it is an important task to
integrate capabilities of different packages to develop new computations that are not possible
with any single package.

While CCA offers an environment for scientific packages to interact with each other,
a package must be componentized before it is able to provide/use components to/from other
packages. With the long development history of quantum chemistry programs, efforts to their
componentizing cannot be accomplished by any single research group. Scientists must join
together to define a set of standardized interfaces and data structures for computations of
interest, and then packages are to be componentized accordingly. -

Even with the standardized interfaces and techniques provided by CCA forum,
componentizing a package with a long development history itself poses a big challenge,
which must be conquered before enabling interoperability between packages. While

componentizing quantum chemistry programs on coarse-grain level was conducted in
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previous studies [10], another important and wseful approach for the quantum chemistry
community is to componentized low-level computations such as molecular integral
evaluations.

Molecular integral evaluation is a fundamental problem of all traditional quantum
chemistry computations. The integral facilities available within one individual quantum
chemistry program may lack one or more features of the others, limiting the range of
methods which can be implemented and made available to users of the package. Because
writing efficient code for computing a new type of molecular integral requires significant
development effort, it is natural to share the integral facilities as components. The obvious
benefit of sharing integral capabilities among various packages is the ability to implement
new theoretical methods very rapidly.

In this thesis, I will give the background knowledge of this research in Chapter 2,
including the basic concepts of quantum chemistry, the CCA terms, the parallel method used
- in GAMESS, and some special features of GAMES. In Chapter 3, several important CCA
interfaces will be introduced and the corresponding components for each chemistry package,
especially for GAMESS, will be explained in details. We developed the GAMESS CCA
interface in two different parallel models: GAMESS/DDI and GAMESS/DDI/MPI models.
GAMESS uses the Data Distributed Interface (DDI} [11] as its parallel communication
mechanism, which mainly relies on TCP/IP sockets for communication. Integrating the
GAMESS/DDI system with CCA is our first attempt to integrate GAMESS with the CCA
framework. Besides TCP/IP sockets, the Message Passing Interface (MPI) [12] can also be
used for DDI to enable GAMESS communications and a different mechanism has been
developed for integrating GAMESS with MPI. In this mechanism DDI depends on MPI,
instead of TCP/IP sockets, as the communication method. Since MPI is a widely used
message passing interface, the GAMESS CCA components in this model are easily
compatible with other components within CCA frameworks.

The componentizing mechanisms for several GAMESS computations: energy,
gradient, Hessian, and integral computations, will be presented. The energy, gradient and
Hessian computations have been incorporated into the GAMESS. ModelFactory component

and the integral computation has been implemented in GAMESS.IntegralEvaluatorFactory
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component. The strategies for wrapping the existing GAMESS code and implementation
details of those GAMESS CCA components will be demonstrated.

Chapter 4 will cover the integration process of GAMESS with other scientific
packages, including MPQC and NWChem, in the integral calculation. The discussion of the
difficulties we encountered and preliminary experiment results will be presented in Chapter

5. In Chapter 6, we will conclude the research we have done and give the future works.

1.1 Common Component Architecture
The purpose of Common Component Architecture is to facilitate and promote the

development of high performance scientific simulations with little programming
requirements [4]. The CCA standard specifies just a minimal set of services that is required
to be CCA compliant [5]. This design philosophy ensures the scientists focus on the

‘ implementation of components for-a program instead of worry much about the interaction of
components from different packages.

In the Common Component Architecture, the components are basic units of software
that are composed together to provide a run-time component environment [5]. Instances of
components are created and managed within a framework, which provides the basic services
for components to operate and communicate with each other [5]. Ports are the fully abstract
interfaces, through which components interact with each other and with the encapsulating
framework [5]. A component must declare its Provides port to provide its own functions or
services for other components to use, and also registers its Uses ports to connect references to
Provides ports that are provided by other components or by the containing framework [5].
The communications between different components or between components and frameworks
are enabled by connecting matched Provides-Uses port pairs through the framework.

Based on the requirements and restrictions from a wide range of scientific researches,
several frameworks that compliant to CCA standards have been developed, each has unique
features. There are two major types of CCA frameworks: direct-connect and distributed
frameworks [5], where direct-connect frameworks do not have ability to manage components
distributed on a wide area network, and distributed frameworks supports distributed

components [5]. CCAFFEINE [14], developed by Sandia National Laboratory, is one of the
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most commonly used CCA frameworks. It is a light-weight direct-connect framework that
supports SPMD (Single Program Multiple Data) parallel computing meodel. Since
CCAFFEINE was first developed, the CCA forum has continually upgrade it and provided
tutorials and technical helps for helping scientists in a variety of area to create scientific
components, it is the best choice for us to start the component development for quantum
chemistry programs. Other CCA frameworks, such as DCA [15], DECAFE [16], CCAIN,
which are direct-connect frameworks, and XCAT-JAVA [17], XCAT-C++ [18] and
SCIRUN-2 [19], which are distributed frameworks, are also popular in some other research
areas. 1 will only focus on the design of CCAFFEINE as it is the only one has been used for
* this research. In the future, we may extend chemistry components to be able to run on other
CCA frameworks.

CCAFFEINE uses the peer component model, in which each component is treated
independently without in a hierarchal relationship with other components. Components
attach to a framework and connect with other components through Provides-Uses port pairs,
which make them ecasier to be added or unplugged to/from a framework. When a
CCAFFEINE framework is running in a parallel environment, each process has its own
instance of a CCA framework, and an identical set of component instances and connections
are loaded into each framework [4]. The set of similar component instances that are
distributed across parallel processes can communicate with each other by using any available
communication system (i.e. MPI, PVM [20], Global Arrays [21], or shared memory), while
gach framework instance that contains the identical set of component instances and
connections manages the interactions among component instances within its own process [4].
Different sets of component instances are allowed to use different communication systems
simultaneously under the same framework [4]; this is useful for the integration of legacy
codes under CCA frameworks since legacy software usually has its own communication

mechanisms.

1.2 Quantum Chemistry
Quantum chemistry is a subfield of theoretical chemistry that uses both physics and

mathematical methods to solve the electronic structure of the molecule [22]. Molecules are



¢
composed of positive charged nuclei and negative charged electrons. Different combinations
of nuclei and number of electrons or different geometrical arrangements of nuclei in space
form different kinds of molecules. Several primary problems that the quantum chemistry
need to solve are: the geometrical arrangements of the nuclei that correspond to stable
molecules; their relative energies and properties; the rate by which one stable molecule can
transform into another; and the time dependence of molecular structures and properties [23].
However, the only systems that could be calculated correctly by using the quantum chemistry

theory are those with one or two electrons, such as H," molecule. Therefore, different
Iy 2

approximations are used for finding approximate solutions for different purposes.

There are two kinds of approximation methods in quantum chemistry: ab initio and
semi-empirical. If solutions are generated without reference to experimental data, the
methods are usually called ab initio (Latin: “from the beginning”) [23]. The ab initio method
is usually used for solving smaller molecules, since the calculations are very complex and
time consuming, scaling formally as the fourth power of the size of the molecules. The semi-
empirical method avoids some time consuming calculations, but uses some parameters
generated from experimental measurements or by performing ab initio calculations [23].
GAMESS, MPQC and NWChem are three of the ab initio quantum chemistry programs.

The advances in both computer hardware and software have enabled some of
theoretical methods to be translated into computer programs in order to produce real data that
cannot otherwise be calculated by human hands. With computer programs, chemists do not
have to remember every theoretical formula or understand every complicated calculation.
They just enter the molecular geometry, the type of calculations, and some other features of a
molecule, and wait for the results computed by computer programs. However, even for the
same theoretical method, with different algorithms, hardware or computing models, different
results may be produced. This variety of computations requires the users to choose the right
set of parameters and methods to be able to get valuable results for a problem. Chemists
often use the computing results to evaluate a large pool of experimental results or predict
certain properties a molecule [23], instead of using it as the exact answers. There are many
possible molecules and associate properties, but only a little portion of them have been

evaluated by calculation or experiment. With the development of theoretical methods, better
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algorithms, and the increasing computer power, the chemistry calculations can apply to more
problems and become more accurate.

Because of the complexity of quantum chemistry calculations, many programs have
been created by national laboratories and universities, while each program contains special
capabilities. It is very complicated and time-consuming to create a new computation from
scratch in a chemistry program, which may be already implemented in another program. The
best computations provided in each package can be accessed by utilizing the interoperability

capability provided by CCA through CCA components.



CHAPTER 2. BACKGROUND

GAMESS, NWChem and MPQC are three fundameﬁtai chemistry packages that are
developed under the Department of Energy (DOE). The General .Atomic and Molecular
Electronic Structure System (GAMESS) is an ab initio quantum chemistry program, which
was originally formed from HONDOS and other programs at the Department of Energy’s
National Resource for Computations in Chemistry in the late 1970°s [7].

Most of the source code of GAMESS is designed with FORTRAN 77. While
portability can be achieved through this design (every modern cluster has a FORTRAN 77
compiler), incorporating an external module or interacting with other scientific packages can
be very difficult since scientific packages developed in recent years seldom use FORTRAN
77 exclusively. ‘

The Massively Parallel Quantum Chemistry Program (MPQC), written in the C++
programming language, computes properties of atoms and molecules from first principles.
MPQC has been designed as a massively parallel program from the beginning, and it can run
on a wide range of platforms, from UNIX workstations, symmetric multi-processors, to
massively parallel architectures.

The class libraries underlying the MPQC program are written in C++ using an object-
oriented design. Following a class hierarchy very similar to the CCA integral interfaces [24],
the integral packages are encapsulated by integral evaluator and integral factory interfaces
described within the MPQC documentation [25]. This encapsulation insures a clean
separation of the integrals code which greatly simplified packaging the integral packages
within MPQC as stand-alone components.

NWChem is a quanturn chemistry program that is written in FORTRAN 77. It uses an
object-oriented design and programming approach to facilitate functionality reuse and hide
internal data. One example of this is the integral abstract programming interface (API) of
NWChem. The API exposes only specific aspects of the integral computation to the
programmer and hides many of the details with regard to which integral programs are used
(there are currently four different algorithms within NWChem) and how the computations are

done. This API has initialization routines that require the geometry and the basis set as well
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as a termination routine that cleans up and terminates the integral computations. There is a
set of routines based on the type of integrals to be cbmputed (energy, first or second
derivative). In addition, the API allows the programmer to select the accuracy {or the
threshold for radiai cutoffs) for the integrals. Once the API has been initialized there are
specific routines to tell the programmer how much memory is needed for the buffers required
by the API and then to call each of the different types of integrals that are available. This
architecture allows any improvements or new integral routines to be automatically realized
throughout the whole of NWChem.

NWChem also has basis set objects and geometry objects that must be properly
populated so that the integral computations work. The population of these objects is usually
initiated through an input file although they can also be created through functions associated
with the objects. This is particularly vseful in the context of CCA.

Each program has very different functionalities while sharing some common
calculations. Instead of recoding a method from one program to make it work in another
program, CCA provides a method to allow each program to access the functionalities of the
other programs through pre-defined interfaces. In this research, we will focus on one of the
chemistry programs: GAMESS, to detail the structure of the GAMESS computations, the
communication model, and the procedure of componentizing GAMESS. As the base of
understanding our work, several primary terms and calculations in quantum chemistry will be
introduced in this section, followed by the structure of GAMESS computations and the
parallel mechanisms of the Data Distributed Interface (DDI).

2.1  Quantum Chemistry Calculations

The heart of quantum chemistry theories is the time-independent Schrédinger
equation, which in short-hand operator form [23] is given as

HY = E¥ 2.1)

Where H is a Hamiltonian operator for a system of nuclei and electrons and it is independent

of the time; E is the total energy; ¥ is the wave function that display both wave and particle

characteristics of electronics. The square of the wave function gives the probability of finding

the electron at a giving position [23].



10

The time-independent Schrédinger equation is used to solve the wave function for
electrons and nucléi in space and their energies under certain circumstances. For every time-
independent Hamiltonian operator, H, there exists a set of quantum states, ¥r, known as
energy eigenstates, and corresponding real numbers Ex satisfying the eigenvalue equation
(22],

H|¥)=E,|¥,) (2.2)
The real number En is the eigenvalue of the Hamiltonian, also the total energy. The
Hamiltonian operator contains operators for kinetic (T) and potential (V) energy of the nuclei

and electrons.

Hyy=T,+T, +Vne +Vee +V o (23)
1 o2
T, = \%
n M, a 2.4)
o
R
2
T, = _ZEVf (2.5)
1
N
VA
Vie = = — 2.6
¢ Z;lRa —.",l ( )
N N !
Ve =ZZ|r i Q.7
i1
Z.Z
v, = ——ab 28

Ra 1s the position vector for nuclel 4. ri is the position vector for electron 7. Zas is the
atomic number of nuclei a. The Laplacian operator V7 and V2 involve differentiation with

respect to the coordinates of electron i and nuclei a [22]. 7» is the operator for the kinetic
energy of nuclei, Te is the operator for the kinetic energy of electrons, Vre is the operator for
the coulomb attraction between nuclei and electrons, Ve is the operator for the repulsion
between electrons, and Ve is the operator for the repulsion between nuclei. '

As nuclet are much heavier than clectrons and they move very slowly compare to
electrons do, it is a good approximation to consider electrons moving in the field of fixed

nuclei [23]. The Schrédinger equation is then separated into two parts: one part describes the
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electronic wave function for a fixed nuclear geometry and another part describes the nuclear
wave function [23]. This separation is called the Born-Oppenheimer (BO) approximation.
Within the Born-Oppenheimer approximation, the kinetic energy of the nuclei 7» can
be néglccted and the repulsion between the nuclei ¥ can be considered as a constant. Thus,
the remaining terms are called the electromic Hamiltonian. The electronic Hamiltonian

operator, He, for N electrons [23] is

H, =T, +V

ne

Ve + V0 (2.9)

H (2.10)

tof

=T,+H, +H,,

2
1 N
H,,=- E V;
e 2M;ot [,‘:] lJ (21 1)

Hump is called the mass-polarization, where M is the total mass of all the nuclei and the sum

is over all electrons. By the Born-Oppenheimer approximation, H. depends only on the
nuclear coordinates in space and not on their momentum. Thus, the electronic Schrédinger
equation depends parametrically only on the nuclear coordinates [23].

The Born-Oppenheimer (BO) approximation introduces very small errors for most
systems, while some effects have been implicitly neglected. Some correctness approaches
can be performed after solving the electronic Schrédinger equation. The further details have
been introduced in the classical quantum chemistry book: “Modern Quantum Chemistry:
Introduction to Advanced Electronic Structure Theory™ that is written by Attila Szabo and
Neil S. Ostlund [22].

2.1.1 Basic terms
The most common type of ab inifio calculation is called a Hartree-Fock (HF)

calculation, which is an approximate method for determining the ground-state wave function
and ground-state energy of a quantum many-body system [22]. According to the variation
principle, the approximate solutions for energies are always larger than or equal to the exact
ground state energy, which means that the lower the energy, the better the wave functions
[22]. The Hartree-Fock method aims to calculate the approximate energies by finding the
approximate wave functions that minimizing the energies greater than or equal to the exact

ground state energy. Considering the wave functions that depend on a set of parameters, we
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“can calculate the “best” wave functions by minimizing the energy that calculated by using a
given set of parameters. The calculated energy equals to the exact ground state energy only if

the given wave functions are the exact electronic spatial coordinates for the ground state [22].

The Hartree-Fock method

The most common type of ab initio calculation 1s called a Hartree-Fock (HF)
calculation, which is an approximate method for determining the ground-state wave function
and ground-state energy of a quanturn many-body system [22]. According to the variation
principle, the approximate solutions for energies are always larger than or equal to the exact
ground state energy, which means that the lower the energy, the better the wave functions
[22]. The Hartree-Fock method aims to calculate the approximate energies by finding the
approximate wave functions that minimizing the energies greater than or equal to the exact
ground state energy. Considering the wave functions that depend on a set of parameters, we
can calculate the “best” wave functions by minimizing the energy that calculated by using a
given set of parameters. The calculated energy equals to the exact ground state energy only if

the given wave functions are the exact electronic spatial coordinates for the ground state [22].

The basis set approximation

In practices, the exact wave functions are impossible to get except for very small
systems, such as one and two electron systems. Therefore, a set of known basis functions are
normally used to express.the unknown approximate wave functions. The basis function is a
linear combination of primitive Gaussians, all of the same type and all on the same ﬁuclcus,
but with different exponents:

Yo = Z dkaxiymzue—ﬁkrz
P (2.12)

Where k is the index of the primitive Gaussians, di is a contraction coefficient, &, is the

2 _ .2 2,2
exponent, x, ¥, z are the Cartesian coordinates of the nucleus, and PEXEY T The
angular momentum of the shell type (S, P, D, F, G, ...) is given by / + m + n. For example,

when [ +m + n =0, we get an S-type basis function,
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-5t
Za = deae *
k

2.13)
And, when / -+ m + n =1, we have three types of different basis functions,
Za = Z dka xe._é.krl
k (2.14)
Ko = Z dkaye_akr-
& (2.15)
Za = Z dkaze_akrz
X (2.16)

The formulas (2.14), (2.15) and (2.16) correspond to the Px, Py and P: basis functions,
respectively. Each set of basis functions are referred as an Atomic Orbital (AO). We define a
Molecular Orbital (MO) as a linear combination of atomic orbitals. The MO may be written

as [23]:

M
b= Cuka 2.17)

Where ¢, is a molecular orbital that forms from a linear combination of M atomic orbitals,

Yo+ ¢q 18 2 MO coefficient. The Hartree-Fock equations may be written as {23]:
' M M
FY Cokla =5 Cuka (2.18)
o [4
Where F7 is called the Fock operator, &; is the energy.

The Self-Consistent Field (SCF) techniques

The Hartree-Fock equations in the atomic orbital basis may be given in [23]:

Fop ={x. 17| 25) (2.19)
The F matrix contains the Fock matrix elements. Each Fap element is given as:
Faﬂ = haﬁ +ZGaﬁwD}.¢)‘ (2.20)
s

Where h,, denotes integrals involving the one-electron operators; G,z denotes the two-
electron integrals involving the electron-electron repulsion operator; D,; denotes the

occupied MOs of coefficients, which is often referred as a density matrix [23]. The density



14

matrix can only be determined by diagonalizing the Fock matrix. On the other hand, the Fock
matrix is only determined when all the occupied MOs coefficients are known. Therefore, the
Fock matrix may be solved by starting from guessing a set of MOs coefficients and
computing the Fock matrix literately.

Figure 1 shows how the Fock matrix is calculated by using its own solutions. First,
the initial parameters (e.g. basis functions, molecular geometry, etc) are fed in and all one-
and two-electron integrals are calculated. Then a suitable start guess for the MO coefficients
are generated. The initial density matrix is calculated. The Fock matrix is formed from
integrals and density matrix. By diagnosing the Fock matrix, the eigenvectors contain the
new MO coefficients. This new MO coefficients will be fed into the system to form a new
density matrix. If it is sufficiently close to the previous density mairix, we are done,
otherwise we need to iteratively calculate the Fock matrix and generate new density matrix

[23]. Thus, the Hartree-Fock method is also called the Self-Consistent Field (SCF) method.

Obtain initial guess for
density matrix

For Fock matrix

l

[terate Diagonalize Fock matrix

|

Form new densitv matrix

<+——Two-¢lectron integrals

Figure 1. Hlustration of the SCF procedure [23]

The Hartree-Fock method usually is considered as the starting point for more
sophisticated methods. Either more approximations will be used, leading to a Semi-empirical

method, or more basis functions are used to get a more accurate solution [23].
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The evaluation of gradient and Hessian
The change in energy for moving a nucleus can be written as a Taylor expansion [23].

) 3
%%(R_RG)Z‘_'_}_E(R_RO):"_,_... (221)

oE
E(Ry=E(R R — R
(&) (o)"‘aR( o)+ 6 oR’

Where R is the nuclear geometry. The first derivative,g% is the gradient g, the second

2
derivative,-gg— is the force constant {Hessian) H etc [23]. A point is a stationary point if the

gradient at that point is zero. If the Ro geometry is a stationary point, the force constant

matrix may be used for evaluating harmonic vibrational frequencies and normal coordinates,

q [23].

One- and two-electron integrals

The calculation of one-electron integrals (1- or 2-center integrals, where a center
refers to a specific atom in a molecule) and two-electron integrals (1-, 2-, 3-, or 4-center
integrals) is the basis of constructing the Fock matrix in any quantum chemistry program that
uses the Self-Consistent Field (SCF) method.

Consider a molecule with & electrons. The nuclear-nuclear repulsion is a constant for
a given nuclear geometry. The nuclear-electron attraction is the sum of terms, each depends
only on one eleciron coordinate since the nuclei are fixed according to the Bom-
Oppenheimer (BO) approximation. The same holds for the electron kinetic energy. The
electron-electron repulsion depends on two-electron coordinate. The operators fnay be

collected according to the number of electron indices [23].

1, z
__ig2 N fa
hi= =5V ;mﬂ oy 2.21)
o
&= (2.22)
N N N
He= DI+ .Y 85+ Vm (2.23)
i=1 i=l j>i

The one electron operator hi describes the motion of electron i in the field of all

nuclei, and gy is the two electron operator giving the electron-electron repulsion. The one-
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and two-electron integrals in the atomic basis [23] are given in Egs. (2.24) and (2.25),
respectively:

(2R 25) = 2 )(——V"’)z,s l)ﬂ’HZIza(l 2,{0)a

Al (2.24)

(a1 8| 225) = [ 2.0, Q) —— 2, )z, Q) ar,
I - | 2.25)

Where y is a basis function (or Atomic Orbital, or AQ); a, B, vy, and § are the indexes of
the basis functions; % is the one-electron operator and g is the two-electron operator.

In practice, integrals are calculated in batches, where a batch is a collection of
integrals having the same exponent (in this thesis, we use the term Gaussian shell or shell to
represent a set of basis functions with the same exponent) [23]. For example, a <pp|pp> type
batch has 81 individual integrals, where the basis function for a P-type shell has 3 types
(3*3*3%3 = 81). We usually call a batch of one-clectron integrals a shell doublet and a batch
of two-electron integrals a shell quartet.

In short, to compute the one- and two-electron integrals, we need the one-electron
operator, the two-electron operator, the basis set information, and the coordinates of the
atoms in the molecule (molecular geometry). Different packages may use different

techniques and can handle different sets of basis functions to calculate integrals.

2.1.2 Other important concepts
Use of symmetry, The group theory is a mathematical tool that often used in

quantum chemistry for greatly simplifying applications by exploring the symmetrical
properties in molecules [26]. The symmetric properties of a molecule can be identified by
some symmetry operations that are performed on the molecule such that the position and
orientation of the molecule before and after the operations are identical [26]. Those
symmetry operations are grouped and labeled with specific symbols, including a proper axis
of rotation (Cn, n = 1,2,3, ...), the reflection through a plane (s), inversion through a center
(1), the rotation about an axis followed by reflection through a plane perpendicular to that

axis (%) [26]. For easily classifying the possible symmetrical operations associate with a

molecule, the symmetry operations are grouped into different “point group”. By entering a
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point group, a guantum chemistry program can quickly decide to ignore some computations
that will produce the same results due to the use of symmetry. For example, many one- and
two-electron integrals for Fock operators can be ignored if the suitable linear combinations of
basis functions have been formed (symmetry adapted functions) [23]. Almost all quantum
chemistry programs use the symmetry to reduce the computation cost. Therefore, the use of
symmetry is an important optimizing approach for a chemistry program and should be
incorporated into the associate component implementation.

Integral screening. Integral screening is a technique to ignore calculating integrals
that are estimated to have little or no contribution to the final results of the Fock matrix [23].
In practices, integral screening is normally done at the batch level, when the largest term of
an integral batch is smaller than a given cut-off, the whole batch will be neglected [23].
Integral screening techniques are normally used as an optimizing mean in quantum chemistry
programs, although the cut-off or thread hold for screening out integrals may be different in
different pro'grams.

Conventional & direct SCF. The number of two-electron integrals grows as the
fourth power of the size of the basis set (the number of total basis functions, M). There are 8

different permutations for a two-electron integral <xixz[xsxs> that are identical, so the total

number of integrals can be less (approximately 1/8 of M %} [23]. However, the disk space or
memory that required for storing all the integrals will increase quickly while the size of the
molecule increases. For example, a basis set with 100 basis functions generates ~ 12.5x10°
integrals (each is a double precision floating point number), requiring ~ 100 Mbytes of disk
space or memory [23]. When the number of basis functions grows to 200, there will be
~25x10° integrals, and the required disk space or memory grows to ~ 1.5 Gbytes. When the
size of a molecule is relative small, it may be possible for all the integrals to be stored in
memory. This kind of approach is very efficient for performing a Hartree-Fock calculation.
However, for larger molecules, the disk space was the only choice. In a conventional method,
all of the integrals will be computed at once and stored in the disk for later calculations. In a
direct method, the integrals will be computed and used immediately at each SCF iterate
without storing to or reading from the disk. Traditionally, the conventional method was used

for large molecules when a large amount of disk space was required and the performance of
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CPUs was relatively slow. As the performance of CPUs increases quickly relative to the
speed of the disk 1/0, it is quite normal for direct SCF jobs to be faster than conventional
SCF jobs.

2.2 GAMESS

GAMESS is able to solve a wide range of quantum chemistry computations including
Hartree-Fock (HF) wave functions (RHF, ROHF, UHF), GVB, and MCSCF using the self-
consistent field method [7]. It is installed on many high performance computing systems,
Including those at most DOE, DOD, and NSF supercomputer centers, many academic
institutions, and widely in the private sector. It is also part of the standard benchmark suites
employed, for example, by NERSC, by the High Performance Computer Modemization
Program, and by several computer companies (e.g., IBM). By 2005, GAMESS had groWn to
roughly 650,000 lines of FORTRAN [27] and the number of GAMESS users is estimated to
be on the order of 100,000.

Back in 1970°s when GAMESS was developed; the top-down structured
programming model was the primary software engineering methodology. In a top-down
program, a large problem is broken into several sub-problems with each subprogram act
independently to solve a sub-problem. Each subprogram in tumn can be broken into sma.iler
programs, and eventually, the flow of control reaches down to problems that can be solved
directly, without further discompose. This programming model is simple and easy to use.
However, the lack of data structures and the object-oriented design makes the code hard to be
reused.

With such a top-down structure, componentizing GAMESS is not as easy as
componentizing an object-orient program. We have to reorganize the structure of several
GAMESS computations and comply with its parallel mechanisms to be able to integrate
GAMESS and CCA frameworks. Since we cannot modify the original GAMESS codes, one
strategy we used is to create an extra layer of codes — wrapper functions, to rewrite some
GAMESS computations based on the original GAMESS codes. The methods from CCA
interfaces invoke the wrapper functions, in stead of using GAMESS subroutines directly. The

details about the wrapper functions and the CCA interfaces for GAMESS will be introduced
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in the next chapter. In this section, some basic knowledge about GAMESS computations will
be presented, including the structures of GAMESS computations, the memory allocation

strategies, and the communication mechanisms for the Distributed Data Interfaces (DDI).

2.21 GAMESS Structures
A GAMESS computation starts by reading user input options from an external input

file. GAMESS groups related input options into many namelist groups, and users have to
follow the specified format and use pre-defined key words to customize the input
information. The detailed input description can be found in the documents along with the
GAMESS distributions.

Among the user input options, the type of wave functions (the theory), the basis sets
and the molecular geometry are three kinds of the basic information that are required for all
computations. In our experiments, we used the SCF theory for all of the computations since it
is the starting point for more coinplicated or more accurate calculations. GAMESS can read
basis sets from three different sources: from basis sets that are normally stored in GAMESS
source code specified by the $BASIS group, from the $DATA group (both $BASIS and
$DATA are groups of user input options), or from an external file. If the SBASIS group is
omitted, the basis set must be given in the $DATA group input. The $DATA group describes
the global molecular data such as point group symmetry, nuclear coordinates and possibly the

basis set.

The memory allocation

When GAMESS starts, it allocates a large pool of memory from the system; the
amount of memory can be decided by users from an input file or by the default value. If the
memory is initialized correctly, a function can requests the amount of memory that is less
than the available memory, and GAMESS will dynamically allocate the required amount of
mermory from‘ the memory pool to the requester. This memory will be returned to the
memory pool after being used and released. Figure 2 shows an example of this dynamical
allocation of memory. The blue rectangle is the large memory pool allocated for GAMESS
initially, which includes the part from the memory location « to the memory location z. When

subroutinel needs to create an array of dimension sizel, it will submit a request, request!, for
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allocating a memory of size sizel, where b = a + sizel. If sizel is less than the available
memory, the memory from the location a to the location b will be reserved for arrayl. Again,
if subroutinel sends another request for allocating memory of size2 for array2, where c = b +
size2 and c is less than z, the memory from the location b to the location ¢ will be reserved
for array2. The memory from the location ¢ to the location z is still available. The requests
for returning the memory of arrayl and array2 have to be called later to avoid the memory

leaking error.

subroutinel

requestl request2

A
v
A
v

sizel size2

Figure 2. Memory allocation in GAMESS

Pass arrays between subroutines

Since there are no pointers or references used in FORTRAN 77, GAMESS passes the
start location of an array in the memory pool and the size of the array to another subroutine
as a parameter with the type of integer. The passed memory location in the other subroutine
will be declared as an arrdy instead of an integer. For example, when a subroutine,
subroutine2, needs to use arrayl and array2 (Figure 2) that allocated in subroutinel, the
following two steps will be needed:

a. 1nsubroutinel, call subroutine2 by

CALL SUBROUTINEZ2 (a, b, sizel, size2)
b. in subroutine2,

SUBROUTINEZ2 (a, b, sizel, size2)

dimension a{sizel), b(size2)
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In this way, a and b can be used in subroutine2 as arrays. The similar strategy for

passing arrays between subroutines is also used in constructing GAMESS wrapper functions.

The sequence of a GAMESS computation

A GAMESS computation starts from the main subroutine and goes to a pre-defined
branch based on the type of the computation. The global information, such as the program
configuration, the basis set information and molecule coordinates, is stored as common
blocks to be shared between subroutines. For some computations, intermediate data are
stored as disk files to be used iteratively. The approach that GAMESS uses to handle global
information complicates the componentizing process since we cannot simply pass pointers to
global information between subroutines as in other object—orientéd or modularized prograrns.

The execution sequence of the GAMESS main subroutine is shown in the left column
of Figure 3. First, the GAMESS version information is printed and the Distributed Data
Interface (DDI) [11] is initialized. Based on the user configuration during the compilation
step, DDI choose to use TCP/IP sockets, MPI, or other communication libraries for
communication. -

Next, the calculation type, molecule coordinates, basis sets and other user input
options are read from an external input file and the corresponding common blocks are
initialized based on those inputs. Depending on the type of computation, the execution
follows different branches, such as energy, gradient, Hessian, optimize, or saddle point.

" These computation branches are not independent from each other; one computation branch
may overlap another branch. For example, a gradient computation needs to compute the
energy first, so the route for the gradient branch will first go through the energy branch and
then calculate the gradient. At the end of a computation, the control returns to the main
subroutine for finalizing computations, cleaning up memory and finalizing the

communication layer.



Main: initialize variables and
1 | the commurication layer.

Read in basis sets, molecule
coordinates and other user
options.

Choose & branch from the: list:
energy, gradient, Hessian,
optimization, etc.

rmrme e i e

Main: finalize memory and the
cammunication layer. - ’

R U

Figure 3. The execution sequence of the GAMESS main subroutine has four parts,
shown on the left-side. Several wrapper functions (the right-side) are created by dividing
the sequential main subroutine into smaller functions.

2.2.2 DDI
In the DDI communication model, two processes are normally assigned to a CPU,

with one process performing the computational tasks, while the other exists solely to store
and serve requests for the data associated with the distributed array [11]. There are some
cases, in which a data server is not required, such as when using DDI over one-sided message
libraries'. Also, with the latest version of DDI, the data server is not required when
MPI/MPI2 or ARMCI is used as a communication mean®. In Section 2.2.2, I only consider
the cases when the data server is needed, since the design of compute process/data server
is a special feature in DDT and is hard to understand.

On a SMP machine or cluster (Figure 4), all the DDI processes (both compute and
data server processes) within a node have direct access to all distributed array segments in
the shared memory of that node. Thus, each compute process and data server can use system
shared memory operations, such as copy or paste, locally to access the portion of a

distributed array in its local shared memory without using any parallel communication

! DD relies on LAPT or SHMEM libraries rather than TCP/IP on some high-end parallel systems
* For this version of DDI, only the ARMCI model has been used in the official distribution of the GAMESS program
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mechanisms. Depending on the platform, communications between compute processes and
data servers among different nodes occur either via TCP/IP sockets connections or MPI/MPI-
2 [12]. When DDI uses TCP/IP sockets for communication, the DDI kickoff program is used
for starting the required number of processes on every requested machine in the cluster that
will run the job. If MPI/MPI-2 is used as the cornmunication mechanism, then mpirun (or

mpiexec) 1s used to start GAMESS processes.

Nodeo ._ o . . -..Npt'ie'l N

. CPUGL T cPUI CCPU2 . CPU3
| Process ¥ Process | Pl'océssz - [Process 3
Compute |- : :
Process
hared * 3
J CILOTY,
Data Prockss 6 Process 7
Server )

Figure 4. When DDI is used on an SMP cluster, all DDI processes within a node can
access the distributed array in the node. The communications between data servers
among different nodes depend on the communication mechanism configured with DDI
(i.e., TCP/IP sockets, or MPTI/MPI-2) [11].

Figure 5 shows the sequence of how the DDI kickoff program starts GAMESS or
other programs. First, the DDI kickoff program needs the program name and the host list as
command-line arguments; the host list is a list of host machine names and the number of
CPUs in each node. The master DDI kickoff process analyzes the host list to catch the
information on how many compute processes and data servers reside on each host machine.
Second, a copy of the DDI kickoff program, along with information about host machines 1s
spawned on each remote host in binomial order. As scon as a copy of the DDI kickoif
.program is launched on a host node, it creates the requested number of compute and data
server processes on that host machine. Finally, a copy of the GAMESS program, with the

host machine list, socket ports, host machine and process identities as the command-line
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arguments, starts on each computer and data server process. The TCP/IP socket connections
between a DDI kickoff process and a compute or data server process on the same host
machine is created after the program starts the DDI initialization procedures. The DDI
kickoff process on each host machine will wait for each compute and data server process to
check in by listening to TCP/IP socket connections. As soon as all compute and data server

processes are checked in, the communication is established for all compute and data server

' bm Nodeo - | | 4 D] ‘
bt ot e “Kickoff

processes.

‘Node |

Y

2 ; e R 2
Compute | [Process 0] {Process 1] f | -[Process 2] - [Process 31
Process : _

Data Procoss § ] P‘rocc.ss‘)| ) 'ViProccss 18] [Process 11 -
Server B ) ) . )
CPUB  CPUI CPU2  CPU3
Nede 7 Nedos
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Compute | Process 4] [Process5] ! Process 6| . [ Process 71
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Figuare 5. The numbers along with the arrows show the sequence of how the DDI kickoff
program starts the remote DDI kickoff processes. First, the DDI kickoff program starts
the master DDI kickoff process (the white one) in Node 0. Then, it starts a copy of remote
DDI kickoff process (the blue one) in Node 1. Both DDI kickoff processes in Node 0 and
Node I will send commands to start the remote DDI kickoff processes (the yellow ones)
on Node 2 and Node 3. Next, all the DDI kickoff processes will start the remote DDI
kickoff processes in other Nodes if needed. The same procedure will continue until all the
required nodes have a copy of DDI kickoff program running. Finally, each copy of the
DDI kickoff program will create one compute process and one data server process on
each CPU and GAMESS (or other programs) will be running in each compute/data server
process.
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CHAPTER 3. COMPONENTS IMPLEMENTATION FOR GAMESS

In general, the first step of componentizing a package is to create the SIDL interfaces.
In our case, we need to extend the pre-defined chemistry interfaces in the cca-chem-generic
package [28]. Next, the implementation files of the specified programming languages (C,
C++, 177, 90, python, or java) are generated based on those interfaces by using Babel, the
language interoperability tool. The auto-generated implementation files initially contain no
customized codes; they include only some splicing banners and some auto-generated codes
and comments. Programmers need to insert codes between splicing banners in each
implementation file with the specified programming language; in our case C++. During each
compilation, those implementation files will be regenerated according to the SIDL
definitions, but the customized codes that are inserted between splicing banners will not be
modified.

In addition, to compoflentize a large-scale FORTAN 77 based code such as
GAMESS, wrapper functions are necessary as a bridge between CCA interfaces and the
native GAMESS code. Since there is no object-oriented design in the GAMESS code, it is
difficult for the implementation of GAMESS CCA comﬁonents to utilize GAMESS
subroutines directly. The use of wrapper functions divides GAMESS subroutines into smaller
and less interleaving functions and therefore makes the componentization possible.

However, simply implementing the chemistry interfaces is not enough for GAMESS
to run under the CCA framework, since GAMESS relies on DDI to start the computation,
either sequential or parallel. We first need to construct comrnunication models that allow
DDI to run under the CCA framework. When DDI relies on TCP/IP as communication
methods, the DDI kickoff program is used to kick off the corresponding program, GAMESS
in our cases. Thus, we constructed our first communication model for the GAMESS CCA
components: the “GAMESS/DDI” model, where the DDI kickoff program will start the CCA
framework in cach process. The GAMESS/DDI model was useful when we started
implementing the CCA interfaces for GAMESS, since it was the easiest and the most
straightforward way to make the GAMESS CCA components work under the CCA
framework. The limitation of the GAMESS/DDI model is that only the programs that use
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DDI as the communication interfaces are able to run in parallel. The second communication
model, therefore, is created, in which DDI depends on MPI/MPI-2 as the underlying
communication layer. We call the second model the “GAMESS/DDI/MPI” model. In this
model, the MPT startup program is used to kickoff the required processes and any programs
that use MPI are able to run in parallel. _

In this section, I will introduce several commonly used CCA chemistry interfaces that
defined in the cca-chem-generic package; followed by the detailed description and analysis
of the two communication models for GAMESS CCA components; finally, the
implementation procedure of several GAMESS CCA components will be demonstrated in

details.

3.1 CCA Chemistry Interfaces

Most quantum chemistry programs perform fundamental chemistry calculations.
Although existing chemistry packages may have a lot of overlapping functionalities, some of
~ them may be more efficient in certain - calculations while others may provide special
functionality. The CCA provides an environment for different quantum chemistry programs
to communicate with each other, and opens the possibility to utilize the best of each package.
The CCA Chemistry group [28] already integrates several quantum chemistry programs,
optimization solver packages, and parallel data management packages to perform geometry
optimizations.

A set of chemistry interfaces are defined in the cca-chem-generic package [28] that
each chemistry package can implement to create chemistry components and classes. In the
design of those chemistry interfaces, the interface for a “component” usually ends with
“Factorylnterface” and the corresponding component usually acts as a driver to return
references to some classes, while a “class” usually provides real computations. The
implementation of a component is only different from the implementation of a class in that a
component also needs to implement the gov.cca. Component and gov.cca. Port interfaces.

ModelInterface & ModelFactoryIlnterface. The Modellnterface declares the
primary functions in quantum chemistry computations, such as the evaluation of molecule

energies, gradient and Cartesian Hessians. The ModelFactorylnterface declares methods to
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provide model options and initializes the model class. Basically, a ModelFactory component
(implements ModelFactorylnterface) will be initialized with the user input options, such as
the type of theory, the basis sets, etc. The ger_model mothod could then be invoked to get a
model class (implements Modellnterface). The get_energy, get gradient, and get_hessian
methods are three primary methods for a model class to perform those chemistry calculations.

MoleculeInterface & MoleculeFactoryInterface. The Moleculelnterface declares
functions for gathering information of a molecule, such as Cartesian coordinates and atomic
number. The MoleculeFactoryinterface declares functions to instantiate molecule classes
[28]. The cca-chem-generic package provides the implementation for the
Chemistry.MoleculeFactory component (implements MoleculeFactorylnterface) and the
Chemistry. Molecule class (implements Moleculelnterface) for all packages to use.

Integral evaluation interfaces. There are four core interfaces for integral
computations: IntegralFEvaluatorlInterface for 1-center integrals,
IntegralEvaluator2interface for 2-center integrals, IntegralEvaluator3interface for 3-center
i.ntegrals‘ and IntegralEvaluatordInterface for 4-center integrals. We call any classes that
implement the above interfaces integral evaluators. Another core interface is
IntegralEvaluatorFactorylnterface, which serves as a driver that returns references to the
integral evaluators. An integral  evaluator  factory  that  implements

- IntegralEvaluatorFactorylnterface usually also extends the gov.cca.Component and
gov.cca. Port interfaces and is used to provide integral evaluators for each chemistry package.
Figure 6 shows the relationship among those five core integral interfaces and the three

chemistry packages.
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IntegralEvaluatorFactoryintérface : ) O

integral evaluator factory CChinterface

Integral .Integral Integral Integral [_]
Evaluatori Evaluator2 Evaluator3 Evaluatord companent
Interface Interface Interface Interface .

to provide an infegral evaluator factory component and implement one or more of
IntegralEvaluatorNInterface (N=1, 2, 3 and 4) to provide the integral evaluatorN classes.
The integral evaluator factory component is a driver component to return the references to
integral evaluators for integral computations.

An integral evaluator interface provides a compute method for calculating integrals
for a shell multiplet. For example, the compute method of IntegralEvaluator2interface is for
computing a shell doublet, which is illustrated below,

/** Compute a shell doublet of integrals.
@param shellnuml Gaussian shell number 1.

@param shellnum? Gaussian shell number 2. */
void compute (in iong shellnuml, in long shellnum2);

Where two indexes of Gaussian shells are passed as parameters and the resulting integrals are
stored in a buffer that is initialized by the integral evaluator. Similarly, the compute method
of IntegralEvaluatordInterface needs four indexes of Gaussian shells as parameters to
compute integrals for a shell quartet.

Several auxiliary interfaces. Several auxiliary interfaces are also important to the
initialization of integral evaluators: CompositelntegralDescrInterface, MolecularInterface,
Atomiclnterface and Shelllnterface. The IntegralDescrinterface is used to configure integral
evaluators, which stores the information such as the type of integrals and derivative centers.
The MolecularInterface provides a molecule (implements MoleculeInterface) object and the
atomic basis data for a molecular Géussian basis set, which includes the atomic basis set for
any atom number of the molecule. The Atomiclnterface provides the shell data for an atomic
Gaussian basis set (AO), which provides a Gaussian shell for any given shell number. The

Shelllnterface provides the primitive and contraction data for a Gaussian shell [24]. Through
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these interfaces, the information required for computing integrals can be passed from one
package to another package without initializing every package. Figure 7 shows an example of

how molecule coordinates and the basis set are stored in CCA integral objects.
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Figure 7. When using the water molecule and the “STO-3G” basis set as inputs, the
information of molecule coordinates and the molecular basis sets in the GAMESS program
is shown in the upper table. The upper block of the table shows the X, Y, Z coordinates of
the water molecule. The bottom block of the table contains several columns. The
information shown in the order from left to right is: the atomic symbols, the index of
Gaussian shells, the Gaussian shell types, the primitive Gaussian shells, the exponents and
contraction coefficients. Following each atom symbol is a block of Gaussian shells
associated with it. The corresponding CCA integral components that store the same
information are shown in the lower graph. The molecule coordinates are stored in a
Molecule object (implements Moleculelnterface). The basis set information is stored in
three Atomic (implements Atomiclnterface) objects with the references to the corresponding
Shell (implements Shelllnterface) objects. A Molecular (implements Molecularinterface)
object contains the references to the Molecule object and three Atomic objects.
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An example of applications. Figure 8 shows an application example of the chemistry
components under the CCA framework. The MoleculeFactory component, ModelFactory
component and a driver component are instantiated under a single CCA framework. The
MoleculeFactory component can get the reference of the Molecule class through the Provides
port of the MoleculeFactory component and invoke the methods of the Molecule class.
Similarly, the driver component can get the reference of the Model class that instantiated and
initialized by the MoleculeFactory component, and then invokes the methods of the Mode!
class, such as get energy, get gradient, and get hessian. The driver component will also

output calculation results returned from the Mode! class.

. MoleculeFactory

CCA Framework

. O Cormponent

' Instantinted
Class

Figure 8. Port A is a Provides port that is implemented by the MoleculeFactory
component, through which the reference of the Molecule class is passed to other
components. Port C is a Provides port that implemented by the ModelFactory component,
through which the reference of the Mode! class is passed. Port B and port D are Uses ports
that are registered by the ModelFactory component and the driver component for using
the services provided by other components.

3.2 Mechanisms of Creating GAMESS CCA Components

GAMESS requires DDI as the communication library when running in both
sequential and parallel. DDI mainly relies on TCP/IP sockets for communication, and can

also use MPI/MPI-2 as its underlying communication mechanisms. When a GAMESS CCA
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component is instantiated under a CCA framework, it requires DDI being initialized to be
able to use GAMESS functions. It is thus important to integrate DDI with the CCA
framework to enable GAMESS CCA components running in both sequential and parallel.

Since TCP/IP is the most commonly used mechanism used DDI for GAMESS that
installed on most of architectures, we start integrating DDI and the CCA framework by using
the TCP/IP sockets as the underlying communication methods - the GAMESS/DDI model.
The GAMESS/DDI model works fine for the components that use DDI l as the
" communication library. However, for the components that do not use DDI, the
GAMESS/DDI model restricts them for running in parallel. For example, since the DDI
kickoff program is required for starting DDI processes in the GAMESS/DDI model, the MPI
startup program cannot be used for starting processes and components that rely on MPI/MPI-
2 for communications are not allowed to run in parallel.

The GAMESS/DDI/MPI model is designed for integrating DDI with the CCA
framework when MPI/MPI-2 is used as the underlying communication library. However,
when the data server is required, the GAMESS/DDI/MPI model raises problems for some
components that depend on all MPI processeé for computations. Since half of processes will
be assigned as data servers, purely serving the calls for communication requests, there are
only half of processes performing computation tasks. When a component needs to perform a
global computation, such as a global sum calculation, they vﬁll wait for the results from the
half of processes (data servers) that will never perform the global calculation, and a deadlock
occurs.

This problem can be avoided if no data server is required, all of the allocated
processes being used for computations. There is a version of DDI (newly developed) does
not require thé data server when relies on MPIV/MPI-2 or ARMCI. We will introduce
GAMESS/DDI/MPI model in both cases: the cases when the data server is required and

when it is not required.

3.21 The GAMESS/DDI mechanism
When more than one CPU is required, the DDI kickoff program starts a compute
process/data server pair for each CPU. An instance of the CCA framework is started on each

compute process. The data servers are put to sleep and purely wait for the communication
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requests from compute processes. Each instance of the CCA framework will initialize
components and the connections among components based on user inputs. All the
components and connections contained in a framework are identical on each compute
process. The GAMESS CCA corhponents contained in the framework of each comphte
process will initialize the DDI communication layer, in which only the components or the
underlying programs that use DDI as the communication mechanism are able to run in
parallel. The CCA framework or other components under the‘ same framework cannot run in
parallel, since the communication mechanisms used by the CCA framework or other
components, such as MPI/MPI-2, will not be initialized.

Figure 9 shows a simple example of the GAMESS/DDI model under the CCA
framework. On a SMP cluster with 4 nodes, the DDI kickoff process (section 2.2.2) on each
node starts one compute process/data server pair for each CPU of that node, and then cach
compute process starts an instance of the CCA framework. The CCA framework, the
component instances and their connections that are contained in the CCA framework are
identical for all compute processes. When the DDI initialization procedure succeeds and the
communication layer of DDI is established, the GAMESS CCA components within the same
node can directly access the distributed arrays that are stored in the local shared memory of
that node, and the GAMESS CCA components among different nodes can communicate with
each other by using TCP/IP. The underlying communication operations are performed by the

data server that associated with each compute process.
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Figure 9. Under this model, one compute process/data server pair is created for each
CPU. The CCA framework (green part) is initialized on each compute process. The data
servers are put to sleep and purely waiting for the requests for the communication from
compute processes. A is the driver component, which gets the Mode! object from B (the
GAMESS component) through Provides/Uses ports. C is the MoleculeFactory
component, which provides the molecule object to the GAMESS CCA component. The
yellow area is the portion of distributed arrays that stored in the local shared memory of a
node, where the compute processes and data server processes can directly access. The
communication of compute processes among different nodes is through the TCP/IP
sockets connections. |

The major difficulty we encountered in designing this model is passing command-line
arguments, which contain the information for initia}izing the DDI program (Section 2.2.2),
from the DDI kickoff program to the GAMESS CCA components. When the DDI kickoff
program starts the CCA framework, the command-line arguments are passed to the CCA
framework, and there is no way to pass the arguments directly to ah component under the
CCA framework. Without the command-line arguments, DDI initialization cannot connect
with the corresponding DDI kickoff program in that host machine, and the communication
layers cannot be established correctly. Therefore, the “Stovepipe” Library provided by the
CCA. framework is used to convey the argument list from the CCA framework to the
GAMESS CCA comﬁonents.

Even though the GAMESS/DDI model works fine for GAMESS CCA components, it
prohibits the components from other packages that do not use DDI from running in parallel.
" The GAMESS/DDI/MPI model is necessary for GAMESS to interact with other packages
through the CCA framework.
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3.2.2 The GAMESS/DDI/MPI mechanism

With the data server

The current version of DDI (the version is used with GAMESS) requires the data
server when relies on the mix of MPI/TCP. In this model, the MPI startup program will
initialize the required processes, where half of allocated processes are specified as "compute
process” and half of processes are assigned as "data server". For example, when running the
CCA framework with 2» processes, the DDI initializing procedure will use only » processes
for computations and » processes for the communication. The processes within the same
node can direct access to the portion of distributed arrays in the local shared memory of that
node. This is different from the GAMESS/DDI model in two ways. First, both MPI and
TCP/IP are used for communication. MPI is used to pass the actual data, such as a part of
distributed arrays, when a process tries to access the portion of the distributed arrays that is
not in its local shared memory. The TCP/IP is used for some smaller messages, such as a
system call for waking up a sleeping process. The mixed message passing method is used,
since most MPI implementations require a process to continuously check for the incoming
calls. Thus, using pure MPI will make a data server compete for CPU resources with
compute processes. In the TCP/IP implementation, while waiting for a request, each data
server process is put to sleep, thus essentially yielding full CPU access to the compute
process [11]. Therefore, the mixed MPI/TCP model for DDI should out-perform using pure
MPL. ‘

The GAMESS/DDI/MPI model for GAMESS CCA components is based on the
MPY/TCP model for DDI. This model allows GAMESS and other programs to run in parallel
through MPI/MPI-2 calls when running under the same CCA framework. However, with the
requirement of the data server by DDI, the other programs may have trouble to run correctly
in parallel since half of allocated processes have been put to sleep. For example, the MPQC
program knows that the number of processes in MPI_COMM_WORLD is 2», while only »
of processes are performing computations. When MPQC doing a parallel calculation, such as
the global sum, it will by default use all 2 processes for the computation, but the number of
actual processes that running MPQC components is only #; the other » processes are assigned

as data servers and do no real computations. This will cause the deadlock in MPQC for




35

waiting for the results from » data servers that will never perform the task.

MPIAIPE-2

MPI/MPI-2
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Figure 10. ‘Under the GAMESS/DDI/MPI model, half of the processes is assigned as
compute process and half of the processes is specified as data server. The CCA framework
(green part) is initialized on each compute process. The data servers are put to sleep and
purely waiting for the requests for the communication from compute processes. A is the
driver component, which gets the Model object from B (the GAMESS component)
through Provides/Uses ports. C is the MoleculeFactory component, which provides the
molecule object to the GAMESS CCA component. The yellow area is the portion of
distributed arrays that stored in the local shared memory of a node, where the compute
processes and data server processes can directly access. The communication of compute
processes among different nodes is through TCP/IP sockets or MPI/MPI-2. Components
A and C are able to communicate among compute processes through MPI/MPI-2.

Without the data server

A newer version of DDI has eliminated the requirement of the data server when using
MPI/MPI-2 or ARMCI as the underlying communication 1ibrary. When this version of DDI
relies on MPI/MPI—Z, it purely uses MPI/MPI-2 calls for communication, not depending on
TCP/IP. When using the older version of DDI with MPI/MPI-2, half of the allocated
processes are assigned as data servers. If GAMESS works with other programs that use
MPI/MPI-2, the programs other than GAMESS may enter the deadlock when they expect
"data servers" should do the same computations as "compute processes" do, since data

servers are used purely for communication, no computations are allowed. By eliminating the
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data server when relying on MPI/MPI-2, DDI is able to work with other programs without
the restriction caused by the data server. It thus allows GAMESS to cooperate with other
programs by using MPI/MPI-2 through CCA components.

The upgraded GAMESS/DDI/MPI model for the GAMESS CCA components is
based on the newer version of DDI when it depends on MPI/MPI-2. This model uses the MP1
startup program to initialize the required processes. The sequences for initializing the CCA
framework and GAMESS computations are similar with the GAMESS/DDI/MPI model with
the data server, except that all of the processes are performing computations (no data server).
The CCA framework and components that use MPI/MPI-2 as the communication method
will be able to run in parallel by using this model without any restrictions from
GAMESS/DDL

3.3 GAMESS CCA Components

GAMESS has implemented several chemistry components, including

GAMESS. GaussianBasisMolecular, GAMESS. GaussianBasisAtomic,
GAMESS. GaussianBasisShell, GAMESS.ModelFactory, GAMESS. Model,
GAMESS. IntegralEvaluatorFactory, GAMESS. Integral Evaluator?2, and

GAMESS.IntegralEvaluafor4. To be able to use GAMESS functions, the wrapper functions
are required as bridges between GAMESS and the CCA interfaces. There are four groups of
wrapper functions have been created according to their functionalities: (1) initializing the
GAMESS program and DDI; (2) initializing the basis set information; (3) calculating energy,
gradient and Hessian; (4) calculating le- and 2e-integrals. The implementation of those
wrapper functions is different from cases to cases, depending on the implementation of the
corresponding GAMESS subroutines and the SIDL interfaces for GAMESS CCA
components.

The implementatibn of GAMESS CCA components is straightforward for most of
methods, just invoking the corresponding wrapper functions. The wrapper functions can be
considered as a part of the implementation for GAMESS CCA components. The
implementation files in the server-side for GAMESS CCA components are initially empty,

being auto-generated by BABEL based on SIDL interfaces. To insert codes into those
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-irnplementation files, the corresponding wrapper functions are invoked for performing
specific calculations in GAMESS. For exalhple, to implement get emergy method of
GAMESS.Mode! class, the gamess get energy wrapper function is called inside the
get energy mothod. Thus, the wrapper functions can be considered as the part of
implementation for GAMESS CCA components, or as the extra layer of function calls
between the component implementation files and the original GAMESS subroutines.

In this sectidn, we will present the procedure of constructing wrapper functions, the
implementation of the GAMESS CCA components, and finally the structure of GAMESS

CCA components.

3.3.1 The design of GAMESS wrapper functions
The layer of wrapper functions is between the CCA interfaces (the implementations

for GAMESS CCA components) and the original GAMESS codes. The wrapper functions
are created based on CCA SIDL interfaces and the underlying structure of GAMESS
subroutines. When a method defined in a SIDL interface that require the specific information
from the GAMESS program, such as the exponent for a primitive Gaussian, a corresponding
wrapper function is created for reading the exponent from the associated common block in
the GAMESS program. The method in CCA side (the implementation files) will invoke this
wrapper function, instead of directly reading the common block from the GAMESS program.
There are several reasons that we require wrapper functions.

First, the GAMESS program adopts a top-down programming model and there is no
object-oriented or modularized design concepts built in. A computation (a branch) is usually
started from a driver subroutine and continued with several sub-branches based on the user
input option or the default settings. The codes for those sub-branches usually interleave with
each other or depend on the results computed by branches. When a CCA method needs to
access a sub-problem, instead of the whole computation, there are no subroutines that we can
use directly to calculate the sub-problem without touching common blocks or codes in other
subroutines. These tightly interleaving codes for GAMESS computations make the
componentizing procedure a hard task. If we reorganize the part of codes for solving a sub-

problem and group them into wrapper functions with the modularized design, it is possible
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for us-to invoke these wrapper functions from the CCA method. Otherwise, there is no way
that we can componentize a computation in GAMESS. Moreover, we can test the wrapper
functions for a GAMESS computation without touching the CCA implementations, and we
only need to test if the invoke/return processes are correct. '

Second, the wrapper functions can be accessed easily through the function headers for
multiple times without touching the real codes. When a newer version of GAMESS is
distributed, the corresponding codes in wrapper functions are also required to be upgraded.
We need to manually modify/test wrapper functions or create an automatic tool to perform
this task. The whole concept of CCA is for the reusability and interoperability between
software systems. It would be easier to manage the code if we use a GAMESS computation
through the wrapper functions, instead of inserting GAMESS codes directly into the CCA
implementation files.

Finally, the current GAMESS CCA components are implemented in C++, and the
GAMESS code is written in FORTRAN 77. The wrapper functions are necessary as the
middle layer of the function calls in between the C++ component implementation and the
FORTRAN 77 GAMESS program. The following details several strategies we used for

constructing wrapper functions.

Initializing GAMESS and DDI

In Section 2.2.1, the sequence of GAMESS main subroutine is divided into four parts:
(1) mitializing variables and the communication layer; (2) read in user options; (3) choose a
computation branch according to the type of the computation; (4) finalizing memory and
communication layer. The right column of Figure 3 shows how we divide and wrap the
original sequential main subroutine into several smaller wrapper functions. The wrapper
function gamess_start is for initializing GAMESS computation and the communication layer
(DDI will be initialized); gamess_end is for finalizing memory and DDI. The construction of
these two wrapper function is simple: basically just wrapping the codes that corresponding to
each part and group them into two subroutines. However, parts of the DDI code have to be
modified depending on which model is used: the GAMESS/DDI model or the

GAMESS/DDI/MPI model.
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When using GAMESS/DDI/MPI model, the MPI initialization method MPI Init will
be invoked during the initialization of DDI. However, the CCA framework will also call
MPI Init at the beginning. Since MPI Init cannot be called more than once, we have to
modify DDI to ignore the call to the MPI Init method. A flag is added before the call to

MPI_Init, so that MPI Init will not be executed if it has already been invoked.

int flag;
MPFI_ Initialized(&flag);
if (1flag) {
if(MPI_Init (&argc, &argv} != MPI_SUCCESS} {
fprintf({stdout,™ DDI: MPI Init failed.\n"};
fflush{stdout); exit (911};
}
When using the GAMESS/DDI model, the DDI initialization requires a list of

command-line arguments, such as process id, port number, hostname, etc, in the DDI-known
format, that are passed from the DDI kickoff program. When the GAMESS program works
alone (without using the CCA framework), the list of command-line arguments will be
passed from the DDI kickoff program to the GAMESS main subroutine, and then passed to
the DD initialization method DDI Init. However, when the GAMESS program works with
the CCA framework, the command-line arguments will be passed from the DDI kickoff
program to the CCA framework. There is no way that the command-line arguments will be
directly passed from the CCA framework to DDI_Init.

By using the StovePipe library in the CCA framework, the command-line arguments
can be read by GAMESS CCA components and then passed to DDI init. Since the StovePipe
library requires a special format for storing the command-line arguments, such as “--
argument_name --argument valuel ... —-argument_nameN —argument_valueN”, the format
of the command-line arguments that created in the DDI kickoff program have to comply with
the format that the StovePipe library requires. The format for the arguments will be
converted back to the format that DDI knows later by a GAMESS CCA component and be
passed to the method DDI Init from the GAMESS CCA component.

Energy, gradient and Hessian calculations. For the third part of the GAMESS
main subroutine (the third rectangle from above to the bottom at the left-hand column in
Figure 3), several wrapper functions are created: gamess_get energy, gamess_get_gradient

and gamess_get_hessian. This list can be expanded by creating a wrapper function for each
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computation type. Those wrapper functions are constructed by setting the “run type” to the
corresponding type of computation, such as energy, gradient, Hessian, and optimization. The
final results of the computations will be read from the associate common blocks or the direct
access files (where GAMESS stores those results).

Initializing the basis set information. GAMESS stores the basis set information,
suc_:h as primitives, contraction coefficients, and exponents, in the common blocks NSHEL
and INFOA (Appendix B has detailed description about the common block NSHEL)., A

wrapper function has been created for each element in the items of the common blocks.

COMMON /NSHEL / EX{MXGTCT),CS (MXGTOT) ,CP (MXGTQOT) , CD (MXGTCT},
CF{MXGTOT) , CG (MXGTOT)} , CH (MXGTOT) ,CI (MXGTOT} ,
_ KSTART (MXSH} , KATOM(MXSH) KTYPE(MXSH) KNG (MXSH) ,
* KLOC(MXSH),KMIN(MXSH) KMAX(MXSH),NSHELL

*

COMMON /INFOA / NAT, ICH, MUL, NUM, NOMT, NE, NA, NB,
ZAN (MXATM) , C (3, MXATM) , TAN (MXATM)
For example, the gamess_ex wrapper function will return the exponent with the
specified primitive.

/** Get the exponent with the specified index of primitives */
void gamess_ex (int64 t* index, double* answer);

The integral computations

GAMESS computes two kinds of AO integrals, one- and two-electron integrals. For

Table 1. The subroutines for computing integrals

‘Computation Subroutine [Description
ONEEI ?he driver subrm'ltme for the oneg-electron
GAMESS integral calculation
HSANDT calculate integrals over all shell doublets
one-electron — p
integral gamess_le_initialize initialize the one-ciectron integral
. GAMESS - - calculation
computation - >
Wrapper | gamess dblet integral compute integrals for a shell doublet
Functions . finalize the one-electron integral
gamess_le_finalize .
- = calculation
the driver subroutine for two-electron
GAMESS JANDK calculation
two-electron TWOEI calculate integrals over all shell quartets
intcgral . GAMESS | gamess_twoei_initialize m1t1ahz§: the two-electron integral
computation calculation
Wrapper - -
Functions |22mess_twoei_compute | compute integrals for a shell quartet
gamess twoei finalize finalize the two-integral calculation
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two-electron integrals, GAMESS provides four computational methods, each of which has its
strength for computing different sets of shell types. By default GAMESS chooses the most
efficient one by picking the best method for each shell quartet. Users can choose a specific
integral code through the input options. For ease of presentation, we omit details of data
structures and functions used in integral computations, but list only the driver subroutines for
one- and two-electron integral calculations in the GAMESS code and the corresponding
wrapper functions in Table 1.

The subroutine ONEEI (Table 1) for the one-electron integral computation in
GAMESS is for initializing one-clectron integral calculation and calling the subroutine
HSANDT to compute one-electron integrals over all pairs of Gaussian shells. A two-level
nested loop structure is used in the subroutine HSANDT to loop over all i and j shells, where
i and j are indexes of Gaussian shells. However, the cca-chem-generic package defines the
compute method of IntegralEvaluatorZInterface to return integrals for only one pair of shells;
to comply with the interface we cannot just wrap the integral subroutines in GAMESS. In
order to create a wrapper function that computes only one shell doublet while making
minimum modification to the original GAMESS subroutine, the initialization, finalization,
and computation steps are separated into three wrapper functions. Figure 11 shows how we
extract the initialization procedure from ONEEI and HSANDT to form a single function for
initializing one-election integral calculations. The computation code in HSANDT is wrapped
into a function that calculates integrals for one pair of shells with variables (i,/) in the loops
as parameters. The wrapper functions are invoked by the GAMESS.IntegralEvaluator?

(implements InfegralEvaluatorZInteij’ace) class.
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Figure 11, The componentization of one-electron integral calculations in GAMESS.

~ The subroutine JANDK (Table 1) is the main driver for computing two-electron
integrals. It first allocates memory for integral buffers and initializes integral calculations.
TWOEI is then called for calculating two-electron integrals over four basis functions.
However, the cca-chem-generic package defines the compute method of
IntegralEvaluatordinterface to return integrals for only one shell quartet. Similarly, we need_

to create a wrapper function that computes integrals for only one shell quartet.

JANDK: ! nitialization L. Calculating two-electron integrals ... Other calculations
1

i Call for two-electron
1 integral calculation
1
1

i Sttt T St I

Initialization .... ! Loop over {ii, jj, kk, i} primitives A IFinalization!
[ L ! 1

- 1 O F]

TWOEL

Set ii, jj, kk, Il as parameters,
only compute integrals for
one shell quartet

Figure 12. The componentization of one-electron integral calculations in GAMESS

Combining the initialization steps in JANDK and TWOEI (Figure 12), a wrapper
function is used for initializing two-electron integrals. With the same strategy as

componentizing one-electron integral computations, the part that loops over four basis
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functions is wrapped as a function to compute one shell quartet with (7i,jj,kk,/]) as parameters.

Finally, a wrapper function is created for finalization of two-electron integral calculations.
The reason we separate initialization steps from the computation steps-is to reduce the

overhead of the wrapper functions. The wrapper functions are designed to compute integrals

for a shell doublet or a shell quartet, so they can be called ol¥*) times for one-electron

integral calculation and ofw*) times for two-electron integral calculation. Without separating
the initialization step from computation steps, there would be a significant amount of

overhead for computing integrals.

3.3.2 The design of GAMESS CCA components
The implementation of GAMESS CCA components is straightforward as long as the

associated wrapper functions have been constructed. The GAMESS. ModelFactory component
implements ModelFactorylnterface, and is able to return the GAMESS.Model class. The
get_energy, get_gradient and get_hessian methods of the GAMESS. Model class will invoke
the wrapper functions gamess_get energy, gamess_get _gradient and gamess_get hessian.
Through the ModelFactorylnterface Uses/Provides port, the energy, gradient, and Hessian
calculations provided by GAMESS can be used through the CCA interfaces. Similarly, the
GAMESS. IntegralEvaluatorFactory component implements
IntegralEvaluatorFactorylnterface, and is able to return the GAMESS. IntegralEvaluator2
and GAMSS.Integ-alEvaluatoM classes for GAMESS integral computations (Figure 6). The
compute method of the GAMESS.IntegralEvaluator2 class invokes the wrapper function
gamess_dblet_integral for computing a shell doublet and the GAMESS. IntegralEvaluatord
class calls the wrapper function gamess twoei_compute for calculating a shell quartet.
Through the IntegralEvaluatorFactoryinterface Uses/Provides port, the functionality of the
integral calculation can be shared between GAMESS and other chemistry packages.

3.3.3 The structure of GAMESS CCA components
GAMESS stores basis set and molecule coordinates in common blocks, through

which the values required for integral computations - the indexes of Gaussian shells,

exponents, contraction coefficients, and Cartesian coordinates - are shared among different
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subroutines, and Integral calculations can be performed. The GAMESS program initializes
common blocks, memory, and communications by reading the user input options from an
input file. Most of the input options in GAMESS have default values, but the basis set and
molecule coordinates are required for all input files. The input file is read for many
subroutines during a computation; without this file there is no way GAMESS can be
initialized and perform computations. Even though the GAMESS components we developed
are based on the interface for a “theoretically independent” component, the underlying
wrapper function depends on the original design for initializing the GAMESS computations.
To deal with the common “input file” iésue, our approach is to have the
GAMESS. ModelFactory component create a disk file with the format of the GAMESS input
file, based on the user options that are passed from the CCA parameters. This disk file will be
passed to the GAMESS wrapper function gamess_start to initialize GAMESS computations.
Figure 13 shows the dependencies among GAMESS CCA components, GAMESS wrapper
functions and the GAMESS program. GAMESS CCA components are built on top of
GAMESS wrapper functions, which wrap the functionalities of GAMESS into non-
interieaving functions. To construct an application of GAMESS CCA integral computations,
a GAMESS. ModelFactory component and a GAMESS. IntegralEvaluatorFactory component
(implements IntegralEvaluatorFactoryInterface) are instantiated in a CCA framework. This
framework is middleware implementing 2 CCA model [14]. The GAMESS. ModelFactory
- component reads user input options from CCA parameters, creates a GAMESS input file on
disk based on those input options and calls the wrapper function gamess_start to read the
input file and initialize GAMESS common blocks and communications. The
GAMESS.ModelFactory component also provides a GAMESS.Model class (implements
Modellnterface) for calculating the energy, gradient and Hessian. After GAMESS
computations are initialized successfully, the GAMESS.IntegralEvaluatorFactory component
is able to provide the GAMESS.IntegralEvaluator? class  (implements
IntegralEvaluator2interface) and the GAMESS.IntegralEvaluator4 class.
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User input options

ModelFaetory IntegralEvaluatorFactorylnterface | tC?fA
Interface - : . nierrace
GAMESS GAMESS : [::]
ModelFactory 1 IntegralEvaiuatorFactary | component
Create an
input file IntegralEvaluator2 IntegralEvaluatord
 Interface Interface
: ] Class

Input file

Read
input file

Figure 13. GAMESS CCA components are built on top of GAMESS wrapper functions.
However, the initialization of GAMESS computations could not be componentized and
relies on an input file for initializing common blocks and communications.



46

CHAPTER 4. INTEGRATION

The purpose of this research is to solve the interoperability of the three chemistry
packages: GAMESS, NWChem and MPQC (more packages may be involved in the future),
to share the functionalities among those packages. Through the pre-defined CCA chemistry
interfaces, a package is able use the functionalities provided in other packages under the
CCA framework. This resource sharing enables a new computation being constructed quickly
by choosing components from one or several preferred packages.

However, the integratioﬁ of components from the existing packages is not as easy as
integrating components that are created from scratch. The componenté from GAMESS and
NWChem are based on the large legacy codes that are mostly written in FORTRAN 77. The
functionalities, parallel mechanisms and underlying structures of those components are
restricted by the design of the existing legacy codes. Even for the components that perform
the same kinds of computations but from different packages, the way of using those
components may be different. For example, the two-electron integral computations in
GAMESS are implemented with a load balancing mechanism that allows the tasks (integrals)
distributed among processes evenly. Instead of using the load balance mechanism to
paralielize the integral computation itself, both NWChem and MPQC parallelize the routines
that call the integral computations. This makes the way of using CCA integral components
from GAMESS different from the components provided by the other two packages.

Theoretically, users should not worry about the underlying design of components.
However, especially for the components constructed from the large legacy code, this is hard
to achieve in practices. The well-designed interfaces and the set of fully tested components
may help us to create a user-friendly, flexible, and powerful component-based software

system for the quantum chemistry simulations.
- As a starting point for integrating the three chemistry packages, we choose to
integrate the integral calculations. We use the GAMESS ModelFactory component for
reading user input options; pass a GAMESS. GaussianBasisMolecular object to the
MPQC. IntegralEvaluatorFactory component; calculate integrals by using the integral
evaluators from MPQC. Since the CCA integral components for NWChem were still under
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development at the time we constructed the integration steps, we will leave the integration
with NWChem as one of our future works. |

To generalize the integration of the already componentized computations, such as
energy, gradient, Hessian, and integral, we designed an interface for the “client-side”
functions of GAMESS CCA components. The “client-side” in this research is a set of classes
and data structures that are designed and created by using the CCA chemistry .
classes/components with specific language binding. The programmers can choose a language
binding from the list that allowed by BABEL, such as C/C+t, FORTRAN 77/90, Java, and
Python. The corresponding language bindings for a component can be generated by using the
BABEL tools. For example, the GAMESS. ModelFactory component is implemented in C++.
If we need to create the “client-side” for GAMESS CCA components with FORTRAN 77,
the “f77” binding has to be generated before the methods in the GAMESS. ModelFactory
component can be accessed from the FORTRAN 77 “client-side™ functions.

The section 4.1 will show the integration steps for integral calculations by GAMESS
and MPQC CCA components. The section 4.2 will introduce the design mecbanism of the

GAMESS client-side and the possible issues for implementing the client-side interfaces.

4.1 The Integration of the Integral Calculation
We have already introduced the implementation details of GAMESS CCA integral

components and the structure of using GAMESS CCA components. To demonstrate the
procedure of integrating the integral calculation over the three chemistry packages, we need
to have an overall knowledge of the CCA integral componeﬁts from both MPQC and
NWChem. Then, the procedure of integrating GAMESS and MPQC to perform the two-

electron integral computation will be presented.

MPQC CCA integral components

MPQC components are derived in a straightforward manner from the class libraries
underlying the MPQC package. For example, the IntegralEvaluator4 CCA object simply
wraps a class derived from sc::TwoBodylnt. On the client side, CCA integral factories are
wrapped by the sc::IntegralCCA class and CCA evaluators, such as IntegralEvaluatord, are
wrapped by the appropriate evaluator class, such as sc::TwoBodylntCCA. Thus, MPQC has
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no code that directly uses CCA integral interfaces, with all function calls to CCA objects
occurring through a wrapper object iinpicmenting an abstract interface. There are two
integral evaluator factories available within MPQC, IntV3EvaludtorFactory- and
CintsEvaluatorFactory, providing access to the native ntV3 integral package and the Libint
package [15]. Details about.the design of MPQC integral components are described in a

previous publication [1 6].

NWChem CCA integral components

As with the GAMESS code, the NWChem component software essentially consists of
wrappers to access the capabilitics of the NWChem integral API. Currently, the
NWChem.ModelFactory needs to be created and initialized so that NWChem has the proper
information concerning the basis sets and the molecular configuration. It is anticipated that
this will change in the future. Once the Model Factory has created a Model, then NWChem
has also initiated its other functionalities such as memory management (global array
allocation), communication protocols and run-time database management. This is currently
essential for the integral components to function properly.

A significant portion of the CCA integral interface is similar to the NWChem API
and there is a fairly direct one-to-one mapping. However, the IntegmlDescrInterface is
significantly different with no analog in NWChem, so the specifics of the types of
computations that the API is to perform are kept in the components and translated to the
appropriate API calls.

The integral termination is straightforward. However, the appropriate Model also
needs to be terminated to end all of the NWChem processes. Since NWChem CCA
components are currently being upgraded from working with the older version of Babel tools
and the CCA framework to working with the newest version of those packages, the

integration of GAMESS and NWChem will be part of our future work.

Interoperability between GAMESS and MPQC
To test interoperability between packages, we pass the basis set information, the type
of integrals, and molecule coordinates from a GAMESS. ModelFactory component to a

MPQC integral evaluator factory component by invoking a get evaluator method. For
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example, the SIDL  definition for the  get evaluator4  method  of

IntegralEvaluatorFactorylnterface is showed as follows:

/*% Get a 4-center integral evaluator
@param desc Integral set descriptor
@return 4-center integral evaluator */
IntegralEvaluatordInterface get_evaluatord(
in CompeositelntegralDescrInterface desc,
in MolecularInterface bsl, '
in MolecularInterface bs2Z,
in MolecularInterface bs3,
in MolecularInterface bsd);

Using MPQC integral evaluators is expected to be as straight forward as using
GAMESS integral evaluators, as long as everything is initialized properly. For example, our
current testing is to pass a GAMESS GaussianBasisMolecular object to the
MPQOC.IntV3EvaluatorFactory component through the IntegralEvaluatorFactorylnterface
providesfuses connection. If the initialization in the GAMESS.GaussianBasisMolecular
object is correct, then the MPQC.IntV3EvaluatorFactory component should be able to return
én integral evaluator and do the same computation as a GAMESS integral evaluator.

The integration steps are as follows:

(1) Instantiate a GAMESS. ModelFactory component and a

MPQC. IntV3EvaluatorFactory component in a CCAFFEINE framework.

(2) GAMESS.ModelFactory component reads user options through CCA
parameters and initializes GAMESS common blocks, memory and parallel
layers.

(3) Create a GAMESS. GaussianBasisMolecular object and a
CompositelntegralDescr (implemented by the cca-chem-generic package)
object.

{4) Pass -the GAMESS GaussianBasisMolecular and CompositelntegralDescr
objects to the MPQC.IntV3EvaluatorFactory component and get the reference
to a MPQC.IntegralEvaluator2 object.

(5) Invoke the compute method of the MPQC. InfegralEvaluator2 object mside a
two-level loop structure that computes integrals over all pairs of shell basis

functions.
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for (inteéd_t ii=0; ii<nshell; iit++} {
for (inté6d t Jj=0; Ji<=ii; Ji++) {
eval?2 .compute(ii,ji);
}
}

(6) Pass the GAMESS.GaussianBasisMolecular and CompositelntegralDescr
objects to the MPQOC. IntV3EvaluatorFactory component and get the reference
to a MPQC. IntegralEvaluator4 object.

(7) Invoke the compute method of the MPQC. IntegralEvaluatord object inside a

four-level loop structure that computes integrals over all shell quartets.

for {inted t ii=0; ii<nshell; ii++} |
for (inté4 t ji=0; ji<=ii; Jj++} {
for (inté4 t kk=0; kk<=jj; kk++) {
for {int64 t 11=0; ll<=(kk==ii?jj:kk}; L1i++) {
evald .compute(ii,jj,kk,11}; '
}

}
}
(8) Finalize and remove all objects and components.

The goal of this experiment is to test interoperability only. The results of an integral
computation in each iterate are usuvally used by some other computation. With initial
interoperability established, our future work will turn to componentizing GAMESS code that
utilizes GAMESS/MPQC/NWChem integral components. The performance of GAMESS
integral components and issues in the interoperability of GAMESS with MPQC integral

components are discussed in Chapter 5.

4.2 The Design of the GAMESS Client-Side

We have showed the preliminary experiments on integral calculations by using CCA
components provided by GAMESS and MPQC. In this experiment, we instantiate a
Chemistry. MoleculeFactory component, a GAMESS ModelFactory component, a
MPQC IntegralEvaluatorFactory component, and a driver component in the CCA
framework and several auxiliary classes have also been created, such as
GAMESS. GaussianBasisMolecular, MPQC.IﬁtegmlEvaluatorZ, MPQOC. IntegralEvaluatord,
and Chemistry.Molecule classes. The wuser input options .are read by the

GAMESS. ModelFactory component; the basis set information and molecular geometry are
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stored in a GAMESS GaussianBasisMolecular object, which is passed to the
MPQC.IntegralEva[uatorFacto:y component; and the one- and two-electron integrals are
calculated by MPQC integral evaluators. _

However, this experiment is just for calculating all shell doublets and shell quartets
for a molecule. A driver component is needed to manage the procedure of the computation.
Whenever a new computation is required, or a new package joins in, some modification has
to be done in the driver cmﬁponent or the SIDL interfaces, etc. For example, if we want to
use CCA integral co-mponents provided by NWChem, a different loop structure may be used
instead of the loop structures we listed above for looping over all shell multiplets. Or if we
need to construct an energy calculation by using the integrals calculated by a CCA
component, an option may be added: choose a program that will be used to calculate the
integrals from the list {GAMESS, MPQC, NWChem}. There may be other options or SIDL
interfaces required to construct a computation, which will complicate the implementation of
each component.

A more flexible way of implementing a computation of multiple packages through
components is to wrap the functionalities implemented for components to create the object-
oriented client-side classes. In this section, the C++ client-side interfaces for the GAMESS
computations, such as energy, gradient, and Hessian, will be presented, by u§ing integrals
calculated by integral evaluators from GAMESS, NWChem or MPQC. Before we jump into
the detailed design, we need to understand how such a computation is processed. The
sequential steps for performing an energy calculation are as the follows: |

1. Initialize GAMESS computations from a GAMESS input file: create a

GAMESS.Model object, from which the gamess_start and gamess read input

subroutines are invoked. '

2. Create a GAMESS.GaussianBasisMolecular object based on the basis set and
molecular geometry information from the GAMESS input.
3. Create an IntegralEvaluatorFactory object for the specified package (GAMESS,

MPQC or NWChem); pass the GAMESS.GaussianBasisMolecular object and a

ChemistrylntegralDescrCXX CompositelntegralDescr object as parameters to get an

integral evaluator (1-, 2-, 3-, or 4-center).
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4. Call the get energy function of the GAMESS Mode! object and the underlying

integral calculations are performed by using the integral evaluators from step 3.

Several Issues for Designing the Client-Side Interface

There are several issues we have to take care in the design of such a client-side
interface. For different chemistry programs, different loop structures for looping over all
multiplets are used (e.g. GAMESS uses a different 4-level loop structure for 2e-integral
computation from the one MPQC uses). The appropriate loop. structure should be chosen for
the specified package as long as the end user picks a package for doing the integral
computations.

Also, the integral ordering in GAMESS is different from the integral ordering in
MPQC and NWChem (these two programs use the integral ordering defined by the cca-
chemistry group [24]). The conversion of the integral ordering for the integrals of each shell
multiplet should be done automatically before the integrals being used in a computation.
Since both MPQC and NWChem use the integral ordering defined in Joe Kenny’s paper [24],
we only need two kinds of conversion: from the integral order used in GAMESS to the
integral orders used in MPQC & NWChem; from the integral orders used in MPQC &
NWChem to the integral orders in GAMESS. These two kinds of conversion must be
incorporated within the client-side design of GAMESS. |

Finally, some language interoperability issues need to be considered carefully when
constructing the client-side implementations. The underlying GAMESS computations are
implemented in FORTRAN 77, and the integral computations of MPQC is implemented in
C++. When constructing the C++ client-side of the GAMESS program, we should avoid
directly calling the GAMESS wrapper functions, instead those function calls should be
hidden in the server-side implementations.

For example, when calling a wrapper function that takes a parameter of the type
“int64_t” from the C++ client-side, 1 got a bunch of errors that “int64 t” is not defined.
However, if an integer of the type “int64 t” is defined inside the C++ client-side code, not
being passed to GAMESS wrapper functions, I will not get any errors. On the other hand, if
the same wrapper function is invoked through the server-side implementations, the same

errors will occur.
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The reasons for designing the client-side in C++. It is natural to create the iject—
oriented design by programming in C++. The real computations are performed by the
wrapper functions and GAMESS program, and the C++ client-side is used for reading user
input options and facilitating corresponding configurations, such as which package will be
used for providing integral evaluators. When only the references to integral evaluators are
passed from C++ to FORTRAN 77 for performing integral calculations for GAMESS
computations, the performance overhead from the language interoperability should not be
large. Since the C+-+ client-side should be easier to implement than the FORTRAN client-
side for GAMESS, it could be an experiment for implementing the FORTRAN client-side.

The Design of the C++ Client-Side Interface

Basically, several classes are designed for wrapping the integral computations
provided by CCA  chemistry  components:  ClientimtEvalFactory  (Wraps
IntegralEvaluatorFactory components), ClientInteEvall (wraps IntegralEvaluator] class),
ClientIntEval2 (wraps IntegralEvalutor2 class), ClientintEval3 (v;fraps IntegralEvaluator3
class) and ClientIntEval4 (wraps IntegralEvﬁluatoM class). For each class, there is a field:
package , for specifying the name of the underlying program. The class
GAMESSCCAComputation is designed for .GAMESS to perform chemistry computations
with the references to a GAMESS.Mode!l object and a ClientlntEvalFactory object from the
.specified program.

GAMESS iteratively calculates and stores the integrals for a shell multiplet in a one-
dimensional array. The integrals in this array will be either written to a disk file (the
conventional method) or immediately used by other subroutines (the direct method). The
integral evaluators from MPQC or NWChem will return a SIDL array of double data type for
the integrals of specified shell multiplet. The SIDL array returned by those integral
evaluators can be converted to a one-dimensional array and passed to GAMESS through the
CCA interfaces. We need to make sure the ordering of integrals in the array is the same as
the ordering in GAMESS integral array. A GAMESS wrapper function gamess_reorder, for
converting the integrals with the orders used in MPQC/NWChem to the orders used in
GAMESS, is needed before any integrals be used in GAMESS computations. On the other
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hand, a method reorder_gtom in a ClientIntEval class is also needed to convert the integral
ordering in a GAMESS array to the format that MPQC & NW<Chem use.

In addition, several FORTRAN 77 functions are needed for underlying integral
computations. For example, gamess _eval2 is designed to loop over all 2-center integrals by
using the integral evaluator passed from the C++ interface (from MPQC or NWCHEM),
where the memory address of the integral evaluator2 is passed as “INTEGER*8”. Similarly,
the function gamess_eval4 is designed for looping over all shell quartets. Figure 14 show the

structure of the GAMESS client-side interfaces for computing energy, gradient and Hessian.

User
Options T 9:H Toenergy
g gradient
‘H Hessian

: M molecutar basis set R

B1 mtegrals computed by an
mlegral evaltator '

Bz : lntegralsrwﬂh the order thét
complying wnth the order used in
Model computanons L
 Iteration

Sijki shell indexes

Chemistry Packages

GAMESSCCAComputation
class

ClientintEvalFactory class
SIDL Classes

integral order conversion
functions from GAMESS

Figure 14. The Client-Side design for GAMESS computations. A GAMESS.Model class
is used for performing energy, gradient and Hessian calculations. The underlying integral
calculations are provided by one of the three chemistry programs: GAMESS, NWChem
and MPQC. For the integrals provided by MPQC and NWChem, the integral orders will
be converted to the orders used in GAMESS before they are used in any GAMESS
computations.
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CHAPTER 5. PERFORMANCE EVALUATION

Within the scope of GAMESS, performance bottlenecks can occur in many places
such as cache utilization, I/O or communication. Performance evaluation and monitoring
tools for each of these potential bottlenecks may take years to develop, so starting from
scratch is not a feasible solution. A useful approach is to use existing performance tools such
as TAU (Tuning and Analysis Utilities) [29] or PAPI [30I], and incorporate them into
GAMESS. These performance tools usually.( provide APIs for application developers to
develop performance evaluation functions according to application needs.

Incorporating performance tools into GAMESS wusually requires inserting
performance function calls into the GAMESS source code, which is an intrusive approach.
With -GAMESS components, we prefer a performance tool that provides an interface
compatible with the CCA standard, such that the access to performance tool APIs can be
through component ports instead of direct calls to the APL In particular, the TAU
performance system meets our requirements.

Our performance evaluation includes three parts: (1) test the overhead incurred by the
- CCA frameworkj (2) evaluate the ldad balance strategy for the two-electron integral
calculation used in GAMESS CCA components; (3) explore the performance for integrating
the integral calculation of GAEMSS and MPQC. |

The platform used for testing is a SMP cluster of 4 nodes, where each node has two
dual-core 2.0GHZ Xeon "WoodCrest" CPUs and 8GB of RAM. The nodes are
interconnected with both Gigabit Ethernet and DDR Infiniband. The operating system is Red
Hat Enterprise Linux 4.

5.1 TAU Performance Tools
TAU is based on a general computation model [29], which is a superset of the one
used by GAMESS. It provides technology for performance instrumentation, measurement,
and analysis for complex parallel systems. Performance information can be captured at the
node/context/thread level .by using TAU. Besides performance instrumentation capability on
both the component level [31] and the source code level, TAU also provides an interface to

access the hardware counters through PAPI or PCL [31].
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For CCA applications, TAU provides a performance component to measure the
performance of CCA component software through the common MeasurementPort interface.
Besides the performance component, TAU also provides MasterMind and Optimizer
components for performance data collection for performance modeling of components and
constructs optimal component assemblies, and Proxy Generators build proxies for both the
MeasurementPort and the Monitorport in performance component [32]. To successfully
install the TAU performance component and use all the provided functionality, both TAU
and PDT (Program Database Toolkit) [33] must first be installed TAU performance

components then can be set up.

5.2 Test the Performance Overhead of the CCA Framework
To test the overhead of the CCA framework in GAMESS calculations, we compared

the wall-clock times (in seconds) of the RHF energy calculations for four molecules:
ergosterol, Darvon, luciferin and nicotine, by using GAMESS with and without the CCA
framework. In both cases, the GAMESS/DDI/MPI model will be used, since this is the model
we will use for GAMESS to integrate with other packages through components. The TAU
timer is inserted between the calls fo calculate energy in the GAMESS program and the
get_energy method of the GAMESS. Model class.

First, all the computations will ran in sequential for testing the overhéad incurred by
the CCA framework in a single CPU. Table 2 shows the wall-clock time of the energy
computations by wusing the GAMESS program (the second column) and the
GAMESS. ModelFactory component (the third column). For the GAMESS program, the type
of the computation is set as “energy” in the user input file. For the GAMESS. ModelFactory
component, the get_energy method of a GAMESS. Model class is called. The results show that

Table 2. The wall-clock time (Seconds) for the RHF energy calculation with & without the
CCA framework

Molecule No CCA With CCA
Darvon 3602.3 36074
luciferin 138.2 . 1433
nicotine 61.9 64.3
hZo (CCQ) 10.1 11.2
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the performance overhead incurred by using the CCA framework is less than 10~15 percent
of the wall-clock time when using the GAMESS program without CCA.

Then we run the energy calculation of the molecule “nicoting” in parallel for
comparing the scalability of the GAMESS program with and without CCA. Figure 15 shows
that the scalability of the GAMESS program is similar as the scalability of the GAMESS
CCA components.

Running GAMESS with 1 Proc/Node Running GAMESS with 2 Procs/Node

—+—no CCA
—s+=with CCA

#of processes ' # of procasses

Figure 15. The energy calculation of the molecule “nicotine” run on both the original
GAMESS program and the GAMESS CCA component, which we labeled as “no CCA” and
“with CCA”, respectively.

5.3 The Load Balance in Two-Electron Integral Computations
There are two kinds of load balancing strategies used in GAMESS to distribute the

tasks of calculating two-electron integrals among processes: the dynamic Joad balance and
the static load balance. For the dynamic load balance strategy, the tasks are dynamically
assigned to a process and a global counter in DDI is used to make sure each task will be
executed exactly once. This method adjusts the distribution of the tasks among processes
dynamically, since the current CPU usages and the quality of the network connection will
both affect the results whether or not a task is assigned to a process. For the static load
balance strategy, the tasks are assigned to each process according to the identity of the
process. This method guarantees the number of the tasks assigned to each process is the
same. Theoretically, the static load balance is more stable since the number of tasks assigned
_ to every process is the same, and the dynamic load balance is more efficient since the number
of tasks will be adjusted dynamically according to the work load of a process. By default, the

dynamic load balance is normally used in GAMESS.
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DO 920 I =IST, NSHELL (first level)
DO 900 JJ= JST, II {sccond level)

IF USE DYNAMIC LOADBALANCE, GET THE CURRENT GLOBAL COUNTER
AND DECIDE IF CONTINUE WITH THE INNER BLOCK OF THE LOOP.

DO 880 KK =KST,J (third level)

IF USE STATIC LOADBALANCE, THE 1D OF THE CURRENT PROCESS
COULD DECIDE IF CONTINUE WITH THE INNER BLOCK OF THE LOOQOP.

r
DO 860 LL=LST, KK (forth level)

CHECK FOR REDUNDANTIES BETWEEN THE 3 COMBINATIONS
(ILIH/KK,LL), (ILKK/1J,LL),(II LL/JI,KK) '

1
1
H
1
1
I
t COMPUTE SHELL QUARTET AND PROCESSING THE RESULTS
I

1

1

860 CONTINUE
| e e e e e e e o o o e o e e em e e A e A R me S e Gt M Mt e e = e

860 CONTINUE

860 CONTINUE
860 CONTINUE

Figure 16. Load balancing in GAMESS TWOEI subroutine. The small case letters inside
parenthesizes indicate the level number of each loop. The block of inner loops surrounded
by the solid line shows the size of the task for a dynamic loading procedure. The block of
inner loops surrounded by the dashed line shows the size of task for a static loading.

In GAMESS the two-¢lectron integrals are computed inside a 4-level nested loop
structure (Figure 16) in the TWOEI subroutine, The dynamic load balance is putted after the
second level of the loop, where the size of a task for each dynamic loading procedure is the
block of inner loops surrounded by the solid line. A global counter decides if a process needs
to continue with the inner loops for each loading procedure and each task is performed by
exactly one process. The static load balance is arranged after the third level of the loop, such
that the size of the task for each loading procedure is the inner loops surrounded by the
dashed line. Since the index of each task and the id entity of a process decide if the process
continues with the inner loop, no communication is ﬁeeded in the static load balancing.

However, the chemistry integral interface IntegralEvaluatordinterface defines the
compute method to compute one shell quartet at a time. When we keep the load balance

being handled in the wrapper function - gamess_twoei_compute (this wrapper function called
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by compute method of IntegralEvaluatord), the size of the task for each loadig procedure is
just a single shell quartet. This is analogues to move the load balance in TWOEI to the 4
level of the loop, and there is no guarantee that the performance in the original GAMESS 2e-
integral computation would be preserved.

We will use the molecule “nicotine” to test the performance and scalability of the
two-electron integral calculation when the dynamic load balance is located after the 2" fevel,
the 3" level and 4™ level of the loop structure. Three groups of the performance data will be
compared and the results will help us to find an appropriate strategy to move the load balance
of the two-electron integral calculation from GAMESS to the component level without
sacrifice the performance. Note that we will not show the performance of the two-electron
integral calculation in TWOEI when moving the static load balance to the 4™ jevel of the
loop structure since the change of the performance is not significant.

Test dynamic load balance. We run the 2e-integral calculation of “nicotine” by
using 1.1, 2.1, and 4.1 nodes in GAMESS/DDI/MPI mode, where x.y means in that
experiment we use x nodes and y CPUs on each node, and compare the scalability show
the wall-clock time for each node when using dynamic load balance in 2% 31 and 4% level of
the loop structure. The upper chart of Figure 16 shows that the performance is much worse
when moving the dynamic load balance to the 4™ level of the loop structure. When using 4
processes, the wall-clock time of calculating 2e-integrals when the dynamic load balance is at
the 4™ level is almost double the wall-clock time when the dynamic load balance is at the 2™
or the 3™ level. The lower chart of Figure 17 shows that the tasks are distributed unevenly
among processes when using 2.1 or 4.1 nodes, where in each case the process 0 corﬁputes
almost all of the shell quartets. This also causes the poor scalability when running in more

than one node.

The load balance in GAMESS CCA integral components

From the performance results showed in Figure 16, when the load balance is handled
in the 4™ level of the loop structure, the number of tasks will be distributed unevenly among
processes when using more than one node, which will also lead to the poor scalability. This
means that we should not reduce the size of a task to a shell quartet. Since each function call

to the compute method of an integral evaluatord returns the integrals of a shell quartet, we
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The Parallel Performance of 2e-integral Calculation
When Moving the Dynamic Load balance to the 2nd,
3rd, and 4th Level of the Loop Structure

n
o
=
3
Q
1z
o e 2nd-level
'.E.. —&— 3rd-level
% 4th-level
o
9
3

.1 21 4.1

the number of processes

The Number of Shell Quartets Computed by Each CPU
When Running on 2.1 and 4.1 nodes with the Dynamic
Load Balance at the 4th Level

2.50E+06

—-21
——4.1

2.00E+06

1.50E+06

1.00E+06

5.00E+05

number of shell quartets

0.00E+00
process 0 process 1 process 2 process 3

The process 1D

Figure 17. The upper chart shows the parallel dperformance of the 2e-integral calculation
when moving the dynamic load balance to the 2™, 3™, and 4™ level of the loop structure. The
lower chart shows the number of shell quartets computed by each process when the dynamic
load balance is moved to the 4™ level of the loop structure.

cannot handle the load balance inside the wrapper function, or inside an integral evaluator.
Not losing or limiting the functionalitics of the original GAMESS program, we copy the loop
structure for the 2e-integral calculation in the original GAMESS code to a TWOEIDriver
component that use the same load balancing approach as TWOEI, except that the 2e-integrals
are calculated by calling the compute method of the GAMESS. IntegralEvaluator4 object.

The implementation of TWOEIDriver has a flag — “load_balance” for choosing a type
of the load balance for the 2e-integral computation from components. The available options

are:
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load balance
load _balance
load balance

The TWOEIDriver component is presented as an example of using GAMESS CCA

0, if no load balance
1, if static load balancing is used
2, if dynamic load bealancing is used [DEFAULT]

i

integral components for computing 2e-integrals with different choices of load balancing
methods, not being designed for a real computation. It is also used for the performance
evaluation of the 2e-integral computation by using GAMESS components. Since the loop
structure for the 2e-integral computation is copied from the TWOEI subroutine to the
component-level, it is fairly to predict the performance of the static and dynamic load
balance of the 2e-integral computation by using GAMESS CCA components should be as
good as the performance by using GAMESS.

Table 3. The number of shell quartets computed by using the dynamic load balance strategy
in the TWOEIDriver component

1.1 12 21 14 22 | a4l
process 0 2.2808G+06 | 1.16488E+06 | L.11668E+06 | 567397 | 571247 | 555183
process 1 ' 1.11592E+06 | 1.16413E+06 | 576551 | 565618 | 570469
process 2 557617 | 580110 | 564786
process 3 579240 563830 590367

Table 3 shows the number of shell guartets computed by each process when
_performing 2e-integral computation with GAMESS CCA components, where the number of
shell quartets computed on each process is very close when using 1.1, 1.2, 2.1, 1.4, 2.2 and
4.1 nodes.

5.4 Performance Evaluafion for integral Computations

In this section we present only the performance of the two-electron integral
computation since this computation takes significantly more CPU time than the one-electron
integral computation does. We measure the wall-clock time for calculating all shell quartets
of a molecule by using the GAMESS program, GAMESS wrapper functions, GAMESS CCA
integral components and GAMESS & MPQC CCA components. First, we examine the

performance overhead incurred by the design of the wrapper functions. This is done by
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invoking the gamess_twoei_compute wrapper function inside the four-level nested 1001-)
structure, and comparing the results with the time of the same computation by using the
original GAMESS two-electron integral computations. Second, we examine the performance
overhead caused by the CCAFFEINE framework when running the GAMESS CCA integral
computations. This is done by evaluating the performance‘_ overhead of
GAMESS. IntegralEvaluatord class, which in turn uses the wrapper functions for calculation.
Finally, we examine the performance overhead incurred by the integration of GAMESS and
MPQC.

The TAU performance tools are used for measuring the performance of two-electron
integral computations. We insert TAU timers in both component-level methods and in
GAMESS subroutines. The wall-clock time of looping over all shell quartets is used as the
performance data and the time is measured in seconds.

Since both NWChem and MPQC parallelize the routines that call the integral
computations, instead of parallelizing the integral computations themselves, we have decided
to show only sequential performance data here. .

Test cases. Four molecules are used as our test cases. Table 4 shows the names of the
molecules, the basis set, the number of atoms, the number of shells, the number of basis
functions, and the number of shell quartets. The test cases are listed in descending order
according to the number of two electron integrals.

The integral screening in GAMESS two-electron integral computation. /ntegral
screening is a technique to ignore calculating integrals which are estimated to have little or
no contribution to the final results of the Fock matrix [22]. GAMESS by default uses integral
screening technigues to screen out small integrals in the two-electron integral computation.
In the design of CCA integral components, the integral screening has been separated from the
integral computation, and is wsed as an independent option. Since the three chemistry
packages use different screening techniques and default thresholds for small integrals, the
number of non-zero two-electron integrals being calculated by each package is different from
each other. We tumm off the integral screening in every package when conducting
interoperability testing to make sure every integral component will compute the same number

of shell quartets.




Table 4. Test GAMESS integral computation
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molecule basis set | # of atoms | # of shells basis ?’u(x):;tions shelliii rtets
ergosterol 6-31G* 73 204 523 2.18625E+08
Darvon 6-31G* 54 158 433 7.88956E+07
luciferin 6-31G* 26 90 294 8.38656E+06
nicotine 6-31G* 44 76 208 4.2822E+06

in GAMESS, a native buffer (in memory), GHONDQO, is allocated for storing 2e-
integrals of one shell quartet. The results of GHONDO are either read and saved to a disk
file, or used immediately, and the values of GHONDO are reset to zeros and ﬁsed for storing
2e-integrals for another shell quartet in the next iteration. However, to componentize 2e-
integral calculations for a shell quartet, the results should be stored in a buffer passed from a
calling function (or an integral evaluator4). Instead of using GHONDO for storing the results
of computing a shell quartet, we use the buffer passed to the wrapper function. The resulting
integrals of each shell quartet can be accessed through the reference to the buffer by the end
of each iterate and no disk I/0 is needed for writing the results to a disk file.

To compare the performance of the original GAMESS subroutine and the wrapper
function, we modified the original GAMESS code to ignore disk /O after computing each
shell quartet (to be compatible with our design in the wrapper function). The second column
of Table 5 shows the performahce data for computing 2e-integrals in GAMESS.

Test GAMESS wrapper integral computation. The third column of Table 5 shows
the performance for 2e-integral computation using wrapper functions. The overhead of the
2e-interal computation using the wrapper functions is about 7% of the 2e-integral
computation with the original GAMESS code. -

In the original GAMESS code, two-electron integrals are computed by looping over
all shell In GAMESS wrapper functions, the

gamess_twoei_compute function computes one shell quartet at a time. Thus, when looping

quartets in four nested loops.

over all shell quartets, we have ofy*) function calls to the gamess_twoei_compute function. In
the original GAMESS code, statements that are inside the first, second or third-level of the

four-level loop structure, now need to be executed for each shell quartet, about ofv+) times. If
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Table 5. Wall-clock times (éec) for two-electron integral computations

molecule GAMESS GAhgﬁi(S:tg;:pper Géﬁfﬂiii;?:
ergosterol 801,52 921.35 980.16
Darvon 361.47 422.72 44515
Luciferin 63.39 74.11 77.06
Nicotine 22.93 26.71 28.50

there is an overhead introduced by each single call to the compute method, the overall-
performance overhead can be significant.

Test GAMESS CCA integral computation. The goal of this experiment is to test
the performance overhead of the CCAFFEINE framework. The GAMESS wrapper functions
are used for implementing GAMESS CCA components. Thus, a buffer is passed from a
GAMESS. IntegralEvaluator4 object to the GAMESS wrapper fuﬁctions for storing results of
a shell quartet and the reference to the buffer is returned. The fourth column of Table 5
‘shows the running time of the 2e-integral calculation obtained using GAMESS CCA integral
components. It shows that the performance overhead is relatively small, since all times are
within 10% of the original running time. The same amount of performance overhead incurred
by the CCA framework has also been mentioned in the previous literatures. However, the
total performance overhead incurred for componentizing integral calculation (include the
wrapper functions and CCA frameworks) is relatively large, about 28.7% (1.17¥1.1-1). This
overhead may be reduced through either implementing GAMESS CCA components in
FORTRAN (the current version is implemented in C++), or refining the GAMESS wrapper
functions.

Integration of GAMESS & MPQC. Integral computations using CCA components
from both MPQC and GAMESS are conducted through the process outlined in Section 3.5.
In our testing, we produced the wall-clock time for computing two-clectron integrals by
using GAMESS CCA components, and GAMESS & MPQC components. Here we choose
the water molecule with the cc-pVQZ and aug-cc-pVQZ basis sets to perform the two-
electron integral calculations. The performance results of such two-electron integral
calculations by using the original GAMESS program and the original MPQC program are

expected to be very close, since the water molecule is relatively small and the basis sets we



used here is quite large. The MPQC program contains only one integral code, which is
sophisticated and slower than some integral codes in GAMESS (there are four different
integral codes in GAMESS). When using large basis sets, GAMESS will choose the more
sophisticated/slower integral code, which has similar performance with the integral code in
MPQC. Table 6 shows that the discrepancy of the 2e-integral computation for the water
molecule is very small between GAMESS CCA components and GAMESS & MPQC CCA
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components, and these results are exactly what we have expected.

Table 6. Wall-clock times (sec) for testing the water molecule with GAMESS and MPQC

. GAMESS CCA GAMESS & MPQC CCA
basis set
Componenis Components
cc-pVQZ 3.63 3.65
aug-cc-pvVQZ 16.07 15.96
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CHAPTER 6. DISCUSSION AND CONCLUSION

In the process of developing integral components, several issues affected our design
of components, or delayed the progress of component development. We discuss these issues

mn this section.

Low-level interoperability

Ideally if similar functions from different packages are componentized, complying
with the same interface, we should be able to use these components interchangeably.
However, if components are designed without substantial modifications to existing
applications (e.g., using wrapper functions), the ''plug-and-play" goal may be difficult to
achieve.

The differences in the approaches to develop integral components provide a good
example of the difficulties faced in interfacing low-level components in a “plug-and-play”
fashion. For the MPQC integral component, the underlying software architecture is object-
oriented and is more amenable to the encapsulation concepts of component architectures. For
GAMESS, a package with over two decades of development history and developers scattered
around the world, encapsulation into components may be error-prone in part because the
subroutines fo be encapsulated may be entangled with other subroutines developed by many
scientists over a long period of time. To solve this problem, we chose to tightly couple the
initialization processes of the original GAMESS program and the GAMESS CCA
architecture, even though, in the standardized interfaces, it may be possible to use
components from other packages for initialization.

In addition, the different parallel mechanisms used in a computation may also hinder
the interaction of low-level components in a “plug-and-play” fashion. GAMESS uses the
dynamic/static load balance strategies to distribute two-electron integrals across processes,
while NWChem and MPQC parallelize the functions that use the two-clectron integral
calculations. This different design of the parallel mechanisms for 2e-integral calculations will
affect the way and the performance of using the integral evaluators from GAMESS and the
other two packages. For example, when a GAMESS energy computation uses the 2e-

integrals computed by MPQC CCA components, the performance of using integrals from




67

MPQC may be worse than using integrals from GAMESS since the MPQC integral
evaluators can only run sequentially by themselves. Currently, we just limit our application
to use the integral evaluators in a single CPU. However, to reach a better or keep the original
scalability, chemists from different packages must find out a way to balance the way of using

integral evaluators from different packages.

Issues for code efficiency

The integral screening improves the efficiency of integral computations. In
GAMESS, screening is a ‘built-in’ function that is integrated with integral computations and
can be turned on or off by setting a flag in the input file. In MPQC, screening is not coupled
with integral computations but rather may be performed by the caller of integral
computations.

The interfaces for integral and other quantum chemistry computations are defined
from a chemistry algorithm point of view. That is, the interfaces for data and methods
performing electronic structure calculations are defined, but not for the procedures to
improve code efficiency, such as using of screening. On one hand, we want to keep the
interfaces as clean as possible, so they should include only data and methods that are
essential to a computation; on the other hand, if a technique to improve code efficiency is
widely used by every package, we may want to include this technique somewhere in the
interface. How to seamlessly integrate via common interfaces computations and their

efficient implementations, is a difficult design choice.

Version control and testing procedure

Figure 18 shows the package dependence in this project. Besides three chemistry
packages, we also use performance tools provided by TAU [17] to conduct component level
performance evaluations. All packages, even compilers, are constantly updated with new
versions. Whenever a certain package is updated, all the other packages may require
rebuilding, and we have to conduct stability and compatibility testing all over again. The
process of rebuilding packages is time consuming; if errors occur during stability and

compatibility testing, locating the source of the error is equally time-consuming. When some
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bugs are found in a new version of a package, we may have to roll back to an older stable
version to continue the development process.

With the scope of quantum chemistry computations and the capabilities provided by
the three packages, we expect more components will be developed. Exploring/developing a

capable tool to minimize efforts in maintaining/testing packages is essential in a real-size

Cca-chem-apps

( GAQI'ESQ (wac | [wonen ]

project such as this one.

h 4 Y
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Figure 18. The package dependence for the CCA chemistry project.

Conclusion and future works

In this thesis, I present our experience in developing CCA components based on a
large-scale quantum chemistry program. The two parallel mechanisms for GAMESS CCA
components and the potential problems for each model are discussed. The process of
componentizing GAMESS energy, gradient, Hessian and integral computations is also
delineated in detail and issues of interoperability are discussed. This will provide application
scientists a perspective about the problems they may be facing when componentizing their
packages to explore interoperation with other software. We are extending our experiments to
integrate GAMESS and NWChem at the fine-grained level and also build a complete
chemistry computation, such as calculating the energy, by using any two of the three
chemistry' packages through the CCA interfaces. Currently, we have designed the client-side
interfaces for integrating GAMESS energy calculation with the other two packages through




69

integral computations. The implementation of the GAMESS client-side computations is one
of our future works.

Based on our experience, community-agreed interfaces and data standards provide
only the first step to componentization of a package; substantial efforts are needed to
improve the usability of components, control versions of the underlying software, minimize
overhead caused by extra layers of function calling, and standardize testing procedures to
efficiently explore the errors in coupling many software packages. Componentizing a large-
scale legacy software package is an especially challenging task. In other words,
comprehensive scientific software engineering is essential in developing components that are
truly shareable between scientific packages.

Future works. Integrating GAMESS and NWChenm at the fine-grained level, such as
on integral calculations, will be one of our future works. We will also build a complete
chemistry computation, such as calculating the energy, by using any two of the three

chemistry packages through the CCA interfaces.
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APPENDIX A. THE GAMESS CLIENT-SIDE INTERFACE

The C++ interfaces for the GAMESS client-side:

/'k‘k
* The ClientIntEvalFactory class wraps the
* IntegralEvaluatorFactory component for different packages.
*/

class ClientIntEvalFactory {

public:

/* the reference to an integral evaluator factory */
Chemistry::Q0C::GaussianBasis::IntegralEvaluatorFactorylnterface

evalfactory:;

/*
* the constructor
* @package the package that provides integral calculation
* @moclecular the Molecular object stores basis set information
*/
ClientIntEvalFactory(

string package,

Chemistry::QC::QaussianBasis: :Molecularinterface molecular)

// set the package name
if (package is GAMESS, NWChem or MPQC) package = package;
else package = “GARMESS”; // default

create an evaluator factory “evalfactory”,
this is different for the different package

// initialize Molecular object
molecular = molecular;

1

/* get the package name */
string get package({) {
return package_;

}

/*
* get an ClientIntEvall object with the specified integral type.
* GAMESS does not provide the integral evaluatorl.
* @type the type of the integral
*/
ClientIntEvall get evaluatorl(string type) {
check to see if the type of integral exists

// create a composite integral descriptor
create descriptor(type):
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// create an integral evaluatorl
Chemistry::QC::GaussianBasis::IntegralEvaluatorlInterface evall =
evalfactory.get evaluatorl (molecular , descr):

// create a ClientIntEvall object
ClientIntEvall client evall =
new ClientIntEvall(type, package , evall}:

return client evall;

}

/%
* get a ClientIntEval2 object with the specified integral type.
* @type the type of the integral
*/

ClientIntEval2 get evaluator?({string type)

{

check to see if the type of integral exists

// create a composite integral descriptor
create descriptor(type);

// create an integral evaluator?
Chemistry::QC::GaussianBasis::IntegralEvaluator2interface eval2 =
evalfactory.get_evaluator2 (molecular , molecular_, descr);

// create a ClientIntEvall object
ClientIntEvall client eval2 =
new ClientiIntEvall (type, package , eval2);

return client_eval?2;

}

/'k

* get a ClientIntEval3 object with the specified integral type.
* GAMESS does not provide the integral evaluator3.

* @type the type of the integral

*/
ClientIntEval3 get evaluator3(string type)

{
check to see if the type of integral exists

// create a composite integral descriptor
create_descriptor(type);

// create an integral evaluator3
Chemistry::QC: :GaussianBasis::IntegralEvaluator3interface evalld =
evalfactory.get_evaluator3
(molecular ,molecular ,molecular ,descr};

// create a ClientIntEvall object
ClientIntEval3d client eval3 =
new ClientIntEval3({type, package , eval3};
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return client_eval3;

}

/*

* get a ClientIntEvald4 object with the specified integral type
* @type the type of the integral

*/

ClientIntEvald get evaluatord(string type)

{

check to see if the type of integral exists

// create a compcsite integral descriptor
create_descriptor(type);

// create an integral evaluatord
Chemistry::QC::GaussianBasis::IntegralEvaluatordinterface evald =

evalfactory.get_evaluatord
(molecular ,molecular ,molecular ,molecular_,descr):

// create a ClientIntEvald object
ClientIntEvall client evald =
new ClientIntEvall (type, package_, evald):;

return client evald;

private:

// the package name
string package_;

// the reference to a molecular object
Chemistry::0C::GaussianBasis::MolecularInterface molecular_:

/'k'k
* Create descriptor with the specified integral type.
* A descriptor is needed for each integral evaluator.
* @type the integral type
*/
Chemistry::QC::GaussianBasis: CompositeIntegralDescrinterface
create descriptorx{string type)

{
create a CompositelntegralDescr object based con the type

of the integrals
I

/‘k‘k
* the implementation of ClientIntEvall may not be necessary for
* GAMESS since in GAMESS only 2-center and 4-center integrals are
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* used.
*/
class ClientIntEvall {

public:

/*
* constructor
* initialize an integral evaluator for the specified package and
* the type of the integral
*/
ClientIntEvall(
string type,
string package, .
Chemistry::QC::GaussianBasis::IntegralEvaluatorlInterface evall)

type_ = type;
package_ = package;

evall = evall;
}
/:k
* get an integral evaluatorl
*/

Chemistry::QC::GaussianBasis::IntegralEvaluatorlinterface get_evall ()
{
return evall ;

}

/*
* Set the reference to the integral buffer from the integral
* evaluatorl. This method has to be called before get_array, or any
* reorder method is called.
*/
void set array(
Chemistry::QC: :GaussianBasis::IntegralDescrinterface desc)
{ :

buffer = evall .get array(desc}:
}
/**
* return the reference to the integral array
*/

double* get array()
{
return buffer ;

}
private:

// the reference to an integral evaluatorl
Chemistry::QC::GaussianBasis::IntegralEvaluatorlinterface evall ;

// the type of the integral evaluatorl
string type_:




77

// the package name
string package_;

// the one-dimension array that helds the integrals
// for a one—center integral.
double* buffer :;

}

class ClientIntEvalz {
public:

/‘k‘k
* constructor
* initialize an integral evaluator for the specified package and
* the type of the integral
*/
ClientIntEvalZ (string type, string package,
Chemistry::0C: :GaussianBasis: :IntegralEvaluatorZInterface eval?l)
{
type = type;

package = package;
eval?2 = eval2;
}
/*
* get an integral evaluatorZ
*/

Chemistry::QC::GaussianBasis: :IntegralEvaluator2Interface get _evall ()
{
return eval2_;

}
/**

* Set the reference to the integral buffer from the integral
* evaluator2. This method has to be called before get_array, or any
* reorder method is called.
*/
void set_array(
Chemistry::QC::GaussianBasis::Integrallescrinterface desc)
{

buffer = evalZ .get_array(desc);
}
/**
* return the reference to the integral array
*/

double* get_array()

{

return buffer ;

)

/**
* reorder the integrals in the buffer
* to the integral ordering defined by the cca-chemistry group {24]
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*/

void reorder gtom{)

{

if (package_ == “GAMESS”")

reorder the integrals (in buffer ) to the crder used in
MPQC/NWCHEM

}

private:

/* the reference to an integral evaluator2 #*/
Chemistry::QC::GaussianBasis::IntegralEvaluator2Interface eval? ;

// the type of the integral evaluator?2
string type_;

// the package name
string package ;

// the cne~dimension array that holds the integrals
// for a shell doublet.
double* buffer ;

¥;

/**
* the implementation of ClientiIntEval3 may not be necessary for
* GAMESS since in GAMESS only 2-~center and 4-center integrals are
* used.
*/
class ClientIntEvall {
public:

/**

* constructor

* initialize an integral evaluator for the specified package and
* the type of the integral

*/
ClientintEval3(string type, string package,

Chemistry::QC::GaussianBasis::IntegralEvaluvator3Interface eval3)
{
type_ = type;
package = package;

eval3_ = eval3;
}
/-k
* get an integral evaluator3
*/

Chemistry::QC::GaussianBasis::IntegralEvaluator3interface get eval3()
{

return eval3 ;

}

/-k
* Set the reference to the integral buffer from the integral
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* evaluator3. This method has to be called before get_array, oxr any
* reorder method is called.
®/
void set_array(
Chemistry::QC::GaussianBasis::IntegralDescrInterface desc)
{
. buffer = eval3_.get_array(desc);
}
/'J:-k
* return the reference to the integral array
*/
double* get_array(}
{
return buffer ;

}
private:

// the reference to an integral evaluator3
Chemistry::QC::GaussianBasis::IntegralEvaluator3Interface evalld ;

// the type of the integral evaluator3
string type :

// the package name
string package_;

// the one-dimensicn array that holds the 3-center integrals
double* buffer ;
}:

class ClientIntEvald {
public:

/**
* constructor
* initialize an integral evaluator for the specified package and
* the type of the integral
*/
ClientIntEvald (string type, string package,
Chemistry::QC::GaussianBasis::IntegralBvaluatordInterface evald)
{

type = type;
package = package;
evald = evald;
}
/-;\-
* get an integral evaluatord
*/

Chemistry::QC::GaussianBasis::IntegralEvaluatordinterface get _evald()
{

return evald_;

}
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/**
* Set the reference to the integral bhuffer from the integral
* evaluatord. This method has to be called before get_array, or any
* reorder method is called.
*/
void set_array(
Chemistry::QC::GaussianBasis::IntegralDescriInterface desc)
{

buffer = evald4 .get array(desc);
}
/**
* return the reference to the integral array
*/

double* get array()
{
return buffer ;

}

/**
* reorder the integrals in the buffer
* to the integral ordering defined by the cca-chemistry group {24]
*/

void reorder gtom(}

{

if (package_ == “GAMESS”)
reorder the integrals (in buffer } to the order used in
MPQC /NWCHEM
}
private:

// the reference to an integral evaluator4
Chemistry::QC::GaussianBasis::IntegralEvaluatord4Interface evald ;

// the type of the integral evaluatord
string type_;

// the package name
string package ;

// the one-dimension array that holds the integrals
// for a shell quartet.
double* buffer ;

i

/**
* to perform GAMESS computation by using 1ntegrals
* from different packages
*/

class GAMESSCCACcmputation {
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public:

/‘k

* A ClientIntEvalFactory object feor providing
* integral calculation from GAMESS, MPQC or NWCHEM.

*/

ClientIntEvalFactory evalfac;

/* constructor */
GAMESSCCAComputation (}

{

1

/';\‘

integral package = “GAMESS";
intputfile = ™7;

* get the name of the package for integral calculation.
* the default package is GAMESS.

*/

void set integral package(string integral package)

{
}
/*

integral_package = integral package;

* get the full path to the GAMESS input file

*/

void set_inputfile(string inputfile)

{
t
VA

*
*
*

*/

inputfile = inputfile;

initialize a GBAMESS.Model object and
a ClientIntEvalFactory object.
initialize GAMESS computation.

int initialize ()

{

/*

initialize the model object

// pass the input file for GAMESS wrapper functions to read
model .setCoordinatesFromrile (inputfile.c_str(}};

// initialize the molecular object
molecular = GAMESS::GaussianBasis Molecular::_create(};
molecular.initialize (Y7);

// initialize the ClientIntEvalFactory object

// cast the GAMESS Moclecular object to

// Chemistry::QC::GaussianBasis::MolecularInterface

evalfac = new ClientlIntEvalFactory{integral package ,molecular);
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* calculate energy by using the integrals provided by
* the specified package.
*/
double ‘get_energy(} {
double f = model.get energy():;
return £f;

* @type the type of the integrals
* construct the two-level loop structure to calculate all of
* shell doublets and use the le-integral iteratively
*/
void compute_ cneei(string type)
{
// create a ClientIntEval? object for the specified package
ClientIntEval2 client evalZ = evalfac.get_evaluator2(type);

// pass the reference to a

// Chemistry::QC::GaussianBasis::IntegralEvaluator? object
// to the FORTRAN 77 function

gamess_evalld (client_eval2.get eval2()};

}

/*

* construct the four-level loop structure to calculate all of
* shell quartets and use the 2e-integral iteratively.

*/
void compute twoei ()}

{
// create a ClientIntEvald object for the specific package

ClientintEvald client _evald = evalfac.get_evaluatord (type):

// pass the reference to a

// Chemistry::QC::GaussianBasis::IntegralEvaluatord obiect
// to the FORTRAN 77 function

gamess_evald (client_evald.get _evald ());

t

private:
// the name of the package for providing integral calculations
string integral package_ ;

// the full path to the GAMESS input file
string inputfile ;

// the molecular object stores the basis set information
GAMESS::GaussianBasis_Molecular molecular;

/*

* A GAMESS.Model object for initializing GAMESS computation;
* calculating energy, gradient and Hessian.

*/
GAMESS: :Model model;
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}i

The interfaces for underlying FORTRAN 77 wrapper functions

O onn

@buffer the integral array that needed to reorder
@size the size of the buffer
@type the type of the integral (2Z-center or 4-center)
subroutine games_ reorder (buffer, size, type)
dimension buffer(size)
character type*(*}
€@ e ————
c The 2-level loop structure of looping over all shell doublets
C- feval? the memory address of an integral evaluator2 object
ol @package the package that provides the integral evaluatorZ2
subroutine gamess eval2{evalZ, package)
integer*8 eval2
character package® (*})
c we will use the different loop structure for different packages
c for each iterate, call the compute method of the integral evaluator?
c to calculate integrals for a shell doublet.
c if package = MPQC or NWCHEM, gamess_ reorder needs to be called
c before the integrals can be used by GAMESS program
e ———— e —————
c The 4-level loop structure of looping over all shell quartets
C Gevald the memory address of an integral evaluatord object
lo: @package the package that provides the integral evaluatord
subroutine gamess_evald(evald, package)
integer*8 evald
character package* (*)
c we will use the different loop structure for different packages
c for each iterate, call the compute method of the integral evaluatord
c to calculate integrals for a shell quartet.
c use the FORTRAN 77 binding of integral evaluatord for calculating
c two-electron integrals
c if package = MPQC or KWCHEM, gamess reorder needs to be called
c before the integrals can be used by GAMESS program
O
c calculate RHF energy by using the integrals calculated from one
fol of the GAMESS, MPQC and NWChem packages

subroutine gamess_rhicl
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copy codes from RHFCL subroutine
modify the calls to ONEEI to call gamess_eval2
modify the calls to TWOEI to call gamess_evald
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APPENDIX B. COMMENTS FOR THE COMMON BLOCK “NSHEL”

-ex- Gaussian exponents, for every symmetry unique primitive

-cs- through -ci- are s,p,d,f,g,h,i contraction coefficients normally only one of the -cx- arrays
will be non-zero, for any given exponent in -ex-. the exception is "L" shells, where both
-cs- and -cp- will have (different) values.

-nshell- is the total number of shells (p shell means x,y,z, d shell means xx,yy,zz,Xy,Xy,yz,
etc.) the various "K"s define each shell's contents:

-katom- tells which atom the shell is centered on, normally more than one shell exists for
every atom.

-kloc- gives the location of this shell in the total AO basis, please read the example.

-kstart- is the location of the first exponent and the first contraction coefficient contained in a
particular shell. Thus, KLOC is an AO counter, KSTART a primitive counter.

-kng- is the number of Gaussians in this shell, their data are stored consecutively beginning at
the -kstart- value.

-ktype- is 1,2,3,4,5,6,7 for s,p,d,f,g,h,i. note that the value stored in -ktype- for an "L." shell
is a 2, so that by itself, -ktype- cannot distinguish a "p" from a "L". Thus, KTYPE is one
higher than the true angular momentum.

-kmin- and -kmax- are the starting and ending indices of the shell. These are defined as

s p d f g h 1 L
Kmin 1 2 5 11 21 34 57 1
Kmax 1 4 10 20 35 56 84 4

so you can tell an "L" shell by its running from I to 4, namely s,x,y,z, whereas a "p"
shell runs 2,3,4 for x,y,z. The table above is generated by writing all Cartesian products,
"maximum powers first", back to back:

S, X,¥,Z, XX,YY,ZZ,XY,XZ,YZ,

1 234 567 8910

XXX, YYY,ZZZ,XXY, XXZ,YYX,YYZ,ZZX,ZZY XY Z, ... .1

11 12 13, 14 15 16 17 18 19 20,...gh,i
An example, to try to make this concrete, is a 6-311G(d,p) basis for the molecule CSiH.
Just those three atoms, in that order:

s L L L d s L L L L d s s s P
Katom 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3
Kng 6 3 1 1 1 6 6 3 1 1 1 301 1 1
Ktype 1 2 2 2 3 1 2 2 2 2 3 1 1 1 2
Kmin 1 1 1 1 5 1 1 1 1 1 5 1 1 1 2
Kmax 1 4 4 4 10 1 4 4 4 4 10 1 1 1 4
Kstart 1 7 10 11 12 13 19 25 28 29 30 31 34 35 36
kloc 1 2 6 10 14 20 21 25 29 33 37 43 44 45 46
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-kloc- helps point to the right AO index, e.g. the d shell of the Si atom contains AOs
numbered 37,38,39,40,41,42. kloc(i) = kloc(i-1) + kmax(i) - kmin(i) + 1. total number
of AOs (NUM in common -infoa-) in this example is 48, from the hypothetical next
KLOCof46 +4-2+1.

Clearly -NSHELL- is 15, the number of columns given here.

Note that this example shows you how to tell a -p- from a -L-, even though -ktype- is 2 for
each. d shells always have 6 members, for spherical harmonics are not taken care of in the
basis (always a Cartesian Gaussian basis is set up) but rather at the time of varying the MOs
(either including or omitting the contaminations like xx+yy+zz according to ispher input). If
our molecule was really CSiH3, with C3v symmetry, the input gave only one of the
hydrogens. The following shows how does -nshel- change by two more atoms,

S s ] p s s S P
katom 4 4 4 4 5 5 5 5
kng 3 1 1 1 3 1 1 |
ktype 1 1 1 2 1 I 1 2
kmin | 1 I 2 | 1 I 2
kmax 1 1 1 4 1 1 | 4
kstart 31 34 35 36 31 34 35 36
kloc 49 50 51 52 55 56 57 58

Since these are symmetry equivalent, -kstart- points to the original Gaussian details in -ex-
and -cx-, but these are additional AQOs, so -kloc- does go up. -nshell- is now 24, and -num- is -
now 60. a molecule may very well have many hydrogens, perhaps using identical basis sets,
but every different set of equivalent hydrogens gets separate storage of its
exponents/contraction coefficients (stored at different -kstart- values).

If the molecule has no symmetry (every atom has a new basis set) then the number of
primitives is greater or equals the number of atomic orbitals. A basis function, or atomic
orbital, those words are the same thing, is a linear combination of at least one Gaussian
primitive. When the symmetry of the molecule makes atoms equivalent (in C60, all 60 atoms
are the same), GAMESS stores only one such atom's basis. So it is possible, but unlikely,
that the number of Gaussians stored in /NSHEL/ could be smaller than the number of AQs.

We don't care very much about the total number of primitives, so the sum of the KNG array
1s not actually stored! The integral codes loop over NSHELL, picking up the current shell's
KATOM, KNG, KMIN and so on. They have an inner loop over the KNG value, and loops
from KMIN to KMAX so as to do the integrals over all the primitives. But after the integrals
are finished, we only care about how many AQs there are, so NUM in /INFOA/ is saved for
the SCF programs to use.






