
ar
X

iv
:0

70
7.

05
34

v1
  [

he
p-

ph
] 

 4
 J

ul
 2

00
7

Anti-Hyperon polarization in high energy pp collisions with

polarized beams

Ye Chena, Zuo-tang Lianga, Ernst Sichtermannb, Qing-hua Xua,b and Shan-shan Zhoua

aDepartment of Physics, Shandong University, Jinan, Shandong 250100, China

bNuclear Science Division, MS 70R0319,

Lawrence Berkeley National Laboratory, Berkeley, CA 94720

(Dated: July 4, 2007)

Abstract

We study the longitudinal polarization of the Σ̄−, Σ̄+, Ξ̄0 and Ξ̄+ anti-hyperons in polarized

high energy pp collisions at large transverse momenta, extending a recent study for the Λ̄ anti-

hyperon. We make predictions by using different parametrizations of the polarized parton densities

and models for the polarized fragmentation functions. Similar to the Λ̄ polarization, the Ξ̄0 and

Ξ̄+ polarizations are found to be sensitive to the polarized anti-strange sea, ∆s̄(x), in the nucleon.

The Σ̄− and Σ̄+ polarizations show sensitivity to the light sea quark polarizations, ∆ū(x) and

∆d̄(x), and their asymmetry.

PACS numbers: 13.88.+e, 13.85.Ni, 13.87.Fh.
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I. INTRODUCTION

The self spin-analyzing parity violating decay [1] of hyperons and anti-hyperons provides

a practical way to determine the hyperon and anti-hyperon polarization by measuring the

angular distributions of the decay products. The polarizations have been used widely in

studying various aspects of spin physics in high energy reactions [2, 3, 4, 5, 6, 7]. The

discovery of transverse hyperon polarization in unpolarized hh and hA collisions in the

1970s led to many subsequent studies [8]. Phenomenological studies of longitudinal hyperon

polarization may be found in Refs. [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,

24, 25]. The main themes of these studies can be categorized as follows. On the one hand,

one aims to study spin transfer in the fragmentation process. On the other, one aims to get

insight in the spin structure of the initial hadrons. Experimental data are available from

e+e−-annihilation at the Z-pole [2, 3], deep-inelastic scattering with polarized beams and

targets [4, 5, 6, 7], and hyperon production in pp collisions [26].

The study of anti-hyperon polarization is topical since COMPASS data [7] indicate a

difference between Λ and Λ̄ polarization, a recent study for Λ̄ polarization in pp-collisions [25]

shows sensitivity to the anti-strange quark spin contribution to the proton spin, and the pp

spin physics program at the Relativistic Heavy Ion Collider (RHIC) has come online [27]. In

this paper, we evaluate the longitudinal polarization of the Σ̄−, Σ̄+, Ξ̄0 and Ξ̄+ anti-hyperons

in pp collisions at large transverse momenta pT . Section II contains the formalism and

discusses the current understanding of the parton distribution and fragmentation functions.

The contributions to the anti-hyperon production cross sections are discussed in Section III,

followed by the polarizations in Section IV and a short summary in Section V.

II. FORMALISM

The perturbative techniques to evaluate the longitudinal polarization of high pT hyperons

and anti-hyperons in high energy pp collisions are described in Refs. [11, 15, 16, 17, 18, 19,

20]. For self-containment we briefly summarize the key elements and emphasize the aspects

that are specific to anti-hyperons.
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A. Definitions and general formulae

We consider the inclusive production of high pT anti-hyperons (H̄) in pp collisions with

one of the beams longitudinally polarized. The longitudinal H̄ polarization is defined as,

PH̄(η) ≡ dσ(p+p → H̄+X) − dσ(p+p → H̄−X)

dσ(p+p → H̄+X) + dσ(p+p → H̄−X)
=

d∆σ

dη
(~pp → H̄X)/

dσ

dη
(pp → H̄X), (1)

where η is the pseudo-rapidity of the H̄ , the subscripts + and − denote positive and negative

helicity, and ∆σ and σ are the polarized and unpolarized inclusive production cross sections.

We assume that pT is high enough so that factorization is expected to hold. In this case, the

produced H̄ ’s are the fragmentation products of high pT partons from 2 → 2 hard scattering

(ab → cd) with one initial parton polarized.

The polarized inclusive production cross section is given by,

d∆σ

dη
(~pp → H̄X) =

∫
pmin

T

dpT

∑
abcd

∫
dxadxb∆fa(xa)fb(xb)D

~ab→~cd
L (y)

dσ̂

dt̂
(ab → cd)∆DH̄

c (z),

(2)

where the H̄ transverse momentum is integrated above a threshold pmin
T ; the sum concerns

all subprocesses; ∆fa(xa) and fb(xb) are the polarized and unpolarized parton distribution

functions in the proton, xa and xb are the momentum fractions carried by partons a and b,

D~ab→~cd(y) ≡ d∆σ̂/dσ̂ is partonic spin transfer factor in the elementary hard process ~ab → ~cd

with cross section σ̂, y ≡ pb · (pa − pc)/pa · pb is defined in terms of the four momenta p of

the partons a–d, and ∆DH̄
c (z) is the polarized fragmentation function. It is defined by,

∆DH̄
c (z) ≡ DH̄

c (z, +) − DH̄
c (z,−), (3)

in which the argument z is the momentum carried by H̄ relative to the momentum of

the fragmenting parton c, and the arguments + and − denote that the produced H̄ has

equal or opposite helicity as parton c. The scale dependencies of the parton distribution

and fragmentation functions have been omitted for notational clarity. Intrinsic transverse

momenta in the proton and in the fragmentation process are neglected.

The unpolarized inclusive production cross section, dσ/dη, is given by an analogous

expression with unpolarized parton distribution and fragmentation functions.
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B. The partonic spin transfer factors D~ab→~cd(y) in the hard scattering

The partonic spin transfer factor D~ab→~cd(y) is determined by the spin dependent hard

scattering cross sections. At high pT the spin transfer factors D~ab→~cd(y) are calculable using

perturbative QCD. At leading order they are functions only of y, defined above. The results

for quarks are tabulated in Ref. [17]. Here, we are particularly interested in anti-quarks. By

using charge conjugation, a symmetry which is strictly valid in QCD, one obtains

D
~̄q
1
q2→

~̄q
1
q2

L (y) = D~q1q2→~q1q2

L (y), (4)

D
~̄q
1
g→~̄q

1
g

L (y) = D~q1g→~q1g
L (y), (5)

etc. Next-to-leading order calculations are available [28, 29], but should be used consistently

with the polarized parton distribution and fragmentation functions. In view of the current

knowledge of the polarized fragmentation functions, we consider only the leading order.

C. The parton distribution functions

The unpolarized parton distributions f(x) are determined with high accuracy from un-

polarized deep inelastic scattering data and can be evaluated conveniently using parton

distribution function libraries [30]. Many parametrizations exist also for the polarized

parton distribution functions ∆f(x), e.g. GRSV2000, BB, LSS, GS, ACC, DS2000, and

DNS2005 [31, 32, 33, 34, 35, 36, 37]. However, they are less well constrained by data and

large differences exist in particular for the parametrizations of the polarized anti-sea distri-

butions. This is illustrated in Fig. 1, showing the anti-sea distributions from the GRSV2000

and DNS2005 parametrizations.

D. The polarized fragmentation functions ∆DH̄
c (z)

The polarized fragmentation function ∆DH̄
c (z) is defined in Eq. (3) and can in general

be expressed as the sum of contributions from directly produced and from decay H̄ ,

∆DH̄
c (z) = ∆DH̄

c (z; direct) + ∆DH̄
c (z; decay). (6)
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FIG. 1: Polarized anti-sea quark distributions from the leading order GRSV2000 (upper) and

DNS2005 (lower) parametrizations evaluated at a scale Q = 10GeV.

The decay contribution ∆DH̄
c (z; decay) is given by a sum over parent anti-hyperons H̄j and

involves kinematic convolutions,

∆DH̄
c (z; decay) =

∑
j

∫
dz′tDH̄,H̄j

KH̄,H̄j
(z, z′)∆DH̄j

c (z′), (7)

in which the kernel function KH̄,H̄j
(z, z′) is the probability for the decay of the parent H̄j

with a fractional momentum z′ to produce H̄ with fractional momentum z, and tD
H̄,H̄j

is the

spin transfer factor in the decay process. If charge conjugation is a good symmetry for the

decay process, KH̄,H̄j
(z, z′) = KH,Hj

(z, z′) and tD
H̄,H̄j

= tDH,Hj
. We assume also the validity of

charge conjugation symmetry for the fragmentation functions, so that ∆DH̄
c (z) = ∆DH

c̄ (z).

The kernel function KH,Hj
(z, z′) is easily calculated for a two body decay of an unpolarized

Hj → HM . In this case, the momentum of H is known and isotropically distributed in the

rest frame of the parent Hj . A Lorentz transformation to the moving frame of Hj gives,

KH,Hj
(z, ~pT ; z′, ~pT

′) =
N

Ej

Br(Hj → HM)δ(p · pj − mjE
∗), (8)

where Br(Hj → HM) is the decay branching ratio, N is a normalization constant, and E∗

is the energy of H in the rest frame of Hj, which depends on the parent mass mj and on

the masses of the decay products.
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The calculation of KH,Hj
(z, z′) for a polarized Hj is more involved since the angular decay

distribution can be anisotropic in the case of a weak decay and each decay process needs to

be dealt with separately. However, since the E∗ is usually small compared to the momentum

of Hj in the pp center of mass frame, the anisotropy can be neglected and Eq.(8) forms a good

approximation. This makes it possible to use an unpolarized Monte-Carlo event generator

such as pythia [38] to do the calculations.

The unknowns are thus the ∆DH
c (z, direct), which are determined by the hadroniza-

tion mechanism and by hadron structure. Present data do not sensitively constrain

parametrizations of the polarized fragmentation functions, which thus have to be mod-

eled [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24].

A frequently used approach is to evaluate ∆DH
f (z) according to the origin of H [10, 11,

15, 16, 17, 18]. In this approach, the produced hyperons are divided into the following four

categories: (A) directly produced hyperons that contain the initial quark q of flavor f ; (B)

decay products of heavier polarized hyperons; (C) directly produced hyperons that do not

contain the initial q; (D) decay products of heavier unpolarized hyperons. We thus write,

DH
f (z; direct) = D

H(A)
f (z) + D

H(C)
f (z), (9)

∆DH
f (z; direct) = ∆D

H(A)
f (z) + ∆D

H(C)
f (z), (10)

and assume that,

∆D
H(C)
f (z) = 0, (11)

and

∆D
H(A)
f (z) = tFH,fD

H(A)
f (z), (12)

where tFH,f is referred to as the fragmentation spin transfer factor. If the quarks and anti-

quarks produced in the fragmentation process are unpolarized, consistent with Eq.(11), then

tFH,f is a constant given by,

tFH,f = ∆Qf/nf , (13)

where ∆Qf is the fractional spin contribution of a quark with flavor f to the spin of the

hyperon, and nf is the number of valence quarks of flavor f in H .

An advantage to this approach is that the different kinds of contributions, including the

decay contributions, are taken into account explicitly. In Feynman-Field like fragmentation

models D
H(A)
f (z) is the probability to produce a first rank H with fractional momentum z.
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It is usually denoted by fH
qf

(z), so that D
H(C)
f (z) = DH

f (z; direct)− fH
qf

(z), and fH
qf

(z) is well

determined by unpolarized fragmentation data. The z-dependence of ∆D is thus obtained

from the unpolarized fragmentation functions in this model, which are empirically known,

and only the constant tFH,q is unknown. Expectations based on the SU(6) quark-parton wave

function and on polarized deep-inelastic scattering data are discussed in Ref. [15].

Experimentally, polarized fragmentation functions can be studied in e+e−-annihilation,

polarized deep-inelastic scattering, and high pT hadron production in polarized pp collisions

by measuring the polarization of the produced hyperons. The accuracy of present data [2,

3, 4, 5, 6, 7, 26] does not allow one to distinguish between the expectations for tFH,f based

on SU(6) and on deep-inelastic scattering, the so-called SU(6) and DIS pictures, but the

z-dependence obtained from the model seems to agree well with the available data on Λ

polarization [15].

An alternative approach [14, 22] to ∆DH
f (z) makes use of the Gribov relation [39], a

proportionality relating DH
f (z) ∝ qH

f (z) and ∆DH
f (z) ∝ ∆qH

f (z) where qH
f (z) and ∆qH

f (z)

are the parton distributions in the hyperon. Other alternative approaches to ∆DH
f (z) found

in the literature [12, 13] are in essence different combinations or approximations of the

aforementioned approaches.

In this paper, we will evaluate ∆DH
f (z) according to the origin of H . It is supported

by data and the constant tFH,f can be obtained from the SU(6) or the deep-inelastic scat-

tering picture for the spin structure of the nucleon [15]. The longitudinal polarization of

H̄ in pp collisions with one of the beams longitudinally polarized is evaluated using several

parametrizations of the polarized parton distribution functions ∆f(x), and both SU(6) and

deep-inelastic scattering as model inputs for the polarized fragmentation functions ∆DH̄
c (z).

III. ANTI-HYPERON PRODUCTION

The longitudinal polarization of high pT anti-hyperons produced in pp collisions is de-

termined by the polarization of the initial partons taking part in the hard scattering, the

partonic spin transfer factor, and the spin transfer in the fragmentation process. Since the

up, down, and strange quark and anti-quark polarizations in the polarized proton are dif-

ferent and the spin transfer in the fragmentation process for a given type of anti-hyperon

is flavor dependent as well, the contributions to H̄ production from the fragmentation of
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different quark flavors and gluons need to be studied. These contributions are independent

of polarization and have been determined in multi-particle production data in high energy

reactions. An impressive body of data has been collected over the past decades and the

contributions can thus be considered to be known accurately and to be well-modeled in

Monte-Carlo event generators.

We have used the pythia generator [38], version 6.4 without initial state radiation but

otherwise with default parameter settings, to evaluate the contributions to the production

of the Σ̄−, Σ̄+, Ξ̄0 and Ξ̄+ anti-hyperons. The flavor compositions of these anti-hyperons

lead us to expect a large contribution to the production of Σ̄+(d̄d̄s̄) from d̄-fragmentation,

a large contribution to Σ̄−(ūūs̄) production from ū-fragmentation, and a large contribution

to Ξ̄-production from s̄-fragmentation.
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FIG. 2: Contributions to Σ̄−(ūūs̄) production with pT ≥ 8 GeV/c in pp collisions at
√

s = 200 GeV.

The continuous and dashed lines are respectively the directly produced and decay contributions.

Fig. 2 shows the results for the fractional contributions to Σ̄− production from the

fragmentation of anti-quarks/quarks of different flavors and of gluons in pp collisions at
√

s = 200 GeV for hyperon transverse momenta pT > 8 GeV versus pseudo-rapidity η. The
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FIG. 3: Contributions to Σ̄+(d̄d̄s̄) production with pT ≥ 8 GeV/c in pp collisions at
√

s = 200 GeV.

The continuous and dashed lines are respectively the directly produced and decay contributions.

decay contribution to Σ̄− production is seen to be negligibly small. This is different than

for Λ̄ production and implies that its polarization measurement will reflect more directly

the spin structure of the nucleon and the polarized fragmentation function. The results are

symmetric in η ↔ −η since pp collisions are considered. The d̄-quark and s-quark frag-

mentation contributions originate from second or higher rank particles in the fragmentation

and have similar shapes since both are sea quarks (anti-quarks). The increasingly large

u-quark contribution with increasing |η| originates from valence quarks. Only the ū-quark

and s̄-quark give first rank fragmentation contributions. These contributions are sizable.

Most important for the production of Σ̄− with pT > 8 GeV and |η| < 1 are ū and gluon frag-

mentation. Since the Σ̄− spin is carried mostly by the ū-quark spins, this implies that the

Σ̄− polarization in singly polarized pp collisions should be sensitive to ∆ū(x), the ū-quark

polarization distribution in the polarized proton.

The results for Σ̄+, shown in Fig. 3, are similar to those for Σ̄− when ū and d̄ are

interchanged. The small difference between the fractional contribution of the ū-quark to
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Σ̄− production and of the d̄-quark to Σ̄+ production reflects the asymmetry of the light

sea density in the proton, d̄(x)>ū(x), which is built into the parton distribution functions.

The large d̄-quark fragmentation contribution to Σ̄+ production and the large d̄-quark spin

contribution to the Σ̄+ spin lead us to expect that Σ̄+ polarization measurements in pp

collisions are sensitive to ∆d̄(x).
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FIG. 4: Contributions to Ξ̄0(ūs̄s̄) production with pT ≥ 8 GeV/c in pp collisions at
√

s = 200 GeV.

The continuous and dashed lines are respectively the directly produced and decay contributions.

Figs. 4 and 5 show the fractional contributions for Ξ̄0 and Ξ̄+ production, respectively.

The dominant contribution originates from s̄-quark fragmentation. It amounts to almost

half the Ξ̄ production, and is larger than the d̄-quark fragmentation contribution to Σ̄+ pro-

duction and the ū-quark fragmentation contribution to Σ̄− production. This results from

strange suppression, which reduces the relative contributions from ū and d̄-quark fragmen-

tation to Ξ̄ production. We thus expect that Ξ̄ polarization measurements are sensitive to

∆s̄(x) in the nucleon. They are thus complementary to polarization measurements of the

Λ̄ [25], which has a larger production cross section but also larger decay contributions.

In Fig. 6 we show the pT dependence of the fractional fragmentation contributions for
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FIG. 5: Contributions to Ξ̄+(d̄s̄s̄) production with pT ≥ 8 GeV/c in pp collisions at

√
s = 200 GeV.

The continuous and dashed lines are respectively the directly produced and decay contributions.
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FIG. 7: Longitudinal polarization for anti-hyperons with transverse momentum pT ≥ 8 GeV/c in

pp collisions at
√

s = 200 GeV with one longitudinally polarized beam versus pseudo-rapidity η.

Positive η is taken along the direction of the polarized beam.

the mid-rapidity region, |η| < 1, for the Σ̄−, Σ̄+, Ξ̄0, Ξ̄+, as well as the Λ̄. The anti-quark

contributions generally increase with increasing pT , and the gluon contributions decrease.

IV. RESULTS AND DISCUSSION

We have evaluated PH̄ for the Σ̄−, Σ̄+, Ξ̄0, and Ξ̄+ anti-hyperons as a function of η for

pT ≥ 8GeV and
√

s = 200 GeV using different parametrizations for the polarized parton

distributions and using the SU(6) and DIS pictures for the spin transfer factors tFH,q in the

fragmentation. In all cases, the unpolarized parton distributions of Ref. [40] were used. The

results using the polarized parton distributions of Ref. [31] are shown in Fig. 7, together

with our previous results for PΛ̄ [25]. The main characteristics are:

• the size of the polarization increases in the forward direction with respect to the po-

larized proton beam and can be as large as 10% (Ξ̄0, Ξ̄+) at η = 2,
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• the differences between the H̄ polarizations obtained for different parametrizations of

the polarized parton distribution functions are generally larger than the differences

between the results for different models for the spin transfer in fragmentation,

• the size of the polarizations for the Σ̄− and Σ̄+ hyperons is smaller than for the Λ̄ and

Ξ̄ hyperons because of the lower fractional contributions from ū and d̄ fragmentation

to Σ̄− and Σ̄+ production than from s̄ fragmentation to the Λ̄ and Ξ̄ production,

• the results for Σ̄− and Σ̄+ for the GRSV2000 valence distributions differ in sign because

of the sign difference in ∆ū(x) and ∆d̄(x), and in size and shape because of flavor-

symmetry breaking in the unpolarized and this polarized parton distribution scenario,

• the Ξ̄0 and Ξ̄+ polarizations are similar to each other because of the dominance of s̄-

fragmentation; they are somewhat larger than the Λ̄ polarization because of the smaller

decay contributions and their sensitivity to ∆s̄ is thus more direct.

Fig. 8 shows the polarizations in the pseudo-rapidity range 0 < η < 1 versus transverse

momentum pT . The polarizations are sensitive mostly to the polarized anti-quark distribu-

tions for momentum fractions 0.05 < x < 0.25 and the pT -dependences are consequently

not very strong. Only a modest variation is expected also with center-of-mass energy. To

illustrate this, we have repeated the calculations for
√

s = 500 GeV. Fig. 9 shows the η-

dependence for pT > 10 GeV. Apart from differences expected from phase-space, the results

are seen to be very similar to those in Fig. 7.

Last, we have estimated the precision with which H̄ polarization measurements could be

made at RHIC [27]. For an analyzed integrated luminosity of L ≃ 300 pb−1 and a proton

beam polarization of P ≃ 70%, we anticipate that e.g. PΞ̄ could be measured to within

∼0.02 uncertainty. Measurements of H̄ polarization at RHIC are thus worthwhile in view of

the presently limited knowledge of ∆q̄(x) in the nucleon, as evidenced in particular by the

large differences between the parametrization sets of Ref. [31].

V. SUMMARY

In summary, we have evaluated the longitudinal polarizations of the Σ̄−, Σ̄+, Ξ̄0, and Ξ̄+

anti-hyperons in highly energetic collisions of longitudinally polarized proton beams. The

results show sensitivity to the anti-quark polarizations in the nucleon sea. In particular,
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FIG. 8: Longitudinal polarization for anti-hyperons with pseudo-rapidity 0 < η < 1 in pp collisions

at
√

s = 200 GeV with one longitudinally polarized beam versus transverse momentum pT . Positive

η is taken along the direction of the polarized beam.

the Σ̄− and Σ̄+ polarizations are sensitive to the light sea quark polarizations, ∆ū(x) and

∆d̄(x). The Ξ̄0 and Ξ̄+ polarizations are sensitive to strange anti-quark polarization ∆s̄(x).

Precision measurements at the RHIC polarized pp-collider should be able to provide new

insights in the sea quark polarizations in the nucleon.
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