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Abstract. Recently, it was demonstrated that the quasiparticle dynamics, the
layer-dependent charge and potential, and the c-axis screening coefficient could be
extracted from measurements of the spectral function of few layer graphene films grown
epitaxially on SiC using angle-resolved photoemission spectroscopy (ARPES). In this
article we review these findings, and present detailed methodology for extracting such
parameters from ARPES. We also present detailed arguments against the possibility
of an energy gap at the Dirac crossing Ep.

1. Introduction

1.1. Isolation of graphene

Recently, much attention has been given to the electronic and other properties of
graphene. Following the isolation and dramatic transport measurements of individual
graphene flakes by exfoliation[I], 2, 3], there has been an explosion of theoretical and
experimental interest in graphene. Among the interesting properties found are the
massless, relativistic nature of graphene’s carriers, and the impact of Berry’s topological
phase factor on the transport properties of single and bilayer graphene. FEspecially
interesting from a technological point of view is the extremely long lifetime of carriers,
due to weak backscattering arising from their chiral nature [4, 5]. This chiral nature
derives from special symmetry properties of the graphene lattice.

Exploitation of these effects for electronic devices requires the precise and scalable
control of graphene nanostructures, which cannot as yet be achieved with exfoliated
flakes. Therefore, much attention has been given to the epitaxial growth of graphene


http://arxiv.org/abs/0705.3705v1

Symmetry Breaking in FLG Films 2

Figure 1. Atomic arrangement in (left) monolayer and (right) bilayer graphene. The
inset shows the unit cell with two equivalent atoms.

on various substrates. Forbeaux et al. were the first to demonstrate that high-quality
epitaxy of single and few-layer graphene (FLG) could be achieved on the silicon-rich
SiC(0001) surface[6]. Transport measurements and demonstration of the feasibility of
patterned graphene devices were demonstrated by Berger et al.[7, ]].

Fig. [ shows the atomic arrangement in monolayer and bilayer of graphene. The
unit cell consists of two equivalent C atoms, labelled A and B with bond length
1.42 A. Jones proved that for a closed-packed hexagonal lattice, the energy gap along
the zone boundary disappears where bands from adjacent unit cells cross [9]. This
is illustrated in Fig. 2 which shows the tight-binding (TB) band structure E(k) of
graphene, evaluated to third nearest neighbor using the parameters of Reich [10]. (Here
we restrict consideration to the m and the 7* states, which are derived from the p,
orbitals of the carbon atoms[I1]). Quantitative fits of the TB model to experimentally
determined bands were presented by Bostwick et al. (Ref. [12]). These states meet at
the so-called Dirac crossing point at energy Ep in agreement with Jones’ theorem. For
neutral (undoped) graphene, the Fermi energy (the energy of the least-bounds states)
EF:ED.

Many of the interesting properties of graphene revolve around the fact that the band
crossing at Ep is strictly gapless. This means that at zero doping and zero temperature,
graphene is a gapless semiconductor or a zero-overlap semimetal. Upon doping the
graphene by either deposition of foreign atoms [13| [14], molecules [I5] or in a gated
geometry [I, 2, 3], the carrier density can be easily manipulated. With this control,
we can systematically study the many-body interactions in graphene as a function of
doping using angle-resolved photoemission spectroscopy.

1.2. Angle-resolved Photoemission Spectroscopy

The Fermi surface is defined as a constant energy surface E(k)|g—pg,, and determines
all the transport properties of conducting materials. While transport measurements on
doped graphene can determine the relevant properties such as group velocity and lifetime
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Figure 2. Theoretical tight-binding band structure for graphene, based on third NN
parameters due to Reich[I0].

of carriers on the Fermi surface, angle-resolved photoemission spectroscopy (ARPES)
is a useful complementary tool. It can determine the electronic band structure, so it
is capable of measuring not only the group velocity and Fermi surface, but also the
constant-energy surfaces for all occupied states and the full occupied bandstructure
E(k). Furthermore, the technique also accesses important information about many-
body effects[16]. When there is sufficient energy and momentum resolution, the
experimentally determined spectral width of the Fermi contours can be taken to be
the inverse of the mean free path, and the measurement of F(k) is taken as a measure
of the many-body spectral function A(k,w).

This spectral function is in turn related to an electronic self-energy Y(k,w) as
follows (see Ref. [17] and therein):

Im¥(k, w)]
(w — wp(k) — ReX(k, w))* + (ImE(k, w))?’

Ak,w) = (1)

where w is the measured binding energy and wy, (k) is another energy defined below
(where h = 1). We make the approximation that ¥ (k, w) is k-independent. In this form,
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we see that A(k,w), when evaluated at constant energy w, is a Lorentzian function whose
width is given by Im¥ representing the inverse lifetime (proportional to the inverse mean
free path).

Eq. @ is valid when the scattering rate of the charge carriers (expressed in energy
units) is not too large compared to their energy. In this situation, we refer to the charge
carriers as quasiparticles (QPs). In our measurements, the QPs are holes which have
been injected as part of the photoemission process. Their binding energy w (here h = 1)
is taken as a negative number, and we speak of increasing energy as an increase in this
negative value.

One can draw an analogy between QPs propagating in a scattering medium and
light traveling in a lossy optical medium. Such a medium is characterized by a complex
dielectric function, and the effects on the light propagation are not only through its
absorption but also a dispersion. To satisfy causality, the real and imaginary parts of the
dielectric function are related by a Hilbert transformation. Similarly, the propagation
of QPs in a scattering medium leads not only to inelastic scattering (whose lifetime is
encoded in ImY) but also renormalization of the carrier’s energy, encoded in the real
part of X(k,w). These real and imaginary parts of X(k, w) are also related by a Hilbert
transform, and the function ReX is defined as the difference between the measured
carrier energy w and the “bare” band energy wy, (k) (that is, in the absence of scattering
interactions), as indicated in Eq. (1). Following this formalism, ARPES can determine
the energy-dependent lifetime due to scattering from other excitations in the system.

For a valid spectral function analysis, the ARPES spectra must be acquired with
sufficient resolution and the samples must be of high quality so that defect scattering
is negligible. They must also be well-characterized in thickness to ensure that the pure
graphene signal is accessed.

The first ARPES measurements on FLG on SiC were from thick films[18] 19, 20]
aimed toward studying the properties of graphite. Later, Rollings et al. [2I] measured
the Fermi surface and other constant energy surfaces around FEp for a film with
thicknesses around 2-3 layers, determined by core level shifts of C 1s electrons.
Systematic core level and valence band offset studies were carried out around the same
time by Seyller et al.[22]. Because of the contribution of carbon from the SiC substrate
to the core level signal, such measurements give a rough measure of the film thickness
but cannot give a precise thickness measurement.

As shown below, the ARPES measurements themselves can give not only a precise
thickness determination, but also determine other crucial quantities. The initial
formation of the graphene valence band from the silicon-rich SiC surface through to
the first monolayer graphene was by Emtsev et al.[23]. Valence band measurements to
discriminate film thicknesses greater than 1 monolayer were first shown by Ohta et al.
for bilayer[I3] and later systematically for monolayer-quadlayer graphene films[24].

These studies also demonstrated the crucial role of substrate preparation for good
quality valence band measurements. The first detailed spectral function by ARPES
from graphene were published by Bostwick et al.[I4] and could show a rich spectrum
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dominated by electron-electron, electron-phonon, and electron-plasmon scattering.

2. Experimental

Here we briefly review the growth method of graphene on SiC in our work [13] 14} 24].
Films were grown on n-type (~ 10 ecm™ N atoms) SiC(0001) wafers which were
precleaned by annealling in 1 bar of Hydrogen gas at 1550°C for around 30 minutes.
The role of this cleaning step is essential, as by etching it removes the polishing scratches
while maintaining bulk SiC stoichiometry. As-cleaned substrates were found to be
atomically flat with wide terraces (Ohta et al., unpublished). Formation of graphene
layers by heating to around 1200° in ultrahigh vacuum was monitored with low energy
electron diffraction (LEED) following Forbeaux[6] and ARPES as described below.
The base pressure of our system was 1-2 x 107! T, and graphene growth was always
performed at pressures better than 1 x 107! T. All measurements were obtained at
phonon energy hv =94 eV unless otherwise noted.

3. Symmetry breaking considerations for few layer graphene

3.1. Monolayer Graphene: a gap at Ep due to symmetry breaking?

As Forbeaux et al. showed, FLG formation is accompanied by a 6v3 x 63
reconstruction at the graphite-SiC interface, which was initially attributed to the
interference between the graphene and SiC lattice constants [6]. We now know from
photoemission[23], theoretical calculations|25, 26], and scanning tunnelling microscopy
(STM) [27] that the 6v/3 x 61/3 represents a non-interacting “0**” graphene layer whose
electronic structure resembles graphene only insofar as it has an intact o-like bands
(derived from sp-hybridized in-plane bonds) but lacking the 7 bands characteristic of
the out-of-plane p. states of graphene. The presence of such a 0% layer is important
because it acts like a dead layer, saturating or interacting with the underlying SiC bonds
while forming a template for a subsequent first graphene overlayer. From symmetry
considerations, it is known that the m bands from the latter and the o bands of the
former cannot interact. Therefore, the first graphene layer’s chemical interaction with
the substrate is very weak, and therefore we expect the m bands of graphene on SiC are
to a very good approximation the same as those of freestanding doped graphene. In the
following, we do not count this dead 0" layer among the active graphene layers in our
FLG film.

It is well-known that the Hamiltonian of one layer of graphene near the K point of
the Brillouin zone can be approximated [4, [5, 28| 29] by

o El + A/Q U(k‘x — 'Lk‘y) o El ’U7TT B
H_<U(l{2x—|—il{3y) Ey—A)2 >:<U7T E1>:041 (2)

where the wavefunctions W = (¢, 1) are written in terms of p, orbitals centered on
the A and B atoms in the graphene basis set. The parameter A represents a possible
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Figure 3. Experimental Fermi surfaces (left) and band structures (middle, right)
for (a) as-prepared monolayer graphene and (b) graphene dosed with K atoms. The

middle and rightn panels are taken along orthogonal directions through the K point

as indicated. Adapted from Ref. [14]. The doping levels in electrons per cm? are

indicated. The phonon kinks at ~ 200 meV are indicated by arrows.

asymmetry between the A and B sites. For ordinary graphene, A = 0 since the atoms
are indistinguishable. The off-diagonal terms represent the hopping between A and B
sublattices, and v is the band velocity around Ep.

The Hamiltonian in Eq. 2l leads to a conical bandstructure E(k)= vk when A = 0.
Here k is the momentum relative to one of the K points at the corner of the graphene
Brillouin zone (see Fig. [2)). Experimental Fermi surfaces and underlying bandstructures
for clean and alkali-dosed graphene are shown in Fig.Bl(a-b), adapted from Ref. [I4]. We
can immediately recognize the expected nearly linear dispersions as well as the Dirac
crossing points (middle panels) in the bands at the Dirac energy Ep. We also see that
there is a non-trivial change in intensity when traversing around the Fermi contour.
This will be discussed in detail below, but for now we regard it as a photoemission
cross section effect. Because of this effect, when we sample the bandstructure in the
y-direction (relative to Fig. B]), we see only one of the two expected bands; the other is
extinguished (right panels).

We also observe that even the clean, as-grown graphene films have a Fermi level



Symmetry Breaking in FLG Films 7

Er significantly above (by around 0.45 eV) the Dirac energy Ep. This in-built doping
was first reported by Rollings et al.[21] and can be attributed to the greater electron
affinity of graphene compared to the substrate. Our experiments have shown that this
intrinsic n-doping is independent of whether the substrate dopants have been frozen
out (at T' ~ 40K). Since its discovery by ARPES, this intrinsic n-doping has also been
predicted theoretically [25] 26].

An important feature of the one monolayer data is the appearance of kinks in the
energy band structure below Er[I4]. These kinks occur at two energy scales. First we
see a slight kink at ~ 200 meV below Ep. This kink is hardly visible on the large energy
scale plotted in Fig. Bl but it is accompanied by pronounced sharpening between 200
meV and Ef that is readily observed. This kink is similar to ones which have been
observed at similar energy scale in graphite[30], B1] and bilayer graphene [13] that have
been attributed to electron-phonon scattering. We can understand the presence of the
kink within the spectral function formalism in Eq. [Il noting that there is an observable
increase in linewidth of the band at binding energies greater than 200 meV, signifying
a decrease in the lifetime of the states as electrons absorb or emit phonons. We will
discuss this formalism further below but for now it is sufficient to identify this feature
with phonons for two reasons: first because of the energy scale, which corresponds to
the in-plane LO and TO phonons, and second, because the kink feature’s energy scale
remains constant with doping, as expected for the small doping levels considered here.

There is a second anomaly in the dispersion around the Dirac crossing point in
Fig. Bl In the middle panels, where both bands have equal intensity, the region of the
crossing of the bands seems spread out in energy. In the right panels, where one band is
extinguished, it appears that this spread is associated with a second kink feature which
is at the Dirac crossing point of the bands. Unlike the phonon kink, this anomaly moves
to higher binding energy with doping, and must therefore be somehow associated with
the Dirac energy Ep. Similar to the phonon kink, it is stronger at higher doping, and
it is associated with a change in linewidth—the bands are locally broadened around Ep.

What causes this second feature? In Bostwick et al., it was proposed to be
a kink due to electron-plasmon interaction|I4] but it has been recently proposed
that the observed spreading of the bands around FEp is associated with substrate-
dependent energy gap at Ep[32, 33]. Such a gap would be interesting because it
suggests an electronic or chemical control of the electronic character (2D semimetal
vs. semiconductor) and is proposed on the basis of possible symmetry breaking. First,
we discuss this idea and then present the evidence against it followed by evidence in
favor of the electron-plasmon scattering model.

Within the simple Hamiltonian (Eq. 2)) a gap of magnitude A appears at the Dirac
crossing energy Fp when the parameter A # 0. A physical interpretation of this gap is
the symmetry breaking of the A and B atoms. This occurs for, e.g. replacement of C
atoms with B and N in hexagonal boron nitride. It also occurs in a scenario where the
bonding of A and B atoms to the 0% layer is asymmetric as recently proposed[32, 33].

We present arguments against this scenario in graphene on SiC as follows.
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Figure 4. Constant energy surface at the Dirac energy Ep for (a) ordinary linear
intensity scale and (b) highly non-linear intensity scale. The weak satellite bands barely
visible with a linear scale are highlighted at the right. The remaining background
intensity is attributed to the 6v/3 x 64/3 interface layer. The sample is as-grown
graphene, and measurements were at T ~ 25K.

(1) The interaction between the 1st and Oth layer is very weak. This was established
by ARPES|[23], theory[25], 26], and STM[27]. A possible argument against the weak
interlayer attraction is the appearance in monolayer graphene films of replica m bands
with 6v/3 x 6v/3 symmetry, ascribed by us as due to diffraction of the outgoing
photoelectrons[14], similar to other nearly incommensurate systems[34]. These satellite
bands lead to replicas of the constant energy contours, illustrated for the Dirac crossing
energy in Fig. [4 With a linear grey scale in (a) the replica bands are hardly noticable
but with a highly non-linear grey scale (b), they can be emphasized.

It is tempting to ascribe the replica bands to a possible 6v/3 x 61/3 superlattice
potential felt by the first graphene layer. If this were true, additional energy minigaps
would appear where the replica and main bands cross[35];however, no such gaps have
been observed[I3]. Furthermore, the replica bands, very weak at low temperature
(about a factor 40 reduced intensity compared to the primary band) do not appear
at room temperature[23] and at 100K are dramatically broadened [J. L. McChesney,
unpublished]. This observation violates the hypothesis that the first graphene layer
has 6v/3 x 6v/3 symmetry potential which would demand the linewidths of the replica
and main bands to be identical by symmetry. Instead, we can easily understand the
broadening of the replica bands as due to a Debye-Waller factor, confirming the origin
of these replica bands as due to final-state diffraction.

(2) The doping dependence shows a clear increase in the spread of the states at
the Dirac crossing. If this spread were due to a gap from coupling to the substrate, the
coupling strength should be independent of the doping density (or become smaller due
to enhanced screening).
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Figure 5. (a) Bandstructure for as-prepared graphene. The dashed lines are a
projection of the m bands and highlight the fact that this projection does not pass
through the m+ bands above Ep. (b) The momentum-integrated density of states,
derived by integrated the bandstructure in (a). No dip in the density of states is
observed at the Dirac crossing point. (c) The individual energy distribution curves for
the bands in (a). The center EDC that includes the Dirac crossing shows no resolved
splitting, which would be expected for a gap.

(3) We observed that the bands above and below Ep are misaligned[I4], so that
the projections of the 7 states below Ep do not pass through the 7* states above Ep.
This is illustrated by the dashed lines in Fig. Ba), which reproduces the clean graphene
bandstructure. This misalignment does not occur in the energy gap scenario, but comes
naturally when many-body interactions are present.

(4) The density of states (DOS) does not show a gap at Ep. This is illustrated in
Fig. [Bl(b) for the momentum-integrated DOS. In a gap scenario one expects a decreased
DOS but we see a peak (expected for crossed bands).

(5) The energy distribution curve (EDC) at the Dirac crossing shows only a single
peak, not a split peak as expected in a gap scenario (see Fig.[H(c)).

(6) The intensity distribution along the Fermi surface provides a stringent test for
A-B atom symmetry breaking. It is observed that one side of the Fermi contours is
very weak or absent. In the strictly symmetric case A = 0, the intensity on one side
of the Fermi contour is strictly zero. Rather than a simple vanishing photoemission
matrix element, the cancellation results from the interference between emission from
A and B sites, as shown by Shirley[36]. This cancellation, like the Dirac nature of the
quasiparticles, and the lack of backscattering, follow from the strict A-B atom symmetry.
If we break the A-B atom symmetry, we not only open a gap at Ep (thereby destroying
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Figure 6. (a) Polar plot of the intensity of the Fermi contours for monolayer (solid
circles) and bilayer graphene (open circles), obtained by fitting momentum distribution
curves taken along radial cuts through the K point of the Brillouin zone. The intensity
scale is logarithmic. Also shown are theoretical intensities for asymmetry parameters
A =0.0,0.1,0.2 eV (solid lines) using Shirley’s formalism[36]. The solid black data
point is an upper limit based on the noise floor indicated by the central yellow circle.
(b) The ratio of the weakest to strongest emission intensities as a function of asymmetry
parameter A. The noise floor (yellow region) establishes the maximum value of the
asymmetry parameter ~ 55 meV admitted by our measured intensity distribution.

the massless character), but also destroy the phase cancellation affecting the Fermi
surface intensity.

These effects are illustrated in Fig. [6l In (a) we show as polar maps the measured
angular distribution of the band intensity taken about the K point for monolayer and
bilayer graphene (closed and open circles, resp.). These data were obtained by fitting the
momentum distribution curves taken along radial cuts for an energy window ~ 75 meV
below Ep. The monolayer and bilayer Fermi surfaces are practically identical, but as
indicated in the figure, the bilayer signal is not completely extinguished in any direction.
In contrast, for the monolayer, the intensity is completely extinguished in one direction,
apart from a very weak minority contribution from bilayer regions. This residual bilayer
signal is easy to subtract since it is well separated from the monolayer bands below
Ep[13]. After subtraction, we determined that the monolayer band intensity is zero
within a very low noise floor (about 0.15% as indicated by the central yellow circle).

Shirley derived a simple formula for the symmetric case A = 0 for monolayer
graphene; we extended this model to the case of finite A and show in Fig. [6(a) the
expected angular distributions for a A = 0.0,0.1,0.2 eV (leading to energy gaps at
Ep of the same values). This plot shows that we are fairly sensitive to the possible
symmetry breaking (and this sensitivity can be enhanced simply by acquiring the bands
with better statistics). Fig. [6(b) shows a plot of the intensity reduction as a function
of A, which can be compared to our noise floor (< .015%). From this comparison, we
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Figure 7. Spectral function of doped graphene. (a) The experimentally determined
spectral function for graphene doped with K atoms (total doping n = 5.6 x 1013
ecm~2). The solid line is the fitted band position wy,(k)+ ReX(k,w), the dotted line is
the bare band wp (k). (b) A model spectral function generated using only the measured
ImX¥(k,w) and the bare band wy, (k). Adapted from Ref.[T4].

can conservatively estimate the maximum gap at Ep to be under 60 meV. Since the
apparent kink at Ep (with a resulting spreading of the states there) is much wider in
energy than this, we can rule out the symmetry breaking as being the dominant factor
to explain the anomalous dispersion at Ep.

As an aside, the reason the bilayer is not completely extinguished is that A-B atom
symmetry breaking is indeed violated for the bilayer. That is because only one atom
(A, say) in the outer layer is directly over an atom in the inner graphene layer (see Fig.
). This symmetry breaking also explains the well-known symmetry breaking in STM
images of bilayer and thicker films[27, [36]. (A complete model of the bilayer angular
intensity profile is outside the scope of this paper and will be presented elsewhere.)

(7) It is worth pointing out the very high momentum resolution and accuracy of
positioning of the sample that is required to obtain spectra precisely at Ep. In Fig.
Bl(a), we see that the entire span of the Fermi bands is only about 0.1 A7, Only a small
misalignment on the order of 0.05° could result in an apparent gap in the bands.

3.2. Many-body explanation for anomalies at Ep

3.2.1. The case for self-consistency. Having ruled out the gap scenario, we can now
consider many-body interactions to explain the kinked dispersions around FEp. The
first issue is whether a self-consistent model is possible even in principle. We will first
establish that the kinks and the linewidth variations are consistent with each other. As
discussed above and in the literature[17, 37], we analyze the spectral function data in
terms of real and imaginary parts of the self-energy function 3(k,w). Fig.[Z(b) shows an
experimentally acquired spectral function A(k,w) for relatively highly doped graphene
(n = 5.6 x 10" cm™2). The dressed band position w =wy,(k)+ ReX(k,w) is determined
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Figure 8. Experimentally determined Self-Energy function. (a) The width of
the momentum distribution curves as a function of energy. (b) ImX(k,w) derived
from scaling the MDC widths by half the band velocity (black) and smoothing
(red). (c) ReX(k,w) obtained from the experimental data (black line) and by Hilbert
transforming the smoothed Im¥(k,w) (red). The sample is doped to n = 5.6 x 1013
cm ™2,

by fitting momentum distribution curves (MDCs, that is, individual constant-energy
slices) to Lorentzian functions. The positions are plotted in Fig. [[(a) (black line) and
the Lorentzian width as a function of w is plotted in Fig. §l(a).

In order to converge to a self-consistent interpretation, it is necessary to iteratively
apply the following procedure. We take a second order polynomial as a trial bare band
wp(k). Given this wy(k), we can easily scale the MDC widths (units of A) into the
function Im>(k,w) (units of eV), shown in §(b). This function is smoothed and then
Hilbert transformed into a trial ReX(k,w) function. We can also extract the ReX(k, w)
function by subtracting the trial bare band from the fitted band position. These two
ReX(k,w) functions (Fig. [[(c)) are compared and the trial bare band adjusted until
the model ReX(k,w) and Im¥(k,w) are in good agreement with the experimentally
extracted curves as plotted in Fig. [l(b-c).

As a final check of self-consistency, we can generate a trial spectral function A(k, w)
from only the fitted MDC widths and the mathematically transformed ReX(k, w), shown
in Fig. [(b). It is in excellent agreement with the experimental function in Fig. [7|(a).
Having demonstrated this self-consistency, we can say with high degree of confidence
that the kink anomalies must be attributed to many-body interactions, and not any
details of the single-particle bandstructure. That is, we can safely rule out not only the
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Figure 9. Comparison of calculated and measured MDC widths. (a) measured MDC
widths (dots) for the highest-doping sample (n = 5.6 x 10'® cm~2) are compared
to the total scattering rate contribution from Bostwick et al.[I4](solid). (b) the
calculated contributions to the scattering rate due to electron-hole pair generation,
electron-phonon scattering, and electron-plasmon scattering[14]. (c-e) experimental
MDC widths for n =1.2, 3.0, and n = 5.6 x 10'3 cm ™2 in comparison to the calculations
of Hwang et al.[38]. Adapted from Ref. [14].

superlattice gap scenario outlined above, but also strain, defects and other initial-state
effects.

3.2.2. Contributions to scattering lifetime. We now explain the physical origin of the
measured Im¥(k,w) function in more quantitative fashion. For convenience we work
with the fitted MDC widths, which are plotted in Fig. 0(a). The features to explain
are, starting from zero energy, the monotonic increase in lifetime down to about —0.2
eV; the hump at around Ep= —1.0 eV, and the remaining background rise. These were
attributed [14] to electron-phonon (e-ph) coupling, electron-plasmon (e-pl) coupling,
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a C

Figure 10. Possible many-body decay process in n-doped graphene. (a) decay by
electron-phonon emission (b) decay be electron-plasmon emission (c) decay by electron-
hole pair generation.

and electron-hole (e-h) pair generation; computations of these contributions to the
scattering rate are shown in Fig. [Q(b). Schematic diagrams of these processes are
shown in Fig.

We can meaningfully consider only those excitations whose energy scale is greater
than our energy resolution (~ 25 meV). Considering the energy scale of the observed
kink anomalies (> 200 meV) we can rule out any significant interactions between 25 to
200 meV, such as scattering from low-energy acoustical vibrational modes.

First, we qualitatively discuss the coupling to phonons at the 200 meV energy
scale (a quantitative analysis has been presented by Bostwick et al.[I2] for graphene,
and for other surfaces in Refs. [39, 40} 41]). Since this energy is much larger than our
temperature (kg1 ~ 2 meV, we can rule out phonon absorption and consider only decay
of quasiparticles (QPs) by phonon emission (Fig.[I0(a)). Such QP decays are forbidden
for states at Ep, but become available as the quasiparticle energy increases. Typically
once the quasiparticle energy is greater than the phonon energy scale, the lifetime due
to scattering is independent of QP energy. This change in QP lifetime is reflected in
a monotonic increase in the imaginary part of the self energy Im¥(k,w). Because the
real and imaginary parts of ¥ (k,w) are related by Hilbert transform, one expects to see
a non-trivial change in the dispersion on the phonon energy scale, which is observed
as a kink. Physically, we interpret the change of band slope between the kink and Ey
as a renormalization of the mass as the QPs become “dressed” with a virtual cloud of
phonons. But we know that the QPs in graphene are effectively massless, so we speak in
terms of a velocity renormalization (or equivalently a renormalization of the relativistic
mass-equivalent energy).

The 200 meV kink is stronger for the K-covered graphene compared to the as-grown
surface (see Fig.Bl(a,b)) due to a phase-space argument. The density of electronic states
in k-space is a constant, so that as the sample is doped, the bands span more electronic
states near Ep; as these become available final states for phonon scattering, the decay
probability increases. Left unexplained is the overall magnitude of the e-ph scattering
rate at all dopings, which is about 6 times stronger than what is predicted by the normal
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deformation potential calculations [12], 42, [43].

The quantitative analysis of the phonon kink [I2} 14], which followed the standard
formalism [44], is quite useful but does not perfectly describe the kink strength (it
underestimates it slightly) and furthermore does not take into account the actual band
structure of graphene: the actual phonon scattering rate should diminish near Ep from
the same phase-space argument just cited. A first-principles calculation of the phonon
scattering rate should account for both of these effects.

In the case of the second kink near Ep, the QP decay is through emission of
plasmons (Fig.I0(b)), which is favored over phonon scattering because of the kinematic
constraints[14], 45], [38]. Whereas optical phonons are more or less delocalized in k-space
with fixed energy scale, the plasmon spectrum in graphene has a fast energy dispersion
in a narrow range of k. This follows from the dispersion relation for two-dimensional
plasmons [46] in the long wavelength limit:

wpi(a) = \/4mneq/m(1 + ¢) 3)

where ¢ is the plasmon momentum, m is the carrier mass, and ¢ ~ 6 is the dielectric
constant[I12]. Although plasmons in principle exist in the domain 0 < ¢ < oo, in
practice they propagate freely up to a critical momentum ¢ < ¢. due to Landau damping
(plasmon decay into electron-hole pairs)[47].

For graphene, the rest mass m is zero near Ep but the relativistic mass equivalent
to the kinetic energy, m,=FE /v? (where v is the Fermi velocity), is on the order[2, 3]
of 0.1m, and can be used to set the plasmon energy scale wp. This means that more
or less vertical interband decays by plasmon scattering are now the dominant factor
determining the lifetime near Ep.

Two other contributions to the scattering lifetime must be considered. First is
defect or impurity scattering. Normally the defect scattering is taken to be a constant
background to the imaginary self energy Im¥(k,w), which is a deconvolution of the
residual momentum spread of the bands at Erand the instrumental function. In our
case, the residual momentum spread is only about 0.005 A_l, which is comparable to our
instrumental resolution, so we can safely discard the defect scattering rate as negligible.

The remaining contribution to the scattering rate is the decay by e-h pair
generation, which is the standard decay process in Fermi liquid theory. In this process
(Fig.[M0c)), the decay of the quasiparticle is accompanied by an excitation of an electron
above Eg, creating a new hole below Ep. For two-dimensional metals with circular
Fermi surface, Hodges et al. proved the famous rule that e-h-pair scattering rate goes as
w?Inw[48]. This was determined by a phase space integration of all possible kinematically
allowed e-h-scattering processes. For a 2D free electron gas this could be carried out
analytically, but for graphene, we evaluated the appropriate integral numerically. This
was done so that we could use the experimentally determined dispersion (although we
assumed cylindrical symmetry and zero temperature to simplify the integration).

The most interesting finding is that for n-doped graphene, the e-h-scattering rate
rises from Ep down towards Fp as it would be expected for any metal. Around Ep,
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however, the scattering rate must necessarily drop, because in the vicinity of Ep, the
decays are mostly vertical transitions. Such a decay by e-h-pair generation is forbidden
since we cannot find a momentum-conserving excitation near Fr to satisfy the kinematic
constraints. Only at energy scale around twice the Dirac energy do such excitations
become available, and we see an associated rise in the scattering rate at high energy
scales.

Considering the simplicity of the model, the total scattering rate function (Fig.
Q(b)) does a remarkably good job to model the data. Theoretical modelling of the e-pl
and e-h scattering rates has also been performed by Hwang et al.[38]. Fig.Ql(c-e)) shows
a comparison of our measured MDC widths to their model for three different dopings.
Although they overestimate the relative contribution of the e-pl to e-h processes, their
calculation is in excellent qualitative agreement with the observed MDC widths. The
main discrepancy is the failure of the model to account for the scattering rate from
phonons, which was not included in their calculation.

The many-body effects we measure are present all the way down to zero doping and
therefore may play a role in the transport of gated graphene devices. These are much
more dilute carrier gases than we achieved by alkali metal doping. As the doping level
decreases, the phonon and plasmon processes will overlap in in energy and therefore will
not be separable. This is already seen in the lowest doping we probed (Fig.[@(c)). The
plasmon and e-h pair scattering rates are reasonably separable at all dopings, but there
is an energy overlap region just above Ep where neither alone is a good description of the
total electron-electron interaction. These observations imply that a proper description
of the scattering rate will take into account much more complicated processes than in
our simple treatment. In the language of Feynman diagrams, it means higher-order
diagrams than are typically considered will be necessary to model the photoemission
data. In addition, when Ef is reduced to be comparable to the temperature, thermal
excitation effects will increase in importance. This has already been discussed in relation
to plasmons [45].

3.3. Out-of-plane symmetry breaking in multilayer graphene.

Multilayer graphene films grown on Silicon carbide have an obvious built-in symmetry
breaking, because of the inequivalence of the two film interfaces (SiC and vacuum).
Further symmetry breaking can be induced by either external field, or by growth of
additional layers on top of the graphene films. Understanding these symmetry effects
is important in order to exploit them for technological purposes. Extension of the
Hamiltonian in Eq. 2l to multiple layers gives a simple framework to achieve this.
Extension to two layers is achieved by adding an additional hopping term between
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the B atoms of the first layer and the A atoms of the second layer [49, [50, 24]:

E, vat 0 0
vm By oy 0 ar o
— = 4
H 0 7 E, vrf ( 6{{ a2 (4)
0 0 wvr Es

Here «; acts with respect to the (A, B) sublattices of the i layer, and 3, is a 2 x 2

matrix
. {00
w=n=(" ¢ )

where v, is the hopping parameter between layers. The wave function now has four
elements with basis set orbitals located at A;, By, Ay, By atoms, where i is the layer
number (1 or 2).

There are two further generalizations of Eqn. 4. First, by adding more layers, and
second by altering the stacking sequence. Adding a third layer, one couples the B atom
of the second layer to the A atom of the third for conventional Bernal-type stacking
(ABAB...) characteristic of bulk graphite. Repeating this sequence we come to the
Bernal Hamiltonian for N layers,

ar fo
ﬂoT Q2 ﬂoT
Bo s fo
H= 6T ay BT (Bernal), (6)
Bo
anN
A useful generalization of Eq. [0l is
ar o
ﬂg Q2 ﬂs
B as o
H= ) (General), (7)
A
N
where
0 s
a=n( 2, 0): )

Now, if s = 0, then Eq. [[lis the Hamiltonian for Bernal stacking, while for s = 1, Eq.[1is
the Hamiltonian for Rhombohedral stacking (ABCABC'...). We can further generalize
this Hamiltonian to arbitrary stacking orders, by suitably choosing the different values
of s in each block of the matrix.

In the above Hamiltonians, we have assigned to each layer its own on-site Coulomb
energy F;. This allows for the possibility of a poorly screened electric field across the
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Figure 11. Calculated band structures for few layer graphene using Eq. [ (a)-
(d) show the bands for 1-4 layers graphene, respectively. The upper panels are for
unbiased layers (E;=0) while the lower panels were calculated with a 200 meV potential
difference across the films, assuming a linear field gradient. Calculations were for
71 =0.4¢eVand v =6.91 eV/A~L

FLG film, which is reasonable in view of the predicted long screening lengths in this
direction. It is straightforward to show that the Dirac crossing energy is Ep=Tr H /2N
where N is the number of layers.

Fig. 1l shows the calculated bandstructures for one to four layer graphene. The
calculations were for either Bernal (solid lines) or rhombohedral (dashed lines); the
distinction is obviously meaningful only for films with N > 3 layers. Far from Ep, it
turns out there is little distinction between rhombohedral and Bernal stacking. This is
to our advantage, because as Fig. [[T1] shows, one can know the film thickness directly
from band structure measurements by simply counting the number of 7 bands below
Ep. Near Ep, the situation is quite different, since the two stacking types have quite
different band dispersions. (Similar calculations have also been carried out with ab initio
models[51], [52], 25], 26, [53]).

The detailed bandstructure around Ep shows a strong sensitivity to the Coulomb
energy terms F; that enter the Hamiltonian matrix (Eqgs. 2] [)[29]. This can be seen
by comparing the upper and lower rows of Fig. [[T which were calculated for two cases.
In the first case, the energies F; are all zero, and we find a gapless energy spectrum at
Er=FEp. For the lower row, we distributed a field change U=200 meV across the total
film in uniform increments, which simulates FLG in a bias or inhomogeneosly doped
geometry. This procedure opens gaps near Ep; for the special bilayer case N = 2, there
is a complete gap at the Fermi level. This gap was proposed to be the basis of a new kind
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Unbiased

gap

Figure 12. Gap Control of Bilayer Graphene. (a) An unbiased bilayer has a gapless
spectrum, which we could observe for a doped sample which carefully balanced the
field across the film. (b) For a bilayer with a field gradient, an energy gap is opened
between 7 and 7* states.

of electronc switch, whereby lateral transport through the bilayer could be modulated
by applying a modest field perpendicular to the film[13], 54, 55].

Systematic studies of the thickness and doping dependence by ARPES have been
presented by Ohta et al.[13, 24]. Fig. shows the bilayer graphene bandstructure
in two different field geometries, achieved by doping a bilayer graphene on SiC [13].
Simlar to monolayer graphene, the as-grown bilayer films have an intrinsic n-doping,
which allows us to probe the states both above and below Ep. Because the doped
carriers are concentrated in the interface layer, the as-grown films have a field gradient
across them and hence a gap at Fp. Carefully balancing this charge imbalance allows us
to close the gap (Fig.[I2|(a)), while further doping of the surface layer allows us to create
a net charge imbalance, thus reopening the gap (Fig.[12(b)). Evidence for a similar gap
opening was also presented for the surface layers of graphite when doped with Na[56].

Systematic thickness measurements at constant doping were presented by Ohta
et al.[24]. For films of thickness N=1-4 layers, we found that the total charge density
donated from the substrate was the same for all thicknesses. Similar to bilayer graphene,
the charge was donated predominantly to the interface graphene layer. This is in accord
with the metallic nature of the films, which can screen the interface layer from the rest
of the film. The measured bandstructures for N =1 — 4 layers are shown in Fig.

These spectra are very rich in information: we could determine not only the number
of layers (by counting the number of 7 states below Ep straightforwardly) but also derive
the stacking order. Ome can see easily for N=3 that there are two states (marked by
circles) of equal intensity that can only be ascribed to equal populations of Bernal and
Rhombohedral stacking. For quadlayer (and presumably thicker) careful analysis shows
that Bernal stacking predominates. This can be taken as evidence for the role of second
near-neighbor interactions to stabilize the Bernal stacking type in graphite.

The electronic information that could be derived from the data are equally rich:
in analogy with the bilayer analysis, we could assign the different charge densities in
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Figure 13. Band structure of graphene films of thickness for (a-d) N = 1 — 4 layers,
resp. Calculated bands for three configurations are shown: Bernal stackings ABAB
and ABAC (blue and light blue, resp.) and Rhombohedral stackings (red).Adapted
from Ref. [24].

each graphene layer, and determine the out-of-plane screening length. In the formation
of the graphene films, about 1 x 10'? carriers per em? are donated to the film, with in
general about 85% of the charge donated to the first layer, and most of the rest in the
second layer[24].

4. Conclusions and outlook: Graphene, the simplest complex material.

In the last few years, there was an explosion of interest in graphene since isolation of
high-quality samples was achieved and since its many novel properties were elucidated
both experimentally and theoretically. Seldom does a new material come along that
has such strong fundamental and practical interest. From an experimental point of
view, graphene is highly attractive since unlike other low dimensional materials (such
as high-mobility semiconductor two dimensional electron gases), graphene films are
exposed to vacuum and can be directly probed by surface-sensitive techniques such as
LEED, STM, and ARPES. ARPES has a special role to play because it is sensitive
not only to the valence band energy structure but also its symmetry in k-space.
Furthermore it can give direct information on the many-body interactions, such as mass
renormalization. Through graphene’s special sensitivity to symmetry, we could even
derive much structural information such as stacking errors and electronic information
such as charge density and screening length, which would be very hard to achieve with
other probes.

In our opinion, graphene is unique in many ways. It is the first system to our
knowledge to show electron-plasmon coupling in the ARPES signal, which suggests
not only the exciting possibility of new coupling mechanisms, but also technological
implications in the interaction with photons. Finally, it is a model system for correlation
and many-body interactions which can supply stringent tests for theory.
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