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Abstract
This paper introduces an adaptive mesh and algorithm refinement method
for fluctuating hydrodynamics. This particle-continuum hybrid simulates the

dynamics of a compressible fluid with thermal fluctuations. The particle al-



gorithm is direct simulation Monte Carlo (DSMC), a molecular-level scheme
based on the Boltzmann equation. The continuum algorithm is based on the
Landau-Lifshitz Navier-Stokes (LLNS) equations, which incorporate thermal
fluctuations into macroscopic hydrodynamics by using stochastic fluxes. It uses
a recently-developed solver for LLNS, based on third-order Runge-Kutta. We
present numerical tests of systems in and out of equilibrium, including time-
dependent systems, and demonstrate dynamic adaptive refinement by the com-
putation of a moving shock wave. Mean system behavior and second moment
statistics of our simulations match theoretical values and benchmarks well. We
find that particular attention should be paid to the spectrum of the flux at
the interface between the particle and continuum methods, specifically for the

non-hydrodynamic (kinetic) time scales.

1 Introduction

Adaptive mesh refinement (AMR) is often employed in computational fluid dy-
namics (CFD) simulations to improve efficiency and/or accuracy: a fine mesh is
applied in regions where high resolution is required for accuracy, and a coarser
mesh is applied elsewhere to moderate computational cost. For dynamic prob-
lems, the area that is a candidate for mesh refinement may change over time, so
methods have been developed to adaptively identify the refinement target area
at each time step (e.g., [1, 2, 3]).

However, at the smallest scales, on the order of a molecular mean free
path, continuum assumptions may not hold, so CFD approaches do not accu-
rately model the relevant physics. In such a regime, adaptive mesh and algo-
rithm refinement (AMAR) improves on AMR by introducing a more physically-
accurate particle method to replace the continuum solver on the finest mesh. An
improved simulation does not result from continued refinement of the mesh, but
rather “refinement” of the algorithm, i.e., switching from the continuum model
to a particle simulation. Introduced in [4], AMAR has proved to be a useful
paradigm for multiscale fluid modeling. In this paper, we describe AMAR for

fluctuating hydrodynamics.



Random thermal fluctuations occur in fluids at microscopic scales (con-
sider Brownian motion), and these microscopic fluctuations can lead to macro-
scopic system effects. The correct treatment of fluctuations is especially impor-
tant for stochastic, nonlinear systems, such as those undergoing phase transi-
tions, nucleation, noise-driven instabilities, and combustive ignition. In these
and related applications, nonlinearities can exponentially amplify the influence
of the fluctuations. As an example, consider the classical Rayleigh-Taylor prob-
lem and the related Richtmyer-Meshkov instability that are prototypical prob-
lems for the study of turbulent mixing. A heavy fluid sits above a light fluid, and
spontaneous microscopic fluctuation at the interface between the fluids leads to
turbulent mixing throughout the domain. Kadau and co-workers have recently
studied the development of this turbulence at the atomic scale [5, 6]. That
group’s atomistic simulations indicate that thermal fluctuations are an impor-
tant driver of the behavior of complex flows, certainly at the smallest scales
and perhaps at all scales. For example, in stochastic atomistic simulations of
Rayleigh-Taylor, and in laboratory experiments, spikes of the heavy fluid that
project into the light fluid can break off to form isolated droplets; this phe-
nomenon cannot be reproduced accurately by deterministic continuum models.
However, the physical and temporal domain on which this type of atomistic sim-
ulation is computationally feasible is extremely limited (less than a billion atoms
per nanosecond) given current algorithms and near-term computational power.
The goal of AMAR for fluctuating hydrodynamics is to effectively enhance the
computing power available for investigations of this type of phenomenon.

Hadjiconstantinou has reviewed theoretical and numerical approaches
to challenges arising from the breakdown of the Navier-Stokes description at
small-scale and (with Wijesinghe) described a variety of particle-continuum
methods for multiscale hydrodynamics [7, 8].  The work presented here is
the latest effort in a line of work that has focussed on building AMAR hy-
brids for flows of increasing sophistication. A hybrid coupling Navier-Stokes
and DSMC was developed in [4], with several of the technical issues necessary
for implementation extended in [9]. Stochastic hybrid methods were developed

in [10] (mass diffusion), [11] (the ”train model” for momentum diffusion), and



[12] (Burgers’ equation). Other recent work on coupling particle and continuum
methods includes [13] (DSMC and Navier-Stokes, for aerospace applications),
[14] (molecular dynamics and isothermal fluctuating hydrodynamics, for poly-
mer simulations), and [15] (an adaptive refinement approach based on a direct
numerical solution of the Boltzmann transport equation and kinetic continuum
schemes).

The AMAR approach is characterized by several design principles. In
contrast to other algorithm refinement (AR) approaches (see, e.g. [16]), in
AMAR (as in AMR) the solution of the macroscopic model is maintained over
the entire domain. A refinement criterion is used to estimate where the im-
proved representation of the particle method is required. That region, which
can change dynamically, is then “covered” with a particle patch. In this hier-
archical representation, upon synchronization the particle solution replaces the
continuum solution in the regions covered by the molecular patches.

Given their complexity, the implementations of hybrid codes benefit
greatly from modularization (e.g., see [13]). Another fundamental tenant of the
AMAR approach to particle-continuum hybridization is that the coupling of the
two algorithms is completely encapsulated in several “hand-shaking” routines.
Taken as a unit, the particle method plus these modular routines perform exactly
the same function as any fine grid in a single-algorithm AMR method. The
encapsulated coupling routines perform the following functions: continuum data
is used to generate particles that flow into the particle region; flux across the
boundaries of the particle region is recorded and used to correct neighboring
continuum values; cell-averaged data from the particle grid replaces data on
the underlying continuum grid; continuum data is used to generate particles to
initialize new particle regions identified by the refinement criterion

Implementation details are given in the next two sections of the pa-
per. Our continuum approach for fluctuating hydrodynamics is an explicit fi-
nite volume method for solving the Landau-Lifshitz Navier-Stokes equations
for compressible fluid flow (see Section 2.1), and, as noted above, the particle
method is direct simulation Monte Carlo (DSMC) (see Section 2.2). Hybrid cou-

pling details are discussed in Section 3. Numerical results for problems with a



static refinement region are presented in Section 4, for a variety of steady-state
and time-dependent problems with the flow restricted to one spatial dimen-
sion. (Forthcoming work will illustrate this construction extended to 2- and
3-dimensional systems.) Details of adaptive refinement are discussed in Sec-
tion 4.5, including numerical results for an adaptive refinement shock-tracking

problem. We conclude, in Section 5, with a discussion of future work.

2 Components of the Hybrid

2.1 Continuum Approach

The continuum model and solver discussed in this section was introduced in
[17], and the reader is referred to that paper for further details of the method
and measurements of its performance.

To incorporate thermal fluctuations into macroscopic hydrodynamics,
Landau and Lifshitz introduced an extended form of the Navier-Stokes equations
by adding stochastic flux terms [18]. The Landau-Lifshitz Navier-Stokes (LLNS)

equations may be written as

oU/ot+V-F=V-D+V-8S (1)
where
P
U= J
E

is the vector of conserved quantities (density of mass, momentum and energy).
The hyperbolic flux is given by
pv
F=| pvw+PI
(E+P)v

and the diffusive flux is given by



where v is the fluid velocity, P is the pressure, T is the temperature, and
r=n(Vv+ Vvl — %IV -v) is the stress tensor. Here 1 and & are coefficients
of viscosity and thermal conductivity, respectively, where we have assumed the
bulk viscosity is zero.

The mass flux is microscopically exact but the other two flux compo-
nents are not; for example, at molecular scales heat may spontaneously flow
from cold to hot, in violation of the macroscopic Fourier law. To account for

such spontaneous fluctuations, the LLNS equations include a stochastic flux

0
S = S ;
Q+v-S

where the stochastic stress tensor S and heat flux Q have zero mean and co-

variances given by
(Sij(r, 1) Ske (v, ') = 2kpnT (855675 + 615 615 — 20,5 05y) 6(x —x')(t — 1),

(Qi(r, 1)Q;(x',t')) = 2kpkrT?5)s 6(xr — x')6(t — '),

and
<Sij (I‘, t) Qk (rlv t/)> =0,

where kp is Boltzmann’s constant. The LLNS equations have been derived
by a variety of approaches (see [18, 19, 20, 21]) and have even been extended
to relativistic hydrodynamics [22]. While they were originally developed for
equilibrium fluctuations, specifically the Rayleigh and Brillouin spectral lines in
light scattering, the validity of the LLNS equations for non-equilibrium systems
has been derived [23] and verified in molecular simulations [24, 25, 26].

For simplification, in this work we restrict our attention to flow in
one dimension. That is, we take the fluid velocity v = (u,v,w) to be three-

dimensional, but we only consider spatial derivatives in the x-direction. Then



(1) simplifies to
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+% 512 (2)
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where s11, S12, S13, and ¢ are independent random variables with zero mean and

variances,
8kpnT
(s11(x, t)s11 (2, ) = :f: S(x —x')o(t —t),
(s12(w, t)s12(2’, t)) = 2anT5(x —2)o(t —t'),
o
(s13(w, t)s13(2’, t)) = 2anT5(x —2)o(t —t'),
o
and
2
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o

with o being the surface area of the system in the yz-plane.

For the calculations described in this paper take the fluid to be a di-
lute gas with equation of state P = pRT (ideal gas law) and energy density
E = cypT + 1p(u® + v? + w?). The transport coefficients are only functions of
temperature, specifically we take them as 1 = nov/T and = kov/T, where the
constants 19 and kg are chosen to match the viscosity and thermal conductivity
of a hard sphere gas. We also have gas constant R = kg/m and ¢, = %
where m is the mass of a particle and the ratio of specific heats is taken to be
v = g, that is, a monatomic gas. Note that generalizations of fluid parameters
are straight-forward and the choice of a monatomic hard sphere gas is for con-

venience in matching parameters in the PDE with those of DSMC simulations

(see section 2.2).



The principal difficulty in solving Eqs.(2) arises because there is no
stochastic forcing term in the mass conservation equation. Accurately captur-
ing density fluctuations requires that the fluctuations be preserved in computing
the mass flux. Another key observation is that the representation of fluctua-
tions in computational fluid dynamics schemes is also sensitive to the time step,
with extremely small time steps leading to improved results. This suggests that
temporal accuracy also plays a significant role in capturing fluctuations. Based
on these observations, a discretization aimed specifically at capturing fluctua-
tions in the LLNS equations has been developed [17]. The method is based on
a third-order, total variation diminishing (TVD) Runge-Kutta temporal inte-
grator (RK3) [27, 28] combined with a centered discretization of hyperbolic and
diffusive fluxes.

The RK3 discretizaton can be written in the following three-stage form:

nil/3s e At
Uj - Uj - E(]:j-i-lﬂ 1/2)
n+2/38  _ Beon  loongass grt1/3 _ pnt1/3
Uj - ZUJ + ZUj A ( ) j4+1/2 1/2)
1 2
n+1 n n+2/3 n+2/3 n+2/3
Uj - gUJ’ + ng < > j+1/2 T 1/2>

where F™ = —F(U™) + D(U™) + S(U™) and S = \/2S. The diffusive terms
D are discretized with standard second-order finite difference approximations.

For SjH /2, the approximation to the stochastic stress tensor, is computed as

kB
Sy = \/Ath (14 305.) i1 Tyer +nT5) Rigaye

where V, = oAx is the volume of a cell and the R’s are independent, Gaussian
distributed random values with zero mean and unit variance. Similarly, the

discretized stochastic heat flux is evaluated as

kp
q= \/m (Kj+1(Tj+1)? + £5(T5)?) Rjt1/0-

Note that S is evaluated using the instantaneous values of the state variables,
i.e., the noise here is multiplicative. In [17] the effect of this multiplicity was
found to be negligible.

Combining the three stages, we can write

At
n+1l _ n >
Uj - Uj A (‘7: +1/2 — ]:jfl/2) .



where
1 1 2
> _ n n+1/3 n+2/3
Fivre =Tt gF e 3500
The variance in the stochastic flux at j + 1/2 is given by

1 0 1 an+t1/3 2 ant2/3
(87112 = {(G8Ty) +58710) + 56871020

2 2 2
= (5) G+ (5) @+ (2) G
Neglecting the multiplicity in the noise we obtain the desired result that ((S*¥)?) =
1((S)?) = ((S)?), that is, taking S = /28 corrects for the reduction of the
stochastic flux variance due to the three-stage averaging of the fluxes. However,
this treatment does not directly affect the fluctuations in density, since the com-
ponent of S in the continuity equation is zero . The density fluctuations are
controlled by the spatial discretization. To compensate for the suppression of

density fluctuations due to the temporal averaging we interpolate the momen-

tum J = pu (and the other conserved quantities) from cell-centered values:
Jiv172 = ar(Jj + Jjp1) — ae(Jj—1 + Jjt2), (3)

where

o =W7+1)/4  and  ay=(VT-1)/4.

Then in the case in which J is statistically stationary and constant in space we

have exactly J; 1/ = J and (6J2,, ,) = 2(6J?), as desired; the interpolation is

j+1/2
consistent and compensates for the variance-reducing effect of the multi-stage

Runge-Kutta algorithm.

2.2 Particle Approach

The particle method used here is the direct simulation Monte Carlo (DSMC)
algorithm, a well-known method for computing gas dynamics at the molecular
scale; see [29, 30] for pedagogical expositions on DSMC, [31] for a complete
reference, and [32] for a proof of the method’s equivalence to the Boltzmann
equation. As in molecular dynamics, the state of the system in DSMC is given
by the positions and velocities of particles. In each time step, the particles

are first moved as if they did not interact with each other. After moving the



particles and imposing any boundary conditions, collisions are evaluated by a
stochastic process, conserving momentum and energy and selecting the post-
collision angles from their kinetic theory distributions.

While DSMC is a stochastic algorithm the statistical variation of the
physical quantities has nothing to do with the “Monte Carlo” portion of the
method. Equilibrium fluctuations are correctly simulated by DSMC in the same
fashion as in molecular dynamics simulations, specifically, by the fact that both
algorithms produce the correct density of states for the appropriate equilibrium
ensembles. For example, for a dilute gas the velocity distribution of the par-
ticles is the Maxwell-Boltzmann distribution and the positions are uniformly
distributed. For both equilibrium and non-equilibrium problems DSMC yields
the physical spectra of spontaneous thermal fluctuations, as confirmed by excel-
lent agreement with fluctuating hydrodynamic theory [33, 25, 24] and molecular
dynamics simulations [34, 26].

In this work the simulated physical system is a dilute monatomic hard-
sphere gas. For engineering applications more realistic molecular models are
regularly used in DSMC; for such a case the construction presented here would
only be modified by adjusting the functional form of the transport coefficients
and including internal degrees of freedom in the total energy. Our simulation
geometry is a rectangular volume with periodic boundary conditions in the y
and z directions. In the z direction, Dirichlet (or “particle reservoir”) boundary
conditions are used to couple the DSMC domain to the continuum domain of

our hybrid method. These interface conditions are described in the next section.

3 Hybrid implementation

The fundamental goal of the algorithm refinement hybrid is to represent the fluid
dynamics with the low-cost continuum model everywhere except in a localized
region where higher-fidelity particle representation is required. In this section,
we assume that a fixed refinement region is identified a priori. Additional
considerations necessary for dynamic refinement are discussed in Section 4.5.

The coupling between the particle and continuum regions uses the ana-

10



log of constructs used in developing hierarchical mesh refinement algorithms.
The continuum method is applied to the entire computational domain, and a
particle region, or patch, is overlaid in refinement regions. For simplicity, in this
discussion we will assume that there is a single refined patch. Generalization of

the approach to include multiple patches (e.g. [9]) is fairly straightforward.
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Figure 1: Schematic representation of the coupling mechanisms of the hybrid al-
gorithm. 1. Advance continuum solution. 2. Advance DSMC solution (2a), using
continuum data in reservoir boundaries (2b). 3. Reflux (3a) to correct continuum

solution near interface (3b).

Integration on the hierarchy is a three step process, as depicted in Fig-
ure 1. First (1), we integrate the continuum algorithm from " to t"*1, i.e., for a
continuum step At. Next (2), the particle simulation is advanced to time "1,
Continuum data at the edge of the particle patch provides reservoir boundary
conditions for the particle method. The implementation of reservoir boundary
conditions for DSMC is described in [4]. As in that paper, particles that enter
the particle patch have velocities drawn from the either the Maxwell-Boltzmann
distribution or the Chapman-Enskog distribution. While the Chapman-Enskog
distribution is preferred in deterministic hybrids (see [4]) we find that in the
stochastic hybrid the Maxwell-Boltzmann distribution sometimes yields bet-
ter results for the second moment statistics (see Sections 4.1 and 4.3). While
Chapman-Enskog yields slightly more accurate results for time-dependent prob-
lems, where we focus on the mean behavior of the system (see Sections 4.4 and
4.5), one must recall that the derivation of the LLNS equations is based on the
assumption of local equilibrium (e.g., gradients do not appear in the amplitudes
of the stochastic fluxes). We return to this point in Section 5.

When particle velocities in the reservoir cells are generated from the
Chapman-Enskog distribution, the gradients of fluid velocity and temperature

must be estimated in those cells. Furthermore, we also account for density gra-
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dients and generate the particle positions in the reservoir cells accordingly (see
the Appendix). However, since the fluctuating continuum model generates steep
local gradients, even at equilibrium, we use a regional gradient estimate to rep-
resent underlying gradient trends. The regional gradient D(§) is implemented

as:
1 (1 1S
D(); = Az |3 Z§j+z‘ -3 Zé}e(iq) ; (4)
=1 =1

where ¢ is one of the conserved quantities and S indicates the width of the
gradient stencil (we use S = 6). Because the Chapman-Enksog distribution is
derived from a perturbation expansion in dimensionless gradient we use slope-
limiting to bound the breakdown parameter (see [35] for details).

In general, DSMC uses smaller space and time increments than the
continuum method. Spatial refinement is accomplished by dividing the DSMC
patch into any number of smaller cells at the collision stage of the algorithm. For
simplicity, we assume that an integer number of time steps elapse on the particle
patch for every continuum time step. The old and new continuum states, U and
U ;H’l, are retained until all the intermediate particle time steps are complete,
and the continuum data is interpolated in time to provide appropriate boundary
data at each particle method time step. An alternative version of the DSMC
algorithm allows the time steps to be event-driven[12], but here we use time
increments of fixed size.

Finally, step (3) corrects the macroscopic solution to reflect the effect of
the microscopic model as though the integration were tightly coupled. On the
region covered by the particle representation we replace the continuum solution
by the more accurate particle representation. That is, for each cell covered by

the particle patch we set

anrl _ ij
J oAz

g o Zm YT (5)
J oAz

Entl ENj % (u2 +o?+ w2) m
J o oAz ’

where N; is the number of particles in cell j, m is the mass of a particle, and

oAz is the volume of a computational cell. In the calculation of each momentum
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component, the product of the particle mass with the velocity is summed over
all particles in the cell. In the calculation of energy we sum the squares of the
three velocity components over all the particles in the cell.

Moreover, we must correct (“reflux”) the continuum solution in the
cells immediately adjacent to the particle region, to account for the gas that
entered or exited the particle patch during step (2). Specifically, suppose the
leftmost cell of the particle patch is cell j + 1. The value in continuum cell j
was already updated with the continuum stochastic RK3 scheme, using the flux
F=-F+D+S computed from the continuum values. However, this value is
not consistent with the microscopic flux given by the net number of particles
moving across edge j + 1/2. The reflux step corrects the value in cell-j so that
it is consistent with the microscopic flux at j + 1/2.

To perform the refluxing correction we monitor the number of particles,
Nﬁl /2 and NJ:l /25 that move into and out of the particle region, respectively,
across the continuum/particle interface at edge j 4+ 1/2. We then correct the

continuum solution as

n+1 n+1 At
Ulj = Uj+ + E(‘Fj%rl/Q - -7:;11/2) (6)

where the prime indicates the value after the refluxing update. The net particle

flux is
J:l/Q - ﬁrl/z
P m - —
fj+1/2 = oA\t Zl Vi — Zz Vi (7)

322 vilP =320 [vil?
where Y. and ). are sums over particles crossing the interface from left-to-
right and right-to-left, respectively.

This update effectively replaces the continuum flux component of the
update to U;-“rl on edge j + 1/2 by the flux of particles with their associated
momentum through the edge. An analogous refluxing step occurs in the cell
adjacent to the right-hand boundary of the particle region. Finally, note that
this synchronization procedure guarantees conservation. The technical details
of refluxing in higher dimensions (e.g., the treatment of corners) are discussed

in Garcia et al. [4].
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4 Numerical results

This section presents a series of computational examples, of progressively in-
creasing sophistication, that demonstrate the accuracy and effectiveness of the
algorithm refinement hybrid. First we examine an equilibrium system, then
several non-equilibrium examples, concluding with a demonstration of adaptive
refinement.

In our testing we compare three numerical schemes: the stochastic
scheme based on three-stage Runge-Kutta for the Landau-Lifshitz Navier-Stokes
equations discussed in Section 2.1 (Stoch. PDE only), and two algorithm re-
finement hybrids as described in Section 3. The first hybrid couples DSMC and
stochastic RK3 (Stoch. Hybrid). The second hybrid is similar but without a
stochastic flux in the LLNS equations, that is, using a deterministic version of
RK3 (Deter. Hybrid). In some of the tests the results from these schemes are
compared with data from a pure DSMC calculation.

In principle, the continuum grid of an AMAR hybrid may have as many
hierarchical levels as necessary, and there may be many disjoint and/or linked
DSMC patches. For simplicity, here we will consider a single DSMC region
embedded within a single-level continuum grid. Furthermore, in the following
numerical examples we use equal mesh spacing, Az, and time step size, At,
in both the continuum and particle methods. The straightforward adjustments
necessary for implementing a DSMC grid with smaller Ax and At are presented

in Section 3.

4.1 Equilibrium system: state variables

First, we consider a system in a periodic domain with zero bulk flow and uniform
mean energy and mass density. Parameters for this equilibrium system are given
in Table 1. Results from this first test problem are depicted in Figures 2-5. For
both algorithm refinement hybrids, the particle patch is fixed at the center of
the domain, covering cells 15-24, indicated in the figures by vertical dotted
black lines. For this equilibrium problem the particles in the patches used

to provide boundary reservoirs for DSMC have velocities generated from the
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equilibrium in a periodic domain.

Molecular diameter (argon) 3.66 x 1078
Molecular mass (argon) 6.63 x 10723
Reference mass density 1.78 x 1073
Reference temperature 273
Specific heat (c,) 3.12 x 10°
Sound speed (c) 30781
Reference mean free path (\) 6.26 x 10~°
Reference mean free time (t,,,) | 1.64 x 10719
System length 1.25 x 10~%
System volume 1.96 x 10716
Number of computational cells 40

Cell length (Ax) 3.13x 107¢
Time step (At) 1.0 x 10712

Table 1: System parameters (in cgs units) for simulations of a dilute gas at

Maxwell-Boltzmann distribution. In each simulation the system is initialized
near the final state and allowed to relax for 5 x 10° time steps. Statistics are
then gathered over 107 time steps. Note that in these first tests we confirmed
that all three schemes conserve total density, momentum and energy; recall that
the hybrids are conservative due to the “refluxing” step. !

First, we examine mass density; results from the various numerical
schemes are shown in Fig. 2. The first panel shows the mean of mass den-
sity at each spatial location, (p;), and the second panel shows the variance,
007) = ((pi = (pi))?)-

(0pidpj=20), that is, the covariance of dp; with the value at the center of the

The third panel shows the center-point correlation,

1When the grids move dynamically this exact conservation is lost because of quantization

effects associated with initialization of a particle distribution from continuum data.
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Mass Density Statistics

—-— Deter. hybrid

—o— Stoch. hybrid
= = Theory

Figure 2: Mean, variance, and center point correlation of mass density versus spatial
location for a system at equilibrium. Vertical dotted lines depict the boundaries of
the particle region, for both hybrids. Note that, for clarity, the correlation value at

1= j = 20 is omitted from the plot.

domain (j = 20). These three quantities are estimated from samples as

1 &

S p=1
e

) = |+ (p?)2> —(pi)?%,
S n=1
1 &
(6pidp20) = <— P?P?o) — (pi){p20),
S p=1
where N, = 107 is the number of samples and i = 1,...,40. Similar statis-

tics for x-momentum, y-momentum, and energy are displayed in Figs. 3 and
5;the statistics for z-momentum are similar to those for y-momentum, and are
omitted here. We only consider these conserved mechanical variables because
the continuum scheme is based on them, they are easily measured in molecular
simulations, and hydrodynamic variables, such as pressure and temperature, are

directly obtained from these mechanical variables [36].
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—e— Stoch. PDE only
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Il J
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Figure 3: Mean, variance, and center point correlation of x-momentum versus spa-
tial location for a system at equilibrium. Vertical dotted lines depict the boundaries
of the particle region, for both hybrids. Note that, for clarity, the correlation value

at ¢ = j = 20 is omitted from the plot.

We obtain the correct mean values for all three schemes, with the con-
tinuum method exhibiting some numerical oscillations, most notably in the x-
momentum. For the most part, the correct variance values are also obtained by
the two stochastic schemes. In fact, the stochastic continuum method used here
was developed in [17] with the particular goal of correctly reproducing the vari-
ances of conserved quantities. Nevertheless, some localized errors in variance
introduced by the stochastic hybrid algorithm are evident in these figures. At
the left and right boundaries of the particle patch, there is a peak error in the
variance of about 23% for mass density and 14% for energy. These discrepancies
are discussed in detail in Section 4.2.

Figs. 2-5 also illustrate the effect on fluctuations when the hybrid’s
continuum PDE scheme does not include a stochastic flux. Clearly, the variances

drop to near zero inside the deterministic continuum regions, left and right of
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Figure 4: Mean, variance, and center point correlation of y-momentum versus spa-
tial location for a system at equilibrium. Vertical dotted lines depict the boundaries
of the particle region, for both hybrids. Note that, for clarity, the correlation value

at ¢ = j = 20 is omitted from the plot.

the particle patch. More significantly, the variances within the patch are also
damped. Even more interesting is the appearance of a large correlation of
fluctuations in the particle region of the deterministic hybrid. It is well-known
that correlations such as those appearing in the deterministic hybrid are present
when a fluid is out of thermodynamic equilibrium (see Sec. 4.3). The results
shown here for the center point correlation in the deterministic hybrid emphasize
that the absence of fluctuations in the PDE causes the particle region to be in
a non-equilibrium state; similar results were observed in [11, 12]. This result
underscores the importance of including fluctuations in the continuum model
for problems in which the correct fluctuation structure is needed in the particle

region.
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Figure 5: Mean, variance, and center point correlation of energy versus spatial
location for a system at equilibrium. Vertical dotted lines depict the boundaries of
the particle region, for both hybrids. Note that, for clarity, the correlation value at

1= j = 20 is omitted from the plot.

4.2 Equilibrium system: fluxes

Ideally, a hybrid method should produce a seamless integration at the interface
between two algorithms. However, in Section 4.1 we saw that an error arises in
the variance of mass density and the variance of energy at algorithm refinement
interfaces where the particle method and continuum method interact (see Figs.
2 and 5). Fluxes are fundamental to the coupling mechanism in AMAR: contin-
uum cells adjacent to a refinement interface are updated with particle flux (see
Eq. (6)). Therefore, to investigate these errors in the variance, in this section
we focus on statistical properties of the flux. We restrict our attention to mass
flux, since it is determined by a single factor: x-momentum in the continuum
formulation, as in Eq. (2), and number of particle crossings in the discrete
formulation, as in Eq. (7).

In [17] we demonstrated that the stochastic RK3 method and DSMC
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Table 2: Variance of x-momentum and of mass flux at equilibrium.

(8J%) Computed value Thermodynamic theory Pct. error
Stoch. PDE only 13.62 13.34 2.1%
DSMC 13.21 13.34 -1.0%

<5F(1)2> Computed value  Hydrodynamic theory  Kinetic theory Pct. error
Stoch. PDE only 2.84 x 10712 2.72 x 10712 4.3%
DSMC 1.44 x 10719 1.46 x 1010 -1.8%

both obtain the correct means, variances, and correlations, both spatial and
temporal, of conserved quantities at equilibrium. Nevertheless, the nature of
the fluxes differs markedly between the two methods. To illustrate this point,
we consider a pure fluctuating continuum calculation and compare it to a pure
DSMC calculation, for the same equilibrium test problem discussed in Section
4.1.

As shown in Table 2, the variance of x-momentum, (§.J2), as obtained
by the continuum method and by DSMC, are each in agreement with thermo-
dynamic theory. (Derivation of the theoretically exact variance is discussed in
[36].) Hydrodynamic theory directly relates the mass flux to the momentum,

and for the stochastic RK3 scheme the variance of mass flux is given by

<(6F(1))2> —2 (%)2 (6J2) =2 (%)2 ’fjj. (8)

(See also the discussion of Eq. (3).) On the other hand, kinetic theory predicts

that the number of particles crossing a cell interface is Poisson distributed, with

(N=) = {(68)?) = % (£)ont 2’:?

(Derivation is discussed in [31], for example.) From this we have the variance

of the mass flux given by

2

((6r0)") = g (o0 —7) = g o)

Comparing eqns. (8) and (9) one finds that the hydrodynamic and kinetic theory

expressions match when the Courant number, C' = cAt/Axz, is order one yet for

the runs presented here C'~ 10~2 (see Table 1).
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From Table 2, we see that the variance of the mass flux for the con-
tinuum method is in good agreement with the hydrodynamic theory, Eq. (8),
and the corresponding DSMC result is in good agreement with kinetic theory,
Eq. (9). Yet, the two variances of mass flux differ by over two orders of mag-
nitude. To understand the nature of this discrepancy, we investigate the time

correlation of the mass flux.

x 10
3 —
— DSMC
— Stoch. PDE only
2
O
I
g
L Values at t' = 0 are not shown.
o DSMC value: 1.4365e-10
= PDE value: 2.8412e-12
21
L

th
m

Figure 6: Time correlations of mass flux, for the particle method (DSMC) and the
PDE method.

To estimate the time correlation of mass flux for a timeshift of ¢ we
calculate (JF (D (t)§FM(t +t')) in each of the 40 computational cells from ap-
proximately 10° data samples. The average value of each time correlation over
the 40 computational cells is displayed in Fig. 6, for stochastic RK3 and for
DSMC. Time correlation data is displayed in units of mean free collision time
(tm)-

In Fig. 6 we see that the mass flux for DSMC decorrelates immediately,

whereas the continuum mass flux decorrelates after approximately one half of
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one mean free collision time. Note that for all the simulation results presented
here, the stochastic PDE and the DSMC use the same time step, and that
time step is over two orders of magnitude smaller than ¢,,. The order of the
discrepancy in Table 2 is now clear. The hydrodynamic formulation is only
accurate at hydrodynamic time scales, that is, at time scales that are large
compared to t,,. Further investigations (not presented here) indicate that when
the two methods are run using a significantly larger time step, the variance and
time correlations of the mass flux are in general agreement between the two
methods. However, at large time step, the truncation error for the PDE scheme
negatively effects the results for other quantities, e.g., the variance in conserved
quantities. Given that the statistical properties of the fluxes differ between
hydrodynamic scales and molecular (kinetic) scales, it is not surprising that the
variances of conserved quantities are not seamless at the interface of the two
methods. Why this effect is most prominent for density and energy variances
is still under investigation. This issue is discussed further in the concluding

section.
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4.3 Non-equilibrium system: temperature gradient

In the early 1980’s, a variety of statistical mechanics calculations predicted that
a fluid under a non-equilibrium constraint, such as a temperature gradient,
would exhibit long-range correlations of fluctuations [37, 38]. Due to the asym-
metry of sound waves moving parallel versus anti-parallel to the temperature
gradient, quantities that are independent at equilibrium, such as density and
momentum fluctuations, also have long-range correlations. These predictions
were qualitatively confirmed by light scattering experiments [39], yet the effects
are subtle and difficult to measure accurately in the laboratory. Molecular sim-
ulations confirm the predicted correlations of non-equilibrium fluctuations for
a fluid subjected to a temperature gradient [40, 25] and to a shear [41]. With
these predictions in mind, we consider a system with a temperature gradient.
Specifically, the boundary conditions are thermal walls at 273K and 819K; the
other system parameters are as shown in Table 1. This non-equilibrium state is
extreme, with a temperature gradient of millions of degrees per centimeter, yet
it is accurately modeled by DSMC, which was originally developed to simulate
strong shock waves.

The system is initialized near the final state and is allowed to relax for
10% time steps before samples are taken at each computational cell over 108 time
steps. The measure shown here (Figures 7-9) is the spatial correlation between
mass density and momentum, specifically (6p;dJ20). A pure DSMC simulation
is used as the benchmark.

The stochastic hybrid method outperforms the pure continuum method
in this non-equilibrium test case. Although the stochastic RK3 method gives
a good match to the DSMC benchmark away from the correlation point, the
results deteriorate near the correlation point (Fig. 7). In the stochastic hybrid
method, a particle patch is placed around the region of difficulty and the results
are significantly improved (Fig. 8). Finally, in Fig. 9 we consider the hybrid
that couples deterministic RK3 with DSMC. Again, DSMC is employed in a
single patch at the center of the domain. However, with fluctuations suppressed
in the remainder of the domain, the overall results suffer. Strikingly, the results

suffer not only in the continuum region, but also within the particle region.
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Figure 7: Center point correlation of mass density and x-momentum for a system

under a steep temperature gradient.

4.4 Non-equilibrium system: strong moving shock

In this time-dependent problem, we consider a Mach 2 shock traveling through
a domain that includes a static refinement region. The objective of this example
is to test how well the hybrid performs when a strong nonlinear wave crosses the
interface between continuum and particle regions. Dirichlet boundary conditions
are used at the domain boundaries; values for the left-hand (LHS) and right-
hand (RHS) states are given in Table 3.

We observe a relatively local and short-lived error that indicates an
impedance mismatch between the continuum and particle regions, as shown in
Figure 10. The mass density profile depicted by the dark line is an average profile
from an ensemble of 2000 stochastic hybrid runs. Results from an ensemble of
2000 pure stochastic PDE simulations of the traveling wave, without a particle
patch, are shown for comparison. The first panel of Fig. 10 also includes the
mass density profile from a single stochastic hybrid simulation, illustrating the
relative magnitude of the thermal fluctuations.

At time tg, before the shock enters the particle region, the ensemble-
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Figure 8: Center point correlation of mass density and x-momentum for a system
under a steep temperature gradient. Vertical dotted lines depict the boundaries of

the particle region for the hybrid method.

averaged data is smooth. At time t;, a spurious reflected wave is formed at the
interface on the left-hand side of the particle patch. This spurious acoustic wave
is damped as it propagates leftward, vanishing by time t4. Another small error
effect is seen as the shock exits the particle patch, at time t5, but it is barely
discernible by time ¢7. This example demonstrates the robustness and stability
of the treatment of the interface between the particle region and the continuum
solver.

A well-known feature of CFD solvers is the artificial steepening of vis-
cous shock profiles; it is also well-established that DSMC predicts shock profiles
accurately [31, 42]. At times to through tg, we see a steepness discrepancy be-
tween the ensemble hybrid profile and the ensemble PDE-only profile. Within
the particle patch, the DSMC algorithm correctly resolves a more shallow pro-

file.

In this example, the Chapman-Enskog distribution was used to initial-

ize velocities of particles that enter the refinement region from the continuum
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Figure 9: Center point correlation of mass density and x-momentum for a system
under a steep temperature gradient. Vertical dotted lines depict the boundaries of

the particle region for the hybrid method.

region. This approach was found to result in a somewhat reduced impedance

mismatch compared to the Maxwell-Boltzmann distribution.
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Table 3: System parameters (in cgs units) for simulations of a traveling shock.

Mach number 2.0

LHS RHS
Mass density 4.07x 1073 | 1.78 x 1073
Velocity (x-direction) 34629 0
Temperature 567 273
Sound speed 44373 30781
Mean free path 2.74 x 1076 | 6.26 x 1076
Cell length (Ax) 3.13x 107¢
Time step (At) 1.0 x 10712
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Figure 10: Mass density profiles for a viscous shock wave traveling through a fixed
refinement region (indicated by vertical dotted lines). The time elapsed between

each panel is 300At; see Table 3 for system parameters.



4.5 Adaptive refinement

The final numerical test demonstrates the adaptive refinement capability of our
hybrid algorithm. As in Section 4.4, a strong traveling shock (Mach 2) moves
through a domain with Dirichlet boundary conditions. System parameters are
given in Table 3. Here, though, the location of a particle patch is determined
dynamically by identifying cells in which the gradient of pressure exceeds a given
tolerance; the particle patch is shown in Figure 11 by vertical dotted lines.
Since the fluctuations produce steep localized gradients nearly every-
where, a regional gradient measure, D(P), is employed to detect large-scale
gradients. Large scale gradients in pressure provide an effective criterion for

identifying the presence of a shock wave. This is implemented as:

1 [13 13
D(P); = AL S ZPjJri -3 ZPj—(i—l)] ;
=1 =1

where S indicates the width of the gradient stencil (we use S = 6). For an

equilibrium system, the expected variance of D(P) is estimated by

2

(60D(P)?) = FAL («

10 1 Py \?
2 R2 2 2R2 2\\ _ 0
o0 + poFEOTT)) = 93N, (m)

where pg, Ty and Py are the reference mass density, temperature and pressure
for the system and N, is the number of particles in a cell at reference conditions.
(This variance can be found using the ideal gas law and expressions derived in
[36].) Note that using a wide stencil limits the variation even when N, is small
(and, consequently, fluctuations are large).We select cells j for refinement where
D(P); exceeds the equilibrium value, namely zero, by three standard deviations.
The resulting particle patch is extended by a buffer of four cells on each side.
In this implementation, we re-evaluate the location of the particle patch
every 100 time steps. When the extent of the refinement region changes, some
continuum cells may be added to the DSMC patch, some DSMC cells may
become continuum cells, and some DSMC cells may remain in the refinement
patch. For continuum cells that are added to the DSMC patch, particles are
initialized from the underlying continuum data, as in the case of a static patch.
For DSMC cells that should no longer be included in the refinement patch,

particle data is averaged onto the continuum grid, as in Eqgs. (5), then discarded.
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For those DSMC cells that remain in the particle patch, the particle data is

retained.

Ensemble of stochastic PDE runs
— Ensemble of stochastic hybrid runs

—— Single stochastic hybrid run
Y
— S\ L

S v i Aol v

25 50 75 100 125

Figure 11: Mass density profiles for a viscous shock wave, demonstrating adaptive
mesh refinement: the refinement region, indicated by vertical dotted lines, is deter-
mined dynamically at runtime. The time elapsed between each panel is 1200At; see

Table 3 for system parameters.

The mass density profile depicted by the dark line is an average profile from an
ensemble of 2000 stochastic hybrid runs. The first panel of Fig. 11 also includes
the mass density profile from a single stochastic hybrid simulation, illustrating
the relative magnitude of the thermal fluctuations. Results from an ensemble of
2000 pure stochastic PDE simulations of the traveling wave, without a particle
patch, are also shown for comparison. As in Figure 10, we that a more shallow
profile is captured by the DSMC representation of the viscous shock (i.e. by the
hybrid that uses DSMC in the vicinity of the shock) versus the artificially steep

profile produced by the PDE-only system.
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5 Conclusions and Further Work

We have constructed a hybrid algorithm that couples a DSMC molecular simula-
tion with a new numerical solver for the Landau-Lifshitz Navier-Stokes equations
for fluctuating compressible flow. The algorithm allows the particle method to
be used locally to approximate the solution while modeling the system using
the mean field equations in the remainder of the domain. In tests of the method
we have demonstrated that it is necessary to include the effect of fluctuations,
represented as a stochastic flux, in the mean field equations to ensure that the
hybrid preserved key properties of the system. As expected, not representing
fluctuations in the continuum regime leads to a decay in the variance of the solu-
tion that penetrates into the particle region. Somewhat more surprising is that
the failure to include fluctuations was shown to introduce spurious correlations
of fluctuations in equilibrium simulations and for rarefactions.

There are several directions that we plan to pursue in future work. As
a first step, we plan to extend the methodology to two and three dimensional
hybrids. The key algorithmic steps developed here extend naturally to multi-
ple dimensions. For more general applications, an overall approach needs to be
implemented to support particle regions defined by a union of non-overlapping
patches. Another area of development is to include additional physical effects
in both the continuum and particle models. As a first step in this direction, is
it straightforward to include the capability to model different species. This pro-
vides the necessary functionality needed to study Rayleigh-Taylor instabilities
and other mixing phenomena. A longer term goal along these lines would be
to include chemical reactions within the model to enable the study of ignition
phenomena. Finally, we note that the results presented here suggest a number
of potential improvements to the core methodology. Of particular interest in
this area would be approaches to the fluctuating continuum equations that can
accurately capture fluctuations while taking a larger time step. This would not
only improve the efficiency of the methodology, it would also enable the contin-
uum solver to take time steps at hydrodynamic time scales which should serve

to improve the quality of coupling between continnum and particle regions.
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Appendix: Random placement of particles with
a density gradient

Consider the problem of selecting a random position for a particle within a
rectangular cell. The density in the cell varies linearly with py being the density
at the center (which is also the mean density). For a cell with dimensions Az,

Ay, and Az, taking the origin at the corner of the cell we have
p(x,y,2) = po+ az(x — Az/2) + ay(y — Ay/2) + az(z — Az/2)

where a, = dp/dx. The probability that a particle has position component x is

Ay

P(z) = fo dy fOAz dz p(z,y, 2) _ 147, (z/Az — %)

PoATAYyAz Ax

where 7, = Aza,/po. It will be more convenient to work in the dimensionless
variable X = z/Az. Since P(z)dr = P(X)dX,

P(X)=14v,(X — %).

By the method of inversion [30] one may generate random values from this

distribution by

X = 7t (/2= 1)+ (/212 +2%R] ).

where R is a random value uniformly distributed in [0,1]. The reader is cau-
tioned that the above is susceptible to round-off error for 7, = 0 (i.e., small

gradient case). Note that in that limit,

R

X~ —
1_'7w/2

from which we recover the expected result that X = R when v, = 0.
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The selection of the y component of the position is complicated by the
fact that it is not independent of the x component. The conditional probability

of the y component of position is

Ple,y) 1 Ayay/po y 1
Plo) Dy | T (Baa/po)e/Ba - 3) (Ay 2)] '

Define vy, = Aya,/po and Y = y/Ay, then

P(ylz) =

Fortunately, after selecting X the selection of Y is simple; Y is generated in the
same way as X but with v,/P(X) in the place of 7,.
Finally, to select the z component of position the procedure is similar
with
PZIX,Y) = 14 —L— (7 - 1)
T T PX,Y) 2
where P(X,Y) = P(X|Y)P(Y) = 14 7,(X — 3) + 7, (Y — ). Again, the z

component can be generate as the 2 component with v, /P(X,Y") replacing .
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