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Abstract

There is an estimated 10. billion barrels of original oil in place (OOIP) in
diatomaceous reservoirs in Kern County, California. These reservoirs have low
permeability ranging from 0.1 to 10 mD. Injection pressure controlled steam drive has
been found to be an efficient way to recover oil from these reservoirs. However, steam
drive in these reservoirs has its own complications.

The rock matrix is primarily silica (SiO,). It is a known fact that silica is soluble in
hot water and its solubility varies with temperature and pH. Due to this fact, the rock
matrix in diatomite may dissolve into the aqueous phase as the temperature at a location
increases or it may precipitate from the aqueous phase onto the rock grains as the
temperature decreases. Thus, during steam drive silica redistribution will occur in the
reservoir along with oil recovery. This silica redistribution causes the permeability and
porosity of the reservoir to change. Understanding and quantifying these silica
redistribution effects on the reservoir permeability might prove to be a key aspect of
designing a steam drive project in these formations.

In this study the first aspect that we examine is the relative importance of the factors
that govern the transfer of silica between the rock matrix and the agueous phase: On the
basis of analytical solutions for simple one-dimensional systems and the conditions that
typically exist in diatomite resefvoirs, we conclude that the silica concentration in the
aqueous phase is the equilibrium silica solubility corresponding to the temperature of that
location. This is likely true for the whole length of the reservoir, except near injectors and
producers. We call this attainment of “local chemical equilibrium”. This implies for a
given location, that when we know the temperature variation, we can predict the amount
_ of silica transfer between rock grains and the aqueous phase surrounding it.

From a qualitative argument we know that the extent of permeability alteration will
depend on the pore-level characteristics of this rock apart from the extent of silica

redistribution. We tried to infer the pore-level shapes and distributions of pore-sizes of




this rock by a variety of experimental methods including mercury intrusion / retraction
porosimetery, scanning electron microscopy, core-level permeability measurements and
X-ray computed tomography (CT scanning). On basis of these investigations we inferred
the shape of pore-body and pore-throat size distributions for an outcrop sample of
diatomite. These were unimodel distributions with a high positive skew. The average
pore-throat size was around 6 jim and the average pore-body size was around 40 Lm.

In the final phase of this study, we found mathematical relations that are useful to
predict the permeability alteration with amount of silica transfer between the rock matrix
and the aqueous phase given the pore-level information of diatomite. This was done using
pore-network models. To start, we correlated the pore dimensions with properties like
permeability and porosity. Next, we modeled the deposition / dissolution processes in
terms of changing pore dimensions and then used these altered pore dimensions to find
the altered permeability and porosity. This way, we were able to quantify the effect of

silica redistribution on permeability of the reservoir.
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1. INTRODUCTION

There are a large number of diatomaceous petroleum reservoirs in f(em County,
California. These, fields include South Belridge, North Belridge, Cymric, Midway Sunset
and Lost Hills diatomite. Collectively, they contain an estimated 10 billion barrels of
original oil in place (OOIP) (Tiderton et al., 1996). The diatomaceous formations in these
areas are thick, highly layered, and relatively shallow (1000-2000 ft.). They are primarily
composed of the consolidated remains of microscopic single-cell aquatic plankton called
diatoms. They are primarily siliceous formations.

Experience is beginning to show that steam drive with careful control of injection
pressure can be an efficient technique for oil recovery from siliceous reservoirs that are
relatively shallow, low permeability, thick, and highly layered. In the case of steam drive,
recovery occurs by direct displacement of oil by steam and condensate and also by
volumetric expansion of oil due to thermal conduction of heat through the formation. In
contrast, water flood recovery relies on direct physical contact of water with the oil in the
IESEIVOIr.

Steam injection has been used successfully to recover heavy and light oil from the
South Belridge and Cymric diatomite (Kovscek et al., 1997; Kumar and Beatty, 1995;
Johnston and Shahin, 1995; Murer et al., 1997; Kovscek et al., 1996; and Kovscek et al.,
1996). They have permeability ranging from about 0.1 mD to 10 mD (Schwartz, 1988 and
Stosur and David, 1971) and porosity that ranges from 38 % to 65 % (Schwartz, 1988 and
Stosur and David, 1971). The low permeability results from extremely small-sized pore
throats usually 1 to 6 pum in diameter. Steam injection into diatomite is not without
complications. One factor is the solubility of diatomite in hot water. Diatomite is a
hydrous form of silica or opal composed of microscopic shells of diatoms that are the
remains of single-celled microscopic aquatic plankton. During steam injection, diatomite,
which is principally silica (SiO;) can dissolve in hot aqueous condensate and this

dissolved silica is carried forward by the moving condensate. As the condensate travels




away from the injector, it cools and the dissolved silica precipitates. Experiments (Koh ez
al., 1996) where silica-laden hot water was injected into diatomite suggest that silica
deposition in diatomite leads to plugging. Later, the deposited silica may dissolve again if
the local temperature increases. This process causes permeability redistribution within the
reservoir, which is already relatively impermeable. Similarly, silica dissolution might
increase permeability around the injection wells, thereby improving injectivity.

Silica deposition could also be a concern for waterflood operations. In the San
Joaquin Valley, diatoﬁaceous reservoirs underlay permeable sands containing heavy oil
(Schwartz, 1988). This heavy oil is recovered by steam injection. Produced hot
condensate from the heavy oil recovery operations is ‘sometimes re-injected in the
diatomites. These waters are frequentlylladen with silica that might precipitate when
contacting the cooler diatomaceous reservoirs.

To quantify changes in permeability that occur in diatomite during silica
dissolution and precipitation we need to take into account the transient heat and mass
transfer processes that could possibly affect the process of permeability change. For
example, during hot fluid injection into the reservoir, there will be a temperature profile
in the reservoir at any given instant of time. This temperature profile will propagate with
time. At locations within the reservoir where water is heated or cooled, there can be silica
transfer between the rock phase and the hot water. The extent of this transfer will depend
on the relative magnitudes of the competing mechanisms of rate silica deposition/
dissolution and the bulk movement of silica in the fluid due to advection through the
pore spaces. The magnitude of silica deposition/ dissolution will be dependent on factors
such as temperature, reaction mechanism, pH and the rate of fluid movement (Thornton
and Radke, 1988; Saneie and Yortsos, 1985; Bunge and Radke, 1982; and Udell and
Lofy, 1989). Finally, the extent of permeability alteration that occurs in diatomite due to
silica diagenesis will depend also on the pore-level characteristics of the rock.

In this report, we have studied the last three aspects in some detail. We assume
that given a heat injection rate into the formation there are adequate simulation tools
existing in practice that could help in predicting the temperature profiles at some given

instant of time during the steam injection process. The rest of the problem has been




divided into three major tasks:

Given some temperature conditions at a given location, we determine the
amount of silica transfer that occurs between the diatomite rock matrix and
the fluid moving through it. We also determine the dominating factors that
govern the silica transfer the between the diatomite rock matrix and the
moving fluid phase. '

Next, we try to characterize the diatomite rock using experimental techniques
such as scanning electron microscopy (SEM), X-ray computed tomography
(CT), and mercury intrusion porosimetery to determine the pore-level and
core-level properties of the rock .

Finally, we quantify the effect of diagenesis on the permeability of a porous
medium. We develop a network model and incorporate evolving pore shapes.
The concepts of percolation theory are used to predict the effects of
dissolution and deposition on permeability and porosity of the porous
medium. We consider only the flow of liquid water in this study. To model
the diagenetic process, various dissolution and deposition patterns are

considered.

The following chapters of this report describe in detail the approach we use to

study these aspects of silica diagenesis in diatomite. In Chapter 2, we describe our study

of the kinetics of silica dissolution and deposition. Also examined is the role that those

kinetics play during hot fluid injection specifically in the case of diatomite given the

temperature and flow conditions that typically are seen in diatomite. In Chapter 3, we

describe the methods that we use to characterize the pore-level properties of diatomite.

We characterize the porous medium using methods such as scanning electron

microscopy, CT imaging and mercury intrusion porosimetery. In Chapter 4, we discuss

the modeling strategy that we have used to study the effects of diagenesis given the pore-

level information that we obtained experimentally.
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2. Kinetics Modeling

2.1 Introduction

Understanding the kinetics of silica dissolution and precipitation is an important
facet of predicting permeability changes due to silica redistribution in diatomite. The
problem of silica kinetics has been studied extensively in the literature (Koh et al., 1996;
Saneie and Yortsos, 1985; Thomnton and Radke, 1988; Bunge and Radke, 1982;
Dehghani, 1983; Mohnot, et al., 1984; Bohlmann et al., 1980; and Rimstidt and Barnes,
1980) in regard to alkaline flooding and steam flooding in sandstone. It has already been
shown that the silica dissolution mechanism depends on factors such as pH, temperature,
pressure, and the presence of other ionic species in the aqueous phase (Koh ez al., 1996;
Saneie and Yortsos, 1985; Thornton and Radke, 1988; Bunge and Radke, 1982;
Dehghani, 1983; Mohnot, et al., 1984; Bohlmann et al., 1980; and Rimstidt and Barnes,
1980). For diatomite, previous studies also indicate that the flowing aqueous solution is

buffered by diatomite and a pH in the vicinity of 3 is always maintained (Bruton, 1996).

For this range of pH and temperature around 300°C, which corresponds roughly to the
steam injection pressure in diatomite, the reaction mechanism is a first order reaction
(Dehgani, 1983; Mohnot et al., 1984). We use the first order mechanism of silica
dissolution/ precipitation, and, then solve the advective-reactive transport equation for
silica analytically using Laplace transforms to infer the nature of the solution for the

particular case of diatomite.

2.2 Advective-Reactive Transport Modeling
The one-dimensional mass balance equation for silica transport through a porous

medium considering only aqueous phase flow through the pore space can be written as,

ac  udC

c?t+¢3x=r 2.1)

where ¢ is porosity, r is rate of reaction,  is darcy velocity and C is silica concentration.

In this equation we have neglected mass transfer that could occur due to dispersion and/or
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diffusion. Solving Eq. 2.1 analytically requires a mathematical expression for the rate of
reaction in terms of silica concentration C.

Like any other mineral oxide, silica, which is SiO,, dissolves by hydrolysis of
active sites (Saneie and Yortsos, 1985) on the surface of the solid silica containing rock.
This process of hydrolysis causes formation of an intermediate complex, which exists in
equilibrium with the aqueous solution. This process is a first-order reaction with some
particular rate constant only for pH in the vicinity of 8. It has already been seen in
experiments by others (Stosur and David, 1971) that in the case of hot water injection in
diatomite core plugs, the pH of the water solution coming out of the core plugs is around
8 due the buffering process that takes place within the cores. Thus, for our modeling
studies we assume that the silica diss;alution/ precipitation reaction is a first-order

reaction as given below,

r=—lc-c°) 2.2)
where C° is the equilibrium concentration of silica in the aqueous phase at the reaction
temperature of T and k is the reaction rate constant. The equilibrium concentration of
silica in aqueous phase at a given temperature between 0°C and 250°C is given by
Fournier and Rowe (1977),

logC° =(—"—,@+4.52\ (2.3)
T /

where T is in degrees K. The constant appearing in Eq. 2.2 is the rate constant k. It also
depends on the temperature of reaction. This temperature dependence of & and c’,
couples Eq. 2.1 to temperature.

We consider that in a conventional thermal simulator the temperature equation is
solved independently, and thus the temperature profile is alreédy known approximately
before the kinetics calculations are done. So we model the mass balance equation at a
given known temperature. We solve (Appendix I) the silica mass balance equation for the
following set of parameters,

(1) The whole grid block is at a single temperature 7, initial concentration C.

@) The hot water entering the grid blocks is at a silica concentration C;.




(iii) The equilibrium silica concentration corresponding to temperature 7'is C°.

The solution is then,

clxt)=c+(C, —C°o)exp(“‘w‘k \ ;t2—¢£
. u P U

24
Clx,1)=C° +(C, —C")exp(—kt) ;1:_§ﬂ

The nature of this solution can be summarized as follows:

a) The concentration travels as a front. The front location at any time “t’ is given by,

x= —a ' (2.5)

b) Behind the front, the concentration is a function of position only and does not
depend on the time elapsed.

¢) Ahead of the front, the concentration is dependent only on time elapsed and is

. independent of the position.

The solution given as Eq. 2.4 is valid for any silica-containing medium given that the

conditions for first order reaction rates and uniform 7 exist within the medium.

2.3 Nature of Solution for Diatomite

To explore the nature of the solution as given by Eq 2.4 for diatomite we need
reaction rate models that can predict the reaction rate constant k in terms of temperature T
of the system. In this study, we consider two such models and investigate the nature of the
solution for both of these models. The models we consider are 1;hat proposed by Koh ez al.
(1996) on basis of their experiments and the model proposed by Rimstidt and Barnes

(1980) assuming that the dissolution is a surface reaction.

Reaction model of Koh et al: This model is based on experiments carried out on

diatomite core plugs, and the reaction rate constant expression is based on results from
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the experiment. It is valid for temperature ranges from 49°C to 177°C . The rate constant

expression according to this model is given by,

m=19x10° exp(l 17? 2) sec’! (2.6)

where the temperature 7 is in degrees K.

Reaction model of Rimstidt & Barnes: In their model, they consider that the reaction is
a surface reaction and the rate constant k can be linked to surface rate constant £~ by the
expression

A
=F = 2.
kk(M) @7

where A/M is the ratio of surface area to mass of water available for deposition. The
surface reaction rate constant is related to temperature by,

logk™ =-0.707 -——2—-57-?—S- (2.8)

where T is measured in degrees K. The ratio A/M is found in terms of porosity and
specific surface area S, of the porous medium using,
A_(-9)s, 2.9)
M op,

Once we find the reaction rate constant k either by Eq. 2.6 or by Egs. 2.7 - 2.9, we
construct the concentration profiles of silica at different times. These concentration
profiles are constructed using the following information,

(i) The darcy velocity of the fluid within the diatomite reservoirs (Bruton, 1996) is
0.3 m/day.
(i1) The specific surface area of diatomite (Bruton, 1996), S,, is 20 m%/ gm
(1i1) The bulk density of diatomite (Stosur and David, 1971) is 0.88-1.3 gm/crn3
depending on the porosity.




(@iv) The length scale L, over which these profiles are constructed is 35 meters which is
typically the injector -producer distance in diatomite fields and corresponds to an
approximate breakthrough time of 57.4 days for the injected phase.

Using these parameters and the analytical solution, we plot the ratio of C (x,2)/C°
for different possible conditions. The distance over which C(x,z)/C° becomes unity
indicates how quickly the system attains local chemical equilibrium. To study
precipitating cases, we consider that the injected agueous phase has a silica concentration
corresponding to 350°C and set the initial system temperature to a lower value and
maintain it at a lower temperature during the entire injection process. To study dissolution
cases, we set the injected aqueous phase silica concentration to a value corresponding to O
°Cand assume that the system is at a higher temperature and maintain the higher
temperature.

The parameters used for calculating the concentration profiles at different times
during the injection process for both dissolution and deposition cases are listed in Table
2.1. Figure 2.1 is such a plot of C(x,)/ C° versus non-dimensional distance, x, =x/L,
for different times considering the reaction mechanism of Koh ez al. (1996) for deposition
cases. The results of this plot show that C(x,#)/C° attains a value equal to unity within
xp =0.04, i.e, one and a half meters, of the injection point even for the early elapsed
time of 1 day. The same type of graph is plotted for similar parameters but evaluating &
from Rimstidt and Barnes’ mechanism in Fig. 2.2. In this case, we see a similar trend. In
Figs. 2.3 and 2.4 similar calculations are again made for both reaction mechanisms for the
case of silica dissolution. The trend shown by these figures in respect to attainment of
local chemical equilibrium is the same as that seen in the case of precipitation.
Equilibrium is reached very close to the injection point. '

To find the effect of initial system temperature on the analytical solution, we plot
similar graphs of C(x,z)/C° versus non-dimensional distance x, for different
temperatures ranging from 50°C to 200°C for dissolution and precipitation cases for

both reaction mechanisms. Various other parameters that are fixed in these calculations

are listed in Table 2.2. The results from these calculations are seen in Figs. 2.5 through




Table 2.1: Parameters Used in Calculations Presented in Figs.2.1 Through 2.4

Case Deposition Dissolution
Velocity 1.0 ft/day 1.0 ft/day
Porosity 0.5 0.5

Injection temperature 350°C 0°C
Bulk density of rock 0.88 0.88
Initial temperature 60°C 60°C
System temperature 60°C 60°C

Table 2.2: Parameters Used in Calculations Presented in Figs.2.5 Through 2.8

Case Deposition Dissolution
Velocity 1.0 ft/day 1.0 ft/day
Porosity 0.5 0.5

Injection temperature 350°C 0°C
Bulk density of rock 0.88 0.88
Initial temperature 50°C-200°C 50°C-200°C
System temperature 50°C-200°C 50°C-200°C

Table 2.3: Parameters Used in Calculations Presented in Figs.2.9 Through 2.12

Case Deposition Dissolution
Velocity 1.0 ft/day 1.0 f/day
Porosity 0.3-0.65 0.3-0.65

Injection temperature 350°C 0°C
Bulk density of rock 0.88 0.88
Initial temperature 60°C 60°C
System temperature 60°C 60°C
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2.8. The trends of these graphs also show that for all the temperatures local chemical
equilibrium is attained very near the injection point.

The other factor that could vary considerably in diatomite and particularly during
the diagenetic process is porosity. To assess the effect of porosity on the concentration

profiles in diatomite, we plot C(x,z)/ C° versus distance, x, for various porosity values

ranging from 30 % to 65 %. The other parameters are fixed as per Table 2.3. The plots
generated are given in Figs. 2.9 through 2.12. The trends of these graphs also show that
for all porosity values local chemical equilibrium is attained very near the injection point
in case of diatomite.

Based on the trends in Figs. 2.1 through 2.12 and known mechanisms and
kinetics, we can generalize, that during condensate flow in diatomite reservoirs, the silica
concentration in water is equal to the equilibrium concentration corresponding to the
temperature at that location. This remains true over the whole length of the reservoir
except for areas near the injection point. Thus, if we are able to predict the temperature
profile within the .reservoir, we can easily find the silica concentration in the aqueous

phase by assuming local chemical equilibrium.

2.4 Conclusions

The advective-reactive transport of silica during hot condensate flow through
distomite is advection dominated. The rate of reaction is very fast compared to the rate of
advection.

If we consider the reservoir to be made up of different grid blocks, each having some
temperature within it, the silica concentration in the grid block is the equilibrium
solubility of silica in water at the grid-block temperature. This is called local chemical
equilibrium. This will be true for all the blocks except for injectors and producer, which

will have very high advection rates assuming radial flow in and out of wells.
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3. Pore-level Characterization

3.1 Introduction

The extent, to which a quﬁntity of deposited or dissolved silica will alter the
permeability of a porous medium, depends on the pore-level structure of the medium.
Thus, to quantify correctly the impact of dissolution or deposition on the permeability of
diatomite, we need the knowledge of pore-scale properties of this rock. We need the
average pore-body and pore-throat sizes, their distributions, and connectivity. We will
also need to know properties such as permeability and porosity of this rock before any of
the dissolution and deposition processes start,

Diatomite is characterized by a very low permeability of the order of 0.1 to 10
mD. Curiously, this low permeability occurs with a very high porosity ranging from 35 to
65 %. This permeability/porosity profile indicates that this rock is different from
sandstone or chalk in pore-level characteristics. In this study, we explore the peculiar
characteristics of diatomite with a variety of tools including X-ray computed tomography
(CT scanning), mercury intrusion porosimetery and scanning electron microscopy. The
study of this rock is done at both the pore level and the core level.

At the pore level, we characterize diatomite by studying its features under a
scanning electron microscope (SEM). We try to identify the pore-level features that
explain its peculiar properties. We identify regions of the rock that could be called pore
throats and pore bodies. At the core level, we characterize this rock using mercury
intrusion porosimetery. We measure a capillary pressure curve for this rock and try to
infer pore-level characteristics from this data. To complement the core-level work, we
also study the rock via X-ray computed tomography (CT). We analyze the CT images and
obtain the distribution of porosity. In the end, we compare the results obtained for the
pore-level properties by direct investigation via SEM and the indirect investigation by
observing core-level behavior.

Diatomite samples were obtained from the Grefco Quarry in Lompoc, CA. They

had no initial oil or water saturation. Studies of a similar nature have been performed on

19




-

diatomite by other investigators. Stosur and David (1971) studied samples from the Lost
Hills Field (Kemn Co., CA). Their finding were based on well-log measurements, core-
level studies and SEM pictures. They concluded that the diatomite has a high initial water
saﬁnaﬁon of 0.58 and a low rock matrix density of 2.4 gm/cc on the average. They found
an in-situ porosity averaging around 36.7 %. Their SEM analysis showed that most of the
silica in diatomite was amorphous silica. Schwartz (1988) also has studied the
diatomaceous formations of the South Belridge oil field and their depositional origin. He
studied the deposition environment for these formations based on well-log studies and
SEM images. He concludes that the high porosity, low permeability and high oil
saturation in these formations is due to relatively clean diatomite. In this study, we have
tried to connect SEM images and CT images to the pore-size distributions obtained with

mercury intrusion.

3.2 Petrophysical Evaluation

The largest scale at which we studied diatomite was a block roughly 30 cm by 30
cm by 12 cm. The block was placed in a CT scanner and scanned at different locations.
These were dry scans of the block, i.e., the CT images were taken on a dry sample. The
results of these dry scans are shown in Fig. 3.1. The slices are roughly 2 cm apart. These
scans show that for most purposes the rock is relatively homogeneous at this scale. The
white portion in the lower left-hand comer of the images results because a corner of the
block is missing. The lighter colored streaks are evidence of bedding planes, although the
CT number contrast is not large.

Next the rock was cut and shaped into cylindrical cores of 2.5 cm diameter and
9.5 cm length and dry CT scans of these cores were taken. Then the cores were saturated
with water, and again CT images were taken. The difference between the dry and wet
images of these cores was used to construct porosity maps. Figure 3.2 shows porosity
maps of two such cores. The gray shading of Fig. 3.2 is the porosity scale that has a
notably narrow range. The porosity distribution of these cores comresponding to the
porosity maps of Fig. 3.2 are shown in Fig. 3.3. All these results indicate that the average
porosity of all the samples taken out of the block was around 65-67%. Also, the porosity
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distributions as shown in Fig 3.3 demonstrate that there is not much variation in porosity
and it lies in the range of 61-68 %. The standard deviation for core 1 is 0.0136 and for
core 2 is 0.0107. The narrow distributions of Fig. 3.3 confirm that we can consider

diatomite as relatively homogenous at this scale.

3.3 Core-Level Studies

We performed mercury injection porosimetery to measure pore-throat and pore-
body size distributions, as well as porosity of the rock sample. For this purpose, we used a
Ruska porometer model number 105 1-801. The experiments were performed using the
guidelines listed in the operating manual of the porometer for determining the porosity of
a rock sample (RUSKA). We performed two runs. The volume of the rock sample in the
first run was 6.975 cm® and in the second run it was 5.29 cm®. The apparatus was vacuum
evacuated before the start of each run. The mercury was injected into the sample at
different pressures and the pressure versus volume of mercury injected into the sample
recorded (Appendix I). The maximum injection pressure possible with the porometer
was 850 psig. After reaching the maximum pressure limit, the pressure was gradually
decreased and the volume of mercury inside the sample was noted. The experiments were
performed at an average temperature of 22°C. Then it was assumed that 850 psig was a
pressure large enough to completely invade all accessible pore space of the rock. Based
on this assumption, the non-wetting phase saturation inside the sample was determined

using,

VCOI' T (3 . 1 )

corr,850

where S, is the non-wetting phase saturation and Vi and Viomgso represent the

corrected mercury volume in the rock at current pressure and 850 psig, respectively.

Based on Eq. 3.1 and the pressure versus volume data, the mercury-vacuum capillary
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pressure curve for diatomite is shown in Fig. 3.4. For these two samples, the porosity
determined is reported in Table 3.1. These values are slightly lower than the averages
reported in Fig. 3.3.

Table 3.1: Porosity Measurements by Mercury Intrusion

SAMPLE VOLUME | POROSITY

6.975 cm® 0.61147
529 cm’ 0.619093

The last core-level experiments pérformed on diatomite determined the absolute
permeability. Two samples from the same outcrop were used. The air permeability of
these samples was measured using a Ruska permeameter model 1101-801 at three
different gas flow rates. The air permeability versus flow rate data (Appendix IV) was
then used to find the absolute permeability of the samples after correcting for the
Klinkenberg effect‘. The average permeability of the samples was 8.5 mD. The measured
permeability data is listed in Table 3.2.

Table 3.2: Permeability Measurements by Gas Permeameter

SAMPLE LENGTH | SAMPLE DIAMETER | PERMEABILITY
2.54 cm 2.54cm 84753 mD
2.6924 cm 2.5781 cm 6.4255 mD
1.7272 cm 2.54cm 8.5538 mD
2.159cm 254 cm - 8.7965 mD

The permeability measurements and the air-water capillary pressure data were

used to find the Leverett-J function, J(S,) for diatomite using the fact that,

\/_/; (3.2)

]( Cos9—
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Figure 3.4: Mercury-vacuum capillary pressure data.
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where, 9 is the contact angle between the rock and the fluid being injected, & is the
absolute permeability of the porous medium, ¢ is the porosity, and ¢ is the surface tension

of the fluid being injected. The resulting curve is shown in Fig. 3.5.

3.4 Pore-level Studies

The pore-level studies were conducted on three samples from the same rock
block. The samples were sputtered with palladium-gold (Pd-Au) coating to make the
surfaces conducting. The thickness of the coating was quite thin such that all the surface
features of these samples are retained. To explain the reason for low permeability of
diatomite, we first obtained an image of diatomite at the magnification that is comparable
to the magnification where pore-level features in sandstone are seen. Figures 3.6 and 3.7
show such a comparison. Figure 3.6 is the SEM of a sandstone sample at a magnification
level of 100X. We are able to see features that could be characterized as flow paths
typically of the size of 200 pm. Sand grains are also evident and are about 200 um in size.
At the same magnification level in diatomite, i.e. Fig. 3.7, there are no visible surface
features that could be interpreted as flow paths. Note that the granular size of diatomite is
much smaller than that of sandstone.

To identify features that could be associated with the flow properties of diatomite,
a magnification level /of 1400X was used as shown in Fig. 3.8. Surface features are
evident at this magnification. Regions of the rock that could be acting as pore bodies,
range in size from 50 pm to 10 pwm. The features that could be acting as pore throats in
Fig. 3.8 have size in the range of 5 pm. These features are fairly regular, perhaps owing to
the organic origin of the rock. '

Another observation in this SEM study is that for most part there are not many
complete intact diatoms. One such complete diatom is shown in Fig. 3.9 at a
magnification level of 3400X. The streaks in the upper left-hand portion of the SEM

photograph arise dueto low conductivity of the surface. The diatom has a diameter of
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Figure 3.9: SEM image of a complete diatom at 3400X.
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is around 75 um. Even though we weré not able to see many complete diatoms, we do
see many features that could be interpreted as broken diatom remains. One such broken
diatom is shown in Fig. 3.11 at a magnification of 3000X. The feature seems to be the
outer rim of a diatom. Another important fact that we observed under the microscope was
that most of the flow paths contain the debris of broken diatomite at most levels of
magnification. This is another reason for low permeability of diatomite. In Fig. 3.12 we
see that the features possibly identified as throats seen are clogged by the debris of broken
diatomite. |

The other microscopic structures that we were able to see in the SEM images were
micro-fractures. We identified a micro fracture at a magnification level of 25X in Fig.
3.13. The length of the fracture is around 2.5 mm. The same fracture seen at a
magnification of 500X in Fig. 3.14 shows that the width of the fracture is around 20 um
and the depth may be of the same order. The depth of the micro-fracture reveals the
highly layered nature of the rock. Also, we see that in spite of this layered structure there
is significant porosity within the layers. This could be a reason contributing to the low
mechanical strength and high porosity of this rock. The frequency of the micro-fractures

encountered was not large.

3.5 Core-Level Findings Versus Pore-Level Investigation

The correlation consists in trying to generate pore-level information from core-
level studies.

Generating pore information from mercury intrusion: The mercury intrusion data
obtained from experiments was used to generate pore-size distributions using the Ritter-
Drake technique. It is true that this type of approach does not take into account the
connectivity of the rock and is an over simplification of the porous medium, but it stll
has the capacity to give us an idea about the size distribution if used properly. We assume
the porous medium can be characterized as a combination of pore bodies and pore throats

as shown that the pores in Fig. 3.15. The capillary pressure for any position of
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Figure 3.12: SEM image at 2000X, showing debris blocking flow paths.
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Figure 3.15: Single Pore-model used to interpret mercury intrusion experiments.
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non-wetting and wetting phase interface is given by,

_20Cos 6
R

where, p,_, and p, are the pressure in the non-wetting and wetting phase, respectively,

Pe=Dm — Py (3.3)

and R is the radius at that location. This equation assumes that the radius at a location is
roughly the radius of curvature of the interface. Equation 3.3 can be differentiated to

yield the following expression,
D:dR+Rdp, =0 (3.4)

Now if we make the assumption that volume of pores with sizes between R and R+dR
where Vris the total volume of the sample and Viampz is the volume of mercury injected

in the sample at a given capillary pressure. Thus the, term dV, ., / dp. represents the
slope of volume injected versus pressure curve. The value of R can be found for a given
p. by using Eq. 3.3. Based on these two equations, the pore-size distribution is found.
Mercury is the non-wetting phase and the pressure needed to fill completely the pore of
Fig. 3.15 is governed by the size of throat R, and the process is drainage. The‘ drainage
capillary pressure is given by,

20Cos6
Pe,drainage = Prow — Pw = R (3.7
1

The mercury intrusion data is used to generate the pore-throat size distribution for
diatomite as given in Fig. 3.16. On the other hand, when mercury is retracted from the
pore in Fig. 3.15, the limiting capillary pressure is determined by the pore-body size R,

and the process is imbibition. The imbibition capillary pressure is given by,

20Cos6
DPeimbiv = Prw ~Pw = R (38)
b

40



0.08
L
0.07 + Avg. Size=15p
. /

0.06 -+
o ~
Q
: 0-05 T *
g <
B 0.04 +18
s 0.04 + Q i’
-5 FRry
> 003+ |ee &

%
L 2
002+ |,%
A}g
0.01 + *
0 e s ! : t
0 100 200 300 400 500
Radius(microns)

Figure 3.16: Pore-throat size distribution obtained from
mercury intrusion data.

41

600




y .
- 75 p = Avg. body radius
0.06 +
A < .
5.'0-05 5 * >
[+)
"3 VB e,
©0.04 + "2 48
@ £ T .
=] * A.
S 0.03 + 7S
> .
- & N 2
0.02 + SRR
&
s S e,
0.01 + LN s o o
. * &
0 : : : : 1
0 100 200 300 400 500

Figure 3.17: Pore-body size distribution obtained from mercury retraction data.

Radius (microns)

42

600



.

The mercury retraction data is used to generate the body-size distribution as given in Fig.
3.17. The frequency distributions generated by this method are in fact volume-based
frequencies. These distributions have a shape similar to a log-normal curve. On the basis

. of the data, the average body size is around 75 pm and the average throat size is around

15 pm.

3.6 Discussion of Results

The results of the large length scale investigations, i.e., study at the block level
indicate that the rock has a fairly homogenous composition at this scale, though certain
large-scale features like bedding planes also can be seen. At the next smaller scale, i.e.,
cylindrical cores of 2.5 cm diameter and 9 cm length, this homogenous nature is still
valid. The porosity distributions created at this scale indicated very little spread around
the average value of 68 %.

The next smaller level of investigation, i.e., mercury intrusion and retraction into
rock samples of volume 6.975 and 5.29 cgbic cm, reveals the heterogeneous nature of the
rock at the pore-level. The porosity values obtained by this method are nearly 61 %.
These values are lower than the average porosity values obtained from cylindrical
samples using CT scanning. Inferring the pore-body and pore-throat size distributions
from these experiments indicated that both these distributions are uni-modal with a
positive skew. The average pore-body and pore-throat sizes obtained from these
experiments is 75 wm and 15 pm respectively.

At the smallest scale of investigation, i.e., pore-level, diatomite is fairly
heterogeneous. There is evidence of some large scale features like micro-fractures.
One such fracture observed was 20 pm in diameter and 2 mm in length. There are very
few complete diatoms present in the rock. Diatorus are mbsﬂy crushed and present as
debris, blocking the flow paths and giving rise to low permeability. The flow paths
observed under thé SEM indicated that the pore-body size was around 40 pm and the

pore-throat size was around 5 um. The discrepancy between the average pore dimensions
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obtained by SEM images and porosimetery can be explained by the limitation on
maximum injection pressure possible in mercury intrusion experiments. The maximum
possible injection pressure in the experiments was 850 psig. This pressure corresponds to
intrusion into a pore throat of 12.7 pm. Thus, in our experiment pores smaller than 12.7
um were not invaded. This also explaiﬁs the lower values of porosity obtained by
mercury porosimetery as compared to CT scanning. This part of the pore space of
diatomite (approximately 7%) is left un-invaded and has pores smaller than 12.7 um.

Thus, the average throat and body sizes obtained by mercury intrusion technique are

larger.

3.7 Conclusions

From the investigation of diatomite at various length-scales we can conclude that
at relatively large scales i.e. up to core-scale, the rock is fairly homogeneous. The rock
has a high porosity of the order of 65 % and a low permeability of the order of 8.5 mD.
The pore-body and pore-throat size distributions are uni-modal with a positive skew

resembling log-normal shapes. The average pore-body size is 40 um and average pore-

throat size is 5 um.
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4. Permeability Alteration Modeling
4.1 Introduction

To quantify changes in p'enneability and porosity of the porous medium
undergoing diagenesis, we develop a network model and incorporate evolving pore
shapes. The porous medium is represented by a Bethe lattice of known properties, and
percolation theory used to predict the effects of dissolution and deposition on
permeability and porosity of the porous medium. We consider only the flow of liquid
water. Changes in permeability are correlated with changes in conductivity of the lattice,
and the amount of silica deposited is related to available porosity of the lattice at any
stage of deposition or dissolution. To model the diagenetic process, various dissolution
and deposition patterns are considered. Based on these dissolution and deposition
patterns, the network is updated to generate metwork conductivity and porosity. The
networks are anchored to real porous medium through pore-throat and pore-body
distributions as well as pore body to throat aspect ratios garnered from outcrop diatomite
samples as described in detail in Chapter 3.

The following sections describe our network approximation of porous media, the
rationale for our choice, and how pore-throats and bodies are represented. Next,
incorporation of silica dissolution and precipitation into first a single-pore model and then
the network is discussed. The network is used to generate absolute permeability versus

porosity relationships for silica redistribution in diatomite.

4.2 Network Approximation )

Porous media can be approximated by lattices as illustrated in Fig. 4.1. Examples
shown in the figure are a Bethe lattice (Fig. 4.1A), a hexagonal lattice (Fig. 4.1B), and a
2D-square lattice (Fig. 4.1C). A lattice is a connected network of flow paths between
various points in space (2D or 3D). An advantage of the Bethe lattice is that analytical

solutions are available for network conductivity.

45




% S8se

A. Bethe Lattice B. Hexagonal Lattice

C. Square Lattice

Figure 4.1: Different types of lattices.
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Lattices are used to represent porous media, because they can capture at least two
important properties of porous media. Firstly, porous media are a collection of pore
bodies connected by pore throats. Secondly, porous media have connectivity between
pore throats normally given as the coordination number Z. This number is used to
quantify the connectivity of the lattice. These two properties of lattices coupled with the
fact that flow properties like flow resistance can be randomly associated with the various
bodies or throats or both make lattices a good choice for approximating flow in porous
media.

We use a Bethe lattice, as illustrated in Fig. 4.1A, to approximate the matrix of
diatomite pores. It is an endlessly branching network characterized by the coordination
number and distribution of pore sizes. Because the problem of Bethe lattice conductivity
has been solved analytically (Stinchcombe, 1974), these networks are especially attractive
for our work. Moreover, Bethe lattices have been used to reproduce two and three-phase
relative permeabilities in porous media (Heiba et al., 1983; Heiba, et al., 1984; and Heiba
et al., 1992). Although networks more complicated than Bethe lattices are certainly
possible, our ignorance in regard to pore-size, pore-shape, the distribution of connectivity,
and pore topology of diatomite makes implementation difficult. Thus, the porous medium
is represented by a Bethe lattice, with each flow connection having some conductivity
governed by a conductivity distribution G(g) where g is the conductivity of a single pore.
The effective conductivity Geg for such a network is given by the first derivative of a

generating function C(x) at the origin ,

G .. =-2C (0) @.1)

eff

where Z is the coordination number of the Bethe lattice (Stinchcombe, 1974) and the
prime on C indicates differentiation with respect to the variable x which parameterizes the

network.
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The Laplace transform of the generating function satisfies the following recursive

integral equation,

K 1— I+t F _
-“C(x)d.x————+ 16 ( )C(x)z ldx}dg 4.2)
j J { 8 (+ g) !

0

subject to the boundary condition, C(0) =1. In Eq. 4.2, f is the fraction of throats of the
Bethe lattice that are available for flow. In the case of single phase flow and in the
absence of silica diagenesis, all the throats of the network are available to flow and f
equals 1.0. This remains true for dissolution as well. But in the case of deposition, some
throats will clog, and hence, all of the throats will not contribute to flow. As deposition
proceeds, the value of f decreases as pores fill with silica. Equation 4.2 can not be solved
analytically as it is implicit in C(x), but various series approximations have been
developed. For our model, we use the series approximation of Heiba et al. (1992) and
Heiba, (1985) (Appendix VII).

The effective volume of a network at any stage in the diagenetic process is found
from the volume distribution of the various throats, V(v). The effective pore volume of

the network is,
V= f V)dy 4.3)
0

where v is the volume of an individual pore. Evaluating effective network conductivity
and available network pore volume using Eq. 4.2 and Eq. 4.3 requires functional forms
for the distribution functions G(g) and V(v) which correctly represent the porous medium
under investigation. We consider a porous medium to have pores characterized by a
dimensionless throat radius r and a frequency of occurrence ofr). Since fis the fraction of

pores that are open, the distribution functions can be represented (Yortsos and Sharma,
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1986) as,

G(g) = (1~ f)8(g) + X o) g(r) @4

V() =1~ oW+ f(r) 4.5)

where g(r) and v(r) are the functions that relate the size, r, of a pore to its individual
conductivity and volume, respectively. The Dirac delta function, 8, indicates that the
clogged pores do not contribute to conductivity and pore volume. The factor X*, called
accessibility of the network, accounts for the random distribution of throats in the
network that causes some non clogged pores to be unavailable for flow because they are
cut off from the main mass of open pores by clogged pores. The value of X* depends on
the fraction of throats that are clogged and the connectivity, Z, of the network.

For a Bethe lattice, the accessibility function of the network has been found
analytically (Fisher and Essam, 1961). It is related to the fraction of open throats by,

2Z-2
XAF)=1FA=(F1Z2) sf2f. (4.6)
0 f<fe

where f; is the percolation threshold, i.e. the minimum value of the allowable fraction of
throats below which no flow across the lattice occurs and f is the root of the following

equation,

Fra-sH*-ra-N*r=0 G

such that the root f* — 0 as f — Qand f — 1. In our calculations to follow, we use the

series approximation to Eq. 4.7 provided by Larson and Davis (1982) as illustrated by
Heiba (1985) (Appendix VII).
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The network model equations, Egs. 4.1 to 4.7, are anchored to a real porous
medium by a two step process:
@) The functional forms of g(r) and v(r) are developed analytically, using a
single-pore model suggestive of observed pore structure.
(i) The form of or) is based on measured pore-size distributions for
diatomite. Likewise, actual body-size distribution information is included.

These steps are described in detail in the following sections.

4.3 Single-Pore Model
Every pore in a porous medium has at least two distinct parameters, throat size
and body size. We use sinusoidal pores as shown in Fig. 4.2. The pore is periodically

constricted according to the following dimensionless equation,

Mz)=1- (1——2—;{’ 11 + cos-%} (4.3)

where z is the distance along the axis, 4 = R(z)/R,, R, is a characteristic pore-body
dimension, A; = R/R;, is the dimensionless throat radius sometime referred to as an aspect
ratio, R, is pore-throat radius, £ = L/R;, and L is the pore wavelength. Based on this
representation of shape for a single pore and restricting the cross section to be circular, we
find the single-phase conductivity and volume of a single pore analytically. Neglecting

the influence of pore corners does not have a major effect on single-phase conductivity

calculations.

4.3.1 Single-Pore Conductivity
We solve for single-phase Hagen-Poisuelle flow in a constricted pore analytically

and relate pressure drop to flow by the following equation (see Appendix V),

Ap7R} _ (9/1‘? —64, +5)
8qLu A

(4.9)



SINGLE PORE MODEL

je I »]

Figure 4.2a: Single-pore model.

Figure 4.2 b: Uniform dissolution model.
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where Ap is the pressure drop, 4 is the viscosity, and g is the volumetric flow rate through
the pore. In spite of periodic constrictions we suppose that flow is creeping because flow
rates are very low and the Reynolds number is thereby small. We define a dimensionless

hydraulic conductivity g for a single pore related to the pressure drop through it by,

~aLp 38 4.10
8= "Ap #R? (+10)

where R. is a characteristic radius. These two equations are combined to give the

dimensionless single-phase conductivity of a single pore as,

4
3r;

N (9,1% —64, +5)

500 ) = 4.1

where 1 = R/Re.

4.3.2 Single-Pore Volume
Assuming circular cross section, we find the volume of a single pore per unit

wavelength to be (see Appendix VI),

V(R,,R,) = %Rf B2 +24,+3) (4.12)

Based on this equation, we define dimensionless volume per unit wavelength as follows,

V(A,,r,,)=-:-rb2 (34 +24, +3) 4.13)
where i=Rv/R..

The single pore model, Egs. 4.11 and 4.13, takes into account both body and
throat sizes characterizing a pore. But the expressions generating conductivity and

volume distributions require that the single-pore equations be in terms of a single
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characteristic dimension. We select the dimensionless throat radius to be this
characteristic dimension. The choice is made because the Bethe lattice effective
conductivity Eq. 4.1 is for the bond percolation problem, and bonds are analogous to
throats in a porous medium. Thus Eq. 4.11 and Eq. 4.13 are modified to yield a form
containing throat size only while still retaining embedded body size information.

4.3.3 Incorporation of Body Size Information

Equations 4.11 and 4.13 are made single variable equations without losing body-
size information by averaging the equations over all possible body sizes associated with a
given throat size. If o7y 75) is the freqilency distribution of the dimensionless body
radius, rp, associated with a given dimensionless throat radius, r;, then the effective

conductivity and available volume associated with a throat size is given by (Appendix

VD,

(80 ))=Tab (775 )8 (72 A )y (4.14)

(v ))=Tab (RAUCEN" (4.15)

4.4 Porous Medium Characterization

A real porous medium is composed of pores of varying sizes with each pore
characterized by a large main body and a narrow throat. The porous medium is
characterized by the sizes of bodies and throats and their distributions. The body and
throat size distributions can be accurately represented with bivariate gamma distribution

functions,

a-1 _-brya
gl 0 (4.16)
T'(a)
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where a and b are parameters that characterize the distribution. The use of this function
for diatomite body and throat distributions is supported by experimental results and
scanning electron microscope (SEM) images as discussed in Chapter 3 of this report.
Based on Eq. 4.16, we generate body and throat-size distributions; examples are shown in
Fig 4.3 for diatomite. While developing our single-pore model, we also use the
distribution o(r: , 7p) to average over all possible body sizes that can be associated with
a given throat size. This is the constrained pore distribution, also shown in Fig. 4.3 as a
dashed line marked with solid circles. Physically, a throat must be connected to a body

that is greater than or equal to throat size,

(1) = {40 (1) / j oy ()dn 2 4.17)

I

4.5 Relating Porous Medium to Network

The properties we calculate from the network model are effective hydraulic
conductivity and available network volume. These properties are related to permeability
and porosity. Permeability can be related to effective conductivity by invoking‘ Darcy’s

law and the definition of hydraulic conductivity, respectively,

L. __z_.Af (4.18)
RAG
ko< f‘% (4.19)

where A, (=¢A)is the cross sectional area available to flow of fluid, k is permeability, and
¢ is porosity. We assume that this area depends on the average throat size <R¢> squared

and that porosity is proportional to available network volume. Thus, the permeability
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Figure 4.3: Body-size, throat-size and constrained body-size distributions.
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change at any stage based on these equations is related to original permeability and pore

volume, ko and Vego, by the following relation,

4
_k_ - Veﬁ' (Rt)2 (Rc ) Geﬁ' (4.20)
kO Veﬁ',O (R:’0>2 Rc,O

Similarly, porosity at any stage of diagenesis can be related to original porosity and

G

network parameters as,

9 Yo 421

¢ Ver.0
Equations 4.20 and 4.21 relate network parameters to the porous medium at any stage in
the diagenetic process. Thus, given the mass of silica dissolved or precipitated we obtain
kand ¢.

4.6 Pore Evolution Models

There are two distinct pore evolution mechanisms that occur in diatomite during
steam drive. One is dissolution of the rock matrix and the other is precipitation of rock
minerals. The following subsections describe the models that we choose for representing

these aspects of diagenesis.

4.6.1 Dissolution

Silica dissolution has been studied widely in regard to alkaline water flooding. For
instance, dissolution kinetics have been examined (Thornton and Radke, 1988; Saneie
and Yortsos, 1985) as well as the migration of alkali (Bunge and Radke, 1982). The
evolution of grain sizes and shapes during dissolution has also been studied via glass bead
packs (Udell and Lofy, 1989). On the basis of observation of grain shapes and from
assessing surface chemical potentials, it was suggested that silica dissolution was most

likely to occur uniformly along pore walls (Udell and Lofy, 1989). In our pore network,
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we follow these results and dissolve pore walls uniformly. Each pore in the network
suffers the same amount of dissolution as shown schematically in Fig. 4.2b.

We denote the dissolved thickness by ¢ in dimensionless form. It has been non
dimensionalized by the characteristic radius R.. Based on this thickness, the dimensions
of a pore after dissolution can be related to its original dimensions by,

Veew = Teold T (4.22)

To,new = Th,0ld +2 (4.23)

These single pore equations are used to model the effect of dissolution at the network
level. The body and throat size distributiosis are still given by the gamma distributions of
Eq. 4.16. The distribution parameter a is related to average size by,

(ry=a-1 (4.24)

The new average radius can be related to the old average radius and the thickness by,

(r)mw = (r)old +t (4.25)
Based on Eqs. 4.24 and 4.25, the parameters for generating the body or throat size
distributions can be updated in the case of dissolution by,
=y, +t (4.26)

anew

Thus, body and throat size distributions during dissolution can be generated by
parameters in Eq. 4.26. Since dissolution of the network does not block any pore, the
pores at any stage of dissolution are always accessible to flow and X* for dissolution will
always be 1.0.

Based on this approach, different stages of dissolution of the rock matrix are

denoted by different values of dimensionless thickness . Then, the pore size distributions
are updated and effective network conductivity and pore volume recalculated. Finally, the

permeability and porosity change associated with a particular ¢ is found.
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4.6.2. Deposition

We use two different deposition models as given in Fig. 4.4. to explore clogging
of péres. The first model, Fig. 4.4a, considers deposition to be a pore lining process and
the second considers deposition to oceur only at throats. Deposition at pore throats is
indicated on Fig. 4.4b by dark gray shading. In both models, deposition takes place in a
series of steps. Each step in the deposition sequence depends on the network condition in
the previous step. At any stage of deposition, the condition of the network is determined
by the condition of the throats constituting the network. Even though the radii change as
deposition proceeds, we characterize all throats of the network at any stage of deposition
by their original radii, i.e., before the process of deposition starts. The extent of
deposition is given by the largest blocked throat with original size r;. The current size of
this throat is zero. This implies that the frequency of a throat with current radius r is given

by ox(r+1;) when 1; has been clogged. We also define X; as,

X; = j'a, (r)dr (4.27)
0

This X; defines the fraction of the original throats that are not allowed to the main flow
due to deposition. The fraction of throats that are allowed to flow is, 1-X;. All of these
allowed pores are not accessible to flow due to random connectivity of the network.
Based on the current value of 1-X; we estimate the current accessible fraction of allowable
pores of the network by using Eq. 4.6. The fraction of completely blocked pores X, is
found by a population balance (Yortsos and Sharma, 1986),

(4.28)
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Figure 4.4a: Uniform deposition model.
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Figure 4.4b: Deposition at throats only.
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Determination of these parameters at any stage of deposition thus tells us the
condition of our network. A deposition step implies that pores with original throat size
between r; and 7+Ar; block. First, we completely block accessible throats with current
radius between 0 and Ar;,. That is, for pores with the original radius between r; and ri+Ar;.
We call this amount of precipitate deposited volume V;. Second, we deposit a layer of
thickness Ar; in all currently accessible throats with current radius between Ar; and
infinity. We call this deposited volume V5.

To find the available pore volume at the stage r;+Ar; of deposition we calculate V;

and V, and subtract their total from network volume at start of the deposition step. Thus,

Vg (1 +A5) =V, (1) ~ (V1 +V,) (4.29)
The deposition calculations start at 7;=0, and we go on successively subtracting volume

from the base volume as calculated in Eq. 4.3. Formulas for V; and V> depend on where

silica deposition occurs.

Deposition at throats only. In calculating the volumes V; and V> for deposition occurring
only at pore throats, we hold the body size distribution constant and change only the
throat-size distribution. Thus, the current body sizes are the same as the original body

sizes. The volumes are calculated as,

V= —i- J o, (r+r, ))V (err’ (4.30)

b4

XA o oo
V,= % I;[a; (r+r )V (r)dr —!a:, (r+r+Ar, ))V(r)(dr:l (4.31)
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Uniform deposition model. To find the volume change associated with a uniform
deposition, we consider a single-pore model and calculate the volume that is deposited by
a uniform layer of thickness ¢,

Vdep (T‘b Py Tt ’ t) = ﬂt(rb + Tt e t,) (4.32)

We then average Vi, over all possible body sizes to get volume change associated with a

throat for a given thickness. The expression is,

(Vi (r:)) = ja,, 57 Wty (o135 E)d (4.33)

We use this equation to calculate the deposition occurring in all throats with current radii
ranging from O to . Thus, for the uniform deposition case, the volume deposited is given

by,

A o0
V,+V,= i(X [ e (r+m)Wa, (rut){dr 434)
io

1

Conductivity calculation. The effective conductivity of the network is found by

considering the three kinds of throats in the network at any deposition stage r;:

e Throats that had original size less than r; and are currently blocked completely and so
do not contribute towards network conductivity.

e Throats that had original size greater than 1; and are accessible to flow and, hence,
contribute towards network conductivity. )

e Throats that had original size between 0 to o but are not accessible to flow due to

random connectivity of the network and, thus, do not contribute to flow.
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The conductivity distribution function of the network is generated by,

XA
1-X

G(g)=(X,+X™ B+ o, (r+1.))g () (4.35)

i
Once the conductivity distribution is known, we calculate the effective network

conductivity using Eq. 4.2.

4.7 Discussion of Results
The models for deposition and dissolution were translated into the following
algorithm to gauge the effect of dissolution and precipitation on permeability.
e A base case with given network connectivity, Z, average aspect ratio, A, pore-
body distribution, and pore-throat distribution is constructed.
e Next, we calculate the effective conductivity and available network volume of
the base case.
e We then update the pore-body and pore-throat distributions according to the
rules given above for a specified amount of silica precipitated or dissolved.
o The effective conductivity and available volume of the updated network are
recalculated.
e Finally, Egs. 4.20 and 4.2lare used to relate the conductivity and available

volume changes to permeability and porosity changes.

Connectivity and aspect ratio are varied independently for new base cases and the
process given above is repeated. The code used to perform these calculations is attached
as appendix IV of this report.

In the case of uniform dissolution, FFig. 4.5 represents the permeability versus
porosity relationship for an aspect ratio of 20/3 and different values of coordination
number Z. The plot has two distinct trends. First, the permeability increases rather
dramatically for all values of Z. An order of magnitude increase in permeability is

predicted if the porosity increases by 50%. Second, for a fixed value of porosity change,
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permeability increases most for small Z. For Z equal to 3, the permeability has increased
40 times when ¢/¢, reaches 1.5. As Z becomes larger the effect is less. Itis reasonable
that permeability increases most sharply and more severely for rocks with low
connectivity as compared to rocks with high connectivity. The role of an individual pore
throat on permeability is accentuated in networks with small connectivity.

Figure 4.6 displays similar dissolution calculations for the case of Z equal to 5
and variable pore aspect ratio. The most dramatic increases in permeability occur for the
most constricted pores. When pore throats are small relative to pore bodies, a small
amount of dissolution dramatically increases permeability. Note that the least constricted
pores display the smallest amount of permeability increase relative to the base case.

Deposition results are similar to dissolution, except that the trends are reversed.
Permeability decreases with porosity. Figure 4.7 shows the permeability versus porosity
relationship for an Ry/R; of 20/3 and various connectivities. Deposition occurs at throats
only. For all values of Z, the decrease in permeability is very marked near ¢/¢, equal to 1
and becomes less steep as the network approaches blockage. Again, the most dramatic
effects are seen in the networks with the least connectivity. Figure 4.8 displays the
permeability versus porosity relationship for a Z of 5 and various pore throat to body size
ratios. A smgll amount of silica deposited in a narrow throat in a poorly connected
network, can substantially decrease network conductivity, and hence permeability.

For completeness, Figs. 4.9 and 4.10 present results for uniform deposition.
Figure 4.9 applies to a fixed aspect ratio of 20/3 with variable Z, whereas Fig. 4.10 shows
results for fixed connectivity and various Ry/R;. Trends are similar to Figs. 4.7 and 4.8,
but the trend of decreasing permeability with silica deposition is not as strong. Because
deposition is pore lining rather than throat blocking, it takes a greater change in porosity
to affect the same change in permeability. As expected, the most dramatic decreases in
permeability are found for small Z and large A

The porosity changes shown in Figs. 4.5 to 4.10 are extreme and not expected in
the field far away from the well bore. Changes up to about 10 % are likely the maximum
(Koh, et al., 1996). If we limit the porosity changes to 10 % and examine permeability
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versus porosity on a log-log plot, a straight line relationship is found for dissolution and
both modes of deposition. That is, the ratio of permeabilities varies with ¢/4, raised to
Some power.

This point is illustrated graphically in Fig. 4.11 for the case of deposition at pore
throats. The pore throat to body aspect ratio is fixed at 20/3, the network connectivity
varies between 3 and 13, and deposition is limited to 10%. The power-law exponent
increases with decreasing Z as indicated by the slopes of the lines. For a Z of 3 the
exponent is about 16.5 while for Z = 13 it is about 6.6. The power-law trends exhibited in
Fig 4.11 can be compared with the experimental results of Koh et. al (1996). They
measured permeability of diatomite plugs that were flushed with hot, saturated silica
laden water (204 °C). The diatomite plug was maintained at 49°C to induce silica
deposition. Experimentally, they found that permeability reduction comelated with
porosity decrease according to a power-law relationship. Their best-fit power-law
exponent was 9. We find this power-law exponent for Z between roughly 5 and 7 on Fig.
4.11. In the case of pore-lining silica deposition, this model exhibits an exponent of 9
when Z is between 3 and 4 and Ry/R, is 20/3. Hence, for reasonable network parameters,
we reproduce the experimentally observed trend.

The power-law form exhibited in Fig. 4.11 suggests that the network results can

E (o)
L |2 (4.36)
=)

where the power-law exponent 7 is correlated with the network parameters Z and A,

be expressed according to

=R/R.. We choose the following form for y

D(4,)

Y= B(ﬂt)-i-_z—-——-E(ﬂ,)

(4.37)

The coefficients B, D, and E are functions of A.. We obtain them by fitting polynomial

expressions to network results. Table 4.1 details the exact functional forms for each of

these coefficients.
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Table 4.1: Coefficients in Expression for Power-Law Exponent

CASE B(4,) D (%) E (%)
Dissolution 0020142 + 0.6454, 118633 | ~0016843+03126/42+005254, +27042 | —0.0279% +05886
UniformDep. (000342 + 01474, + 2827 | —00059% +0.0847 +06144 +52683 —0.02994, +17014
Dep at Throats (031142 + 05699, +2884| 00128% ~03715% —3876%,+29961 | ~00183% +16878

——— e pr——

71

o - =
e A e =
3 T T IS e e Sy TR




Log(k/kO)

06 -0.05 -0.04 -0.03 -0.02 -0.01lg#7 /% O
< /R0
y = 6.5524x s%g " 0.2 +
y = 6.9371x oal
y = 7.3006x
y=8.172x ' . 0.4 +
y = 9.7739x
y =16.477x Decreasing Z -0.5 +
(Fixed Rb/Rt=20/3) 064

Figure 4.11: Straight line fits for permeability-porosity relations
on log-log scale. ’
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To verify the data reduction approach and Eqs. 4.36 and 4.37 , we plot network
predicted changes in permeability (log k/ko), such as those displayed in Figs. 4.5 to 4.10,
versus the product of the power law exponent and logarithm of porosity change (y log
¢/do). Deposition or dissolution is limited to a maximum of 10%. Figure 4.12 gives the
results of this procedure for deposition at pore throats. Network results are given as
individual data points and lie quite close to the. straight line representing Eq. 4.36.
Different symbols indicate differing values for network parameters Z and A.. Deviations
from the straight-line behavior likely result from small errors in the polynomial
representation of coefficients B, D, and E. Figures 4.13 and 4.14 show that the data
reduction is successful for the pore-lining deposition and uniform dissolution cases as
well. Hence, we obtain from our network calculations useful correlations of macroscopic
porous medium properties. The power-law exponent is parameterized in terms of
measurable rock quantities. Apart from checking the accuracy of the data reduction an
error analysis (Appendix V) was also performed on the fits obtained from this method.
The details of the analysis showed that the maximum difference introduced in the
absolute values of permeability if predicted using Eq. 4.36 as compared to a detailed

network calculation was at most of the order of 2 %.

4.8 Conclusions

Beginning with a simple network representation of diatomite, we are able to
model permeability evolution as a function of porosity change. For moderate increases or
decreases in porosity, we find a power-law relationship describing permeability alteration.
Such a trend for silica deposition has been determined experimentally elsewhere. The
power-law feature holds promise that permeability change during steam drive, or water
flood, in diatomite can be incorporated into reservoir simulators.

Specifically, we find that the porosity-permeability relationship can modeled as a

simple power-law relation only for moderate ranges of deposition and dissolution. At low
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Normalized plot of permebility-porosity relation for deposition at throat case

log(k/kO)

with aspect ratio 2-10 and Z=3-20
47 46 05 -04 43 a2 1 0
~» 54
.' -
- 9.2
np
‘ o i
Xz

»

.

-8

~ e

Figure 4.12: Normalized plot for deposition occurring at pore-throats only.
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Normalized plot of permebility-porosity relation for deposition at throat case
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Figure 4.13: Normalized plot for uniform deposition.
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ranges of deposition, it is difficult to distinguish between deposition only at pore throats
and pore-lining deposition of silica for expected pore body to throat aspect ratios and
connectivity. Also, it is found that permeability change is most dramatic for networks
with low connectivity or very small pore throats connected to relatively large bodies. For
connectivity of 12 and greater at a fixed value of the throat to body aspect ratio, little

variation in results is found as Z is increased.
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Nomenclature

A =
ab =

surface area

parameters in gamma distribution

B,D,E = coefficients for data reduction

C =

silica concentration in the aqueous phase

equilibrium silica concentration

network generating function
fraction of pore throats available for flow

network conductivity distribution
conductivity distribution

Leverett J-function

permeabi]ity,.Chap 3,Chap4

reaction rate constant, Chap 1

surface rate constant

distance between the producer and injector
mass of water available for deposition/dissolution
pressure

radius

rate of reaction

saturation of a phase

specific surface area of the porous medium

temperature

time, Chap 1

thickness of a deposited layer, Chap 4
darcy velocity

network volume distribution, Chap 4

volume of sample not occupied by mercury, Chap 3
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Veorr = corrected volume of mercury in the sample
Veornsso = corrected volume of mercury in the sample at 850 psig

Viample= volume of sample occupied by mercury

Vr = total sample volume

Vv = volume of a pore segment

X = fraction of throats not allowed to flow
X* = network accessibility

x = direction of one-dimensional flow

x, = dimensionless distance

Z = coordination number

z = distance in axial direction

Greek Symbols

o = frequency of occurrence

6 =  Dirac delta function

A = difference operator

¢ =  porosity

I' = gamma function

Y = power-law exponent

A = radius non-dimensionalized by body size
U = viscosity

€ = contactangle

p; =  density of water

o = surface tension

¢ = pore length non-dimensionalized by body size
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Subscripts

b = body

¢ = capillary, Chap 3

¢ = characteristic pore dimension, Chap 4

¢ = cross-sectional area for flow, Chap 4

eff = effective for flow

I = initial

i = fraction of original throats now blocked
J = injection

o = denotes properties before dissolution or precipiation
t = throat

nw =  non wetting

w =  wetting

1,2= volumes deposited in precipitation model
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Appendix |

The Silica Conservation Equation is

d 0 _
2 cop 2 cup, )= (ALY

C is the silica concentration (mass of silica/mass of water), ¢ is the porosity of the
medium, p,, is the water density, u is the darcy velocity of water flowing through the

porous medium and r; is rate of reaction. The dimensions of each term in Eq. Al.1 are
mass of silica volume of water” time™.

Assuming that porosity remains constant, Eq. Al.1 can be written as,
oC oC | d )
+up. = — o =r Al2
The water conservation equation is,

d 9 (.
= 0P, )+=—(up,)=0 (AL3)

Assuming that the rate of reaction is first order and given by,

r,=—k(C-CJp, (AL4)

k is the rate constant (time™) and C° is the equilibrium concentration of silica in water at

the temperature of reaction, the silica conservation equation reduces to,

oC udC 0
~+>2 2= —rlc-C AlS
ot ¢ ox ( ) (AL3)
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Solving this equation subject to the following conditions,

o The initial concentration of silica in the medium is Ci.

o The injected phase has silica concentration of C;.

o The temperature of the medium becomes T, which corresponds to an equilibrium
silica concentration of C°, and this temperature remains constant during the injection

process.

These can be mathematically expressed as the following boundary and initial

conditions subject to which the rate equation is to be solved.
Boundary condition (BC)

c(0,:)=C, (AL.6)
Initial condition (IC)

C(x.0)=C, (AL.7)
The differential equation Eq. A1.5 when converted into Laplace space become,

0
% —C(0)+ 2 - pp KO (ALS)

@ ox s
s is the parameter in Laplace space and ¥ is the concentration in Laplace space. The BC

in Laplace space becomes,

v(,5)=5 (A19)
A
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The differential equation Eq. A1.8 is an ODE and can be re-written as,
0
¥ P rrw=c, +¥ (A1.10)
ox u s

This equation is of the form,

dy

——+P{x)y =0

D+ Py =00)

The solution of this differential equation is,

yXIF = [ IF xQdx + cons.

where,

17 =l
Thus, for Eq. A1.10, the IF is
IF = exp(i’i[s+ k]x\ (Al.11)
u
J _
and,
0
0=C + ke ] (Al.12)
s
Thus the solution in Laplace space is,
0
‘P=-C’—+k—€ﬁ+Aexp —2[s+k]x\ (A1.13)
s+k u ;-
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where A is a constant. This constant is evaluated using the BC of Eq. A1.9,

_C, C +kC°s
s s+k

A (Al.14)

The complete solution to the silica conservation equation in Laplace space is then,

W, 5)= F(s)+(%—p(s)}exp(-g[s+k]x\ (AL15)
J J
where,
_C,+kC%s
F(s)-—————-—s+k (A1.16)

To find the solution to silica conservation equation we need to find the inverse Laplace
transform of the solution in Laplace space, i.e., Eq. A1.15. To do that we will need to find
the inverse Laplace transform of F(s). The inverse Laplace transform of F(s) is found by

breaking it into its partial fractions,

0 0 _ o
F(S)=C,+kC /szg_+c, C

(Al.17)
s+k s s+k
Thus the inverse transform f{t) is given by,
FE)=C’+(C, - C*Jexp(~ k) (A1.18)

The inverse Laplace transform of Eq. A1.15 is thus found using Eq. A1.18 to give,

Clx,t)=C° +(C, - C° Jexp(~kt) + [(c, ~C° )exp(-— ﬂk—)— (€, - C°)exp(- h)]H(t &
U
(A1.19)
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The H in this equation is a step function. This general solution can be written also as,

Clart)=C°+(C, = C° Jexp(—k) ; t< izjui
: (A1.20)
Cx,z)=C° +[(CJ - CO)GXP(—?z—k)] ; t 2%—

P4

This is the general solution to the advective—reactive transport equation that is used in

this report.
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Appendix Il

Possible Pore Bodies

Figure A2.1 :Magnification=1200X

Scale:=28 tm PR R S

Flow paths that could be pore bodies




Figure A2.2 :Magnification=1100X

Scale:=27 pm -

Flow paths that could be pore bodies
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Figure A2.3 :Magnification=1490X

Scale:=20.1 ym

Flow paths that could be pore bodies
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Figure A2.4 :Magnification=600X

Scale:=50 um

Flow paths that could be pore bodies.
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Figure A2.5 :Magnification=590X

Scale:=51 pm

Flow paths that could be pore bodies
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Possible Pore-Throats

Figure A2.6 :Magnification=2210X

Scale:=13 um

Flow paths that could be pore-throats
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Figure A2.8 :Magnification=5000X

Scale:=6 pm

Flow path that could be pore-throats
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Figure A2.9 :Magniﬁéation:Z%OX

Scale:=10.3 ym

Lack of large scale flow paths in diatomite
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Complete Diatoms

Figure A2.10 :Magnification=1990X
Scale:=15.1 um

SEM of a complete diatom
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Figure A2.11 :Magnification=4900X"
Scale:=6.1 im

Center of the complete diatom of Fig. A2.10 at a higher magnification
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Figure A2.12 :Magnification=5900X

Scale:=5.1 um

Center of the complete diatom of Fig. 3.9 at a higher magnification
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Debris blocking diatomite flow paths

Figure A2.13 :Magnification=1000X

Scale:=30 tm —

Crushed diatomite remains blocking possible flow paths
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Appendix 11l

Pressure-Volume Data for Mercury Porosimetery

RUN 1

Vol reading of empty pycnometer (Vem)=

Vol reading of full pycnometer (Vi) @ atm=

Vol of pycnometer (Vpyc)=

Vol reading of full pycnometer (Vsur) @ 850

psig=

Volume expansion of pycnometer =
Volume reading with core @ atm=
Bulk volume of sample =

POROSITY calculation

Vol at reading with Hg in the sample
@850psig=
porosity =
pore vol =
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Mercury Intrusion Data/ Calculations

Table A3.1: Mercury Intrusion Data for RUN 1.

¥

P(psig) Volume Veorr Volume of H§ in sample Sow
Reading (cm®) cm’ cm
0 9.225 0 0 0

20 8.9 0.05 0.275 0.064478
438 8.8 0.10656 0.31844 0.074664
55 8.775 0.11825 0.33175 0.077784
103 8.7 0.171157 0.35384299 0.082964
140 8.595 0.185464 0.4445362 0.104229
149 8.5 0.183944 0.53605617 (0.125687
155 8.3 0.191264 0.73373615 0.172037
162 8.1 0.193971 0.93102946 0.218295
175 7.9 0.198997 1.12600275 0.26401
192 7.7 0.205571 1.31942936 0.309362
223 7.5 0.217557 1.50744259 0.353445
245 7.3 0.226064 1.69893585 0.398344
268 7.1 0.234958 1.89004244 0.443152
290 6.9 0.243464 2.0815357 0.488051
310 6.7 0.251198 2.2738023 0.533131
332 6.5 0.259704 2.46529556 0.578029
358 6.3 0.269758 2.65524214 0.622566
380 6.1 0.278265 2.8467354 0.667464
410 5.9 0.289865 3.0351353 0.711638
448 5.7 0.304558 3.22044184 0.755086
485 5.5 0.318865 3.40613505 0.798625
532 5.3 0.337038 3.58796156 0.841257
590 5.1 0.359465 3.7655347 0.882892
660 4.9 0.386532 3.9384678 0.923439
750 4.7 0.421333 4.1036675 0.962173
850 4.5 0.46 4.2650005 1

*This is volume correction due to pycnometer expansion under pressure calibrated
separately. The calibration is at the end of this appendix.
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Mercury Retraction Data/ Calculations

Table A3.2: Mercury Retraction Data for RUN 1.

P(psig) Volume Veorr Volume of H§ in sample Sow
Reading (cm®) cm® cm

850 0.46 4.5 4.2650005 1.000000117
725 0.411666 4.55 4.26333425 0.999609437
598 0.362559 4.6 4.26244134 0.99940008

500 0.324665 4.65 4.250335 0.996561547
425 0.295665 4.7 4.22933525 0.991637808
362 0.271305 4.75 4.20369546 0.985626134
320 0.255064 4.8 4.1699356 0.977710574
280 0.239598 4.85 4.1354024 0.969613693
250 0.227998 4.9 4.0970025 0.960610199
230 0.220264 4.95 4.0547359 0.950700094
210 0.212531 5 4.0124693 0.940789988
190 0.204797 5.05 3.9702027 0.930879883
172 0.197837 5.1 3.92716276 0.920788455
160 0.193197 5.15 3.8818028 0.91015306

140 0.185464 5.2 3.8395362 0.900242954
130 0.181597 5.255 3.7884029 0.888253904
122 0.178504 53 3.74649626 0.878428197
110 0.173864 5.35 3.7011363 0.867792802
103 0.171157 54 3.65384299 0.856704101
92 0.16376 5.45 3.61124 0.846715123
85 0.15725 5.5 3.56775 0.836518171
80 0.152 5.55 3.523 0.826025791
70 0.14 5.6 3.485 0.817116061
68 0.13736 5.65 3.43764 0.806011723
65 0.13325 5.7 3.39175 0.795252052
62 0.12896 5.75 3.34604 0.784534584
58 0.12296 5.8 3.30204 0.774218054
53 0.11501 5.85 3.25999 0.764358734
50 0.11 5.9 3.215 0.753810082
48 0.10656 5.95 3.16844 0.742893318
40 0.092 6 3.133 0.734583822
38 0.08816 6.05 3.08684 0.723760844
32 0.07616 6.1 3.04884 0.714851114
30 0.072 6.15 3.003 0.704103165
28 0.06776 6.2 2.95724 0.693373974
25 0.06125 6.25 291375 0.683177022
20 0.05 6.3 2.875 0.674091442

109







RUN 2

Vol reading of empty pycnometer (Vem)=

Vol reading of full pycnometer (Van,;) @ atm=
Vol of pycnometer (Vpyo)=

Vol reading of full py¢énometer (Van) @ 850 psig=
Volume expansion of pycnometer =

Volume reading with core @ atm=

Bulk volume of sample =

POROSITY Calculation

Vol at reading with Hg in the sample @850psig=

Porosity =
Pore vol =

111

48.87 cm®
1.28 cm®
47.59 cm®
0.94 cm®
034 cm®
6.57 cm®
529 cm®

2.955 cm®
0.619093
3.275 cm®



Mercury Intrusion Data/ Calculations

Table A3.3: Mercury Intrusion Data for RUN 2.

P(psig) Volume Veorr Volume of Hg in Sow
Reading cm® sample
(cm?) cm’

0 6.57 0 0 0

22 6.5 0.05456 0.01544 0.004715
63 6.4 0.13041 0.03959 0.012089
138 6.3 0.17861005 0.091389954 0.027905
148 6.2 0.18087672 0.189123284 0.057748
160 6.1 0.18359672 0.28640328 0.087451
168 6 0.18541006 0.384589944 0.117432
177 59 0.18745006 0.482549941 0.147343
185 5.8 0.1892634 0.580736605 0.177324
193 5.7 0.19107673 0.678923269 0.207305
203 5.6 (0.1933434 0.776656599 0.237147
225 5.5 0.19833008 0.871669925 0.266159
238 54 0.20127675 0.968723254 0.295793
253 53 0.20467675 1.065323249 0.32529
260 52 0.20626342 1.16373658 0.355339
272 5.1 0.20898342 1.261016576 0.385043
290 5 0.21306343 1.35693657 0.414332
305 4.895 0.21646344 1.458536565 0.445355
315 4.8 0.21873011 1.551269895 0.47367
332 4.7 0.22258344 1.647416556 0.503028
345 4.6 0.22553012 1.744469885 0.532663
358 4.5 0.22847679 1.841523214 0.562297
370 4.4 0.23119679 1.93880321 0.592001
391 4.295 0.2359568 2.039043203 0.622609
402 4.2 0.23845013 2.131549866 0.650855
412 4.1 0.2407168 2.229283196 0.680697
438 4 0.24661015 2.323389854 (0.709432
450 3.9 0.24933015 2.42066985 0.739136
482 3.8 0.25658349 2.513416506 0.767455
515 3.7 0.26406351 2.605936495 0.795706
530 3.595 0.26746351 2.70753649 0.826729
575 3.5 0.27766353 2.792336475 0.852622
650 3.3 0.29466355 2.97533645 0.9085
720 3.2 0.31053024 3.05946976 0.934189
780 3.1 0.32413026 3.14586974 0.960571
850 2.955 0.33999695 3.27500305 1.000001
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Mercury Retraction Data/ Calculations

Table A3.4: Mercury Retraction Data for RUN 2.

P(psig) Volume Veorr Volume of Hg in Suw
Reading cm’ sample
(cm®) cm’
850 0.339997 2.955 3.27500305 1.000001
755 0.318464 3 3.251536415 0.992836
630 0.29013 3.05 3.22986979 0.98622
525 0.26633 3.1 3.203669825 0.97822
440 0.247063 3.15 3.17293652 0.963836
380 0.233463 3.2 3.13653654 0.957721
335 0.223263 3.25 3.096736555 0.945568
295 0.214197 33 3.055803235 0.93307
265 0.207397 3.35 3.012603245 0.919879
240 0.20173 34 2.96826992 0.906342
215 0.196063 3.45 2.923936595 0.892805
195 0.19153 3.5 2.878469935 0.878922
180 0.18813 3.55 2.83186994 0.864693
163 0.184277 3.6 2.785723279 0.850603
150 - 0.18133 3.65 2.73866995 0.836235
138 0.17861 3.71 2.681389954 0.818745
130 0.176797 3.75 2.64320329 0.807085
120 0.17453 3.8 2.59546996 0.79251
110 0.172263 3.85 2.54773663 0.777935
102 0.17045 3.9 2.499549966 0.763221
88 0.16016 3.95 2.45984 0.751096
82 0.15416 4 2.41584 0.737661
70 0.14 4.1 2.33 0.71145
65 0.13325 4.15 2.28675 0.698244
62 0.12896 4.2 2.24104 . 0.684287
60 0.126 4.25 2.194 0.669924
58 0.12296 43 2.14704 0.655585
50 0.11 4.35 2.11 0.644275
43 0.09761 4.45 2.02239 0.617524
38 0.08816 4.55 1.93184 0.589875
32 0.07616 4.65 1.84384 0.563005
22 0.05456 475 1.76544 0.539066
22 0.05456 4.85 1.66544 0.508531
20 0.05 4.95 1.57 0.479389
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e Calibration of pycnometer with press for volume correction

Table A3.5: Pycnometer Volume Correction Calibration Data.

P (psig) AV (Vo atm Vol reading (cm®)
Veurr)

0 0 11.43
50 0.11 1132
100 0.17 11.26
150 0.19 1124
200 0.21 11.22
250 0.22 11.21
300 0.235 11.195
400 0.255 11.175
450 0.27 11.16
550 0.295 11.135
600 0.31 11.12
670 0.325 11.105
750 0.345 11.085
800 0.36 11.07
850 0.37 11.06

where Voam is volume reading at zero gauge pressure inside the pycnometer and Ve iS
the volume reading at current pressure in the pycnometer.

This pressure versus volume change data was fit to two curves one valid up to 100
psig pressure and another above 100 psig as shown in the Figs A3.1 and A3.2.
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Figure A3.1: Pressure versus volume correction relation up to 100 psig.
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Figure A3.2: Pressure versus volume correction relation above 100 psig.
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Appendix 1V

Permeability Measurement Data

SAMPLE 1
Length = 1linch= 254 cm
Diameter = linch= 254 cm
X-area (cm?) = 5.066119
P(avg.) Flow K.(mD)
Atm. (cm>/min)
0.25 0.27 9.635088
0.5 0.53 9.45666
1 0.96 8.564523
10
9.8
9.6 y = 0.3186X + 8.4753 /
) R?=0.72
_. 9.4 ’/
2:, 9.2 //
v o P
8.8
8.6 ry
8.4
0 1 2 3 4
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Figure A4.1: Absolute penneabﬂity‘lclcl)arr(gé&]og of Sample 1
for Klinkenberg effect.




SAMPLE 2

Length = 1.06inch =2.6924cm
Diameter= 1.015inch =2.5781cm
X-area (cm?) = 5.219242
P(avg) Flow Ka(mD)
Atm (cm®/min)
0.25 0.24 8.81205
0.5 0.44 8.077712
1 0.74 6.792622
9 /
8.5 //
8 &
a
£ 75 //
¥ / y = 0.6294 + 6.4255
7 R? = 0.8848
6.5
6
0 0.5 1 15 2 25 3 35 4
1/P (atm™)

Figure A4.2: Absolute permeability correction of Sample 2
for Klinkenberg effect.
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SAMPLE 3

Length = 0.68inch =17272cm
Diameter = 1inch =254 cm

X-area (cm®) = 5.066119

P(avg) Flow Ka(mD)
Atm (cm3/min)
0.25 0.4 9.706459
0.5 0.76 9.221136
1 1.45 8.796478
9.8
9.7 =
9.6 ,/
9.5 pd
y = 0.2947x + 8.5538 v
9.4 R?=0.9772 //
ig 0.3 —
E 9.2 v
9.1 v
9
8.9 —
8.8
8.7
0 0.5 1 1.5 2 25 3 35 4
1/P(atm™)

Figure A4.3: Absolute permeability correction of Sample 3
for Klinkenberg effect. -
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SAMPLE 4

Length=  0.85inch =2.159

cm
Diameter = 1inch =2.54
cm
X-area (cm?)= 5.066119
P(avg) Flow | K,(mD)

Atm (cm®/min)

0.25 0.34 10.31311

0.5 0.64 [9.706459

1 1.2 9.099805

Figure A4.4: Absolute permeability correction of Sample 4
for Klinkenberg effect.
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Appendix V

Single-Pore Conductivity Calculations

The equation describing the constriction of a pore is given by,

R 1-4 27
—=1=1-—"t|1+Cos| =— (A5.1)
R, 2 { be)]

R L
where A4, = R—T is the aspect ratio of the pore, and & =R is the dimensionless length of
b b

a single pore, Ry, is the pore body size, R: the pore throat size and L the length of a single

pore.

We assume that at the pore-level flow is creeping flow, i.e., the Hagen-Poisuelle
equation for single-phase flow can be applied. This flow equation in differential form for

a circular cross section is,

aR* d
=i (A52)
where Q is the flow though the cross section, R is the radius of the cross section, [ is the
viscosity of flowing fluid and dp/dx is the pressure gradient in the flow direction x. This
equation is valid for Reynold number R. < 2100. It is integrated over the entire pore

length to find the pressure drop in the single pore in the following manner:

ax

- (A5.3)

K]
I
o0
g
Nlh'—""“‘
~
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%
Let I= f % , and substituting Eq. Al.1 for R, we have,
S
&y
_ f dx
- 4
% RY|1- (1 l)l Cog| 22
. I 27x 1-4, .
Now if we make the substitution, f=—— and o= — we get the following
b
integral
__¢ J de
27R; 4 [1-ar— oCos6]'

as the function being integrated is an even function,

J‘(1 - aCosG)
2
Further, if we make the substitution Z = tan—6~ we have Cosf = L 22 and d@= 2de
2 1+Z 1+Z
the integral becomes,
L 28T dz
R 1-22T
“(1+z2 ) 1-a-a—=5
1+Z
or
Y (1+z ) dz

R [(1—a)(1+ZZ)—a(1—ZZ)]4
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or

_2£ (1+Zz)3a’Z 2 °°(1+Zz)3dZ
- R} 0[1—20:-1.-22]4 ARy (/1,+Zz)4

To solve the integral of Eq. AS5.4, we use the method of partial fractions as indicated

I

(A5.4)

below,

(t+2%) _AZ+B  AZ+B,  AZ+B;  AZ+B,
A+22) A+Z (442 (a+22) (A+22)

or

Z8 432 +32° +1=(AZ +B YA +Z°) + (4,Z + B, YA, + Z*)
+(AZ+B, A, +Z°)+ AZ +B,
Comparing coefficients of equal powers of Z on the both sides of the identity we get the

values below,

A1=0 : A2=0
B =1 B, =3(1-4,)
A3 =O A4=O
B, =3(1-1,) B, =(1-4)

Based on these partial fractions the integral 7 can be broken into four separate integrals as

given below,

I= 2—53(11 +I+1;+1,) (A5.5)
ﬂ"Rb
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where ,

YA +Z?

L =3(1- A)J’

A +Zz)

Calculation of I;:

i JzY =
| an | 2| =2 (A5.6)
L+zF A (JZ )0 2.2,
Calculation of I, I3, I4:
Let us define
= ‘[——d-z——n- wheren = 2,3,4;
p ﬂt+Zz)
If we make the substitution of Z= Jﬂ_, tan@ , the integral becomes,
7T,
1 f 2(n-1
I =— | (Cos8)"* Va6 (AS.7)
Ve
t 0

The integral part of Eq. A5.7 is a standard integral and we read it from the table of
integrals (CRC mathematical handbook, 1957).

For I, n=2 and 2(n-1)=2 and,

J'COsze 46 =Lsin260+ 8
4 2
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For I3, n=3 and 2(n-1)=4 and,

jas‘*e d9=%Cos39 Sin6+%Sin6 Cos9+-§:6

For I, n=4 and 2(n-I)=6 and,

j Cos’0 d@:%sme Cos59+-£-1-Sin9 Cos39+i%Cos8 Sin9+1—56-9

Thus,
3(1-4,)1 / 37;(1 )
Iz = Sl 29 - =
Zté 4 o 4/'1,/2
% )
1, =4 5’1‘) [ Cos’0 Sinf+>Sind CosO+> 9] _9m(-A)
AR 8 8 1, 164
' % sp(l-A
1, =1 A)[ Sing Cos’0+—-Sin@ Cos®+—-Cost Sm8+——€] _Sr(-4)
% |6 24 16 16 1, 1625
Using these values of I3, I>, I3and I;in Eq.(AS.5) we have,
26| 7 32— 1) 9n(-4Y sn(i-4)’
I=—\ i % 7
Ry | 24 4Af 1677 1627
or ’
E OB —-6A,+5
= £ : AS5.8
NP &
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Combining Egs. Al. 8 and Al.3 we get,

Bu0 £ 9K -63,+5
Ap, = AS5.9
N Y (859

This equation gives the pressure drop per wavelength of a sinusoidal pore in the case of

single-phase flow.

If we define dimensionless conductivity associated with a pore as,

g=2L 8L (A5.10)
Ap L 7d{c
where R, is some characteristic dimension used to render the distribution of sizes in g

dimensionless, we can define dimensionless conductivity of the single pore as ,

A
R,.R)= AS.11
(ki k) R0 -64,+5) (A1)

If we define dimensionless body and throat dimensions of the pore as

R R . . . .
r, =— and r, =—L then dimensionless conductivity can be written as,
(4 (4

4
8r,

Ay )=
8l 2e) A (9K =62, +5)

This is the single-pore conductivity equation that is used in network calculations of this

(A5.12)

report.
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Appendix Vi

Single-Pore Volume Calculations

The equation describing the constriction of a pore is,

1-2, 27mx
=A=1-—L|1+Co (A6.1)
Rb 2 l: R, )]

R L
where A, -R—Tis the aspect ratio, and £=-— is the dimensionless length, R; is the
b R,

pore-body size, R; the pore-throat size, and L the wavelength of the single pore. The

volume per wavelength of a single pore is found by,

V, = | nR%dx (A6.2)

"—-oNlb*

ol

Substituting Eq. A6.1 for R in Eq. A2.2 we have,

3

v,= | zR,?[l (1+ Cos( m
_m A
o 27mx 1-4
Now we make the substitution, 9=?R—, o=— 5 and obtain the following
b

integral

T
v, =%§R§ [[1-ar-acosoT a6

-
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since the function being integrated is an even function,

T
v, =R} [[1-a—aCos6] de
[

or,

V, = &R} j (- @) ~20(1-)Coso+ o*Cos"0}d6 (A63)
0

From the table of integrals (CRC mathematical handbook’) we know that,

jc:osze d6=Lsine+8
2 2

jCOse 46 = Sind

Using these results in Eq. (A6.3) we get,
z 3
V. =&R} [(1— o) 0-2a(1-)Sinf+ azG-Sin29+§)] = %Ri[z(l— @)’ + aZ]
0
1-4

Putting back o= — in the expression, after simplification we obtain,

3
Vv, = -75%5"—(3)3- +24, +3) (A6.4)
The pore volume per unit length is thus,
2
=——”§b (3% +24, +3) (A6.5)

If we define dimensionless volume per unit length associated with a pore as,

(A2.6)

128



*

where R, is some characteristic dimension used to render V dimensionless, we can define

dimensionless volume of the single pore as,

2 .
v(r,,,,l,)=-’7-§'—(31% +24,+3) (A6.7)

where 7, = % and 7, = —gi- are dimensionless pore-body and throat-sizes, respectively.
c (4

This is the single pore volume equation that is used in network calculations of this report.
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Appendix Vii

Single-Pore Uniform Deposition Calculations

Let 8T be the thickness of the deposited layer along the pore walls. The new pore

dimensions at the end of this deposition step are

Rypey =R, — 0T (A7.1)
R, ppy =R, =0T (A7.2)

From Appendix VI Eq. A6.5, we already know that the volume of a single pore per unit
length is,

7RE [ .o
V= T(zz, +24, +3) , (A6.5)
This equation is rewritten as,
1 =%(3R,2 +2R,R, +3R}) (A73)

Using Egs. A7.1 and A7.2 in Eq. A7.3 we can find the volume deposited as,

V=Vy,~V, = %[31@2 +2R,R, +3R2 ~3(R, — 6T)" — 2R, —STYR, — 6T) - (R, — 6’1‘)2]
--(A74)
On expanding the terms of Eq. A3.4 and simplifying we get,

8V = n8T(R, + R, - &T) : (A7.5)
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To find the dimensionless volume deposited per unit pore-length we again define,

Thus, effective dimensionless amount deposited is,

where,

(A7.6)

(A6.7)

(A6.8)

This is the deposition equation that we use in network calculations for the uniform

deposition case.
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Appendix VI

Series Approximations Used in Network Calculations

Effective Conductivity Approximation

For a Bethe lattice of coordination number Z, the effective conductivity for the bond

percolation problem is,

G .. =-2ZC (0) (A8.1)

eff
where C (0) is the value of first derivative of C(x) evaluated at zero, and C(x) is called
the generating function. This generating function satisfies the following recursive integral
equation in Laplace space (Stinchcombe, 1974).

o0

j e =C(x)dx = —+ ffG( ){1: | j exp( )C(x)z ldx} (A82)

0

A series approximation to find c (0) is Heiba (1984).

e kg kg>C'(0)
N . A83
Qj (8 gg{[ck =) e s eiC (O)P] o

where C%! is the kth binomial coefficient. The coefficient a; is given by the following

expression,

gs—kC'(0

2 z=1 2
a,=5-0,+0,[ G(gﬁg;[c:—l Q-sy™* s"{l _LS__)} } (A8.4)
: -
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The s used in these equations is the root of
z-1
5—=Q;+0;(1-5)"" =0, where, 0<s<1 (A8.5)

Larson and Davis Approximation for Accessibility Function

The expression that is used to find the accessible fraction of a Bethe lattice at any stage of

deposition has been calculated analytically by Essam & Fischer (1961) to be,

f* 22—%_2
X*= f[l‘(f') } 2t (A89)

0 s fF<fe

where f is the fraction of open bonds in the network and f; is the percolation threshold.

The value of f is root of the following equation,

-7y -ra-s¥" =0 (A8.10)
such that f*—0 as f —0 or f —1. The series approximation to this system of

equations is given by Larson & Davis (1982) ,

X* = fi-ReV} (A8.11)
with R being the root of

Z-1 _

> R* +I11o0 (A8.12)

i=2 f -
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Appendix IX

Error Analysis Study of the Curve-Fitting Approach

This analysis was performed to investigate the amount of error that is introduced if
we use the relations generated by curve fitting (Table 4.1) to predict pehneability change
instead of a full scale network model. The aim, is to see how good the power-law model
is in the deposition ranges concerned. The approach used for this analysis is:

* Permeability change versus porosity change data is generated by the network model.
This data is taken as the reference.

® Depending on the pore-evolution mechanism, a relation from Table 4.1 is used to
predict the permeability change for the porosity changes of the reference data.

* The 0-10% deposition range is divided into separate intervals, and the deviation

between network model results and correlation results investigated.

Parameters Used in the Study

This appendix shows the detailed study done for a deposition case, considering
that deposition is occurring at pore-throats only. The porous medium parameters
considered are
i) Connectivity, Z=3
ii) Aspect ratio, A:=6.

Based on these parameters, the network model is used to predict the permeability change
as a function of porosity change. The data obtained from the network calculations is listed

in Table A9.1, and is used as the reference data.
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Table A9.1: Reference data generated by the Network Model Calculations.

&/do k/ko log &/¢o log k/Kky
1 1 0O 0

0.998925 0.977542 -0.00046712__| -0.00986457
0.997726 0.954044 -0.00098871 | -0.0204316
0.996418 0.930077 20.00155844 | -0.0314811
0.995012 0.905867 -0.00217168__| -0.04293556
0.993517 0.881553 -0.0028247 | -0.05475157
0.991942 0.857238 0.00351372__| -0.06689859
0.990292 0.833 -0.00423673 -0.079355
0.988574 0.808898 -0.00499082 | -0.09210624
0.986792 0.784986 -0.00577438__| -0.10513809
0.983053 0.73789 0.00742307__| -0.13200838
0.981103 0.714771_- -0.0082854 | -0.14583308
0.979104 0.691975 -0.00917118 | -0.1599096
0.977059 0.669524 -0.01007921 | -0.17423385
0.97497 0.647435 -0.01100875__| -0.18880383
0.970669 0.604412 -0.01292884 | -0.21866692
0.968461 0.583502 0.01391786__ | -0.23395765
0.966218 0.563008 20.01492488 | -0.24948543
0.963942 0.542937 -0.0159491 __| -0.26525056
0.961632 0.523295 20.01699109 | -0.28125341
0.959292 0.504089 0.01804918__ | -0.29749278
0.956923 0.485321 -0.01912301__| -0.31397092
0.954526 0.466995 -0.02021224 | -0.33068777
0.952102 0.44911 -0.02131652__| -0.34764727
0.949652 0.43168 -0.02243551 | -0.36483807
0.947178 0.414684 -0.0235684 | -0.38228272
0.944681 0.398134 -0.02471482__| -0.39997073
0.942161 0.382026 0.02587488 | -0.41790708
0.93962 0.36636 -0.02704775__| -0.43609195
0.937058 0.351131 -0.02823353__| -0.45453083
0.934477 0.336333 -0.02943138_| -0.47323052
0.931877 0.321976 -0.03064141 | _-0.4921765
0.929259 0.308036 0.03186322 | -0.51139852
0.926625 0.294521 -0.03309599 | -0.53088373
0.923973 0.281424 -0.03434072__ | -0.55063887
0.921306 0.268739 -0.0355961 -0.5706693
0.918624 0.256461 -0.03686221 | -0.59097867
0.913218 0.233099 -0.03942554 | -0.63245959
0.910495 0.222004 10.04072243 | -0.6536392
0.90776 0.21129 -0.04202896 | -0.67512106 ||
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In the next step based on the values of parameters Z and A, and the relations read from
Table 4.1 for the pore-throat deposition case, the power law coefficient is predicted for a

10% deposition range as follows,

7=B(/1,)+% (A9.1)
where,
B(A,) =— 0031147 + 05699, +2.8841 (A9.2)
D(4,) = 00128% —03715/ ~38767, +2.9961 (A9.3)
E(4,) =—0.01854, +16878 (A9.4)

The value obtained for 7y is 16.169. This value of vy is used to predict permeability change

E (oY
k(2 A9.5
(8 2

given a porosity change, according to

The results of Eq. A9.5 are compared to permeability change values listed in Table A9.1.
The values of permeability change predicted by both methods are listed in Table A9.2.
The comparison between these two data sets of permeability change is done
graphically. The first comparison, shown in Fig. A9.1 for a deposition range of 10%,
checks the validity of power-law model. This is done by trying to fit the log(¢/¢,) versus
log(k/ko) data to two types of straight lines. One line passes through the origin and is the
power-law relation. The other one is a best fit, which is not restricted to pass through the
origin. From the results of this comparison, it is clear that using power-law over best fit
under predicts the permeability changes. The maximum deviation is seen at véry low
deposition levels. Even in those regions the error is restricted to 5 % as indicated by the

error bars.
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log(¢/40)

-0:05 -0.04 -0.03

y =15.771x - 0.0112

R? = 0.9997
Best-fit -0.4 T E"
y =16.169x -0.5 +
R” = 0.9988
-0.6 T
Power-law .07 +
-B:8—-

10% deposition

Figure A9.1: Power-law versus best-fit comparison with 5% error bars
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The other aspect of the power-law relation that was studied was the range of its
validity. The deposition range of 10% was subdivided into lower ranges and separate
power-law models were fit to these smaller deposition ranges. The results of these smaller
models were compared to the results of the power-law model derived values for 10%
deposition, and the error introduced investigated. The smaller deposition ranges
considered are 1%, 2.5%, 5% and 7.5%. The results obtained are indicated in Figs. A9.2-
A95.

Based on these graphs we conclude that the error introduced as a result of using the same
power law model for 0-10% deposition range causes larger error for low deposition cases
compared to higher deposition cases. Although, this error value is high, of the order of
20% on the log-scale, it results in very small errors in absolute sense as the deposition
range is only 1%. As a matter of fact, when we plot the k/kg versus ¢/¢, on a simple
arithmetic graph, the values obtained by using the power-law model and the network

calculations are within 3% error.
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Table A9.2: Comparison of Permeability Data Generated by the Use of

Power-Law Model with the Network Model Results

K/ko(ref. data) k/ko*(power-law) LOg q) / ¢O Lo g k/ko*(power-law)
1 1 1) (4]

0.977542 0.982759327 -0.00046712 -0.007552826
0.954044 0.963859082 -0.00098871 -0.015986456
0.930077 0.943629814 -0.00155844 -0.025198346
0.905867 0.92232946 -0.00217168 -0.035113919
0.881553 0.900176082 -0.0028247 -0.045672531
0.857238 0.877377814 -0.00351372 -0.056813352

0.833 0.854075616 -0.00423673 -0.068503677
0.808898 0.830430895 -0.00499082 -0.080696502
0.784986 0.806555114 -0.00577438 -0.093365951
0.73789 0.758536403 -0.00742307 -0.120023572
0.714771 0.734570405 -0.0082854 -0.133966573
0.691975 0.710740836 -0.00917118 -0.148288731
0.669524 0.687114709 -0.01007921 -0.162970754
0.647435 0.663742403 -0.01100875 -0.178000437
0.604412 0.617950353 -0.01292884 -0.209046416
0.583502 0.595610112 -0.01391786 -0.225037938
0.563008 0.573693167 -0.01492488 -0.241320323
0.542937 0.552228805 -0.0159491 -0.257880943
0.523295 0.531215837 -0.01699109 -0.274728986
0.504089 0.510696465 -0.01804918 -0.291837148
0.485321 0.490681972 -0.01912301 -0.309199898
0.466995 047118161 -0.02021224 -0.326811668
0.44911 0.452202696 -0.02131652 -0.344666853
0.43168 0.433750705 -0.02243551 -0.362759806
0.414684 0.41583647 -0.0235684 -0.381077424
0.398134 0.398461243 -0.02471482 -0.399613914
0.382026 0.381618231 -0.02587488 -0.418370886
0.36636 0.365312865 -0.02704775 -0.437335033
0.351131 0.34953615 -0.02823353 -0.456507902
0.336333 0.334290445 -0.02943138 -0.475876037
0.321976 0.319564912 -0.03064141 -0.495440912
0.308036 0.305353942 -0.03186322 -0.515196469
0.294521 0.291656049 -0.03309599 -0.535129012
0.281424 0.278448516 -0.03434072 -0.555255092
0.268739 0.26573371 -0.0355961 -0.575553349
0.256461 0.253498205 -0.03686221 -0.596025112
0.233099 0.230424415 -0.03942554 -0.637471507
0.222004 0.219562897 -0.04072243 -0.658441048
0.21129 0.209138397 -0.04202896 -0.679566224
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log(@/0)

:
T

-0.005 -0.004 -0.003 -0.002 -0.001

z 3 -
T T 1)

01%

-0.02 +
@ta from 10% Power-law] -0.03 +

<0.04 +
-0.05 +

Jog(K/ko)

y =19.157x -0.06 +
R®=0.9979 007+

[Powehlaw for 1% depJ <0.08 -+
-0.09 +

Figure A9.2: Power-law model for 1% deposition and 20% error bars

log(¢/90) 1% dep rangs
-0.!)12 -0.01 " -0.008 -0.006 -0.004 -0.002 D
-0.05 +
[Data from 10% Power-law|

<01+ %3
Ey

y=17.671x 015 +

R®=0.9964
[Power-law for 2.5% dep.| 0zt
025

Figure A9.3: Power-law model for 2.5% deposition and 15% error bars
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-0.925
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02+ 8

y = 16.735x

R = 0.9968 <025
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-0.35 +
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Figure A9.4: Power-law model for 5% deposition and 5% error bars

-0.
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)35 -0.03 -0.025 -0.02 -0.015 -0.01 -0.005 [
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-0.5

P
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Figure A9.5: Power-law model for 7.5% deposition and 3% error bars
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Figure A9.6: Comparison of power-law model and network model results
with 3% error bars
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Appendix X

Main Routine
gen.cc
Find threshold
r;:;ius Find upper radius
Thresh.cc to be used in Rupper.cc
(CALL) calculations (CALL)
——
Construct pore- Construct
Dis.cc body & pore- ’ constrained-body .
(CALL) throat — | distribution Condis.cc
distributions (CALL)
Find average Find weights & abscissa to
Rbav.cc body sizes for be used in approximating
(CALL) given throats D integrals Gauleg.c
(CALL)
Find conductivity Wri
Gdis.cc distribution for the Vrite output —
Perform Perform
deposition dissolution .
Dep.cc . S _alculations Diss.cc
(CALL) calculations ) (CALL)
STOP

Figure A10.1: Flow chart for main routine.
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Precip3.cc/precip5.cc
(CALL)

Gdis.cc
(CALL)

Main dep.
routine
dep.cc

/

YES
STOP

Figure A10.2: Flow chart for deposition routine.
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Fraction of open
throats=1.0 » Find base eff.
volume viill.cc
(CALL)
¢
Find eff. Base Define step for
cond. Using ) dep
Heiba app. — Step=ri/50
Find volume START DEP.
recipitated in l
> Ehis sIt)ep CALC
Take a deposition step
l NO
Find eff. Cond.of
—P Find X. XA X network
1n iy ]
i >
Check for
end of dep = —p

OUTPUT
Dep.out



Gdis.cc
(CALL)

Main diss.

routine
diss.cc
Fraction of open
throats=1.0 Find base eff.
volume vfill.cc
(CALL)
Find eff. Base Define diss for
cond. Using ' dep
Heiba app. ’ Step=r/50
Find volume START DISS.
dissolved in this
step ] CALC
Take a dissolution step
l NO
Find eff. Cond.of
——p| Update a,b, for network

distributions

e

Check for

end of = >

YES
STOP

Figure A10.3: Flow chart for dissolution routine.

diss

147

OUTPUT
Dep.out







Appendix XI

Copy of C++ Code of the network model

Please contact the authors at the Petroleum Engineering Department, Stanford
University for the code.
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