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Abstract. Recently, it was demonstrated that the quasiparticle dynamics, the

layer-dependent charge and potential, and the c-axis screening coefficient could be

extracted from measurements of the spectral function of few layer graphene films grown

epitaxially on SiC using angle-resolved photoemission spectroscopy (ARPES). In this

article we review these findings, and present detailed methodology for extracting such

parameters from ARPES. We also present detailed arguments against the possibility

of an energy gap at the Dirac crossing ED.

1. Introduction

1.1. Isolation of graphene

Recently, much attention has been given to the electronic and other properties of

graphene. Following the isolation and dramatic transport measurements of individual

graphene flakes by exfoliation[1, 2, 3], there has been an explosion of theoretical and

experimental interest in graphene. Among the interesting properties found are the

massless, relativistic nature of graphene’s carriers, and the impact of Berry’s topological

phase factor on the transport properties of single and bilayer graphene. Especially

interesting from a technological point of view is the extremely long lifetime of carriers,

due to weak backscattering arising from their chiral nature [4, 5]. This chiral nature

derives from special symmetry properties of the graphene lattice.

Exploitation of these effects for electronic devices requires the precise and scalable

control of graphene nanostructures, which cannot as yet be achieved with exfoliated

flakes. Therefore, much attention has been given to the epitaxial growth of graphene
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Figure 1. Atomic arrangement in (left) monolayer and (right) bilayer graphene. The

inset shows the unit cell with two equivalent atoms.

on various substrates. Forbeaux et al. were the first to demonstrate that high-quality

epitaxy of single and few-layer graphene (FLG) could be achieved on the silicon-rich

SiC(0001) surface[6]. Transport measurements and demonstration of the feasibility of

patterned graphene devices were demonstrated by Berger et al.[7, 8].

Fig. 1 shows the atomic arrangement in monolayer and bilayer of graphene. The

unit cell consists of two equivalent C atoms, labelled A and B with bond length

1.42 Å. Jones proved that for a closed-packed hexagonal lattice, the energy gap along

the zone boundary disappears where bands from adjacent unit cells cross [9]. This

is illustrated in Fig. 2, which shows the tight-binding (TB) band structure E(k) of

graphene, evaluated to third nearest neighbor using the parameters of Reich [10]. (Here

we restrict consideration to the π and the π∗ states, which are derived from the pz

orbitals of the carbon atoms[11]). Quantitative fits of the TB model to experimentally

determined bands were presented by Bostwick et al. (Ref. [12]). These states meet at

the so-called Dirac crossing point at energy ED in agreement with Jones’ theorem. For

neutral (undoped) graphene, the Fermi energy (the energy of the least-bounds states)

EF=ED.

Many of the interesting properties of graphene revolve around the fact that the band

crossing at ED is strictly gapless. This means that at zero doping and zero temperature,

graphene is a gapless semiconductor or a zero-overlap semimetal. Upon doping the

graphene by either deposition of foreign atoms [13, 14], molecules [15] or in a gated

geometry [1, 2, 3], the carrier density can be easily manipulated. With this control,

we can systematically study the many-body interactions in graphene as a function of

doping using angle-resolved photoemission spectroscopy.

1.2. Angle-resolved Photoemission Spectroscopy

The Fermi surface is defined as a constant energy surface E(k)|E=EF
, and determines

all the transport properties of conducting materials. While transport measurements on

doped graphene can determine the relevant properties such as group velocity and lifetime
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Figure 2. Theoretical tight-binding band structure for graphene, based on third NN

parameters due to Reich[10].

of carriers on the Fermi surface, angle-resolved photoemission spectroscopy (ARPES)

is a useful complementary tool. It can determine the electronic band structure, so it

is capable of measuring not only the group velocity and Fermi surface, but also the

constant-energy surfaces for all occupied states and the full occupied bandstructure

E(k). Furthermore, the technique also accesses important information about many-

body effects[16]. When there is sufficient energy and momentum resolution, the

experimentally determined spectral width of the Fermi contours can be taken to be

the inverse of the mean free path, and the measurement of E(k) is taken as a measure

of the many-body spectral function A(k, ω).

This spectral function is in turn related to an electronic self-energy Σ(k, ω) as

follows (see Ref. [17] and therein):

A(k, ω) =
|ImΣ(k, ω)|

(ω − ωb(k) − ReΣ(k, ω))2 + (ImΣ(k, ω))2
, (1)

where ω is the measured binding energy and ωb(k) is another energy defined below

(where h̄ = 1). We make the approximation that Σ(k, ω) is k-independent. In this form,
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we see that A(k, ω), when evaluated at constant energy ω, is a Lorentzian function whose

width is given by ImΣ representing the inverse lifetime (proportional to the inverse mean

free path).

Eq. 1 is valid when the scattering rate of the charge carriers (expressed in energy

units) is not too large compared to their energy. In this situation, we refer to the charge

carriers as quasiparticles (QPs). In our measurements, the QPs are holes which have

been injected as part of the photoemission process. Their binding energy ω (here h̄ = 1)

is taken as a negative number, and we speak of increasing energy as an increase in this

negative value.

One can draw an analogy between QPs propagating in a scattering medium and

light traveling in a lossy optical medium. Such a medium is characterized by a complex

dielectric function, and the effects on the light propagation are not only through its

absorption but also a dispersion. To satisfy causality, the real and imaginary parts of the

dielectric function are related by a Hilbert transformation. Similarly, the propagation

of QPs in a scattering medium leads not only to inelastic scattering (whose lifetime is

encoded in ImΣ) but also renormalization of the carrier’s energy, encoded in the real

part of Σ(k, ω). These real and imaginary parts of Σ(k, ω) are also related by a Hilbert

transform, and the function ReΣ is defined as the difference between the measured

carrier energy ω and the “bare” band energy ωb(k) (that is, in the absence of scattering

interactions), as indicated in Eq. (1). Following this formalism, ARPES can determine

the energy-dependent lifetime due to scattering from other excitations in the system.

For a valid spectral function analysis, the ARPES spectra must be acquired with

sufficient resolution and the samples must be of high quality so that defect scattering

is negligible. They must also be well-characterized in thickness to ensure that the pure

graphene signal is accessed.

The first ARPES measurements on FLG on SiC were from thick films[18, 19, 20]

aimed toward studying the properties of graphite. Later, Rollings et al. [21] measured

the Fermi surface and other constant energy surfaces around ED for a film with

thicknesses around 2-3 layers, determined by core level shifts of C 1s electrons.

Systematic core level and valence band offset studies were carried out around the same

time by Seyller et al.[22]. Because of the contribution of carbon from the SiC substrate

to the core level signal, such measurements give a rough measure of the film thickness

but cannot give a precise thickness measurement.

As shown below, the ARPES measurements themselves can give not only a precise

thickness determination, but also determine other crucial quantities. The initial

formation of the graphene valence band from the silicon-rich SiC surface through to

the first monolayer graphene was by Emtsev et al.[23]. Valence band measurements to

discriminate film thicknesses greater than 1 monolayer were first shown by Ohta et al.

for bilayer[13] and later systematically for monolayer-quadlayer graphene films[24].

These studies also demonstrated the crucial role of substrate preparation for good

quality valence band measurements. The first detailed spectral function by ARPES

from graphene were published by Bostwick et al.[14] and could show a rich spectrum
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dominated by electron-electron, electron-phonon, and electron-plasmon scattering.

2. Experimental

Here we briefly review the growth method of graphene on SiC in our work [13, 14, 24].

Films were grown on n-type (∼ 1018 cm−3 N atoms) SiC(0001) wafers which were

precleaned by annealling in 1 bar of Hydrogen gas at 1550◦C for around 30 minutes.

The role of this cleaning step is essential, as by etching it removes the polishing scratches

while maintaining bulk SiC stoichiometry. As-cleaned substrates were found to be

atomically flat with wide terraces (Ohta et al., unpublished). Formation of graphene

layers by heating to around 1200◦ in ultrahigh vacuum was monitored with low energy

electron diffraction (LEED) following Forbeaux[6] and ARPES as described below.

The base pressure of our system was 1-2 × 10−11 T, and graphene growth was always

performed at pressures better than 1 × 10−10 T. All measurements were obtained at

phonon energy hν =94 eV unless otherwise noted.

3. Symmetry breaking considerations for few layer graphene

3.1. Monolayer Graphene: a gap at ED due to symmetry breaking?

As Forbeaux et al. showed, FLG formation is accompanied by a 6
√

3 × 6
√

3

reconstruction at the graphite-SiC interface, which was initially attributed to the

interference between the graphene and SiC lattice constants [6]. We now know from

photoemission[23], theoretical calculations[25, 26], and scanning tunnelling microscopy

(STM) [27] that the 6
√

3×6
√

3 represents a non-interacting “0th” graphene layer whose

electronic structure resembles graphene only insofar as it has an intact σ-like bands

(derived from sp2-hybridized in-plane bonds) but lacking the π bands characteristic of

the out-of-plane pz states of graphene. The presence of such a 0th layer is important

because it acts like a dead layer, saturating or interacting with the underlying SiC bonds

while forming a template for a subsequent first graphene overlayer. From symmetry

considerations, it is known that the π bands from the latter and the σ bands of the

former cannot interact. Therefore, the first graphene layer’s chemical interaction with

the substrate is very weak, and therefore we expect the π bands of graphene on SiC are

to a very good approximation the same as those of freestanding doped graphene. In the

following, we do not count this dead 0th layer among the active graphene layers in our

FLG film.

It is well-known that the Hamiltonian of one layer of graphene near the K point of

the Brillouin zone can be approximated [4, 5, 28, 29] by

H =

(

E1 + ∆/2 v(kx − iky)

v(kx + iky) E1 − ∆/2

)

≡
(

E1 vπ†

vπ E1

)

≡ α1 (2)

where the wavefunctions Ψ = (ψA, ψB) are written in terms of pz orbitals centered on

the A and B atoms in the graphene basis set. The parameter ∆ represents a possible
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Figure 3. Experimental Fermi surfaces (left) and band structures (middle, right)

for (a) as-prepared monolayer graphene and (b) graphene dosed with K atoms. The

middle and rightn panels are taken along orthogonal directions through the K point

as indicated. Adapted from Ref. [14]. The doping levels in electrons per cm2 are

indicated. The phonon kinks at ∼ 200 meV are indicated by arrows.

asymmetry between the A and B sites. For ordinary graphene, ∆ = 0 since the atoms

are indistinguishable. The off-diagonal terms represent the hopping between A and B

sublattices, and v is the band velocity around ED.

The Hamiltonian in Eq. 2 leads to a conical bandstructure E(k)= vk when ∆ = 0.

Here k is the momentum relative to one of the K points at the corner of the graphene

Brillouin zone (see Fig. 2). Experimental Fermi surfaces and underlying bandstructures

for clean and alkali-dosed graphene are shown in Fig. 3(a-b), adapted from Ref. [14]. We

can immediately recognize the expected nearly linear dispersions as well as the Dirac

crossing points (middle panels) in the bands at the Dirac energy ED. We also see that

there is a non-trivial change in intensity when traversing around the Fermi contour.

This will be discussed in detail below, but for now we regard it as a photoemission

cross section effect. Because of this effect, when we sample the bandstructure in the

y-direction (relative to Fig. 3), we see only one of the two expected bands; the other is

extinguished (right panels).

We also observe that even the clean, as-grown graphene films have a Fermi level
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EF significantly above (by around 0.45 eV) the Dirac energy ED. This in-built doping

was first reported by Rollings et al.[21] and can be attributed to the greater electron

affinity of graphene compared to the substrate. Our experiments have shown that this

intrinsic n-doping is independent of whether the substrate dopants have been frozen

out (at T ∼ 40K). Since its discovery by ARPES, this intrinsic n-doping has also been

predicted theoretically [25, 26].

An important feature of the one monolayer data is the appearance of kinks in the

energy band structure below EF[14]. These kinks occur at two energy scales. First we

see a slight kink at ∼ 200 meV below EF. This kink is hardly visible on the large energy

scale plotted in Fig. 3, but it is accompanied by pronounced sharpening between 200

meV and EF that is readily observed. This kink is similar to ones which have been

observed at similar energy scale in graphite[30, 31] and bilayer graphene [13] that have

been attributed to electron-phonon scattering. We can understand the presence of the

kink within the spectral function formalism in Eq. 1, noting that there is an observable

increase in linewidth of the band at binding energies greater than 200 meV, signifying

a decrease in the lifetime of the states as electrons absorb or emit phonons. We will

discuss this formalism further below but for now it is sufficient to identify this feature

with phonons for two reasons: first because of the energy scale, which corresponds to

the in-plane LO and TO phonons, and second, because the kink feature’s energy scale

remains constant with doping, as expected for the small doping levels considered here.

There is a second anomaly in the dispersion around the Dirac crossing point in

Fig. 3. In the middle panels, where both bands have equal intensity, the region of the

crossing of the bands seems spread out in energy. In the right panels, where one band is

extinguished, it appears that this spread is associated with a second kink feature which

is at the Dirac crossing point of the bands. Unlike the phonon kink, this anomaly moves

to higher binding energy with doping, and must therefore be somehow associated with

the Dirac energy ED. Similar to the phonon kink, it is stronger at higher doping, and

it is associated with a change in linewidth–the bands are locally broadened around ED.

What causes this second feature? In Bostwick et al., it was proposed to be

a kink due to electron-plasmon interaction[14] but it has been recently proposed

that the observed spreading of the bands around ED is associated with substrate-

dependent energy gap at ED[32, 33]. Such a gap would be interesting because it

suggests an electronic or chemical control of the electronic character (2D semimetal

vs. semiconductor) and is proposed on the basis of possible symmetry breaking. First,

we discuss this idea and then present the evidence against it followed by evidence in

favor of the electron-plasmon scattering model.

Within the simple Hamiltonian (Eq. 2) a gap of magnitude ∆ appears at the Dirac

crossing energy ED when the parameter ∆ 6= 0. A physical interpretation of this gap is

the symmetry breaking of the A and B atoms. This occurs for, e.g. replacement of C

atoms with B and N in hexagonal boron nitride. It also occurs in a scenario where the

bonding of A and B atoms to the 0th layer is asymmetric as recently proposed[32, 33].

We present arguments against this scenario in graphene on SiC as follows.
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Figure 4. Constant energy surface at the Dirac energy ED for (a) ordinary linear

intensity scale and (b) highly non-linear intensity scale. The weak satellite bands barely

visible with a linear scale are highlighted at the right. The remaining background

intensity is attributed to the 6
√

3 × 6
√

3 interface layer. The sample is as-grown

graphene, and measurements were at T ∼ 25K.

(1) The interaction between the 1st and 0th layer is very weak. This was established

by ARPES[23], theory[25, 26], and STM[27]. A possible argument against the weak

interlayer attraction is the appearance in monolayer graphene films of replica π bands

with 6
√

3 × 6
√

3 symmetry, ascribed by us as due to diffraction of the outgoing

photoelectrons[14], similar to other nearly incommensurate systems[34]. These satellite

bands lead to replicas of the constant energy contours, illustrated for the Dirac crossing

energy in Fig. 4. With a linear grey scale in (a) the replica bands are hardly noticable

but with a highly non-linear grey scale (b), they can be emphasized.

It is tempting to ascribe the replica bands to a possible 6
√

3 × 6
√

3 superlattice

potential felt by the first graphene layer. If this were true, additional energy minigaps

would appear where the replica and main bands cross[35];however, no such gaps have

been observed[13]. Furthermore, the replica bands, very weak at low temperature

(about a factor 40 reduced intensity compared to the primary band) do not appear

at room temperature[23] and at 100K are dramatically broadened [J. L. McChesney,

unpublished]. This observation violates the hypothesis that the first graphene layer

has 6
√

3 × 6
√

3 symmetry potential which would demand the linewidths of the replica

and main bands to be identical by symmetry. Instead, we can easily understand the

broadening of the replica bands as due to a Debye-Waller factor, confirming the origin

of these replica bands as due to final-state diffraction.

(2) The doping dependence shows a clear increase in the spread of the states at

the Dirac crossing. If this spread were due to a gap from coupling to the substrate, the

coupling strength should be independent of the doping density (or become smaller due

to enhanced screening).



Symmetry Breaking in FLG Films 9

Figure 5. (a) Bandstructure for as-prepared graphene. The dashed lines are a

projection of the π bands and highlight the fact that this projection does not pass

through the π∗ bands above ED. (b) The momentum-integrated density of states,

derived by integrated the bandstructure in (a). No dip in the density of states is

observed at the Dirac crossing point. (c) The individual energy distribution curves for

the bands in (a). The center EDC that includes the Dirac crossing shows no resolved

splitting, which would be expected for a gap.

(3) We observed that the bands above and below ED are misaligned[14], so that

the projections of the π states below ED do not pass through the π∗ states above ED.

This is illustrated by the dashed lines in Fig. 5(a), which reproduces the clean graphene

bandstructure. This misalignment does not occur in the energy gap scenario, but comes

naturally when many-body interactions are present.

(4) The density of states (DOS) does not show a gap at ED. This is illustrated in

Fig. 5(b) for the momentum-integrated DOS. In a gap scenario one expects a decreased

DOS but we see a peak (expected for crossed bands).

(5) The energy distribution curve (EDC) at the Dirac crossing shows only a single

peak, not a split peak as expected in a gap scenario (see Fig. 5(c)).

(6) The intensity distribution along the Fermi surface provides a stringent test for

A-B atom symmetry breaking. It is observed that one side of the Fermi contours is

very weak or absent. In the strictly symmetric case ∆ = 0, the intensity on one side

of the Fermi contour is strictly zero. Rather than a simple vanishing photoemission

matrix element, the cancellation results from the interference between emission from

A and B sites, as shown by Shirley[36]. This cancellation, like the Dirac nature of the

quasiparticles, and the lack of backscattering, follow from the strict A-B atom symmetry.

If we break the A-B atom symmetry, we not only open a gap at ED (thereby destroying
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Figure 6. (a) Polar plot of the intensity of the Fermi contours for monolayer (solid

circles) and bilayer graphene (open circles), obtained by fitting momentum distribution

curves taken along radial cuts through the K point of the Brillouin zone. The intensity

scale is logarithmic. Also shown are theoretical intensities for asymmetry parameters

∆ = 0.0, 0.1, 0.2 eV (solid lines) using Shirley’s formalism[36]. The solid black data

point is an upper limit based on the noise floor indicated by the central yellow circle.

(b) The ratio of the weakest to strongest emission intensities as a function of asymmetry

parameter ∆. The noise floor (yellow region) establishes the maximum value of the

asymmetry parameter ∼ 55 meV admitted by our measured intensity distribution.

the massless character), but also destroy the phase cancellation affecting the Fermi

surface intensity.

These effects are illustrated in Fig. 6. In (a) we show as polar maps the measured

angular distribution of the band intensity taken about the K point for monolayer and

bilayer graphene (closed and open circles, resp.). These data were obtained by fitting the

momentum distribution curves taken along radial cuts for an energy window ∼ 75 meV

below EF. The monolayer and bilayer Fermi surfaces are practically identical, but as

indicated in the figure, the bilayer signal is not completely extinguished in any direction.

In contrast, for the monolayer, the intensity is completely extinguished in one direction,

apart from a very weak minority contribution from bilayer regions. This residual bilayer

signal is easy to subtract since it is well separated from the monolayer bands below

ED[13]. After subtraction, we determined that the monolayer band intensity is zero

within a very low noise floor (about 0.15% as indicated by the central yellow circle).

Shirley derived a simple formula for the symmetric case ∆ = 0 for monolayer

graphene; we extended this model to the case of finite ∆ and show in Fig. 6(a) the

expected angular distributions for a ∆ = 0.0, 0.1, 0.2 eV (leading to energy gaps at

ED of the same values). This plot shows that we are fairly sensitive to the possible

symmetry breaking (and this sensitivity can be enhanced simply by acquiring the bands

with better statistics). Fig. 6(b) shows a plot of the intensity reduction as a function

of ∆, which can be compared to our noise floor (< .015%). From this comparison, we
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Figure 7. Spectral function of doped graphene. (a) The experimentally determined

spectral function for graphene doped with K atoms (total doping n = 5.6 × 1013

cm−2). The solid line is the fitted band position ωb(k)+ ReΣ(k, ω), the dotted line is

the bare band ωb(k). (b) A model spectral function generated using only the measured

ImΣ(k, ω) and the bare band ωb(k). Adapted from Ref.[14].

can conservatively estimate the maximum gap at ED to be under 60 meV. Since the

apparent kink at ED (with a resulting spreading of the states there) is much wider in

energy than this, we can rule out the symmetry breaking as being the dominant factor

to explain the anomalous dispersion at ED.

As an aside, the reason the bilayer is not completely extinguished is that A-B atom

symmetry breaking is indeed violated for the bilayer. That is because only one atom

(A, say) in the outer layer is directly over an atom in the inner graphene layer (see Fig.

1). This symmetry breaking also explains the well-known symmetry breaking in STM

images of bilayer and thicker films[27, 36]. (A complete model of the bilayer angular

intensity profile is outside the scope of this paper and will be presented elsewhere.)

(7) It is worth pointing out the very high momentum resolution and accuracy of

positioning of the sample that is required to obtain spectra precisely at ED. In Fig.

5(a), we see that the entire span of the Fermi bands is only about 0.1 Å
−1

. Only a small

misalignment on the order of 0.05◦ could result in an apparent gap in the bands.

3.2. Many-body explanation for anomalies at ED

3.2.1. The case for self-consistency. Having ruled out the gap scenario, we can now

consider many-body interactions to explain the kinked dispersions around ED. The

first issue is whether a self-consistent model is possible even in principle. We will first

establish that the kinks and the linewidth variations are consistent with each other. As

discussed above and in the literature[17, 37], we analyze the spectral function data in

terms of real and imaginary parts of the self-energy function Σ(k, ω). Fig. 7(b) shows an

experimentally acquired spectral function A(k, ω) for relatively highly doped graphene

(n = 5.6 × 1013 cm−2). The dressed band position ω =ωb(k)+ ReΣ(k, ω) is determined
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Figure 8. Experimentally determined Self-Energy function. (a) The width of

the momentum distribution curves as a function of energy. (b) ImΣ(k, ω) derived

from scaling the MDC widths by half the band velocity (black) and smoothing

(red). (c) ReΣ(k, ω) obtained from the experimental data (black line) and by Hilbert

transforming the smoothed ImΣ(k, ω) (red). The sample is doped to n = 5.6 × 1013

cm−2.

by fitting momentum distribution curves (MDCs, that is, individual constant-energy

slices) to Lorentzian functions. The positions are plotted in Fig. 7(a) (black line) and

the Lorentzian width as a function of ω is plotted in Fig. 8(a).

In order to converge to a self-consistent interpretation, it is necessary to iteratively

apply the following procedure. We take a second order polynomial as a trial bare band

ωb(k). Given this ωb(k), we can easily scale the MDC widths (units of Å) into the

function ImΣ(k, ω) (units of eV), shown in 8(b). This function is smoothed and then

Hilbert transformed into a trial ReΣ(k, ω) function. We can also extract the ReΣ(k, ω)

function by subtracting the trial bare band from the fitted band position. These two

ReΣ(k, ω) functions (Fig. 7(c)) are compared and the trial bare band adjusted until

the model ReΣ(k, ω) and ImΣ(k, ω) are in good agreement with the experimentally

extracted curves as plotted in Fig. 7(b-c).

As a final check of self-consistency, we can generate a trial spectral function A(k, ω)

from only the fitted MDC widths and the mathematically transformed ReΣ(k, ω), shown

in Fig. 7(b). It is in excellent agreement with the experimental function in Fig. 7(a).

Having demonstrated this self-consistency, we can say with high degree of confidence

that the kink anomalies must be attributed to many-body interactions, and not any

details of the single-particle bandstructure. That is, we can safely rule out not only the
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Figure 9. Comparison of calculated and measured MDC widths. (a) measured MDC

widths (dots) for the highest-doping sample (n = 5.6 × 1013 cm−2) are compared

to the total scattering rate contribution from Bostwick et al.[14](solid). (b) the

calculated contributions to the scattering rate due to electron-hole pair generation,

electron-phonon scattering, and electron-plasmon scattering[14]. (c-e) experimental

MDC widths for n =1.2, 3.0, and n = 5.6×1013 cm−2 in comparison to the calculations

of Hwang et al.[38]. Adapted from Ref. [14].

superlattice gap scenario outlined above, but also strain, defects and other initial-state

effects.

3.2.2. Contributions to scattering lifetime. We now explain the physical origin of the

measured ImΣ(k, ω) function in more quantitative fashion. For convenience we work

with the fitted MDC widths, which are plotted in Fig. 9(a). The features to explain

are, starting from zero energy, the monotonic increase in lifetime down to about −0.2

eV; the hump at around ED= −1.0 eV, and the remaining background rise. These were

attributed [14] to electron-phonon (e-ph) coupling, electron-plasmon (e-pl) coupling,



Symmetry Breaking in FLG Films 14

Figure 10. Possible many-body decay process in n-doped graphene. (a) decay by

electron-phonon emission (b) decay be electron-plasmon emission (c) decay by electron-

hole pair generation.

and electron-hole (e-h) pair generation; computations of these contributions to the

scattering rate are shown in Fig. 9(b). Schematic diagrams of these processes are

shown in Fig. 10.

We can meaningfully consider only those excitations whose energy scale is greater

than our energy resolution (∼ 25 meV). Considering the energy scale of the observed

kink anomalies (≥ 200 meV) we can rule out any significant interactions between 25 to

200 meV, such as scattering from low-energy acoustical vibrational modes.

First, we qualitatively discuss the coupling to phonons at the 200 meV energy

scale (a quantitative analysis has been presented by Bostwick et al.[12] for graphene,

and for other surfaces in Refs. [39, 40, 41]). Since this energy is much larger than our

temperature (kBT ∼ 2 meV, we can rule out phonon absorption and consider only decay

of quasiparticles (QPs) by phonon emission (Fig. 10(a)). Such QP decays are forbidden

for states at EF, but become available as the quasiparticle energy increases. Typically

once the quasiparticle energy is greater than the phonon energy scale, the lifetime due

to scattering is independent of QP energy. This change in QP lifetime is reflected in

a monotonic increase in the imaginary part of the self energy ImΣ(k, ω). Because the

real and imaginary parts of Σ(k, ω) are related by Hilbert transform, one expects to see

a non-trivial change in the dispersion on the phonon energy scale, which is observed

as a kink. Physically, we interpret the change of band slope between the kink and EF

as a renormalization of the mass as the QPs become “dressed” with a virtual cloud of

phonons. But we know that the QPs in graphene are effectively massless, so we speak in

terms of a velocity renormalization (or equivalently a renormalization of the relativistic

mass-equivalent energy).

The 200 meV kink is stronger for the K-covered graphene compared to the as-grown

surface (see Fig. 3(a,b)) due to a phase-space argument. The density of electronic states

in k-space is a constant, so that as the sample is doped, the bands span more electronic

states near EF; as these become available final states for phonon scattering, the decay

probability increases. Left unexplained is the overall magnitude of the e-ph scattering

rate at all dopings, which is about 6 times stronger than what is predicted by the normal
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deformation potential calculations [12, 42, 43].

The quantitative analysis of the phonon kink [12, 14], which followed the standard

formalism [44], is quite useful but does not perfectly describe the kink strength (it

underestimates it slightly) and furthermore does not take into account the actual band

structure of graphene: the actual phonon scattering rate should diminish near ED from

the same phase-space argument just cited. A first-principles calculation of the phonon

scattering rate should account for both of these effects.

In the case of the second kink near ED, the QP decay is through emission of

plasmons (Fig. 10(b)), which is favored over phonon scattering because of the kinematic

constraints[14, 45, 38]. Whereas optical phonons are more or less delocalized in k-space

with fixed energy scale, the plasmon spectrum in graphene has a fast energy dispersion

in a narrow range of k. This follows from the dispersion relation for two-dimensional

plasmons [46] in the long wavelength limit:

ωpl(q) =
√

4πne2q/m(1 + ǫ) (3)

where q is the plasmon momentum, m is the carrier mass, and ǫ ∼ 6 is the dielectric

constant[12]. Although plasmons in principle exist in the domain 0 < q < ∞, in

practice they propagate freely up to a critical momentum q < qc due to Landau damping

(plasmon decay into electron-hole pairs)[47].

For graphene, the rest mass m is zero near ED but the relativistic mass equivalent

to the kinetic energy, mr=E/v
2 (where v is the Fermi velocity), is on the order[2, 3]

of 0.1me and can be used to set the plasmon energy scale ωpl. This means that more

or less vertical interband decays by plasmon scattering are now the dominant factor

determining the lifetime near ED.

Two other contributions to the scattering lifetime must be considered. First is

defect or impurity scattering. Normally the defect scattering is taken to be a constant

background to the imaginary self energy ImΣ(k, ω), which is a deconvolution of the

residual momentum spread of the bands at EFand the instrumental function. In our

case, the residual momentum spread is only about 0.005 Å
−1

, which is comparable to our

instrumental resolution, so we can safely discard the defect scattering rate as negligible.

The remaining contribution to the scattering rate is the decay by e-h pair

generation, which is the standard decay process in Fermi liquid theory. In this process

(Fig. 10(c)), the decay of the quasiparticle is accompanied by an excitation of an electron

above EF, creating a new hole below EF. For two-dimensional metals with circular

Fermi surface, Hodges et al. proved the famous rule that e-h-pair scattering rate goes as

ω2lnω[48]. This was determined by a phase space integration of all possible kinematically

allowed e-h-scattering processes. For a 2D free electron gas this could be carried out

analytically, but for graphene, we evaluated the appropriate integral numerically. This

was done so that we could use the experimentally determined dispersion (although we

assumed cylindrical symmetry and zero temperature to simplify the integration).

The most interesting finding is that for n-doped graphene, the e-h-scattering rate

rises from EF down towards ED as it would be expected for any metal. Around ED,
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however, the scattering rate must necessarily drop, because in the vicinity of ED, the

decays are mostly vertical transitions. Such a decay by e-h-pair generation is forbidden

since we cannot find a momentum-conserving excitation near EF to satisfy the kinematic

constraints. Only at energy scale around twice the Dirac energy do such excitations

become available, and we see an associated rise in the scattering rate at high energy

scales.

Considering the simplicity of the model, the total scattering rate function (Fig.

9(b)) does a remarkably good job to model the data. Theoretical modelling of the e-pl

and e-h scattering rates has also been performed by Hwang et al.[38]. Fig. 9(c-e)) shows

a comparison of our measured MDC widths to their model for three different dopings.

Although they overestimate the relative contribution of the e-pl to e-h processes, their

calculation is in excellent qualitative agreement with the observed MDC widths. The

main discrepancy is the failure of the model to account for the scattering rate from

phonons, which was not included in their calculation.

The many-body effects we measure are present all the way down to zero doping and

therefore may play a role in the transport of gated graphene devices. These are much

more dilute carrier gases than we achieved by alkali metal doping. As the doping level

decreases, the phonon and plasmon processes will overlap in in energy and therefore will

not be separable. This is already seen in the lowest doping we probed (Fig. 9(c)). The

plasmon and e-h pair scattering rates are reasonably separable at all dopings, but there

is an energy overlap region just above ED where neither alone is a good description of the

total electron-electron interaction. These observations imply that a proper description

of the scattering rate will take into account much more complicated processes than in

our simple treatment. In the language of Feynman diagrams, it means higher-order

diagrams than are typically considered will be necessary to model the photoemission

data. In addition, when EF is reduced to be comparable to the temperature, thermal

excitation effects will increase in importance. This has already been discussed in relation

to plasmons [45].

3.3. Out-of-plane symmetry breaking in multilayer graphene.

Multilayer graphene films grown on Silicon carbide have an obvious built-in symmetry

breaking, because of the inequivalence of the two film interfaces (SiC and vacuum).

Further symmetry breaking can be induced by either external field, or by growth of

additional layers on top of the graphene films. Understanding these symmetry effects

is important in order to exploit them for technological purposes. Extension of the

Hamiltonian in Eq. 2 to multiple layers gives a simple framework to achieve this.

Extension to two layers is achieved by adding an additional hopping term between
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the B atoms of the first layer and the A atoms of the second layer [49, 50, 24]:

H =













E1 vπ† 0 0

vπ E1 γ1 0

0 γ1 E2 vπ†

0 0 vπ E2













≡
(

α1 β0

βT
0 α2

)

(4)

Here αi acts with respect to the (A, B) sublattices of the ith layer, and β0 is a 2 × 2

matrix

β0 ≡ H =

(

0 0

γ1 0

)

(5)

where γ1 is the hopping parameter between layers. The wave function now has four

elements with basis set orbitals located at A1, B1, A2, B2 atoms, where i is the layer

number (1 or 2).

There are two further generalizations of Eqn. 4. First, by adding more layers, and

second by altering the stacking sequence. Adding a third layer, one couples the B atom

of the second layer to the A atom of the third for conventional Bernal-type stacking

(ABAB . . .) characteristic of bulk graphite. Repeating this sequence we come to the

Bernal Hamiltonian for N layers,

H =

























α1 β0

βT
0 α2 βT

0

β0 α3 β0

βT
0 α4 βT

0

β0
. . .

αN

























(Bernal), (6)

A useful generalization of Eq. 6 is

H =

























α1 β0

βT
0 α2 βs

βT
s α3 β0

βT
0 α4 βs

βT
s

. . .

αN

























(General), (7)

where

βs = γ1

(

0 s

1 − s 0

)

. (8)

Now, if s = 0, then Eq. 7 is the Hamiltonian for Bernal stacking, while for s = 1, Eq. 7 is

the Hamiltonian for Rhombohedral stacking (ABCABC . . .). We can further generalize

this Hamiltonian to arbitrary stacking orders, by suitably choosing the different values

of s in each block of the matrix.

In the above Hamiltonians, we have assigned to each layer its own on-site Coulomb

energy Ei. This allows for the possibility of a poorly screened electric field across the
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Figure 11. Calculated band structures for few layer graphene using Eq. 7. (a)-

(d) show the bands for 1-4 layers graphene, respectively. The upper panels are for

unbiased layers (Ei=0) while the lower panels were calculated with a 200 meV potential

difference across the films, assuming a linear field gradient. Calculations were for

γ1 = 0.4 eV and v = 6.91 eV/Å−1.

FLG film, which is reasonable in view of the predicted long screening lengths in this

direction. It is straightforward to show that the Dirac crossing energy is ED=Tr H/2N
where N is the number of layers.

Fig. 11 shows the calculated bandstructures for one to four layer graphene. The

calculations were for either Bernal (solid lines) or rhombohedral (dashed lines); the

distinction is obviously meaningful only for films with N ≥ 3 layers. Far from ED, it

turns out there is little distinction between rhombohedral and Bernal stacking. This is

to our advantage, because as Fig. 11 shows, one can know the film thickness directly

from band structure measurements by simply counting the number of π bands below

ED. Near ED, the situation is quite different, since the two stacking types have quite

different band dispersions. (Similar calculations have also been carried out with ab initio

models[51, 52, 25, 26, 53]).

The detailed bandstructure around ED shows a strong sensitivity to the Coulomb

energy terms Ei that enter the Hamiltonian matrix (Eqs. 2, 7)[29]. This can be seen

by comparing the upper and lower rows of Fig. 11 which were calculated for two cases.

In the first case, the energies Ei are all zero, and we find a gapless energy spectrum at

EF=ED. For the lower row, we distributed a field change U=200 meV across the total

film in uniform increments, which simulates FLG in a bias or inhomogeneosly doped

geometry. This procedure opens gaps near ED; for the special bilayer case N = 2, there

is a complete gap at the Fermi level. This gap was proposed to be the basis of a new kind
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Figure 12. Gap Control of Bilayer Graphene. (a) An unbiased bilayer has a gapless

spectrum, which we could observe for a doped sample which carefully balanced the

field across the film. (b) For a bilayer with a field gradient, an energy gap is opened

between π and π∗ states.

of electronc switch, whereby lateral transport through the bilayer could be modulated

by applying a modest field perpendicular to the film[13, 54, 55].

Systematic studies of the thickness and doping dependence by ARPES have been

presented by Ohta et al.[13, 24]. Fig. 12 shows the bilayer graphene bandstructure

in two different field geometries, achieved by doping a bilayer graphene on SiC [13].

Simlar to monolayer graphene, the as-grown bilayer films have an intrinsic n-doping,

which allows us to probe the states both above and below ED. Because the doped

carriers are concentrated in the interface layer, the as-grown films have a field gradient

across them and hence a gap at ED. Carefully balancing this charge imbalance allows us

to close the gap (Fig. 12(a)), while further doping of the surface layer allows us to create

a net charge imbalance, thus reopening the gap (Fig. 12(b)). Evidence for a similar gap

opening was also presented for the surface layers of graphite when doped with Na[56].

Systematic thickness measurements at constant doping were presented by Ohta

et al.[24]. For films of thickness N=1-4 layers, we found that the total charge density

donated from the substrate was the same for all thicknesses. Similar to bilayer graphene,

the charge was donated predominantly to the interface graphene layer. This is in accord

with the metallic nature of the films, which can screen the interface layer from the rest

of the film. The measured bandstructures for N = 1 − 4 layers are shown in Fig. 13.

These spectra are very rich in information: we could determine not only the number

of layers (by counting the number of π states below ED straightforwardly) but also derive

the stacking order. One can see easily for N=3 that there are two states (marked by

circles) of equal intensity that can only be ascribed to equal populations of Bernal and

Rhombohedral stacking. For quadlayer (and presumably thicker) careful analysis shows

that Bernal stacking predominates. This can be taken as evidence for the role of second

near-neighbor interactions to stabilize the Bernal stacking type in graphite.

The electronic information that could be derived from the data are equally rich:

in analogy with the bilayer analysis, we could assign the different charge densities in
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Figure 13. Band structure of graphene films of thickness for (a-d) N = 1 − 4 layers,

resp. Calculated bands for three configurations are shown: Bernal stackings ABAB

and ABAC (blue and light blue, resp.) and Rhombohedral stackings (red).Adapted

from Ref. [24].

each graphene layer, and determine the out-of-plane screening length. In the formation

of the graphene films, about 1 × 1013 carriers per cm2 are donated to the film, with in

general about 85% of the charge donated to the first layer, and most of the rest in the

second layer[24].

4. Conclusions and outlook: Graphene, the simplest complex material.

In the last few years, there was an explosion of interest in graphene since isolation of

high-quality samples was achieved and since its many novel properties were elucidated

both experimentally and theoretically. Seldom does a new material come along that

has such strong fundamental and practical interest. From an experimental point of

view, graphene is highly attractive since unlike other low dimensional materials (such

as high-mobility semiconductor two dimensional electron gases), graphene films are

exposed to vacuum and can be directly probed by surface-sensitive techniques such as

LEED, STM, and ARPES. ARPES has a special role to play because it is sensitive

not only to the valence band energy structure but also its symmetry in k-space.

Furthermore it can give direct information on the many-body interactions, such as mass

renormalization. Through graphene’s special sensitivity to symmetry, we could even

derive much structural information such as stacking errors and electronic information

such as charge density and screening length, which would be very hard to achieve with

other probes.

In our opinion, graphene is unique in many ways. It is the first system to our

knowledge to show electron-plasmon coupling in the ARPES signal, which suggests

not only the exciting possibility of new coupling mechanisms, but also technological

implications in the interaction with photons. Finally, it is a model system for correlation

and many-body interactions which can supply stringent tests for theory.
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