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ABSTRACT

The addition of storage technologies such as flow batteries, conventional batteries, and
heat storage can improve the economic as well as environmental attractiveness of on-site
generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without
CHP) and contribute to enhanced demand response. In order to examine the impact of storage
technologies on demand response and carbon emissions, a microgrid’s distributed energy
resources (DER) adoption problem is formulated as a mixed-integer linear program that has the
minimization of annual energy costs as its objective function. By implementing this approach in
the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at
representative customer sites, such as schools and nursing homes, to obtain not only the level of
technology investment, but also the optimal hourly operating schedules. This paper focuses on
analysis of storage technologies in DER optimization on a building level, with example
applications for commercial buildings. Preliminary analysis indicates that storage technologies
respond effectively to time-varying electricity prices, i.e. by charging batteries during periods of
low electricity prices and discharging them during peak hours. The results also indicate that
storage technologies significantly alter the residual load profile, which can contribute to lower
carbon emissions depending on the test site, its load profile, and its adopted DER technologies.

Introduction

In this paper, a microgrid is defined as a cluster of electricity sources and (possibly
controllable) loads in one or more locations that are connected to the traditional wider power
system, or macrogrid, but which may, as circumstances or economics dictate, disconnect from it
and operate as an island, at least for short periods (see Microgrid Symposium 2005, 2006, and
Hatziargyriou, N. et al.). The successful deployment of microgrids will depend heavily on the
economics of distributed energy resources (DER), in general, and upon the early success of small

" The work described in this paper was funded by the Office of Electricity Delivery and Energy Reliability,
Distributed Energy Program of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
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clusters of mixed technology generation, grouped with storage, and controllable loads. If clear
economic, environmental, and utility system benefits from such early projects are realized,
momentum can propel the adoption of added microgrid capabilities as well as precipitate the
regulatory adjustments necessary to allow widespread microgrid introduction.

The potential benefits of microgrids are multi-faceted, but from the adopters’
perspective, there are two major groupings: 1) the cost, efficiency, and environmental benefits
(including possible emissions credits) of combined heat and power (CHP), and 2) the power
quality and reliability (PQR) benefits of on-site generation and control. At the same time, it
should be noted that growth in electricity demand in developed countries centers on the
residential and commercial sectors in which CHP applications particularly have not hitherto been
well developed.

This paper reports on the latest efforts intended to insert storage (both electrical and
thermal) capabilities into the microgrid analysis on a building level. In previous work, the
Berkeley Lab has developed the Distributed Energy Resources Customer Adoption Model
(DER-CAM), (Siddiqui et al. 2003). Its optimization techniques find both the combination of
equipment and its operation over a typical year that minimize the site’s total energy bill, typically
for electricity plus natural gas purchases, as well as amortized equipment purchases. The chosen
equipment and its schedule should be economically attractive to a single site or to members of a
microgrid consisting of a cluster of sites, and it should be subsequently analyzed in more
engineering and financial detail (Stadler et al. 2006).

Electrical and thermal storage is added as an option to the menu of technology choices,
and this capability is demonstrated by the analysis of two commercial buildings in California. A
nursing home in the San Francisco Bay Area and a southern California school are investigated to
assess the economic and environmental attractiveness of distributed generation with storage.

The Distributed Energy Resources - Costumer Adoption Model (DER-CAM)

DER-CAM (Siddiqui et al. 2003) is a mixed-integer linear program (MILP) written and
executed in the General Algebraic Modeling System (GAMS). Its objective is to minimize the
annual costs for providing energy services to the modeled site, including utility electricity and
natural gas purchases, amortized capital and maintenance costs for distributed generation (DG)
investments. The approach is fully technology-neutral and can include energy purchases, on-site
conversion, both electrical and thermal on-site renewable harvesting, and end-use efficiency
investments. Furthermore, the system choice considers the simultaneity of the building cooling
problem; that is, results reflect the benefit of displacement of electricity demand by heat-
activated cooling that lowers building peak load and, therefore, the generation requirement.

Site-specific inputs to the model are end-use energy loads,” electricity and natural gas
tariff structure and rates, and DG investment options. The following technologies are currently
considered in the DER-CAM model:*

* Three different day-long profiles are used to represent the set of daily profiles for each month: weekday, peak day,
and weekend day. DER-CAM assumes that three weekdays of each month are peak days.
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natural gas-fired reciprocating engines, gas turbines, microturbines, and fuel cells;
photovoltaics and solar thermal collectors;

electrical storage, flow batteries, and heat storage;

heat exchangers for application of solar thermal and recovered heat to end-use loads;
direct-fired natural gas chillers; and

heat-driven absorption chillers.

Figure 1 shows a high-level schematic of the energy flow modeled in DER-CAM.
Available energy inputs to the site are solar insolation, utility electricity, and utility natural gas.
For a given site, DER-CAM selects the economically4 optimal combination of utility electricity
purchase, on-site generation, storage and cooling equipment, required to meet the site’s
following end-use loads at each time step:

e clectricity-only loads, e.g. lighting and office equipment;

e cooling loads that can be met either by electricity powered compression or by heat
activated absorption cooling, direct-fired natural gas chillers, waste heat or solar heat;

* hot water and space heating loads that can be met by recovered heat or by natural gas;
natural gas-only loads, e.g. mostly cooking that can only be met by natural gas.

Figure 1. Schematic of the Energy Flow Model used in DER-CAM®
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The outputs of DER-CAM include the optimal DG and storage adoption and an hourly
operating schedule, as well as the resulting costs, fuel consumption, and carbon emissions
(Figure 2).

? Despite the wide variety of technologies considered in DER-CAM, we use a subset of technologies in this work to
keep the results clear. See also section “DER Equipment Including Storage Technologies”.

* DER-CAM’s objective function to minimize the total energy costs can be changed easily to a carbon minimizing
or other strategy.

> Please note that thermal storage contains also heat for absorption chillers, and therefore, Figure 1 considers cold
thermal storage indirectly.
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Optimal combinations of equipment involving PV, thermal generation with heat
recovery, thermal heat collection, and heat-activated cooling can be identified in a way that
would be intractable by trial-and-error enumeration of possible combinations. The economics of
storage are particularly complex, both because they require optimization across multiple time
steps and because of the influence of tariff structures (on-peak, off-peak, and demand charges).
Note that facilities with on-site generation will incur electricity bills more biased toward demand
(peak power) charges and less toward energy charges, thereby making the timing and control of
chargeable peaks of particular operational importance.

The MILP solved by DER-CAM is shown in pseudocode in Figure 3. In minimizing the
site’s annualized energy bill, DER-CAM also has to take into account various constraints.
Among these, the most fundamental ones are the energy-balance and operational constraints,
which require that every end-use load has to be met and that the thermodynamics of energy
production and transfer are obeyed. The recently added storage constraints are essentially
inventory balance constraints that state that the amount of energy in a storage device at the
beginning of a time period is equal to the amount available at the beginning of the previous time
period plus any energy charged minus any energy discharge minus losses. Finally, investment
and regulatory constraints may be included as needed. A limit on the acceptable simple payback
period is imposed to mimic typical investment decisions made in practice. Only investment
options with a payback period less than 12 years are considered for this paper. For a complete
mathematical formulation of the MILP with energy storage solved by DER-CAM, please refer to
Siddiqui et al. 2007.

Figure 2. High-Level Schematic of Information Flow in DER-CAM
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Figure 3. MILP Solved by DER-CAM®
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- Payback period is constrained
Storage constraints:
— Electricity stored is limited by battery size

- Heat storage is limited by reservoir size

DER Equipment Including Storage Technologies’

This paper reports results using recently added electrical, i.e. a conventional lead/acid
battery, and thermal storage, capabilities, with both electrical and thermal storage being viewed
as inventories. At each hour, energy can either be added (up to the maximum capacity) or
withdrawn (down to a minimum capacity chosen to avoid damaging deep discharge). The rate at
which the state of charge can change is constrained, and the state of charge decays hourly. The
parameters used for the electrical and thermal storage models are shown in following Table 1
(see also Stevens et al. and Symons et al.).

Table 1. Energy Storage Parameters

s . flow
description electrical bat terys thermal
charging efficiency (1) portion of energy input to storage that is useful 0.9 0.84 0.9
discharging efficiency (1) | portion of energy output from storage that is useful 1 0.84 1
decay (1) portion of state of charge lost per hour 0.001” 0.01 0.01

® Not all constraints are shown (e.g. flow batteries have more different constraints than electric storages).

7 Only active storage systems are considered. No thermal effects of the building shell are taken into account.

¥ Flow batteries differ from conventional rechargeable batteries in one significant way: the power and energy ratings
of a flow battery are independent of each other. This is made possible by the separation of the electrolyte and the
battery stack. Flow batteries can be rapidly ‘recharged’ by replacing the electrolyte liquid stored in an external tank.
? Please note that our decay number is relatively high due to the fact that the lifetime of lead acid batteries is
assumed at the upper end of the lifetime range. At the end of the lifetime the decay increases rapidly. Additionally,
the decay increases at higher temperature. However, future investigations will address the impact of different decay
numbers.
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maximum portion of rated capacity that can be

maximum charge rate (1) added to storage in an hour 0.1 n/a 0.25

maximum discharge rate | maximum portion of rated capacity that can be
(€))] withdrawn from storage in an hour 0.25 n/a 0.25

minimum state of charge | minimum state of charge as apportion of rated
1) capacity 0.3 0.25 0

The menu of available equipment options to DER-CAM for this analysis together with their cost
and performance characteristics is shown in Table 2 and 3.

Table 2. Menu of Available Equipment Options, Discrete Investments

reciprocating engine | fuel cell

capacity (kW) 100 200
sprint capacity 125

installed costs ($/kW) 2400 5005
installed costs with heat recovery ($/kW) 3000 5200
variable maintenance ($/kWh) 0.02 0.029
efficiency (%), (HHYV) 26 35
lifetime (a) 20 10

While the current set of available technologies is limited, any candidate technology may
be included. Technology options in DER-CAM are categorized as either discretely or
continuously sized. This distinction is important to the economics of DER because some
equipment is subject to strong diseconomies of small scale. Discretely sized technologies are
those that would be available to customers only in a limited number of discrete sizes, and DER-
CAM must choose an integer number of units, e.g. reciprocating engines. The costs for the
discrete fuel cell'® technology are interpolated from various studies as described in (Firestone
2004), which is based on data collected by the National Renewable Energy Laboratory
(Goldstein et al. 2003). The costs and performance data for the reciprocating engine are based on
data provided by Tecogen. Continuously sized technologies are available in such a large variety
of sizes that it can be assumed capacity close to the optimal could be acquired, e.g. battery
storage, the costs for which are roughly consistent with those described by the Electricity Storage
Association (see also Electricity Storage Association). The installation cost functions for these
technologies are assumed to consist of an unavoidable cost (intercept) independent of installed
capacity ($) representing the fixed cost of the infrastructure required to adopt such a device, plus
a variable cost proportional to capacity ($/kWh or $/kW).

19 Reciprocating engines are the most dominant technologies. Investigations show that no fuel cell or micro turbine
adoption takes place in our examples due to higher costs.
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Table 3. Menu of Available Equipment Options, Continuous Investments

electrical thermal flow absorption solar hotovoltaics
storage storage"" battery chiller thermal P
intercept costs ($) 295 10000 0 20000 1000 1000
variable costs 12 13 14 15 16 17
(/KW or $/kWh) 193 100 220/2125 127 500 6675
lifetime (a) 5 17 10 15 15 20
Results

Optimal DER Equipment for a Northern California Nursing Home

A numerical example was completed of a northern California Nursing Home in the Bay
Area operating during 2007. This facility has a peak total electrical load of 958 kW. Table 4
shows the prices used, which are based on local Pacific Gas and Electric (PG&E) rates. Natural
gas prices for the region were also obtained from PG&E tariffs. A marginal carbon emission
factor of 140 g/kWh for electricity purchased from PG&E was assumed (Marnay et al. 2002).
Finally, the carbon emission factor for each DG unit is calculated by dividing the natural gas
emission factor of 49 g/kWh by the appropriate higher heating value (HHV) efficiency. For
example, the carbon emission factor is 188 g/kWh for the 100 kW reciprocating engine. From
the data, DER is not necessarily more energy or carbon efficient than central station power. For
example, simple cycle on-site generation of electricity using reciprocating engines at this site
would be more carbon intensive than procurement from PG&E; however, using waste heat to
offset thermal or electrical loads can improve the overall carbon efficiency.

In order to address how carbon emissions and total site energy costs change when electric
and thermal storage is present, six DER-CAM runs were performed: 1. a do nothing case in
which all DER investment is disallowed, i.e., the nursing home meets its local energy demands
solely by purchases; 2. an invest case, which finds the optimal DER investment; 3. a low storage
and PV price tun; 4. to assess the value of storage systems, a run was performed forcing the
same investments as in the low storage price run 3, but in which storage is disallowed; 5. a low
storage, PV, and solar thermal price run; and 6. a low storage price and 60% PV price reduction
run.

' Please note that cold thermal storage is not among the set of available technologies, but could be added.
2 $/kWhelectricity

2 $/KWhpeq

' Flow batteries are characterized by both the energy content and power rating.

'3 abs. chiller capacity is in terms of electricity offset (electric load equivalent).

0 $/ kWof recovered heat

Y $/ kwelectricity
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Table 4. Input Energy Prices effective Nov. 2007

Summer (May - Oct.) Winter (Nov. — Apr.)
Electricity electricity demand electricity demand
Natural Gas
($/kWh) ($/kW) ($/kWh) ($/kW)
on-peak 0.16 15.04 0.04 $/kWh
mid-peak 0.12 3.58 0.12 1.86 4.96 fixed
($/day)
off-peak 0.09 0.10
fixed ($/day) 9.04

Sources: PG&E commercial tariffs, PG&E tariffs, PG&E commercial, and PG&E natural gas tariffs.
Summer on-peak: 12:00-18:00 during weekdays,

Summer mid-peak: 08:00-12:00 and 18:00-22:00 during weekdays, all other hours and days: off-peak;
Winter mid-peak: 08:00-22:00 during weekdays, all other hours and days: off-peak;

The major results for these six runs are shown in Table 5. In the do nothing case (run 1),
the nursing home meets all of its electricity demand via utility purchases and burns natural gas to
meet all of its heating requirements. The annual operating cost is $964 000, and 1088 t of
elemental carbon are emitted each year. In the invest in all technologies case (run 2) technology
parameters from Table 1, 2, and 3 are taken and DER-CAM finds the optimal system. The
optimal system for the site consists of three Tecogen gas engines, a 48 kW absorption chiller,
and a 134 kW solar thermal system. At current price levels, neither electric nor thermal storage is
economically attractive. Relative to the do nothing case, the expected annual savings for the
optimal DER system are $38000/a (ca. 4%) while the elemental carbon emissions reduction is
143 t/a (ca. 13%). Considering low storage prices of $50/kWh for thermal and $60/kWh for
electric storage, the annual operating costs drop by almost 5% (see run 3). However, the
elemental carbon reduction is only ca. 12%. This means that elemental carbon emission
reduction is lower with adoption of electric and thermal storages than without it (run 2). This
finding is proven by run 4, which forces the same results as in the low storage cost run 3, but
disallows storage adoption. The major driver for electric storage adoption is the objective to
reduce energy costs, and this can be very effectively reached by avoiding electricity consumption
during on-peak hours. In this example, the battery is charged by very cheap off-peak electricity
and displaces utility consumption during on-peak hours (see also Figure 6). The results for run 3
show increased electricity consumption due to charging / discharging inefficiency and decay.
Assuming the same marginal carbon emission rate during on-peak and off-peak hours results in
additional carbon emissions.

However, as shown in run 6, the combination of PV and electrical storage brings together
the positive economic effects of batteries with the positive environmental effects of PV. The
annual operating costs drop by 5.60% while the elemental carbon emission reduction is 23.35%
compared to the do-nothing case run 1. However, a part of the battery capacity is replaced by
direct PV usage as indicated in Figure 7 and PV is not used for battery charging.
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Table 5. Annual Results for the Northern California Nursing Home'®

run 1 run 2 run 3 run 4
©n o = ]

2 ER-) :%J § Z

s =228 i3

e | 52| £5a| &

s | 8| 88s| &7

equipment
Tecogen 100 kW with heat exchanger
(kW) 300 300 300
abs. Chiller (kW in terms of electricity) 48 46 40
solar thermal collector (kW) n/a 134 109 43
PV (kW) 0 0 517
electric storage (kWh) 0 4359 2082
thermal storage (kWh) 0 123 47
annual total costs (k$)
total 964 926 916 926 910
% savings compared to do nothing n/a 3.94 4.98 3.94 5.60
annual energy consumption (GWh)
electricity 5.76 3.23 3.33 3.22 2.40
NG 5.70 9.99 10.00 10.03 10.10
annual elemental carbon emissions (t/a)

emissions 1088 945 960 946 834
% savings compared to do nothing n/a 13.14 11.76 13.05 23.35

Another important finding for the nursing home is that the number of installed Tecogen

reciprocating engine stays constant in all performed runs. The reason for this is the CHP
favorable heat and electricity load (see also Figure 4). High electricity demand combined with
high heat demand makes CHP very attractive.

Please also note that these results are estimated assuming perfect reliability of DER
equipment. Imperfect reliability would mostly affect the demand charges, but would also have
other effects on the value of the project, e.g., on the standby charge as back up to DER would
have to be provided by the utility.

Besides the optimal investment plan, DER-CAM provides the microgrid with an optimal
schedule for each installed technology, which we illustrate using the low storage cost run 3 and
run 6 (see Figures 5 through 7). Note that since electric cooling loads can be offset by the
absorption chiller, there are four possible ways to meet cooling loads: utility purchases of
electricity, on-site generation of electricity, absorption chiller offsets, and stored electricity in
batteries. By finding the optimal combination for each hour of the test year, DER-CAM provides
the microgrid with an optimal operating schedule for each of its installed technologies.

18 Flow batteries are never chosen, and therefore, omitted in table 5.
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Figure 4. Total Heat and Electricity Demand
for the Nursing Home on January and July
Weekdays

1000
900

800

600 -
500 -
400 -

kWheat / kWelectricity

300
200

100

123 456 7 8 91011121314151617 1819202122 2324

—@-January: Total Electricity Load (kWelectricity)
—<July: Total Heating Load (kWheat)
—&—July: Cooling Load (kWelectricity)

—e—January; Total Heating Load (kWheat)
—&—January: Cooling Load (kWelectricity)
—i—July: Total Electricity Load (kWelectricity)

Figure 5. Low Storage and PV Price (run
3) Diurnal Heat Pattern for the Nursing
Home on a January Weekday
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Figure 6. Low storage and PV Price (run 3)
Diurnal Electricity Pattern for the Nursing
Home on a July Weekday
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Figure 7. Low Storage Price and 60% PV
Price Reduction (run 6) Diurnal E. Pattern
for the Nursing Home on a July Weekday
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Optimal DER Equipment for a Southern California School

A numerical example was also completed of a southern California school in the Los
Angeles area operating in 2007. This facility has a peak total electrical load of 884 kW. Table 6
shows the prices used, which are based on local Southern Californian Edison (SCE) rates.
Natural gas prices for the region were obtained from SoCal gas. A marginal carbon emission
factor of 215 g/kWh for electricity purchased from SCE was assumed (Marnay et al. 2002).

The same runs as for the northern California nursing home were performed and confirm
the higher carbon emissions with storage due to storage inefficiencies and charging by grid

10
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power (see also Table 7). However, the major difference between the nursing home and the
school is the absence of any internal combustion engine. The low off-peak electricity and heating
demand combined with cheap electricity during off-peak hours (compare Tables 4 and 6) makes
the adoption of natural gas engines with CHP unattractive.

Table 6. Input Energy Prices (Nov. 2006 for Natural Gas and July 2007 for Electricity)

Summer (June — Sep.) Winter (Oct. — May)
Electricity electricity demand | electricity | demand

($/kWh) ($/kW) ($/kWh) ($/kW) Natural Gas
non-coincident 9.71 9.71 0.03 $/kWh
on-peak 0.12 15.37 fixed
mid-peak 0.09 5.19 0.10 0.41 ($/day)
off-peak 0.07 0.07
fixed ($/month) 414.98

Sources: SCE time of use and SoCal natural gas tariffs.

Summer on-peak: 12:00-18:00 during weekdays,

Summer mid-peak: 08:00-12:00 and 18:00-23:00 during weekdays, all other hours and days: off-peak;
Winter mid-peak: 08:00-21:00 during weekdays, all other hours and days: off-peak;

Table 7. Annual Results for the Southern California School

runl |[run?2 run 3 run 4
[Z ) Q 2]
2 2 eh 47
. | 8% 5 5 &
2 | FE (&2 I S 5
£ =2 | gE2 2 2 g -
= -5 S > & E) e s &
o 7 R=] > N ® “ 0 o
[=} 0; = 2 9 [\l o > 2 o 9
o Q S o 5 A =)
s E2 |2 35% 2 o5
equipment
Tecogen 100 kW with HX (kW) 0 0
abs. Chiller (kW in terms of electricity) 139 106
solar thermal collector (kW) /a 65 72
PV (kW) 0 0
electric storage (kWh) 0 2279
thermal storage (kWh) 0 41
annual total costs (k$)
total 288 280 251 280 249
% savings compared to do nothing n/a 2.77 12.85 2.78 13.54
annual elemental carbon emissions (t/a)
emissions 360 358 368 356 291
% savings compared to do nothing n/a 0.56 -2.17 1.11 19.17

19 . . . .
Please note that we do not consider society costs in our analysis.
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Both numerical examples show that electric storage adoption is driven by economic
decisions to minimize total energy costs by avoiding on-peak grid purchases. To avoid higher
carbon emissions, the storage systems have to be charged by renewable energy sources such as
PV or solar thermal. However, this possibility depends strongly on the load profile as well as
solar insolation and economic parameters, i.e., the electricity tariff structure. Due to this finding,
the off-peak operation of high-efficiency CHP natural gas units might help to decrease the off-
peak carbon emission levels to eliminate the impact of storage inefficiencies (see also the hotel
example in Marnay et al. 2008). Further investigations of a wider variety of building types will
be performed in the future.

Figure 8. Low Storage and PV Price (run 3) Figure 9. Low Storage and 60% PV Price
Diurnal Electricity Pattern for the School Reduction (run 6) Diurnal E. Pattern for
on a May Weekday the School on a May Weekday
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Conclusions

In this paper the new electrical and thermal storage capabilities of DER-CAM are
demonstrated for two California commercial sites. The results show a wide range in the
complexity of optimal systems and the effects on annual energy costs and carbon emissions. One
major conclusion from the investigations is that heat, electric load profile, tariff structure,
available solar insolation, and installed DG equipment (PV, solar thermal, natural gas driven
reciprocating engines, etc.) have an enormous impact on the site’s achievable energy cost as well
as carbon emission reduction. Almost every building, in combination with the tariff structure, is
unique. As shown for the nursing home and school example in this work, the demand charge
reduction is a significant driver for the adoption of electric storage technologies. However, the
high electric demand during on-peak hours, which coincident with the solar insolation, results in
peak shaving by the battery and PV. Therefore, to satisfy the site’s objective of minimizing
energy costs, the batteries have to be charged by grid power during off-peak hours instead of PV
during on-peak hours. This circumstance, combined with storage inefficiencies, results in higher
carbon emissions for the nursing home and the school example than without storages. However,
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different load profiles (high energy consumption in the evening) can result in a storage charging
by efficient (i.e CHP units) or renewable energy sources that compensate for the storage
inefficiencies. Thus, a wide variety of building types will be investigated in the future to derive
load profile and tariff structure pattern which combines the positive economic effects of storage
with the positive environmental effects of high efficient low carbon intensive technologies.
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