Elliptic integral evaluations of Bessel moments

David H. Bailey* Jonathan M. Borwein! David Broadhurst! and M.L. Glasser?
January 6, 2008

Abstract

We record what is known about the closed forms for various Bessel function moments
arising in quantum field theory, condensed matter theory and other parts of mathematical
physics. More generally, we develop formulae for integrals of products of six or fewer Bessel
functions. In consequence, we are able to discover and prove closed forms for ¢, :=
fooo tng(t) dt with integers n = 1,2,3,4 and k > 0, obtaining new results for the even
moments c3 ox and ¢4 2. We also derive new closed forms for the odd moments s, 241 :=
Joo R (¢) K7 (t) dt with n = 3,4 and for t, o1 = [y~ t2FFII3(t) K 72(t) dt with
n = b, relating the latter to Green functions on hexagonal, diamond and cubic lattices.
We conjecture the values of s5 o541, make substantial progress on the evaluation of c5 211,
s6,2k+1 and tg 2r41 and report more limited progress regarding cs ok, Cg2k+1 and ce ok

In the process, we obtain 8 conjectural evaluations, each of which has been checked
to 1200 decimal places. One of these lies deep in 4-dimensional quantum field theory and
two are probably provable by delicate combinatorics. There remains a hard core of five
conjectures whose proofs would be most instructive, to mathematicians and physicists
alike.
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1 Introduction

We give representations of the vacuum [34, 55] and sunrise [29, 39, 40] diagrams

Vilay,... an) = /Ooot I %o(a;t) | dat (1)
j=1

Suntar,anw) = [t T[Kolat) | Jotwr)de (2)
0 iy

where all the arguments of V,, and all but the last argument of S,,11 are real and positive.
Here and below Iy, Jy and K are the conventional Bessel functions of order zero as in [1,
Chapter 15]. These integrals occur in quantum field theories in two spacetime dimensions,
where we do not need to regularize ultraviolet divergences. Numbers generated by them
are expected to occur in the finite parts of integrals from Feynman diagrams in four
spacetime dimensions. To be concrete, we illustrate V3 and Sy as follows:

I\
N

V3 Sy

By casting Bessel’s differential equation in the form

1 d\d o
<a + @) @ Ko(at) =1 Ko(at)

and applying the corresponding differential operator to (1), we may increase the exponent
of ¢ in the integrand by steps of 2. But to obtain even powers of ¢, we need to start with

Valag,... ay) = /000 H Ko(ajt) | dt (3)
j=1

which plays no obvious role in quantum field theory. To evaluate the latter form, we found
it useful to regard the Fourier transform

Snai(at, ... an,w) = l/ HKo(ajt) cos(wt) dt (4)

™

as an analogue of (2).
We shall be especially interested in the moments

Cnk = / tRK(t) dt (5)
0

for integers n > 1 and k > 0, as studied in [8, 10] and [26].
In [10] these moments arose in the study of Ising-type integrals

o _1/°° /OO dzy dxg - -+ dz,
R o (coshzy + -+ coshay,)kt!
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which are linked by
2n
Cn,k = n'—k:' Cnk - (6)
In [26] it is proven that for fixed n these moments satisfy a linear recursion for which
a simple algorithm exists with coefficients polynomial in k. For example, for n = 1 and 2
one easily obtains the closed forms

_ k41 VI3 (B
g =2F 1F2<—> and ¢op = ~— 22 7
and for n = 3 and 4 we obtain the recursions
(k+ 1)z — 2(5k% + 20k + 21)cz k42 + 9c3 14 = O (8)
(k+1)%cyp — 4(k + 2)(5k* 4+ 20k + 23)capyo + 64(k +3)capa = O. (9)
These recursion formulae may be written quite compactly as
M .
(—1)2 pn,i(k‘ +1+ 1) Cn,k+2i = 0 (10)
i=0
where M = |(n +1)/2]. For instance, for n = 5 and 6, we have
ps.o(x) = 2" peo(x) =T
psa(w) = 352 + 4222 + 3 pe1(z) = z(562t + 11222 + 24) (1)
ps.2(r) = 25922 4 104 pe2(z) = x(784x + 944)
p5,3(7) = 225 pe,3(7) = 2304
The same recursions apply to the moments
Snk = / t*Io(t) KD~ (t) dt (12)
0
for integers n > 3 and k > 0 and to
bk = / P2 KYT3 () dt (13)
0
for integers n > 5 and k£ > 0.
2 Two Bessel functions
The transforms
° 1
SQ(CL, ’LU) = /0 t K()(at)JQ (wt) dt = m (14)
_ 1 [ 1
So(a,w) = —/ Ky(at) cos(wt) dt = ———= 15
2( ) T Jo 0( ) ( ) 2\/m ( )
give Vi(a) = 1/a? and V(a)/m = 1/(2a) at w = 0. The distributions
/ wdo(oi)Jo(vts) dv = 25(2 — i2) (16)
0
2 o0
—/ cos(vty) cos(vtg)dv = 8(t1 +t2) + 0(t1 — t2) (17)
T Jo



then lead to the evaluations
Va(a,b) = / t Ko(at) Ko (bt) di = / wSs(a, w)Sa (b, w) duw
0 0

ey o

Valab) = /0 " Ko(at) Ko(bt) dt = 27 /0 Sy (a, w) S (b, w) dw
T a—>b
- a+bK<a—|—b> (19)

with a complete elliptic integral of the first kind,

w/2 1
K(k) := —d
() /0 s (20)

appearing in (19) and a limit intended in (18) when a = b. We shall need to refer to
the complementary integral K'(k) := K(k'), with &’ := +/1 — k2. In the case a > b, this
provides a compact alternative form of (19),

Vo(a,b) = 2% K'(b/a), (21)

obtained by the Landen [3] transformation in [1, 17.3.29).

3 Three Bessel functions

We follow Kéllén [50, 51] by constructing S3(a, b, w) from its discontinuity across the cut
in the w? plane with branch point at w? = —(a + b)?, obtaining
* 2v D3(a, b,v)

dv
o V2 w?

S3(a,b,w) = /OootKo(at)Ko(bt)Jo(wt) dt :/

with a discontinuity
1
Vie+b+e)a—b+c)la+b—c)la—b—rc)

that is completely symmetric in its 3 arguments. The v-integral is easily performed, to

D3(a7 bv C) =

give
w? + (a —b)?

=2 h
Ss(a, b, w) arctan < e

> Ds(a, b, iw) (22)

and in particular the on-shell value [39]
831 = 53(1, 1,i) = / t[()(t)Kg(t) dt = L_g(l) = —F=
0

where

N X)) N ! .
L3(s) := ; e ((3k +1)° Bk + 2)S>

k=0
is the Dirichlet L-function with the real character x_s(n) given by the Legendre—Jacobi—
Kronecker symbol (D|n) for discriminant D = —3.
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Nomenclature. We shall refer to the construction of a Feynman amplitude from its
discontinuity across a cut as a dispersive calculation. Kramers [52] and Kronig [53]
founded this approach in studies of the dispersion of light, in the 1920’s. In the 1950’s, the
utility of dispersive methods was recognized in particle physics [44, 51, 67]. Cutkosky [30]
turned them into a calculus that became a routine part of the machinery of quantum field
theory. Barton [20] has given a scholarly and instructive introduction to these techniques.

3.1 The odd moments s3 251

By differentiating
_ 2arcsin(z/2)

Sa(l,1ia) = ==

before setting x = 1, we evaluate

o 4
533 ::/ t3Io(t)KE(t) dt = (
0

= 83,1

z | dzx dx 3

1 i) dSs(1,1,iz)

r=1

and are then able to solve the recursion relation for s3sx41 by the closed form

T 2k L1 2 (23)
s =——|—=—) a
3,2k+1 3\/3 3k k

0

1, 3, 15, 93, 639, 4653, 35169, 272835, 2157759, 17319837, 140668065, 1153462995 (25)

with integers

Integer sequence (24) begins

and is recorded! as entry A2893 of the on-line version of [64], which gives the recursion

(k4 1)%ag41 — (10k* + 10k + 3)ay, + 9kap_1 =0 (26)
and the generating function
00 tk 2
I3t => a (E) . (27)
k=0

We have verified that recursion (26) reproduces the recursion for (23), which has the same
form as for the odd moments in (8). We note that integers a; were encountered in studies
of cooperative phenomena in crystals [35] and also in studies of matrices [42] with entries 0
or 1. In [31, Prop. 2], they are related to enumeration of closed walks in a two-dimensional
hexagonal lattice. They also appear in an enumeration of Feynman diagrams [59, Table
2] in quantum chromodynamics, via the constrained sum [18]

Ko\
k= Z (p!q!r!)
p+qt+r=k

that results from the Taylor expansion of I3.
It is notable that I3 provides a generating function for moments of I, Kg. In Section 4
we shall show that 161 generates moments of IOKg’ .

!See http://www.research.att.com/ njas/sequences/A002893 .



3.2 The odd moments c3 ;11

Next, we construct

Vi(a,b,c) = / I Ko(at) Ko (bt)Ko(ct) dt = / wSs(a, b, w) S (e, w) duw
0 0
_ L3(a7 b7 C) + L3(b:lc7 a) + L3(Ca a, b) Dg(a, b, C) (28)

with a dilogarithmic function

(a® +b? — ?)Ds(a,b,c) + 1 Y (a® + b — ?)D3(a,b,c) — 1
(a® +b? — ¢?)D3(a,b,c) — 1 >\ (a® + 0% = @)Ds(a,b,c) + 1

Lg(a, b, C) = Li2 <

computed by Davydychev and Tausk [34]. Setting a = b= c =1, we obtain
n 5

Vg
Z (6n + k)2

k=1

3 1A /-1
e = Va(1,1,1) = T Loy(2) = 5 3 <2_7>
n=0

where the vector of coefficients v = [9, —9, —12, —3, 1] was discovered (and proven) in the
course of investigation of 3-loop vacuum diagrams in 4 dimensions [28].

Similarly,
2
6373 = L_3(2) — g

may be obtained by suitable differentiations of (28). Then higher moments c3 2541 with
k > 1 may be obtained by using (8). Because of the mixing of L_3(2) with unity, we were
unable to write a closed form for their rational coefficients in c3951.

3.3 The even moments c3

For even moments, we lack the dispersion relations [20] of quantum field theory and so
fall back on the general Aufbau

§m+n+1(a1,...am,bl,...bn,w):/ Sma1(at,...am,v)Sni1(b1,...by,v+w)dv (29)

which follows from the distribution

1 /OO cos(vty) cos((v + w)ta) dv = §(t1 + t2) cos(wta) + I(t1 — t2) cos(wta)

T J -0

obtained from (17) and the expansion cos((v+w)ta) = cos(vty) cos(wty)—sin(vty) sin(wts).
In particular, by setting m =n =1 in (29), we evaluate

S3(a,b,w) == %/ Ko(at)Ko(bt) cos(wt) dt :/ So(a,v)Sa(b,v + w) dv
0 —o0

as the complete elliptic integral
K < w2+(a—b)2)

Ss(a, b,w) = % / do W (aT0)?

—o /(@ +02)(B2 + (v + w)?) N Vw? + (a+ b)? (30)




and recover the previous result (19) for Va(a,b) = mS3(a,b,0) by setting w = 0.
Next, by setting m = 2 and n =1 in (29), we write

— 1 o0 oo —
Sy(a,b,c,w) == ;/ Ky(at)Ko(bt)Ko(ct) cos(wt) dt = / Ss(a,b,v)S2(c,v +w)dv
0 —00

as an integral over an elliptic integral:

v2+(a—b)2
g o 1 [ K ( v§+(a+b)§>
4(&, bv C,QU) Y 3 2 3 5 (31)
2 ) oo /(024 (a+0)2)((v+w)2 + 2)
and at w = 0 obtain
v2+(a—b)2

- o © K ( W)
Vs(a,b,c) = Ko(at)Ko(bt)Ko(ct)dt = dv. (32)

0 0 V(@02 + (a+b)?2)(v?+c2)

Remarkably, the integral (32) may be evaluated by exploiting a more general identity
given in W.N. Bailey’s second paper on infinite integrals involving Bessel functions [17].
Without loss of generality, we assume that ¢ > b > a > 0 and define

22 a2 12
by = Vie+a)2 =2+ /(c—a) b’ K, = /1_k:2t'

2c

Then our result may written as

2% __

= Va(ab.o) = K(k- ) K(K}) + K (ki) K(K). (33)
We remark that when ¢ > a + b each term in (33) is real; otherwise, each is the complex
conjugate of the other. The form of k+ comes from Bailey’s conditions kyk_ = a/c and
K Kk =b/c.

We proved (33) by setting v = p = 0 in Bailey’s equation (3.3), to obtain
& 1
/ T (at) Ko (bt) Ko(ct) dt = - T, (ks )W (k)
0

with a hypergeometric series

00 2 I+u 2n+4-p 1+p
W(k;)::ZF <n+ 2>k :ﬁr(2>p—u/2 2k
: D(n+ 14 pu)n! (1— k214 -2 \ 91— k2

n=0
where P is the Legendre function defined in [1, 8.1.2]. Then (33) follows from the expan-
sions

L(z) = Io(x) — pKo(z) + O(u?)
Wa(k) = 2K(k)— prK <\/1 — k) +0(?)

where the derivative of W, (k) at u = 0 is obtained by setting a = b = % and z = 1 — k2
in [1, 15.3.10].



Specializing (33) to the case a = b =1 we obtain

% /0 " K2 Ko(ct) dt = A(2/c) = B(c/2) (34)

with the choice of a sum of squares or a product in the functions
Ax) = Kz(\/1+$;\/1—3:>+K2<\/l—|—aj—;—\/l—:p> (35)
Blz) = 2xK<\/1+a:;\/1—x>K<\/l+x—;-\/1—x> (36)

with (35) coming directly from (33). The identity A(z) = B(1/x) may be proven by
showing that A(1 —y) and B(1/(1 —y)) satisfy the same third-order differential equation
and have Taylor series about y = 0 that agree in their first 3 terms.

Alternative one may use transformations of the Meijer G-functions

i = 635|111 )-e8( g 8 2) (31)
£L'2 D] D] 2 O O O
s 201 1 1 w23 3 3
2 2 2

in the notation of [61, Vol. 3]. This provides an inversion formula, 8.2.1.14, used in (37)
and a multiplication formula, 8.2.1.15, used in (38).

Remark. Our forms, (35) and (36), for the Bessel integral (34), were tabulated, without
proof, in identities 2.16.46.4 and 2.16.46.5 of [61, Vol. 2]. Our proof of the more general
identity (33) came from following a reference to Bailey’s work, given in Section 7.14.2.43
of the Bateman project [36, Vol. 2].

Setting ¢ = 1 in (34), we obtain

e (1
c30 = ng ;3 (3)

= 3/ 39
2 37 327922/3 (39)

with the product of K3 = K(k3) and K} = v/3K3 obtained from (36), at « = J, where
the third singular value [24]

V3—1
2V/2

results. Moreover, Bessel’s differential equation yields

ks =

= sin(7/12)

(1 dY\ d B(c/2 o (1 47592/3
T (Le L) LB ()t 0
2 \c de)de ¢ | 967223 9T (1)

upon use of the evaluations

. K+ 3K3 T

E(sin(7/12)) = =3 : 1K
K- K

E(cos(r/12) = =220 4;3



of complete elliptic integrals of the second kind, recorded in [24, p. 28] and first found by
Legendre. Prior to finding this proof, we discovered (40) in the more palatable form

4
1 s -1

C3,2 = § C3,0 — 24 €30 (41)

by using PSLQ [5, 12, 22] in a manner suggested by previous discoveries in quantum field
theory, as described in Section 5.

3.4 Continued fraction
We recall that

9-14
92 _ . (42)
€3,0 d(1) — 9-3
9-(2N —1)?
©d(N)—...
where d(N) := 40N? + 2 was derived in [10]. Hence, dividing (41) by c30, we obtain a
neat continued fraction for
oy \ 6
9739 (i’) — 982, (43)
I (3) €3,0

3.5 Double integrals

Inspection of [10] also reveals that we now have evaluated the integrals

dx dy 2 ,
/ / \/1+w2 O+ 20+ @+y)?) = 3 3K (44)

dz dy _ 4 ,
I A e e B 19)

The first integral occurs in a formula for 4¢3 o/(37) in [10]. To evaluate the second integral,
we note that it is twice the value obtained from the simplex x > y > 0. The transformation
x =y + z then proves that (45) is twice (44).

In Section 5, we give evaluations of double integrals arising in quantum field theory.

3.6 Hypergeometric series

We may also obtain a simple hypergeometric series for ¢3¢ from the Clausen product
formula [24, p. 178] in the form

4 11
FK2(sin(a/2)) =3k, ( 2’12 sin? a> (46)

which is valid for 7/2 > a > 0. Setting o« = 7/6, so that sin(a) = 1/2, we recast (39) as

7T300 2n)\ 3 71-3 111
\/g Z(n) _\/g <272 2 i) (47)

0= 73 9sn g

n=0



Moreover, we conjectured the compact formula

ONRVE.E ) M
P2TU988 o8 (n+1)2 288

i) (48)

as an alternative to (41). A proof was provided by Maple, which evaluates this sum in
terms of K3 and E3. Our evaluation of the latter then shows that (48) follows from (40).

3.7 Integrals of elliptic integrals

Setting a =b =1, w = 2tan and ¢ = 2sin« in (32), we obtain from (34) the evaluation

/“/2 K(sin6) 40 — B(sin«)
0

CoS Gm 2sinc

and hence, by trigonometric simplification, we prove the identity

/2 K(sin )

o V1—cos?2acos?f

df = K(sin(«/2)) K(cos(a/2)) (49)

which we had conjectured empirically from interpolating known results, using Maple’s
MinimalPolynomial. At oo = 7/2, identity (49) reduces to the evaluation

1 F4 1
o V1I_k2 /2 167
given in [24, p. 188]. At a = 7/6, we obtain

™2 K(sinf)
0 V1+3sin?6
We did not find identity (49) in the literature. However, John Zucker remarked to us

that the left-hand side may be transformed to a double integral using (20). If we then
exchange the order of integration and set C' = cos? a and S = sin? ¢ in the evaluation

2 d6 = K3K} . (50)

/7r/2 1
0 /(1 —Ccos?6)(1— Ssin?6)

given in [57], we obtain an identity first derived by Glasser [37], namely

dH:K(\/m>

/2 . .
/0 K <\/1 — sin? v cos? gb) d¢ = K(sin(«/2)) K(cos(a/2)), (51)

which was re-derived by Joyce and Zucker and recorded in [23, Eq. 2.3.5].

3.8 Sum rule

Using the analysis of ¢z above and in [10] we obtain a sum rule

NONE o ™
HZ::O b <§10g2—;m—ﬁ>:0. (52)

In Section 5 we conjecture an integral counterpart to this sum rule.
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4 Four Bessel functions

We may construct Sy by folding one instance of Ss, in (22), with the discontinuity of
another, to obtain

Sa(a,b, c,w) :/ 2uDs(a, b, u)Ss(u, c, w)du (53)
a+b

from which we obtain an evaluation of the on-shell value

oo 4 arctanh u—2 1 2
\V 2y1
8471 — 514(17 17 171) — / ( +2> du = / Yy Og(y) dy o T (54)
2 0

u(u? —4) yt—1 16

by the substitution v =y + 1/y.

4.1 The odd moments 54951

By differentiation of

4arctanh( E 3 >

Sa(1,1,1,ix) = / \/ i) du

we evaluate

1 dY dSy(1,1,1,ix) 2
S43 = -t — = —
’ dx dx .1 64
and are then able to solve the recursion relation for s42r41 by the closed form
kY b 55
suaen = 5o (5) e (55)

with integers

k 2 . .
k 2k -2 2
-2.0) (G2)0) &
— \J J J

Integer sequence (56) begins

1, 4, 28, 256, 2716, 31504, 387136, 4951552, 65218204, 878536624, 12046924528  (57)
and is recorded? as entry A2895 of the on-line version of [64], which gives the recursion

k3by — 2(2k — 1)(5k* — 5k + 2)by_1 + 64(k — 1)*by_o =0 (58)

and the generating function

14 (2t) Zbk< >2- (59)

We have verified that recursion (58) reproduces the recursion for (55), which has the same
form as for the odd moments in (9). We note that in [35, 42] the integers by were related
to enumeration of paths in three-dimensional diamond lattices. They also appear in a

2See http://www.research.att.com/ njas/sequences/A002895 .
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study [21, Eq. 6.10] of lattice magnetic walks. From the generating function I we see
that they result from the constrained sum

Ko\?
b = Z (p!q!r!s!) )

ptqt+r+s=k

The economical recursion in (58) will be used in Section 5.

4.2 Dispersion relation

We adapt the dispersive method of [20, 27, 63] to two spacetime dimensions and take the
discontinuity of (53) across the cut with branch point w? = —(a + b + ¢)?, obtaining the
dispersion relation

20 Dy4(a,b,c,v)

dv (60)
+b+c v? + w?

Sa(a,b,c,w) = /

with a discontinuity given by a complete elliptic integral K of the first kind, and hence
by an arithmetic-geometric mean [3, 24|, namely

d—c
Dy(a,b,e,d) = / 2u D3(a, b, u)D3(u, c,d) du (61)
a+b
Q(a,b,c,—d)
_ 2K ( Q(a,b,c,d) > ™ (62)

Q(a,b,c,d) B AGM (Q(a, b,c,d), 4V abcd)

where

Qa,b,c,d) :=+/(a+b+c+d)(atb—c—d)(a—b+c—d)(a—b—c+d)

is completely symmetric in its 4 arguments.

In physical terms, Dy(a,b,c,d) gives the volume of phase space for the decay of a
particle of mass d > a + b + ¢ into 3 particles with masses a, b and ¢ in two spacetime
dimensions. In 4 spacetime dimensions, one would obtain an incomplete elliptic integral
for the area of the Dalitz plot, in the generic mass case; in two spacetime dimensions we
obtain a simple arithmetic-geometric mean for the length of a Dalitz line [32].

Using this elliptic representation for S4(1,1,1,0) = V3(1,1,1) = c31 we obtain an
evaluation of the integral

/0 *D(y)dy = ey = SL_y(2) (63)

with D(y) :=2Dy4(1,1,1,1/y)/y given by

(1-3y)(1+y)3
_ 4yK< (—1+3y>(1——y>3> _ 3By
V(L +3y)(1—y)3 2

where the general Heun function, HeunG, satisfies Heun’s differential equation as specified
in Maple, see [62]. Similarly,

D(y) nG (-8,-2;1,1,1,1;1 — 9y?) (64)

1
3 1 1
D(y)y*dy = ~cs3 =~ L_3(2) — =.
/0 4 4 6
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In Section 5 we shall show that the HeunG representation of the elliptic integral (64),
from quantum field theory, may be related to the hexagonal lattice sequence (24) of crystal
theory. For the present, we note that (54) and (60) provide the evaluation

1
3 D(y) m°
dy = = —. 65
/0 (R A TG (65)

4.3 The odd moments ¢4 ;41

For V; we have two representations. First, from the elementary arctanh function in (22)
we may compute

‘/4(&7 b> Gy d) = / ’lUSg((I, b> W)Sg (Cv d7 ?,U) dw (66)
0
and easily evaluate
oo 4arctanh? | —=2— 1 2
w 4y 1
041:/ 2( 2+4>dw:/ = iy)dy:zC(3)
’ 0 w(w? + 4) o 1-y 8
by the substitution w = 1/y — y. Similarly, by differentiation of (66), we obtain
7 3
Ca3= 3—2C(3) BT

In general, all the odd moments ¢4 941 are given by rational linear combinations of ¢(3)
and unity, as shown in [10, 26]. Because of the mixing of {(3) with unity, we were unable
to write a closed form for their rational coefficients in ¢4 2541-

The alternative folding, using (62), is

Vi(a,b,c,d) = / wSy(a, b, c,w)Ss(d,w)dw
0
= / 2v Dy(a, b, c,v)Va(v,d) dv,

+b+c

which yields a novel formula for ¢(3), namely

1
s D(y)log(y) 7
ZNY) PN o = !
/0 g1 W= 8((3) (67)
by the substitution v = 1/y.
4.4 The even moment ¢,
The analogue to (66), for even moments, is
Vala,b,c,d) = 27T/ S3(a,b,w)S3(c,d, w)dw (68)
0

with a product of elliptic integrals coming from (30). Setting ¢ = a and d = b, we obtain
the intriguing case

o K2 (/2 ;

o0 w24 (a+b
K2 tK2btdt=2/ Hat
/0 O(CL) 0( ) ™ 0 w2+(a+b)2

(69)
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where the square of K may be replaced by a 3F3 series [15] for only part of the range of the
integration, because of the restricted validity of the Clausen product (46). In particular
it was not at first clear how to evaluate the integral in

/2
cro =7 / K2(sin 0) df (70)
0

obtained by setting a = b =1 and w = 2tan 6.
The key to unlock this puzzle was provided by the trigonometric series

K(sinf) = Y yusin((4n + 1)6) (71)

n=0

r(n+1)) 4 1
2
n = = — 2
7 (F(n+1)> 4n—|—1+o<n3> (72)
given by F.G. Tricomi [66] and recorded in [36, Section 13.8, Eqn. (8)]. The identity (71) is
valid for 7/2 > 6 > 0. Thus, the integral in (70) is easily transformed to a hypergeometric

sum in A
2 4 0 (2n 4 1111
_ T 2 _ T (n) T 597919
C40="17) Tn="r = — 4F3
’ 4 4 28n 4 1,1,1
n=0 n=0

by using the orthogonality relation

with coefficients

1> (73)

w/2
/ sin((4m + 1)0) sin((4n + 1)0)dé = %5m,n .
0

It is instructive to split ¢4 0 = A1 + A into the contributions
w/4 w/4
A = w/ K%(sinf)df, A; = w/ K?(cos ) d6,
0 0

and use the Clausen product (46) for the former. The result is A; = iC4’0 which proves
that Ay/A; = 3, as we had noticed numerically. A more direct derivation of this proven
factor of 3 would probably be enlightening.

We also note that A; = %04,0 may be obtained by setting ¢ = 0 in the double series

cos? <;5>

/4 3 oo (2n)3 11,
7 K2 (sin6) df = §COS¢Z (27%2 oF ( 272
®/2 n=0 2

which is valid 7/2 > ¢ > 0.

4.5 Sum rule

Combining (73) with a more complicated sum in [10, Eq. 3-5], we get the discrete sum
rule

4 2
o () S "okl 2|
nZ:;) 28n 3 —10g2+;m —;m—? =0 (74)

with one more central binomial coefficient and one more power of 7/v/3 than (52).
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4.6 The even moment ¢,

Integer relation algorithms (see [5, 7, 12] for extended discussion) led us to conjecture

that )
T > 9 12 _ 3 _
“2 = 956 7;0% <n +1 (n+1)2 8> (75)

which we shall now prove.
As before, we use Bessel’s differential equation and operate on our master formula, in
this case (68), before setting parameters to unity, obtaining

/”/2 <COS49— 1 4cot9+sm49 d
CpLo =T
0

2
16 35 d9> K*(sinf)df.

Then, using Tricomi’s expansion (71), we easily reduce

2

to single sums of the form in (75). The term involving sin 46 gives a multiple of the same
sum, using integration by parts.

However, the term involving cot 6 is more demanding. Integrating it by parts, we
conclude that (75) is equivalent to the evaluation

™2 47 K%(sin ) — 73 2 & dn+3
B:= do = — e 76
/ sin® 6 4 nZ:;]%(n—l-l)2 (76)
which we now prove by using a subtracted form for the differential of (71).
Defining 0, := 4 — (4n + 1)~,, we prove by induction that
n—1 00
Zém:4n—4n2’yn:1—25m. (77)
m=0 m=n
Then from this we derive a subtracted series for
dK(sinf) sin?f
Y I mzz:l Om (cos @ — cos((4m + 1)0)) (78)
by subtracting the trigonometric series [58]
 sin((4m +1)0
4 Z sin((dm + 1)0) _ =I5 log(sec  + tan ) (79)

dm +1 2

m=0
from (71) and then differentiating, to obtain

dK(sin )

b secl = — Z dm cos((4m +1)0) .

m=1

Adding cos 6 to each side and using Y °_ 6, = 1, as a consequence of (77), we obtain (78).

15



By combining (71) and (78) we obtain the double series

271'2 — 7% = Z 5 MOn_ mn) Tn

m,n>0

using the triangular array M with entries

4 w/2
My, = = / cot 0 cos((4m + 1)) sin((4n + 1)0) do
0

for non-negative integers m and n. These entries are very simple: M, , = 2, for m < n,
My, =0, for m > n, and M, , = 1, resulting in

) m >
o2 =% + Z5m <—7m_70+227n> :Z%ﬁ”
m=0 n=0

n=0

with the 7o terms cancelling, since Y °_ 6, = 1. Here,

= —0n +2Z§ = (8n% +4n + 1)y, — 2(4n + 1)

m=n

appears by a change of the order of summation and is easily evaluated, by using (77).
Looking back to what needs to be proved, in (76), we see that we now need to establish

the vanishing of
4n + 3 B
Z% Sy =) =0

This is achieved by taking the N — oo limit of the explicit evaluation

4n+3 - 2 - l
Z’Yn (W’Yn—ﬁn> =2N" oy =0 <N> (80)

of a truncated sum, Wthh is easily proven by induction. We note that the Gosper algo-
rithm [60] in Maple failed to evaluate (80), as written, since ¢d,, and &, mix binomial and
polynomial terms. If one separates these by hand then our compact result is verified.

4.7 Further evaluation of integrals

We also succeeded in separating B = B1 + Bs into the contributions

™4 47 K2 (sin 0) — 72 2, 2n+1
By = d6 = —27% + H + — 2 81
' /0 sin® 0 T 4 nzo% n+1 (81)
™4 41 K2 (cos 0) — 7 3n2 = 5 2n+1
2 /0 cos? 6 mo 4 £ Tl (82)

with a familiar factor of 3 multiplying the 4F3 series in the latter and a new constant from
the singular value k; = sin(7/4), namely

The 7% terms in H and the integrand of (82) match, since f07r/4 sec?20df = 1.

16



4.8 Further evaluations of sums

Evaluations (81) and (82) were discovered using PSLQ. To prove (81), we may again use
a Clausen product, with its first term subtracted. We then encounter the integrals

/4 gin?" 20 11 2
2 dd=B((n——-, =
/0 sin? 0 <” 2’2>+2n—1
with n > 0. Here B is Euler’s Beta function and yields yet another 4F3 series, which we
eliminate by using the N — oo limit of the summation

N-1
2 1 16 N3 1
2 2
— = =84+0(—
n;)% <1—2n n+1> oN 1N TET <N>

which was also proven by induction. To prove (82), we then subtract (81) from (76) and
use the N — oo limit of the summation

N-1 3 1 1
Z 2 2,2 0
n—o% <8 n+1 (n+1)2> e 0 <N>

which was proven in the same manner.
Thus one may undo the explicit evaluations of parts of (82), in terms of 7 and I" values,
and instead write

cos2 6 8
n=0

200 p+1 0 324 2 (n+1)?

/4 12 3 oo (2n\3 4 o 2md o
7T/ K (cos@)dg W_Z(n) 2n—|—1+7r (1) 4n% 4 10n +5
0

in terms of undigested hypergeometric series.
More productively, we may use the explicit summations so far achieved to reduce

160470 — 640472 _ 4 < %7% %

1
A _ 1902
3ré poRR L 2,1

1> (83)

1
to a single 4F3 series. Comparing this last result with (73), we conclude that all moments
capr can be expressed in terms 7w and a pair of contiguous 4F3 series. An equivalent

hypergeometric expression is
4 1111 1111 2
m S5, 5, =5 5,2 3m
- 2027202 _ 2027272 _
64’2 {4 4F3< 1.1 1) 3 4F3< 2’1,1 1)} 16 . (84)
4 1111
T < 2021272

64
€40 = 4F3

For comparison we repeat

1> . (85)

4.9 Relation to Meijer’s G-function

A generalization of (69) is derivable in terms of the Meijer-G function [61, Vol. 3]. For
example, we have

,_ k2 2 _ T 33 b*
I(CL, b, ]‘J) = /0 t KO (CLt)KO (bt) dt = WG44 <¥
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which may be proven by making two copies of the representation

+1
2 VT 30 (2,2 ==
t'uKO (at) = —2 “G13 <a t m ﬁ o >
a 2 2 2

and integrating them with weight ¢ to obtain

utl 30 2,2
2
ik ou >G13 <bt
2 2 2

A
+
=z

I{a,bu+v+1) = 4a7;bV /0 tG3Y <a2t2

, )
2

Then we use Meijer’s result for the integral of the product of two G-functions to obtain
2
|14

| R ol §
2 2 2
v _pl :
2

v v
2 2 2

NN
wltw‘

> _u
Habputv+1l)=—" G3 <%

© 8aHt2pv 44

The apparent freedom in the choice of parameters p and v is demystified by formula
8.2.1.15 in [61, Vol. 3], which shows that multiplication by a power of the argument of a
G-function is equivalent to adding a constant to all its parameters, as in the example (38).
We resolve this redundancy by setting p = k—1 and v = 0 and hence prove (86). Similarly,
we obtained

00 2k—2 4b2
/ t* Ko(at) K3 (bt) dt = LA G32 <

-k 1=k 1
Pl 72
0 ak+1 a2| 0 0 0 ) ' (87)

In [10] the special cases of (86) and (87) with a = b = 1 were studied numerically, using
Adamchik’s algorithm [2]. This algorithm converges quickly in the case of c¢3, obtained
from (87) with an argument of 4. But in Maple it is painfully slow in the case of ¢4y,
obtained from (86) with unit argument. Numerical evaluation of our new hypergeometric
results (84) and (85) goes far faster, with Maple.

4.10 Another continued fraction

Again we may derive from [10] that

g2 — v (88)
o 36
7 e(l) —
( B (2N —1)8
e(N)—...

where e(N) := N(20N? + 3) and the ratio 8 c42/cs0 may be made explicit from (84,85).

4.11 The even moment s,

The odd moment s4; relates directly to quantum field theory; it is the two-loop on-shell
equal-mass sunshine diagram in two spacetime dimensions. No such meaning attaches to
54,05 it is hard to think of a physical application for this moment. However, we found a
rather pretty formula for it, which we record as

00 w/2
510 = /0 () K3(¢) dt = /0 K (sin 0) K (cos 0) do . (89)
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This amusing twist of the integral (70) for ¢4 follows from Nicholson’s integral represen-
tation [70, 13.72, Eq. 3] of the product

Iy(t)Ko(t) / Ko(2tsin o) dev.

Substituting ¢ = 2sin« in (34) and using the appropriate reduction (36) to a product of
K values, we obtain

o0 /2 B (sin @)
3 = IHOé COoS(v (6%
| norgea= [ 2 / K(sin(a/2)) K (cos(a/2)) d

2sina

Setting o = 26, we prove (89). Then Pari-GP gives, in a tenth of a second, 64 digits of
54,0 = 6.997563016680632359556757826853096005697754284353362908336255807 . . .
A corresponding twist of the sum (73) for ¢4 comes from Tricomi’s expansion (71) and

1

w/2
) sintCam 00y cos((am + )0 0 = s

This yields the double sum

o
TYmVn 2 1
= _mm A —

m,n>0

with 7, in (72) and

An :_Z4m+4n+2 +Z 16m2—1

where the latter form was proven by Maple. Hence we obtain

o ()

54,0 :/OOOIO() ()dt 2 Z 2n8n <4n_|_1 Z_:

By way of comparison, we note the simpler evaluation

) (90)

> > 2k C2 .2k 7T 0
/0 Ig(t)Kg(t)dt:kZ:O<k> k)2 :4 /0 Kg(t)dt  (91)

from the closed form for ¢y 95 in (7) and the expansion

Bo =3 (%) (;—Z,)Q . (92)

k=0

4.12 Tabular summary

In Table 1 we recapitulate the key discoveries for the moments ¢, ; := fooo tRKD(t) dt
with n = 3,4. The results for the even moments c39r and c4 o1 are new. The table may
extended by using the recursions (8) and (9).
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316 (2 373 11117
C30 = (232, = sFa | 27202 |-
32722/ 8 L1 |4
3
0371 = ZL_3(2)
r0(3)  4n®22/3 37° 1110
C30 = (2)3— R O (e
96723 9T'6 (1) 288 2,2 |4
2
0373 = L_3(2)—§
oh X (2")4 ot 1111
- n — 2727272
€10 = 420 28n 4 4F3< 1,1,1 1)
;=
C41 = gg(g’
—t 1111 3 1111 372
- 2727272 _ 2727272 -
G2 = T 4F3( 111 1) o 4F3< 2 1.1 1) 16
7 3
= 550031

Table 1: Evaluations for ¢, ; with n = 3,4.

5 Five Bessel functions

Little is known for certain about integrals involving 5 Bessel functions. However, there
are some remarkable conjectures arising from studies in quantum field theory [54, 55].

5.1 Conjectural evaluations of Feynman diagrams

In [54], Stefano Laporta developed an impressive technique for numerical evaluation of the
coefficients of the Laurent expansion in € of Feynman diagrams in D = 4 — 2¢ spacetime
dimensions. Here we are concerned with just one of the many diagrams that he considered,
namely the dimensionally regularized 3-loop sunrise diagram with 4 internal lines:

Dy 4P P
Ss(w?, D) ::/// d"p1dTp2d”ps
N(p1)N(p2)N(ps)N(q — p1 — P2 = P3) | g.gmu?

where N(p) := p-p+ 1 is the inverse propagator of a scalar particle with unit mass and
momentum p. In the on-shell case, the Laurent expansion found by Laporta has the form

S(-1,4-2) 2 22 577
LG
Tt o) & 3 T oMt OE)

with a numerical value Saos ~ 21.92956264368, for the finite part, given in equation (205)
of [54]. Subsequently, in equation (21) of [55], this constant was conjecturally related to
products of elliptic integrals of the first and second kind, with a numerical check to 1200
decimal places.
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In a talk® entitled “Reciprocal PSLQ and the Tiny Nome of Bologna”. Broadhurst
observed that Laporta’s conjecture may be written rather intriguingly using the constant

4
s 1 >
C=—(1-—)[1+2 (—nrv15) 93
16 ( \/5> ( + ;exp nemw (93)
and its reciprocal 1/C, in terms of which he wrote Laporta’s conjecture as

o] 6191 w2 7
S205 g —_— = — <4C + m) . (94)

Broadhurst further conjectured that the odd moments
> ok
S5.2kt1 = / 210 () K (t) dt
0

are linear combinations of 72C and 72 /C, with rational coefficients, and in particular that

S51  7[2]

— = C (95)
85,3 ?[3] 2 2 1

ss5 4 (4)° 19

with higher moments obtained by a recursion of the form (10) with polynomials ps ; given
n (11). We have checked these 3 conjectures to 1200 decimal places.
In the course of this work, we discovered that the moments

o0
b st = / R () I (1) dt
0

follow an uncannily similar pattern. If g and 7 are the rational numbers that give
85.9k+1/m2, conjecturally, as qzC — ry/C, then we found that ¢.C + r/C gives the value
of 2t5 op41/(V/157). We checked 60,000 decimal places of the resultant evaluations

2ts, v[5]
\/115; = C (98)
s 3 2\ 2 1

9 I 1 -
_— (15> <3C+1oo> (99)
255

Vi6n (%)3 (80+ 10) (100)

for which we eventually found a proof, presented in subsection 5.10.
Finally, by doubling one of the masses in the Feynman diagram corresponding to ¢ 1,
we arrived at the conjectural evaluation

>
=

S
=

o . 1
| iorsoRsea B g (101)
0

which has been checked to 1200 decimal places.

3Zentrum fiir interdisziplindre Forschung in Bielefeld, 14th of June, 2007. Displays available from
http://wuw.physik.uni-bielefeld.de/igs/schools/ZiF2007/Broadhurst.pdf leading to 200,000 decimal
places for ¢5 1 and ¢5 3 in http://paftp.open.ac.uk/pub/staff ftp/dbroadhu/newconst/V5AB. txt .

21



Notation. 1In the 8 evaluations (94) to (101) we have used the device oo

to distinguish the cases that remain unproven from the 3 cases in (98) to (100), which
we were eventually able to prove. Some of the labels n = 1...8 will recur, as we give
equivalent forms of these conjectured or proven evaluations.

5.2 The odd moments #5511

Evaluations (98,99,100) were easy to check to high precision, thanks to our closed form (55)
for the odd moments s4 9x+1. By expanding one of the functions

Io(t) = i <2f;!>2

n=0

in the integrand, t2**112(t) K3(t), of t59x+1, we obtain a rapidly converging sum in

_ = n! 2
t5,2k+1 = 4]€ 27'(2 Z bn (m) (102)
n=k ’

in terms of the diamond lattice integers (56). To relate t5; to a product of complete
elliptic integrals we use Jacobi’s identity

2K (k) = 65(q) := i ¢ (103)

™
n=-—00

with a nome related to k by ¢ = exp(—7K'(k)/K(k)). Specializing to the singular
value [24]
(2—-V3)(v5 - V3)(3 — v5)

8v2
with the “tiny nome” qi5 := exp(—mv/15) ~ 0.000005197, we obtain from (93)

V-1 _, 1
TN AT S
with K15 := K(ki5) and K53 := K(ks,3), where

e (2= V3)(V5+V3)(3+V5)
5/3 = 82

k15 =

C

yields the larger nome gs/3 := exp(—m+/5/3) = qiég. Thus evaluation (98) amounts to

i SN0 IR 104

t5’1_1_62@_1 15885/3 (104)
n=0

with a summand b, /64" = O(n=3/2/4™), from (56), giving rapid convergence. By taking

10° terms, we checked (98) to 60,000 decimal places, using the recursion (58) for the

diamond lattice sequence b,. Our closed form in (104) resulted from paying diligent

attention to a footnote in [55, p. 121], which led us, eventually, to discover and prove the

connection between quantum field theory and these diamond lattice integers.
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We remark that our evaluations of s52541 and 59,41 may be expressed in terms of
I values, using the corresponding evaluation of K? 15 in [7], as was remarked by Laporta
after Broadhurst’s talk (see footnote 3). For example, we may re-write the conjectural
evaluation for s5 3 in (96) as

[ arga 2 UGN ) GGG

303 15
(105)
which contains all 8 values of I'(n/15) with n € [1,14] and coprime to 15. Then the
counterpart for ¢5 3 in (99) may be written as

S BRI WrEr
4\f 64" 303 15

—
—_

=
—
-
=
N—
=
A
i

15) (106)

by the remarkable sign change discovered in our present work and the relation to diamond
lattice numbers in (102).

5.3 Double integrals

The moments c5 1, s51 and t5; are easily expressible as double integrals of elementary
functions.
For the 4-loop vacuum [55] diagram

Vs(a,b,c,d,e) := /000 t Ko(at)Ko(bt)Ko(ct)Ko(dt)Ko(et) dt
in two spacetime dimensions, we obtain the double integral
Vs(a,b,c,d,e) = /000 /000 xySs(a,b,x)D3(z,y,ic)S3(d, e, y) dz dy
by grouping the internal lines with masses a and b to give a total momentum with norm

22 and those with masses d and e to give a total momentum with norm y2. Then the
coupling term

1 /7 dé 1
— = :D .:L', ,iC
7T/0 x? + 2zy cos 6 + y? + 2 \/(x+y)2+c2\/(x—y)2+c2 3(2,, i)

comes from an angular average in two Euclidean dimensions. Setting the five masses to
unity, we obtain

4 arcsinh(x/2) arcsinh(y/2) dx dy
051_/ / VE+2)Ad+ )1+ @+ )+ (z —y)?) (107)

where we have converted the arctanh function of (22) to a more convenient arcsinh
function, in the equal-mass case.
Similarly, the 3-loop sunrise [39] diagram

Ss(a,b,e.d, 2) = /0 " Ko (at) Ko (b) Ko (ct) Ko (d8) Jo(21) dt

23



yields the double integral
55(61, bv G, d7 Z) = / / aijg(a, b,ZL')Dg(ZE,y,iC)Dg(y, Z7id) d:Edy
0o Jo

by cutting one line in V5 and setting the norm of its Euclidean momentum to z2. Setting

the 4 masses to unity and analytically continuing to the on-shell point 22 = —1, we obtain
B 2arcsinh(z/2) dz dy 2w
851 = 5 : : = — = Ki5K5)3
o Jo VEA+a)(A+y)A+ (@ +y))A+ (@ —y)?) 2v/15
(108)

whose conjectural evaluation is given by (95).
We then define

Ts5(w,a,b,c,z) := /OOOtJo(wt)Ko(at)Ko(bt)Ko(ct)Jo(zt) dt

as the angular average of the diagram obtained by cutting two lines in V5 and setting the
norms of their momenta to w? and z2. Hence we obtain the double integral

T5(ZU,(I, b,C, Z) = / / xyDg(w,:n,ia)Dg(:E,y,ib)Dg(y,z,ic) dﬂi‘dy
0 0

which leads to

I Bl dx dy v 1
= Va0 e ey | 17K (109)

whose evaluation is given by (98). If we multiply (109) by 4, we recover the double-integral
discovery reported by Laporta in Egs. 17, 18 and 19 of [55].
Finally, by doubling one of the internal masses, we obtain

oo , ) B 00 0O dxdy
[ isomsoREa = [ [T e e

and hence the conjectural evaluation

= dz dy Wl
/0 /0 N TR T e (110)

after rescaling = and y by a factor of 2 and invoking (101).

Evaluation (110) resonates with the proven evaluations (44) and (45) in Section 3,
where we found that removing (1 + (z — y)?) from the square root in (110) doubles the
value of the integral and that removing (1 + (x + y)?) multiplies it by 4.

We were unable find a transformation of variables for the double integrals in (109)
and (110) that suggested their evaluations as products at the singular values k15 and ks,
respectively. In the next 3 subsections we show how to express (109) as a single integral
of a complete elliptic integral, in 3 rather different ways.

As observed in a footnote in [55, p. 120], entry 3.1.5.16 in [61, Vol. 1] is intriguing: for
real parameters, k1 and kg with k? + k2 < 1 one has

o \/1—k%sin29—k§sin2¢ 1++/1-k3
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where

VIR VIR VIR VIERR

14++/1—k2 ' 14+ /1 —k3

Perhaps there are implications for (110) from this general form. As discussed in [19, 38],
one can establish a more recondite counterpart for

w/2 /2
/ / V1 - k3sin?6 — kZsin? ¢ do do.
0 0

5.4 Single integrals from polar coordinates

We may recast evaluations (109) and (110) by transforming the more general double
integral

_ dz dy
@“A A Vieta) e+ )1+ (@ + )2 + (@ — y)?)

to polar coordinates. With = r cos € and y = rsind, the product of the first two factors
in the square root gives a term linear in w := cos 46, as does the remaining product. An
angular integral of the form

/1 dw _ (VA B -
14/(1 )242 —1—w)(2B2—1+w) AB AB

results, with A = 1+2¢/7? and B = 1+1/r%. Transforming to z = 72/(1+1?), we obtain
the single integral

1 z C — 2z C —Z z
ﬂ@:AK<¢H4@ x+wl>v A 112)

z42c(1 —2) z+2¢(1 — 2)

Setting ¢ = 4, we transform evaluation (109) to

! /(13 -122)(5—4z)\ dz v 1
/0 K< 8— 7z s=7z  a bk (113)

Setting ¢ = 1, we transform conjecture (110) to

1 —_—
[ (P5=) 50 & g Kk (114)
0 2—z 2—z 3

since, by definition of a singular value, K;/3 = K3. A hypergeometric version of (114)
may be obtained by writing its left-hand side as the ornate triple sum

P <2n+1,2n+1 >
2t1 2 2 111
_Z 222711 2n+2+m ﬁ T 3Fy 219252 1 .
22"71' —m)!(2n+1+m)! 43 1,1 |4

m=0

We computed the single integrals in (113) and (114) using Pari-GP, which provides
an efficient agm procedure, for evaluating the complete elliptic integral K, and an efficient
intnum procedure, for the numerical quadrature. In each case, we confirmed the evaluation
to 1200 decimal places but were none the wiser as to its origin.
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5.5 Single integrals over discontinuities

Seeking illumination, we turned to integrals over the elliptic integral (62) in the disconti-
nuity Dy, coming from the Dalitz-plot integration in (61).
For the 4-loop vacuum diagram V5 we may fold Dy from (62) with V3 from (28), to

obtain
o0

Vs(a,b,c,d,e) = / 2vDy(a, b, c,v)V3(v,d,e)dv. (115)
a+b+c

With unit masses and y = 1/v, this gives the moments

oy = [PRPWLW (116)

V1 — 4y?

Cs3 = /0§ (1y2_D4(yyz))z <4(1 “2 WL Ly g1 ) log(y)> dy (117)

V1 — 4y?

with a complete elliptic integral in D(y), from (64), and a dilogarithmic function

Lly) = lLi V14 -1 _1 Vi-4yP+1 (118)
Vo e ) 2\
_ (1—_ w—4y2>+110g2 <1—_ w—4y2>_10g2<> ™ (119)

2 2 2 12

with (118) coming from (28) and the reduction to a single convenient Lis value in (119)
obtained by transformations in [56, A.2.1] and noted in [33, Eq. 3.21]. Further differenti-
ations yield an even lengthier integrand for c5 5. However, we expected the odd moments
¢52k+1 With k& > 1 to be expressible as Q-linear combinations of cs 3, ¢5 1 and unity. Hence
we lazily used PSLQ to arrive at our ninth conjecture

?[9) 76 16 8

76 120
1593 LTI (120)

with a final rational term originating, presumably, from the analytically trivial input

o0 tOKY(t) 1
/ t°Ko(t) K1 (t)dt = lim PRI _ 1 (121)
0 t—0 51 5

to the richer (and more challenging) recursions considered in the talk of footnote 3, which
dealt with integrals of products of powers of ¢, K(t) and the derivative K{(t) = —K;(t).
From (116), (117) and the eminently believable conjecture (120), higher odd moments are
obtainable from (10) and (11). Unfortunately we lack a more explicit evaluation of the
single integrals for c¢5 1 and cs 3.

For the 3-loop sunrise diagram, the corresponding folding is

o0

Ss(a,b,c,d,w) = / 2v Dy(a, b, c,v)S3(v,d, w) dv (122)
a+b+c
from which we obtain the on-shell value

1—-2y ?7[2] us
———— arctanh dy = KiK. 123
< 1+ 2y> Yy 2\/ﬁ 1508.5/3 ( )

851_/ \/1—4y
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and, by use of Bessel’s equation, the more complicated integral

) 4 1-2
55,3 = /% 42D(y) (A1~ 2y +dy)arctanh (\/E) —1+y* | dy  (124)
5,3 0 (1 _ 4y2)2 \/W

for the next odd moment, conjecturally given by (96). Then PSLQ gives

”
555 123 Ig 553 — i—g (125)
which presumably results from a partial integration in the even richer (and even more
challenging) recursions for integrals of products of powers of ¢, Iy(t), I1(t), Ko(t) and
K (t). We used Pari-GP to evaluate the dispersive single integrals for the first 3 odd mo-
ments s5 9541, with £ = 0, 1,2, to 1200 decimal places, and hence checked the conjectured
evaluations (95), (96) and (97) and their consequent integer relation (125), to this high
precision.
Similarly, the folding

o
T5(u,a, b, c, w) :/ 2v Dy(a, b, c,v)D3(u,iv,w) dv (126)
a+b+c

gives, with y = 1/v, the on-shell, unit-mass result

Vs 1
D — K15K53 (127)

3
t5,1=/ —dy =
0 /1 —4y? 4

and, by use of Bessel’s equation,

1
3 49%(1 — 2y% + 4y"D
0

(- 177"
for the next odd moment, given by (99). Then PSLQ gives

/17 76 16
ts5 — 5 t5.3 15 t51 (129)

which was checked to 60,000 decimal places, in the more convenient sum

— by . 76 16 v[7]
264n<16n( — 1?40 +45>_0 (130)

over the diamond lattice integers in (102).
By setting u = w =1i,a=b=1 and ¢ = 2 in (126) and transforming to y = 4/v, we
obtain the representation

y) +y)(1+y) 3

as the dispersive counterpart to (114), but still have no better idea as to why the third
singular value occurs.

1-y
/ 4yK \/ 1+y) dy MO K (131)
\/
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5.6 Relations between elliptic integrals

We found a third way of stating our conjectures in terms of integrals over K. This arose
from the double-integral representation

2arcsinh(z/2)dxz d 202
/ / . (z/2)dzdy ] Ki5Ks)3 (132)
Va+r A+ PR@y I

with the product (1 + (z + y)?)(1 + (z — %)?) in (108) replaced by the non-factorizable
term ) )
2 .2
2 <3+wf+y>

We obtained (132) by introducing a Feynman parameter, z, to combine two unit-mass
propagators, with momenta ¢ — p and r — ¢, in the integral

(z+1)* +4+y°

R(Z’,y) = 2

1 1 dz
AB :/0 (zA+ (1—2)B)?

with A := N(q —p) and B := N(r — q). Here, p is the combined momentum of the
other two internal lines and r is the external momentum of the 3-loop sunrise diagram.
Integration over the two-dimensional vector ¢ leaves an integral over z with a denominator
z(1—2)(r —p)- (r—p) +1 that is symmetric about the mid-point z = 3. Integrating over
the angle between p and r, setting p - p = 22 and analytically continuing to the on-shell
point 7 - 7 = —1, we obtain (132) by making the transformation z(1 — 2) = 1/(4 + y?)
which maps z = 0 to y = oo and the mid-point z = % to y = 0.

This method provided an analytical advance, since it proved the equality Ej(u) =
E5(u) between the elliptic integrals

1 [ dv

Bilu) =5 Vold+ o)1+ 2u+ 20 + (u—0)?) o
0o dv

Ealu) = Vud+v)(du+ (3+u+v)?) o

where we have transformed to v = 22 and v = y2. When Maple was asked to evaluate F;
and F» it printed different expressions, each containing an incomplete elliptic integral

F(sing, k) /
V1 — k2sin?

with a relation between k& and ¢ which we reduced to the form

V1 —2cos¢
(1 —cos¢)sing
The incomplete integral was eliminated by computing (2E; + E2)/3, for which Maple

gave an expression involving only the complete elliptic integral K(k). By this means, we
proved that

k=

(135)

F(sin o, k) = ; K(k) (136)
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whenever k and ¢ are related by condition (135). Moreover, by using [1, 17.4.13], we
proved that this condition also gives the evaluation

F(1—coso, k) = %K(kz) (137)

which we shall use in the next subsection.
Our result for E(z) := E1(2?) = Ea(2?) is

E(z) = Sin(z;;(x)) K(Sin?)a(x)) - 3\% HeunG(9,3;1,1,1,1; —22) (138)

with
3arctan(xz) — arctan(z/3)

a(z) = 5 (139)
This then gives
*° 9F(z) ?[2]
= S S/ h d — 140
5.1 /0 o arcsin < > x 2\/_ (140)
> _E@) /[5)
ts 1 = d = - K K 141
5,1 /0 T x 7 1sfsys (141)

as the non-dispersive counterparts to the integrals (123) and (127) over the different
complete elliptic integral in D(y), with a closely related HeunG function in (64).

We note that E(z) contains a factor of 1/3 from evaluating (2E; + E3)/3. This ensures
that we correctly reproduce

831 = E(O) =

—~
—_
~—

T
—=L_
3V3
using a(z) = 42/3 + O(23). The relationship

8x

tan(2a(x)) = m

(142)

gives E(z) = log(x?)/2? + O(log(z)/x*), as expected at large momentum.

5.7 Expansions near singularities

The HeunG forms for D(y) and E(z), in (64) and (138), yield expansions near the regular
points y = % and x = 0, respectively. However, these regular expansions were not needed
in our numerical integrations, since the agm procedure of Pari-GP is highly efficient for
the evaluation of K(k) when k is not close to the singular point at £k = 1. What we really
need, and eventually found, are the expansions

D(y) — i (hi + a log(y?)) y?" (143)
3y k=0

2E@) = f: hk—“klog ) (144)
k=0
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that isolate the logarithmic singularities as y — 0 and z — oo, respectively. Here ay is
the hexagonal lattice integer of (24) and hy, is determined by the differential equation for
D(y), or equivalently E(x), which yields the recursion

(k+1)2hjy1 — (102 +10k+3)hy+9k2hj—y = —2(k+1)app1+10(2k+1)ay —18kay_, (145)

with a starting value hy = 0. We note that (143) converges for 0 < y < % and (144)

converges for x > 3. We were alerted to role of the hexagonal lattice integers by the
regular expansion

T — —x? k
E(z) = Ve kzzoak (T) (146)

which is valid for |z| < 1, since a, = O(9%/k) for large k.
We were able to solve the recursion (145) in closed form, by considering the moment

Ty(u,a,b,v) = / t Jo(ut)Ko(at)Ko(bt)Jo(vt) dt = / 2w D3(a,b,w)Ds(u,v,iw) dw
0 a+b

which yields, in general, an incomplete elliptic integral

& dx
Ty(u,a,b,v) =
il : /(a+b>2 Vi —(a+0)?)(z —(a—b)?)(z+ (u+v)?)(z+ (u—v)?)

by transforming to = w?. In the special case with a =1, b=1/y > 1 and u = v = i,
Maple gave the evaluation

(147)

. o 2y°F(1 —cos ¢, k)
B L) = Ty

= arccos = = (1=3y){1 +y)°
pmmen (7). \/<1+3y><1—y>3‘ e

This relation between k and ¢ is precisely as in (135). Hence, using (137), we obtain
yD(y)
6

since D(y) in (64) contains the complete elliptic integral K (k) with k given in (148). Then
we used the expansion of I3(¢), in (92), and of [1, 9.6.13]

tk 2 k

Koft) = ~(og(t/2) + D0+ 3 () 23 (150)
k=1 n=1

with

=T, 11 /) = [ B0 Kole/) (149)

where v is Euler’s constant, to obtain from (143) and (149) the closed form

E O L

J=1

which is a harmonic twist of the closed form (24) for the hexagonal lattice integers ay.
Hence we obtain an integer sequence for Hy := klhy /4, with k > 0, beginning with

1, 13, 263, 7518, 280074, 12895572, 707902740, 45152821872, 3282497058384 . ..

Thanks to this sequence, we were able to evaluate all the single integrals over D(y) and
E(z) in this work to 1200 decimal places, since we had very good control of logarithmic
singularities near the endpoints, as y — 0 and x — o0, respectively.
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5.8 A modular identity from quantum field theory

A careful analysis [32] of the Dalitz plot shows that the relation (135) between k and ¢
implies that [32, Eq. 5.17]

Z(F(sin 6, k), k) = ékﬁ sin® ¢ (152)

where Z is Maple’s JacobiZeta function. Combining our new finding (136) with this, we
obtain from [1, 17.4.38] an elementary evaluation of

V3T o 4 4 1, 1 _4
4K (k) nZ:% <(q—3n—1 — 3n+l) B (q=3n—2 — q3n+2)> - §t B gt (153)

where ¢ is the nome associated with k and ¢ = tan(¢/2) is determined algebraically by

: 2(1 — 2k?)r
ro= (APA—-k))%, s=2kVr+k242>+—2L
(47 ) V1+r+r?

C(k—viTRe s !
OBk VIR -5

In particular, for k = 1/4/2 we obtain ¢t = (2/v/3 — 1)'/4.
A modular setting for this result is provided by Jacobi’s identity

[e.e]

ViOs(q) = 0a(q) = 3 q(mt3) (154)

n=—oo

with 63(q) related to K(k) by (103). Summation of the Lambert series in (153) gives
03(¢%/%)/02(q"/?), which is a result known to Ramanujan. Thus we have proven the
modular identity

03(¢¥2) 1
32—yt 43 155
\f@%(Q)@z(q”Z) 3 155)
where ¢ := t~2 is the unique positive root of the polynomial
94
S(z)=3+38 (1-29383) x+ 622 — zt (156)
3

and indeed 1 < ¢ < 3. The real roots are —03(¢'/3)/02(q) and 3632(¢®)/63(q), as has been
known since Joubert and Cayley [24, (4.6.14)]. Hence (155) devolves to

93 3/2 O (a3 93 (g3
5(0°7) _ g2 {;3(51))_ 933((2))}'

002

Such modular identities are machine-provable—in principle and in practice—by com-
puting that sufficiently many terms of the Taylor series agree. This is the so-called “modu-
lar machine” [25, §3]. In this case confirming 1000-term agreement is more than adequate
to prove (157); as takes seconds in Maple. A conventional proof can be pieced together
from [24, Thm. 4.11]. Our proof came from quite another source: the Lorentz invariance
of quantum field theory in two spacetime dimensions, which enabled us to prove that (133)
and (134) are identical.

(157)
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5.9 A discrete sum rule

It seemed reasonable to try to prove the evaluation for ¢5; in one of its forms

1
3 ()dy v 1
E(z )dx s 1
ts1 = — = -Ki5K 159
5 /0 e L1, (159)

with D(y) given by (64) and E(z) by (138).
For example, by using [23, (2.35), p. 119] one may deduce that

/2 dfd¢ 1
— S KK 160
/0 /0 V64— (16 —snZgysm?0 8 = (160)

and then hope to relate some such recognizable double integral to the single integrals
n (158) and (159).

In fact, the integral forms (158) and (159) resisted prolonged and intense efforts to
find a proof. A break-through came from the sum in (104), which we rewrite as

b1 V[
ZTl : K15K5/3 (161)
k=1

whose right-hand side we shall relate to the first of the generalized Watson integrals [48, 49]

dé, df2 dbs
() - 162
j 773/ / / 1_ij 91702793) ( )
with 01 c0s 05 -+ cos By cos i + cos 0 cos
cos 0 cos cos B3 cos cos B3 cos
wi (01,0, 05) = ——— (163)
in the case of a face-centred cubic (f.c.c.) lattice [45],
0 0 0
202(91792793)2005 1+co§2+cos 3 (164)
in the case of a simple cubic (s.c.) lattice [47],
ws (61,02, 03) = cos b1 cos b cos b3 (165)
in the case of a body-centred cubic (b.c.c.) lattice [46] and
1 0 0 0 0 0 0
wy (61,02, 05) = + cos 01 cos 02 +cos42 cos 03 4 cos 05 cos 01 (166)
in the case of a diamond lattice [43].
In 1971, Joyce gave the notable f.c.c. evaluation [45, Eq. 4]
12 K(k K(k_
i - 12 Kl () Kl (2) )

2 342
with

1 2V32 V3 (3—2)(1—2)1/2
ki(z):iim—T( (3152)3/2) . (168)

32



Our progress resulted from the intriguing observation that at z = % this gives k_(1/5) =
k15 and k4 (1/5) = k5/3. Hence we obtain

1 15
44} <3> = 4—71_2 K15K5/3 (169)
which reduces (161) to the discrete sum rule
b1 18] o= fro1
Z 64k - Z 60k (170)
k=1 k=1

where the f.c.c. lattice integers

k T T T
fr = % / / / (cos 61 cos O3 + cos b cos O3 + cos b3 cos 91)k df; df, dbs (171)
o Jo Jo

give the Taylor coefficients of the expansion

Wi(z) = f:fk (%)k (172)
k=0

for |z| < 1. In the next subsection, we show that (170) derives from a more general set of
sum rules. Then, in subsection 5.11, we shall expose a cubic modular equation, implicit
in (168).

5.10 Sum rules for diamond and cubic lattice integers
The first few terms in the sequence for the f.c.c. lattice integers (171) are

1, 0, 12, 48, 540, 4320, 42240, 403200, 4038300, 40958400, 423550512, 4434978240
(173)
for n = 0...11. The values up to fg = 4038300 are recorded in [68, Table 1] and the
next integer, fo = 40958400, was given by Domb [35] and recorded® in entry A2893 of
the on-line version of [64], which provided us with no closed formula for fx. By way of
contrast, the s.c., b.c.c. and diamond lattice expansions

W) = 3 (2,5) o (2)" (174)

e = > (3) () (175

Wi = Son (%) (176)
k=0

lead to explicit expressions for the integer sequences in entries A2897, A2896 and A2895,
respectively, of the on-line version of [64]. As in the f.c.c. case (172), expansions (174)
to (176) are valid for |z| < 1. For convenience, we repeat here the closed forms

2 (0o S (1) [ G R

4See http://www.research.att.com/ njas/sequences/A002893 .
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for the hexagonal and diamond lattice integers, previously given in (24) and (56). The
hexagonal lattice integers a; appear in the s.c. lattice integers (2k )ak of expansion (174).
We also note the terminating hypergeometric series

2k Lk —k —k
— 29 ? )
= () (27

for the diamond lattice integers. Likewise

—k,—k
ak-—ng < 1.1 ‘4).

We were able to derive the closed form

k

fe=Y_ <k> (—4)"7b, (178)

=0 N

for the f.c.c. lattice integers, by noting the similarity between (163) and (166), which leads
to the functional relationship

1 4 1 3
Nyl <N+1> =W <N> (179)

between the Green functions for the diamond and f.c.c. lattices. Then for N > 3 we may
expand each side, to obtain the sum rule

o o f
ey S (180)

k:l k=1

and derive the closed form (178) for the f.c.c. lattice integers defined in (171) by further
expanding the left-hand side in powers of 1/N.
Setting N = 3 in (180), we prove the sum rule

— b1 Je1 1 1
Z 16k Z 128 — 12 Wi(1) = 12 K3Ky3 (181)
k=1

from Watson’s evaluation [69] of TW(1), at the singular value k3.
Setting N = 15 in (180), we prove the sum rule

o br—1 fr—1 1 1 1
DG Z 60 — 60 <5> = Tom2 K15k (182)
k=1

at the singular value k5. Hence we have proven (170) and all the other forms of our initial
conjecture (98) for the moment ¢5;. By taking up to 4 differentials of W;(3/N), before
setting N = 15, one may also prove the evaluations of ¢5 3 in (99) and ¢5 5 in (100), using
the evaluations of the elliptic integrals E(k15) and E(ks/3) given explicitly in the talk of
footnote 3 and derivable from identities in [24].

These eventual proofs of our conjectures for the moments t5 5541 came from noting a
parenthetical remark in [47, p. 601] to the effect that the Green function for the diamond
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lattice is given by a product of complete elliptic integrals. It will be useful to consider the
generating function D which has the explicit form

2K< Lya)
5@) :: 3yI-y*) _ 1
/(1 +3y)1—y)®  AGM(\/(1—3y)(1 + )% /(1 +3y)(1 —y)?)

with a complete elliptic integral that is complementary to that in (64) for D(y). For
ly| < %, we have the expansion

(183)

[ee]
5(3/) = HeunG (9, 3:1,1,1,1; 9y2) = Z ary*® (184)

in terms of the hexagonal lattice integers in (177).
The full story, for the f.c.c., s.c., b.c.c. and diamond lattices, is then provided by the
four identities

o 2 o
D*(V=z) = (Z Uk (_x)k) = Z 1 +3a: 1+ 372612 (185)

k=0
3 1+ 2)(1 + 92))"
) kz ( 3z)(1 +) E’):E))2k+)1) (186)
3 <(2kk)33k)3
- l;) (1+2)3(1+ 93:))"”’% (187)
a (188)

= kZ::O o T D)+ 02))

which are valid for sufficiently small z and were obtained by simplification of formulae
in [45, 46, 47).

At bottom, all 4 results (185) to (188) originate from the first paper [16] of Wilfrid
Norman Bailey’s adroit series on infinite integrals involving Bessel functions, in much the
same way that our proof of (33) resulted from his second paper [17]. In [16, Eq. 8.1],
Bailey showed that fooo Jyu(at)J, (bt)J,(ct) dt is given by a product of 9F'y hypergeometric
functions. In [45, 46, 47], Joyce used this result to obtain diamond and cubic lattice Green
functions, in three spatial dimensions, from the square of the Green function (183) for the
hexagonal (or “honeycomb”) lattice in two spatial dimensions, for which we have given a
HeunG form in (184) equivalent to that given in [41, Eq. 4]. With = > 0, the explicit form
of E in (138) provides an analytic continuation for

b (v=a) = 22 b ava) (159)

The singular value k5, obtained from the diamond and f.c.c. lattice sums in (182),
also appears in the s.c. and b.c.c. lattice sums

00 2k
3v5
Z(_(z]fg)k ar = WK15K5/3 (190)
k=0
00 3
(%) 4 o
;024k(\/5+1)8k - PKls (191)
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obtained by setting z = z15 := 3 — 3v/5 ~ 0.018576 in (186) and (187). Setting = = z15
in (189), we obtain the singular value k5,3 = sin(a(3,/Z15)) from definition of the angle
a(x) in (139). This is confirmed by the formula for tan(2a(z)) in (142). We remark
that (190) follows from the functional relationship given in [49, Eq. 3.23] and that (191)
follows from [24, Table 5.2a (N = 15)] and the Clausen product in [24, Th. 5.7(a)(i),
p. 180]. We now show how to obtain other singular values from lattice Green functions,
using a modular identity.

5.11 Cubic modular equations
The cubic modular equation [24, Th. 4.1, p. 110]

04(0)04(q°) + 02(0)02(q”) = 63(0)63(q”) (192)

relates instances of the Jacobi functions 6o, in (154), and 63, in (103), with nomes ¢ and
¢>, to corresponding instances of

VI 3(g) = 03(a) = D (=1)"q" (193)

n=—oo

with k' := v/1 — k2 and nome ¢ associated with k. If we associate ¢° with the complete
elliptic argument [, then (192) gives the identity [24, Eqn. 4.2.6] V&I’ +Vkl = 1. The
results of the previous subsection follow from the notable circumstance that (168) gives

K (2)k_(2) + VEki(2)k—(2) =1 =0 (194)

which may be proven symbolically, by setting z = 1 — ¢t and denoting the left-hand side
of (194) by y(t). Then y(t) is analytic on the closed unit disk, |t| < 1, and Maple computes
an algebraic equation of the form y(t) P(y(t),t) = 0 with P(0,0) non-zero. This proves
that y(¢) vanishes in some neighbourhood of ¢t = 0 and hence for || < 1.

The resulting modular identities for the Green functions of cubic lattices are most con-
veniently obtained from the Green function Wy, for the diamond lattice, with a parametric
solution

2 2/.3 1= 4772 L 39§(q3) - 9§(Q)
W4(Z4) 93(Q)93((] ) ) Z4: 1_ ,’72 ) n: 30§(q3) + 9§(Q) )
corresponding to the series solution (188) at x = (1 — 2n)/(3 + 6n). Then the Green
functions for the f.c.c., s.c. and b.c.c. lattices are given by the functional relationships

(195)

%(1 =) Wila) = 3(1 — 7)) Wa(z2) = 331

3 3n T+ W3(z3) = Wy(z4) (196)

with the arguments

1

1-2
2 =1—4r?, Zy = 21<1—?>, 23 = 7

242

VAL, (197)

obtained from (185) to (187), respectively, by the substitution = (1 —2n)/(3 + 67) that
gave (195). We note the alternative b.c.c. parameterization [24, Th. 5.7(a)(i), p. 180],

111 2(3
Ws(z3) = 3F2 ( SRE Z?%) =05(¢>), m=2V1-1?, I:= zg(qgi - (198)
) 3\q
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The equivalence of the forms for z3 in (197) and (198) results from the modular identity

o (L—2n)? 1—49?

— :421_2:2/2 1

with 7 defined in (195) and [ in (198). To prove (199), we combined the cubic modular
identity (192) with the Joubert-Cayley result [24, (4.6.14)] S(362(¢?)/0%(q)) = 0, where
S is defined in (156). Alternatively, we may again apply the “modular machine” [25, §3].7

Noting that the lattices sums in (181) and (182) yield the singular values k3 and k15,
from rational summands, we wondered if any other singular value might be obtained from
a lattice Green function in such a neat manner. We know from Watson’s classic work [69]
that W3(1) yields the singular value k; = 1/v/2 while Wy(1) yields the singular value
ke = (V3 — \/ﬁ)(2 —/3), as noted in [23]. Moreover, (198) is equivalent to W3(2knk)y) =
4K3% /72, for ¢3 = exp(— 7T\/_ ) Hence W3(z3) yields the singular values kq, k3, k7 for the
rational arguments z3 = 1, 4 5 B> L respectively.

Prompted by the sum over s.c. lattice integers in (190), we sought further examples,
in which a sum over rational numbers might lead to a singular value ky. We found 5 new
results for Wa, which appear to exhaust the cases with rational summands. These occur
with N/3 =7,11,19, 31,59, for which we obtained

i} 108 - % (8v3 V1) Koy = %G@l) (200)
go 396 = % <3x/§ — 5\/ﬁ> K33 Ky1/3 = \/% G(33) (201)
ki;o 2700 — g (3V57 — 13V3) KrKigys = % G(57) (202)
2 243())0 = % (39\/3 — 7\/@) Ko3K31/3 = %G(%) (203)
f% 1122296 wo= 867? (va- 1) V39 Kz Koy = %G(lm (204)

with reductions to I' values given by
O NC) o9

where I'(n/(4N)) contributes to the product if n is coprime to 4N and then occurs with an
exponent i%, according as the sign of the Legendre—Jacobi-Kronecker symbol (—4N|n).
We remark that p = 7,11,19,31,59 are the only primes for which N = 3p is a disjoint
discriminant of type one, as considered in [24, Eq. 9.2.8, p. 293].

°Striking cubic modular equations (¢ — ¢ or N — 9N), originating with Ramanujan, are explored in [24,
84.7]. In particular there are attractive cubic recursions for the cubic multiplier M = /(1 +1)/(3 —3n) =
03(¢*)/03(q), as occurs in (196).
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We may obtain other singular values by choosing the argument of Wy in (195) to be
an appropriate algebraic number. For example, the sums

> 4
= — KyK 206
2:0 12+4\/— —3 KoKz (206)

> by 4
Z = 5 KiosKzs/3 (207)

= (3v/3+5)26(6/3 + 4/7)2

over the diamond lattice integers by in (177) have relatively simple surds in their sum-
mands, obtained by setting ¢ = exp(—m4/13/3) and ¢ = exp(—7m/35/3) in the parametric
solution (195). We may also obtain quartic values of z4 and evaluations like (207) at the
even singular values ky with N/6 = 3,5,7,13,17. We remark that p = 5,7,13,17 are
the only primes for which N/2 = 3p is a disjoint discriminant of type two, as considered
in [24, Eq. 9.2.9, p. 293].

5.12 Integral sum rules

Unfortunately, the discrete sum rule (181), at the singular value k3, does not prove con-
jecture (101) but instead converts it to the conjectural integral sum rule

?[8]

/ ootlo(t) <Io(t)K0(2t) - %Io(2t)K0(t)> K2(t)dt == 0 (208)
0

where the term containing Ip(2t) is now proven to yield the singular value k3, whose
appearance in the term containing K(2t) was conjectured in (101).
It looks to be an even tougher proposition to prove the sum rule

[ en <K0<t>— j—f_510<t>) s 22 o (200)

for which we have now obtained two representations in terms of integrals of complete
elliptic integrals, namely

[ 2 s (153) - )

/OOO \/% <arcsinh (g) _ \/—1_5> dr 2 (211)

with D(y) given in (64), E(z) given in (138) and the 3-loop sunrise diagram s5 ; appearing
via the more demanding logarithmic terms in (123) and (140).

As a companion to the proven evaluation (50) and the discrete sum rule (52), we
present

[®
o

(210)

™2 K(sin6) ( T ?[10]
————=— | arcsinh(2tan ) — —) dd = 0 (212)
0 V1+3sin?6 V3

as our penultimate conjecture, also checked to 1200 decimal places. If the mathematics
of sum rule (212) might be elucidated at the singular value k3, then there might be some
hope for a proof of the quantum field theory result (209), at the singular value k5.
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5.13 The even moment c;

We were unable to derive single integrals of elliptic integrals for the even moments cs 2.
A double-integral representation is readily available by setting w = 0 in the Aufbau

Se(a,b,c,d,e,w) = / Si(a,b,c,v)S3(d,e,v +w)dv
= / / Ss(a,b,u)Sa(c,u+v)Ss3(d, e,v +w)dudv (213)

to obtain

Vs(a,b, e, d,e) / / Ss(a, b’LLSg(dEU) dudv (214)

V2 + (u+v)?
with S3 given by (30). Setting the 5 parameters to unity and making the transformations
u = 2tanf and v = 2tan ¢, we obtain

/2 K(sin 0) K(sin ¢)
dodo. 215
/71'/2 /—7r/2 V/cos2 0 cos? ¢ + 4sin®(0 + ) ¢ (215)

The higher even moments are obtained by suitable differentiations of (214) with respect
to ¢, before setting ¢ = 1.

6 Six Bessel functions

We are now equipped to write the odd moments 61, ss,1 and cg1 as single or dou-
ble integrals over complete elliptic integrals, with integrands that are computable with
great efficiency, using the exponentially fast process of the arithmetic-geometric mean,
discovered by Lagrange, around 1784, and independently by Gauss, at the age of 14, in
1791 [3, 24].

6.1 The odd moments #4211
We begin by folding Dy, in (62), with Ty, in (147), to determine

Ts(u,a,b,c,d,v) = /000 t Jo(ut)Ko(at)Ko(bt)Ko(ct)Ko(dt)Jo(vt) dt

= / 2w Dy(a, b, c,w)Ty(u,d, w,v)dw
a+b+c

where we group the 3 internal lines with masses a,b and c¢ to have a total momentum with
norm w?. Settinga =b=c=d=1,u=wv =1iand w = 1/y, we obtain one instance of
D(y), from its definition D(y) := 2D4(1,1,1,1/y)/y, and another, somewhat surprisingly,
from the novel result D(y) = 6T4(i,1,1/y,1)/y in (149). Hence we obtain

1
00 1 3 D2
t6.1 ::/ tI2() KA () dt = —/3 W) 4y (216)
0 3Jo 2y

with an initial factor of % arising from (137), in the special case (135). This is a rather
efficient representation of tg 1, which delivers 1200 decimal places in two minutes, using
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Pari-GP. Similarly, we may derive a one-dimensional integral for higher odd moments
by differentiations of Dy(a,b,c,w) with respect to one of its masses, before going to the
equal-mass point. More conveniently, one may use the summation

o0
; B Z 2n\ ¢4, 9k+2n+1
n=0 ’

that follows from (92). By this means, we found that ?—5156,3 — %t&l reproduces the value

2
of tg 5 to 1200 decimal places.

6.2 The odd moments 562511

We were unable to derive a one-dimensional integral over agm functions for sg 1, though
we shall conjecture such an integral, in the next subsection. Here, the best that we can
do comes from using the folding

Se(a,b,c,d,e,w) = / 2u Dy(a,b, c,u)S4(d, e, u, w)du
a+b+c
which leads to a choice of integrals for
Sa(d, e, u,w) = / 2v Dy(d, e, u,v)S (v, w)dv = / 2v D3(d, e, v)Ss3 (v, u, w) dv
d+e+u d+e

with the first form involving an agm and the second an arctanh procedure. The latter is
more convenient, since it yields the rectangular double integral

1 1

3 2 4 tanh/A_/A

o= [ D) 7 (At 4y (217)
0 0 V(1 —422)A A

with Ay := (y & 2)? — y222, obtained by transforming to y = 1/u and z = 1/v, and D(y)
given in (64). We remark that A is positive, within the rectangle of integration, and that
when A_ is negative an analytic continuation of arctanh to arctan keeps the integrand
real and positive. Higher odd moments may be obtained by differentiations with respect

to w, before setting w? = —1. More conveniently, we may use the summation
5,2k+2n+1
56,2k+1 = Z 7(%”,7;2 (218)
n=0 ’

since ¢5 1 and c5 3 were computed by Broadhurst to 200,000 decimal places (see footnote
3) and higher moments are (conjecturally) determined by them, using (120) and the
appropriate recursion from (10). By this means, we found that %3673 — %36,1 reproduces

the value of sg5 to 1200 decimal places.

6.3 Sum rules

Our final conjecture is that there is a infinite tower of sum rules relating moments in
which powers of K are replaced by corresponding powers of wly. We were alerted to this
possibility by the sum rule

/OO (7 I5(t) — K§(t)) K§(t)dt =0 (219)
0
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proven in (91). For each pair of integers (n, k) with n > 2k > 2 we conjecture that

[n/2] n
Z2n,n—2k = Z (_1)m <2m>

m=0

| e mneri@rena Do @)
0

with the vanishing of Zy ¢ proven in (219), in the case with n =2 and k = 1.
With 6 Bessel functions in play, the sum rule

Zsy =7 / tIo(t) (m212(t) — 3K3(8)) K3(t)dt 22 o (221)
0
relates a pair of odd moments, giving the conjectural evaluation
2 00
s61 o % L3 K3 () dt . (222)
0

At first sight, this seems to be hard to check, at high precision, because it involves the
slowly convergent moment

/OO LI a €3 2k+1
0
; Z (2R k12

with an integrand of order 1/t2, at large ¢, and a summand of order 1/k% at large k,
coming from the hexagonal lattice integers ay in (24). However, we were able to exploit
the integral representation

€3,2k-+1 2k
e / D(y dy

to obtain
| torioa = 7 pwbw)ay (223)
0 0

as an integral over a pair of agm functions, with D(y) given by (64) and D(y) by (183).
Then conjecture (221) is equivalent to the evaluation

s6.1 1= /Oootlo( VS () dt ”—/ Dly (224)

which was confirmed to 1200 decimal places, by setting k& = 0 in (218) to compute s¢ 1
and by using Pari-GP to evaluate the integral over y. We find it remarkable that the
complicated double integral 4-loop sunrise diagram in (217) seems to be reducible to the
attractive single integral in (224), by removing a factor %712.

With 8 Bessel functions in play, conjecture (220) gives a pair of sum rules. From the

vanishing of Zg o and Zg 2, we obtain

€8,0 e /OO I5(t) (6K5(t) — mI5(t)) Ko (t) dt (225)
0

8.2 pIES e / 215 (t) (6K5(t) — m*I5(t)) Kj(t)dt (226)
0
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again noting the slow convergence of these integrals and of the equivalent sums

MY o=y T N\2 [ [2k
CS,O [:] Z <%> << k )666,2k — 7T2bk6472k> (227)

k=0
211 > T \2 2k
cs 2 A4 ];) <ﬁ> << L >666,2k+2 - Wzbkc4,2k+2> (228)

which involve the diamond lattice integers by in (56) or (177).

Conjecture (220) gives novel evaluations of ¢4y, 9r and sypi29k+1, for n >k > 0. We
remark, however, that (227) and (228) do not exhaust the integer relations for moments
with 8 Bessel functions. We also found that the ratio

o 2k ¢
Stk ar iz () Gre

ORI g e

coincides with 1%772, to 80 decimal places.

6.4 The odd moments cg 211

Grouping the 6 internal lines of the 5-loop vacuum diagram
Ve(a,b,c,d,e, f) = / / 4duv Dy(a, b, c,u)Va(u,v)Dy(v,d, e, f)dvdu
a+b+c Jd+e+f

into two sets of 3 lines, we obtain

3 %D log(z
C6,1 :/0 D(y)/o Md dy (229)

22 —y?

after setting the masses to unity and transforming to y = 1/u and z = 1/v. We also note
that Broadhurst conjectured that the value of cg 5 is %6673 — %6671 + %. This was later
checked to 500 decimal places, using data in [9)].

6.5 The even moment cg

Finally, we obtain 3 complete elliptic integrals in the integrand of
Vﬁ(av b> Gy da ¢, f) =T / / §3(a7 b> u)§3 (Cv d7 u -+ ,U)§3(ev f’ U) dudv (230)

using the Aufbau (29). This then delivers

. sin(6
7r/2 7r/2 K Sln 9 (Sln (b) K <\/COSZ 9 Cosg +fs)in2 (9+¢)>
66 0= / do d¢ (231)
72 —m/2 V/cos? 0 cos? ¢ + sin?(0 + ¢)

by the same transformations as for (215).
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7 Computational notes

This paper contains several proofs of identities that we first conjectured on the basis
of numerical investigation, hugely facilitated by access to Sloane’s wonderful sequence
finder. For the many one-dimensional integrals that we have noted, we were greatly
aided by the efficiency of the agm and intnum procedures of Pari-GP, for evaluations of
integrands and integrals at precisions up to 1200 decimal places. Results were then fed to
the implementation of the PSLQ algorithm in Pari-GP’s 1indep procedure, with which
we performed many unsuccessful searches for integer relations, as well as obtaining the
positive results reported in the paper. By way of example, we remark that the integral

[ E(z) . o (T
8.—/0 Warcsmh <§> dx

was evaluated to high precision in order to search for relations between cs5 1, ¢53, £ and
products of powers of 7, C' and 1/C, with coefficients that might be Q-linear combinations
of 1, v/3, v/5 and v/15. No such relation was found.

Maple was especially useful for its HeunG, MeijerG and Gosper procedures and also
for quick PSLQ searches with few terms, at relatively low precision.

But for two-dimensional numerical quadratures we found neither Pari-GP nor Maple
to be remotely adequate for our demanding investigations. For these, we came to rely
on Bailey’s multiprecision code for two-dimensional integrals [6, 11, 14], which confirmed,
to more than 100 decimal places, the correctness of derivations of (215), (231) and other
identities. Here we offer a brief description of this scheme.

7.1 Multi-dimensional quadrature

Bailey’s 1-D and 2-D schemes, as well as the one-dimensional intnum procedure in Pari-
GP, employ the tanh-sinh quadrature algorithm, which was originally discovered by Taka-
hasi and Mori [65]. It is rooted in the Euler-Maclaurin summation formula [4, p. 285],
which implies that for certain bell-shaped integrands f(x) on [0, 1] where the function and
all higher derivatives rapidly approach zero at the endpoints, approximating the integral
of f(z) by a simple step-function summation is remarkably accurate. This observation
is combined with the transformation z = tanh((7/2)sinh¢), which converts most “rea-
sonable” integrand functions on (—1,1) (including many functions with singularities or
infinite derivatives at one or both endpoints) into bell-shaped functions with the desired
property.
In particular, we can write, for an interval length h > 0,

1 %) N
/ fla)dz = / foNd @t ~ b S wif(ay), (232)
-1 —00 j=—N

where g(t) = tanh((n/2)sinht), z; = g(hj), w; = ¢'(hj), and N is chosen large enough
that |w;f(z;)| < € for |j| > N. Here e = 1077, where p is the numeric precision level in
digits. Note that the resulting quadrature formula (232) has the form similar to Gaussian
quadrature, namely a simple summation with abscissas x; and weights w;, both sets of
which can be pre-computed since they are independent of the integrand function. For
many integrand functions, once h is sufficiently small, reducing h by half yields twice as
many correct digits in the result (although all computations must be performed to at
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least the level of precision desired for the final result, and perhaps double this level if the
function is not well-behaved at endpoints). Additional details of efficient implementations
are given in [6, 14].

One of the numerous applications of one-dimensional tanh-sinh quadrature in this
study was the verification of our final conjecture given in (220). This was done using
Bailey’s implementation of the one-dimensional tanh-sinh algorithm, together with the
ARPREC extreme-precision software package [13]. Evaluation of the Bessel function Iy(t)
was performed using a hybrid scheme where formula 9.6.12 of [1] was used for modest-
sized values, and formula 9.7.1 for large values. Evaluation of K(t) was performed using
9.6.13 of [1] for modest-sized values, and 9.7.2 for large values. Note however that formula
9.6.13 for Ky(t) must be implemented using a working precision that is roughly twice the
level desired for the final result, due to the sensitive subtraction operation in this formula.
Also note that when m = 0 in (220), this combination of formulas is not satisfactory,
because for large ¢ the function Iy(t) is exceedingly large, and Ky(t) is exceedingly small,
and even though the product is of modest size, overflows and underflows are possible in
intermediate function evaluations, even when using high-precision software that has an
enormously extended dynamic range. For such cases (m = 0 and ¢ large), we employed
formula 9.7.5 of [1], which gives an asymptotic series for the product Iy(¢)Ko(t). We had
differently addressed this issue in the special case of (222).

Armed with an efficient implementation of these schemes, we were able to verify (220)
for all (n, k) pairs, where 1 < k < [n/2]| and 4 < n < 12 (there are 43 such pairs), in each
case to over 340-digit accuracy. In addition, we verified (220) for a variety of larger (n, k)
pairs, including (15,7), (20,10), (25,11), (30,12), (37,13), and (41,14), again to over
340-digit accuracy in each case.

The tanh-sinh quadrature algorithm can also be performed in two or more dimensions
as an iterated version of the one-dimensional scheme. Such computations are many times
more expensive than in one dimension. For example, if roughly 1,000 function evaluations
are required in one dimension to achieve a desired precision level, then at least 1,000,000
function evaluations are typically required in two dimensions, and 1,000,000,000 in three
dimensions. Additionally, the behaviour of multi-dimensional tanh-sinh quadrature on
integrand functions with singularities or infinite derivatives on the boundaries of the region
is not as predictable or well-understood as in one dimension.

Nonetheless, we were able to use 2-D tanh-sinh quadrature to successfully evaluate
a number of the double integrals mentioned in this paper, after making some minor
transformations. As one example, consider the integral mentioned above for cs o, namely

/2 K(sin ) K(sin ¢)
dfde. 233
/n/z /—n/z V/cos2 0 cos? ¢ + 4sin®(6 + ¢) ’ 25

Note that this function (see Figure 1) has singularities on all four sides of the region of
integration, with particularly troublesome singularities at (7/2, —7/2) and (—n/2,7/2).
However, after making the substitutions s «— 7/2 — s, t « 7/2 —t and r < s/t, and
taking advantage of the symmetry evident from Figure 1, we obtain

cso = 2m /M2 tK(COS(Tt))K(cos t) drdt
; \/sm rt) Sln t + 4sin® (t(1+ 7))
= [t K feos(rt) Kcont)dr dt -
0 /sin?(rt)sin®t + 4sin®(¢(1 —7“))’
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Figure 1: Plot of ¢; ¢ integrand function in (233)

which is significantly better behaved (although these integrands still have singularities
on two of the four sides of the region). As a result, we were able to compute c5 o with
this formula to 120-digit accuracy, using 240-digit working precision. This run required
a parallel computation (using the MPI parallel programming library) of 43.2 minutes
on 512 CPUs (1024 cores) of the “Franklin” system at the National Energy Research
Scientific Computing Center at the Lawrence Berkeley National Laboratory. The final
result matched the value that we had previously calculated using (5) (see [9]) to 120-digit
accuracy.

This same strategy was successful for several other 2-D integrals. For example, we
computed cgo to 116-digit accuracy, which again matched the value we had previously
computed, in 64.8 minutes on 1024 cores of the Franklin system. In the case of cg 1, the
transformation described above for ¢ converted the integrand function of (229) into a
completely well-behaved function, without any singularities. As a result, we were able to
compute cg 1 to 120-digit accuracy using only an Apple Intel-based workstation with four
computational cores, in 28 minutes. As before, the result matched the earlier calculation.

As already noted, complex numbers are avoided in integral (217) by writing it as

sa= [ o) [P ELE 0y (235)

A_|_ \% 1-— 422
arctanh (/z) /\/x for x>0
flz):=< 1 for =
arctan (v/—x) /\/—x for <0

|

where
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yields positive real numbers within the rectangle of integration. We were able to confirm
that the double integral (235) yields the first 120 of the 1200 decimal places obtained, far
more easily, from the single integral (224).

8 Conclusions

Despite some notable progress in discovering and proving new results, we are left with 8
outstanding conjectures. Of these, 5 have their first instances in Equations (94) to (97)
and Equation (101) of Section 5.1, with 3 outliers, in Equations (120), (212) and (220).

Conjecture (94) lies deep in 4-dimensional quantum field theory, but it is reasonable
to suppose that it might be derivable from the two-dimensional conjectures (95), (96)
and (97), together with their proven sign-changed variants in (98), (99) and (100).

The conjectural integer relations (120) and (125) may be provable by adding rational
data such as (121) to a set of recursions richer than those considered in [26].

The real challenge is set by the remarkable sum rule (209), with a dispersive presen-
tation (210), a non-dispersive presentation (211) and a kindergarten analogue (212).

Acknowledgements. We are most grateful to Andrei Davydychev, for elucidation
of dilogarithms obtained in quantum field theory, to Stefano Laporta, for the astute
observations in 4-dimensional quantum field theory from which our work arose, to Bas
Tausk, for advice on Mellin—Barnes transforms, and to John Zucker, for several pertinent
observations regarding integrals of elliptic integrals.
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