

FABRICATION OF HIGH CURRENT $\text{YBa}_2\text{Cu}_3\text{O}_{7-y}$ COATED CONDUCTORS USMG ROLLING-ASSISTED BIAXIALLY TEXTURED SUBSTRATES

M. PARANTHAMAN, F. A. LIST, D. F. LEE, A. GOYAL, R. FEENSTRA, D. P. NORTON,
C. PARK, D. T. VEREBELYI, D. K. CHRISTEN, P. M. MARTIN, E. D. SPECHT, and D. M.
KROEGER

Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

High critical current $\text{YBa}_2\text{Cu}_3\text{O}_{7-y}$ (referred to as YBCO) coated conductors were fabricated with a layer sequence of **YBCO/YSZ/CeO₂/Ni**. The cube (100) texture in the starting Ni substrates was obtained by cold rolling followed by recrystallization. A thin **CeO₂** (Cerium Oxide) layer with a thickness of 100-200 Å was grown **epitaxially** on the biaxially textured-Ni, substrates using an e-beam evaporation technique. This was followed by the growth of a thick (≤ 0.77 pm) **YSZ** (Yttria Stabilized Zirconia) layer using either e-beam evaporation **or rf** magnetron sputtering. The e-beam **CeO₂** film had a dense microstructure. The microstructure of the e-beam **YSZ** film was porous whereas the sputtered YSZ film was dense. The YBCO films were **grown** by pulsed laser deposition on both e-beam and sputtered **YSZ** layers. A transport critical current density of $1 \times 10^6 \text{ A/cm}^2$ at 77 K was obtained for $\sim 0.8 \mu\text{m}$ thick YBCO **films** on both YSZ surfaces in zero field. To demonstrate the quality and compatibility of the e-beam **CeO₂** layers; **YBCO** films were also grown on **CeO₂-buffered YSZ** (100) single crystal substrates using e-beam co-evaporated **Y-BaF₂-Cu** precursors followed by a **post-annealing** process. A transport critical current density of over $1 \times 10^6 \text{ A/cm}^2$ at 77 K was obtained on a $\sim 0.3 \mu\text{m}$ thick **YBCO** **film** in zero field.

1. INTRODUCTION

For the development of **coated** conductors for high temperature (77 K), and high field applications, biaxially textured $\text{YBa}_2\text{Cu}_3\text{O}_{7-y}$ (referred to as YBCO) deposits have emerged as one of the leading candidates. Three approaches have been used to fabricate biaxially textured YBCO films. The first approach was to grow biaxially textured Yttria Stabilized Zirconia (YSZ) buffer layers **on polycrystalline** substrates including Ni-alloys such as Haynes 230 and **Hastelloy** C276 through an ion-beam assisted deposition (IBAD) process.¹⁻⁴ A high J_c of over $1 \times 10^6 \text{ A/cm}^2$ at 75 K and **zero** field **was obtained**.⁴ The second approach was to use the Inclined Substrate Deposition (ISD) technique where textured YSZ deposits were made using pulsed laser

Research was sponsored by the Division of Materials Sciences, Office of Basic Energy Sciences and Office of Energy Efficiency and Renewable Energy, Office of Utility **Technologies**-Superconductivity Program, performed at Oak Ridge National Laboratory managed by Lockheed Martin Energy Research Corporation for the U.S. Department of Energy under contract # DE-AC05-96OR22464.

*The submitted manuscript has been authored by a contractor of the U.S. Government under contract No. DE-AC05-96OR22464. Accordingly, the Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.

deposition on polycrystalline Ni-alloy substrates by placing the substrate at a certain angle during the deposition? The third approach was recently developed at Oak Ridge National Laboratory using the concept of Rolling-Assisted Biaxially Textured Substrates (RABiTS).^{6,7} Our approach was to use rolling-induced texture to obtain biaxially textured Ni tapes and to deposit epitaxially on the tapes both buffer layers and superconductors to form a 'conductor. We demonstrated a J_c of 7×10^3 A/cm² at 77 K and zero field for films with a layer sequence of YBCO/YSZ/CeO₂/Ni.⁷ In this architecture, all oxide layers were grown by pulsed laser deposition (PLD). There is a clear need to develop capabilities to deposit superconducting and buffer layers by alternative deposition techniques. Electron beam evaporation's and rf magnetron sputtering" techniques have been identified as scalable techniques for producing long conductors. In this paper, we report our demonstration of the growth of high current YBCO films on e-beam CeO₂ surfaces and also on both e-beam and sputtered YSZ-buffered Ni substrates

2. EXPERIMENTAL ASPECTS

The 125 μ m thick as-rolled Ni substrates were cleaned initially with both acetone and methanol, and recrystallized to the desired (100) cube texture by annealing at 800 °C for 2 h in a high vacuum furnace. An AIRCO Temescal CV-14 10-kW power supply with three e-beam guns was used for the deposition. The biaxially oriented Ni substrates were mounted directly on a heating block inside the e-beam chamber. After the vacuum in the chamber had reached a base pressure of 1×10^{-6} Torr, a mixture 4% H₂ and 96% Ar (Forming Gas) was introduced until the pressure inside the chamber reached ~ 1 Torr. The Ni substrates were then annealed at ~ 650 °C for 60 minutes. During CeO₂ deposition, the chamber was pumped out and maintained at a pressure of 2×10^{-5} Torr using a mixture of 4% H₂ and 96% Ar. The CeO₂ was deposited by evaporating a Cc metal source and the temperature of the Ni substrate was reduced to 625 °C. To understand the chemistry of the oxide formation, a Dycor Quadruple Gas Analyzer was mounted in the e-beam system. The background H₂O pressure was around 1×10^{-5} Torr. The deposition rate was 2-4 Å/sec with the operating pressure of 2×10^{-5} Torr, and the final thickness was varied from 100-200 Å. During the deposition, the H₂O pressure slowly fell to 2×10^{-6} Torr. The measured partial pressure of O₂ was in the range of 10^{-7} - 10^{-8} Torr during deposition. The H₂O pressure present in the chamber is sufficient to oxidize the film to form stoichiometric CeO₂. Following deposition, the substrate was cooled in a pressure of $\sim 2 \times 10^{-6}$ Torr to ≤ 100 °C before exposure to atmosphere. The CeO₂ was also deposited on YSZ (100) single crystal substrates at 625 °C using similar deposition conditions

The electron beam evaporation technique was used to deposit YSZ directly on the CeO_2 -buffered Ni substrates.¹¹ Yttria Stabilized Zirconia was used as the source. The YSZ layers were grown at a temperature of 625 °C with a total pressure of $\sim 2 \times 10^{-5}$ Torr using a mixture of 4% H₂ and 96% Ar. The YSZ deposition rate was 2-5 Å/sec, and the final thickness was varied from 500-5000 Å. YSZ films were also grown on e-beam CeO_2 -buffered Ni substrates by rf magnetron sputtering as has been described in detail elsewhere.¹² The CeO_2 -buffered Ni substrate was mounted on a heating block inside the sputter system. Prior to heating the substrate, the sputter chamber was evacuated to a pressure of $\sim 1 \times 10^{-7}$ Torr. The chamber was then back-filled to a pressure of 10 mTorr with a mixture of 4% H₂ and 96% Ar. The substrate was heated to ~ 780 °C and annealed at 780 °C for 10 min prior to sputtering. After annealing, YSZ was sputter deposited at 780 °C for ~ 2 h with an on-axis YSZ target located ~ 5 cm from the substrate. The plasma power was 75 W at 13.56 MHz. The resulting YSZ film was smooth and dense, and its thickness was estimated to be approximately 0.77 μm .

The pulsed laser deposition technique was used to grow YBCO at 780 °C and 185 mTorr O₂ on both e-beam and sputtered YSZ-buffered substrates as described elsewhere.¹³ Precursor YBCO films were grown on CeO_2 -buffered YSZ (100) substrates, YSZ (100), and SrTiO_3 (100) substrates by electron beam co-evaporation of Y, BaF₂, and Cu at a combined deposition rate of ~ 5 Å/sec. Details of the experimental conditions were, reported earlier.¹² During evaporation, the substrates were held at ~ 100 °C, while the initial pressure of 2×10^{-6} Torr rose to 6×10^{-6} Torr. Tantalum crucibles were used for the Cu, Y and BaF₂ sources. Steady BaF₂ evaporation rates were obtained by covering the crucible with a matching lid with a 3-mm orifice. Thermionics 150-0010 3-kW e-beam guns were used for the evaporation.

The films were analyzed by XRD. A Philips Model XRG3100 diffractometer with Cu K_α radiation was used to record powder diffraction patterns. For texture analysis, a Rigaku rotating anode X-ray generator was used, with a graphite monochromator selecting Cu K_α radiation, and slits defining a 2 x 2 mm² incident beam. A four-circle diffractometer was used to collect pole figures, ω scans, and ϕ scans. SEM micrographs were taken using a Hitachi S-4100 Field Emission Scanning Electron Microscope. The beam voltage was 15 kV. The thickness of the films was determined both by Rutherford Backscattering Spectroscopy (RBS) and Alpha-Step 500 (Tencor Instruments) Profilometer scans. The resistivity and transport critical current density, J_c , was measured using a standard four-probe technique. The values of J_c were calculated using a 1 $\mu\text{V}/\text{cm}$ criterion. The Ag contacts were made by sputtering. The YBCO films with Ag contacts were annealed in 1 atm O₂ at 500 °C for 30 min and slow cooled to room temperature in pure O₂.

3. RESULTS AND DISCUSSION

The e-beam and sputtered buffer layer characteristics, and transport property measurements of the YBCO **films** are discussed below.

3.1. E-beam evaporated CeO_2 and YSZ layers

The XRD results from the θ - 2θ scan, and also from ω and ϕ scans for 1000 Å thick YSZ deposited on 200 Å thick CeO_2 -buffered Ni substrates revealed good epitaxial texturing. The FWHM for Ni (002), CeO_2 (002), and YSZ (002) were 7.4°, 6.6°, and 6.8°, and that of Ni (202), CeO_2 (202), and YSZ (202) were 9.5°, 8.8°, and 8.5°, respectively. The CeO_2 (111) and YSZ (202) pole figures also demonstrated that the buffer layers were epitaxial with a single orientation. SEM micrographs indicated that the 200 Å thick CeO_2 layers were smooth, dense, and columnar." On the other hand, the e-beam YSZ layers were porous and columnar." The porous **microstructure** of the e-beam YSZ layers could be due to the evaporation from an oxide source. It may be possible to change the **microstructure** by depositing YSZ at higher temperatures or by evaporating the respective **metal** sources. The CeO_2 and YSZ layers were crack-free. There seems to be thickness dependence with respect to crack formation in CeO_2 layers on Ni substrates. For example, thick (\geq 2000 Å) CeO_2 films typically were cracked.

The θ - 2θ scans on the thick YBCO **film** deposited on all e-beam YSZ/ CeO_2 /Ni substrates showed c-axis alignment. These films were 0.3 cm wide and 1 cm long. The ϕ scan for a 0.76 μm thick YBCO **film** on the RABiT substrate is shown in Figure 1. It shows good in-plane

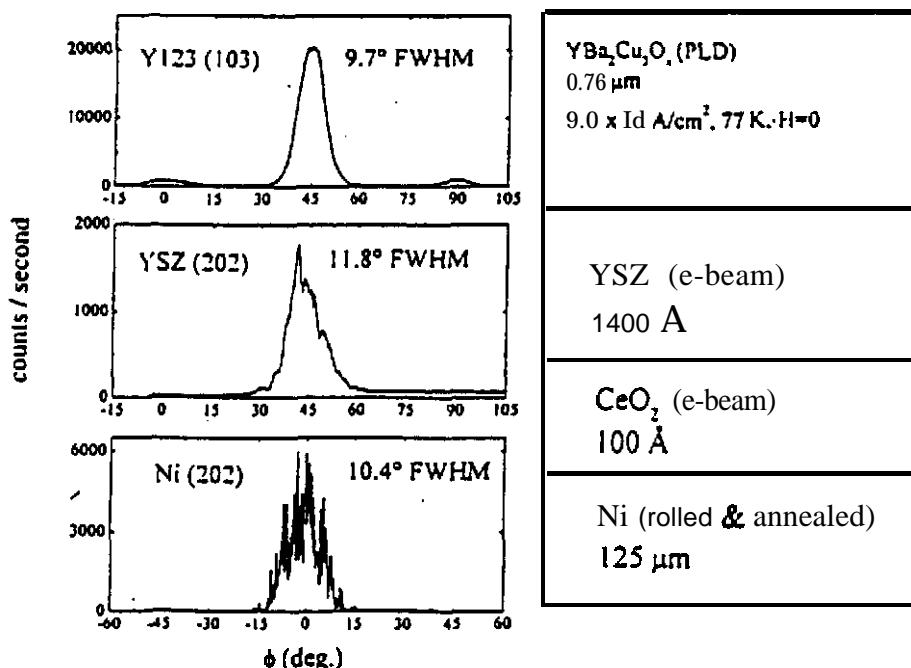


FIGURE 1

The ϕ scans for a 0.76 μm thick YBCO deposited on 1400 Å thick YSZ-buffered Ni substrates.

texture. It is interesting to note that the thickness of the YSZ buffer layer **was only** 1400 Å. As shown in Figure 1, the distribution of in-plane orientations of the YBCO was rotated 45° with respect to the underlying Ni in about 95 % of the film. The resistively determined critical temperature, T_c **was** around 87 K. The temperature dependence of J_c for 0.76 μm thick YBCO films on all e-beam buffer layers is shown in Figure 2. A maximum J_c of $\sim 0.9 \times 10^6 \text{ A/cm}^2$ **was** obtained at 77 K and zero field. At 75 K, a J_c of about $1 \times 10^6 \text{ A/cm}^2$ was obtained. These results show that high J_c YBCO films can be grown on YSZ buffer layers with a relatively small thickness of 1400 Å.

FIGURE 2
The temperature dependence of J_c values for $\sim 0.8 \mu\text{m}$ thick YBCO films deposited on 1400 Å thick e-beam YSZ (on 100 Å thick e-beam CeO_2 -buffered Ni) and 0.77 μm thick sputtered YSZ (on 100 Å thick e-beam C&-buffered Ni) buffers.

3.2. E-beam evaporated CeO_2 and sputtered YSZ layers

The XRD results **from** the 0.77 μm sputtered YSZ layer deposited on CeO_2 -buffered Ni substrates revealed good **epitaxial** texturing. The microstructure of the sputtered YSZ layers was dense, crack-free and well aligned. High current YBCO **films** were grown on a combination of thick sputtered YSZ buffers and thin e-beam CeO_2 buffers on textured-Ni substrates. The temperature dependence of J_c for a 0.76 μm thick YBCO film is shown in Figure 2. A maximum J_c of $> 0.9 \times 10^6 \text{ A/cm}^2$ at 77 K and zero field was obtained. From the texture analysis of this **film**, the distribution of in-plane orientations of the **YBCO film** was over 95 % cube-on-cube with

respect to the underlying Ni. The difference in the distribution of the YBCO orientations on all e-beam buffers (as from section 3.1) and a combination of sputtered and e-beam buffers (as from the present section) may be related to the microstructure, thickness, deposition technique, and the deposition temperature of the YSZ buffer layers. The detailed microstructure characteristics of all these buffer layers have been described elsewhere.^{11,13,14}

3.3. E-beam co-evaporated YBCO precursors and post-annealing

The e-beam **CeO₂-buffered** YSZ (100), YSZ (100), and **SrTiO₃** (100) substrates were **pre-annealed** at optimum temperatures and pressures of oxygen **prior** to the YBCO precursor deposition. The deposited precursor films were post-annealed in a flowing mixture of **N₂**, **O₂**, and **H₂O** with **pO₂ = 200 mTorr** and **pH₂O = 20 Torr** at **760 °C** for 60 min. At the end of the hold the **gas** flow was switched to the dry conditions. The sample was then cooled to **500 °C** for 30 min oxidation anneal in **1 atm** of **O₂**. The high-temperature anneal under wet conditions **resulted** in conversion of the **Y**, **BaF₂**, **Cu** into **YBa₂Cu₃O_{7-y}**. Details of the post-annealing process have been published elsewhere.¹² The temperature dependence of the resistivity for $\sim 0.3 \mu\text{m}$ thick **YBCO** films on **CeO₂-buffered** YSZ (100) (referred as **CeO₂/YSZ**), YSZ (100), and **SrTiO₃** (100) (referred as **STO**) substrates are shown in Figure 3. The **room-temperature** resistivity of the YBCO **film** on YSZ substrate was very high and the **T_c** also was suppressed to 85 **K**. On the other hand, the YBCO **films** on **CeO₂/YSZ** and **STO** substrates had low room temperature resistivities (230-280 **microOhm.cm**) and a **T_c** of about 90 K. The extrapolated values of the resistivity data (between 300 K **and** above **T_c**) below zero indicates the presence of predominantly **c**l YBCO **films** on **STO** and **CeO₂/YSZ** substrates. The relatively poor properties for films deposited directly on YSZ result from a reaction between the substrate **and** **film**. This reaction disables the growth of high quality **c**l **YBCO** **films**. A **thin** cap layer of **CeO₂** (200-400 Å), however, prevents this unwanted reaction, leading to film properties which are comparable to those on relatively inert and well-matched **STO** (100) substrates. For example, a maximum **J_c** of over $1 \times 10^6 \text{ A/cm}^2$ at 77 K and zero field was obtained on **CeO₂-buffered** YSZ. The **θ-2θ** scans of the YBCO **films** on **CeO₂/YSZ** substrates indicated the presence of a **c**-axis-aligned Elm. The presence of **small** impurity peaks ($2\theta = 4^\circ$ and 8°), which may be indexed as belonging to **BaCeO₃**, indicate that there is some interaction between the **CeO₂** layer and YBCO. The field dependence of **J_c** for 0.3 μm thick YBCO films on **CeO₂/YSZ**, and **STO** substrates are shown in Figure 4. From Figures 3 and 4, we conclude that **CeO₂-buffered** YSZ substrates provide good templates for **ex** situ grown YBCO films. Attempts **are** being made to grow YBCO films on **RABiTS** by this ex situ precursor approach.

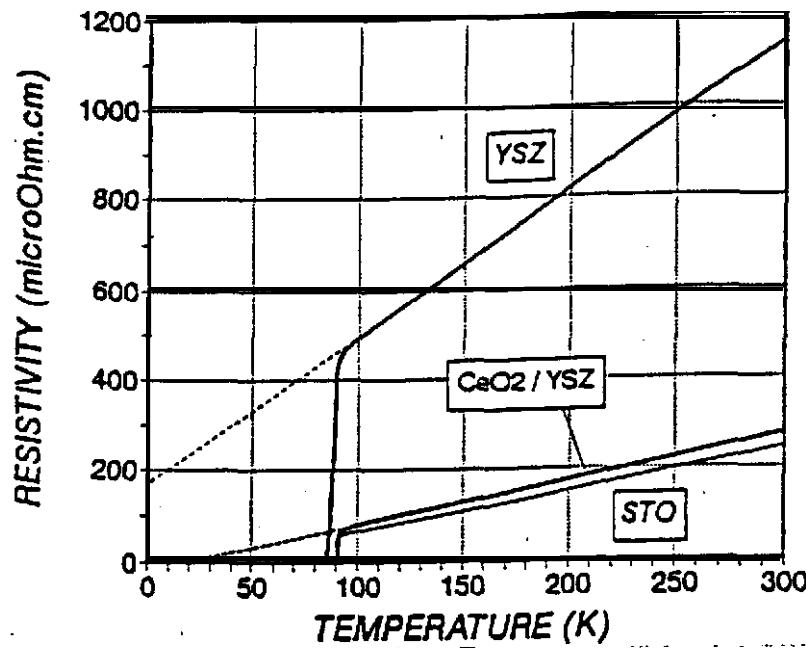


FIGURE 3

The temperature dependence resistivity for ~ 0.3 pm thick YBCO film on e-beam CeO_2 -buffered YSZ (100), YSZ (100), and SrTiO_3 (100) (referred as STO) single crystal substrates.

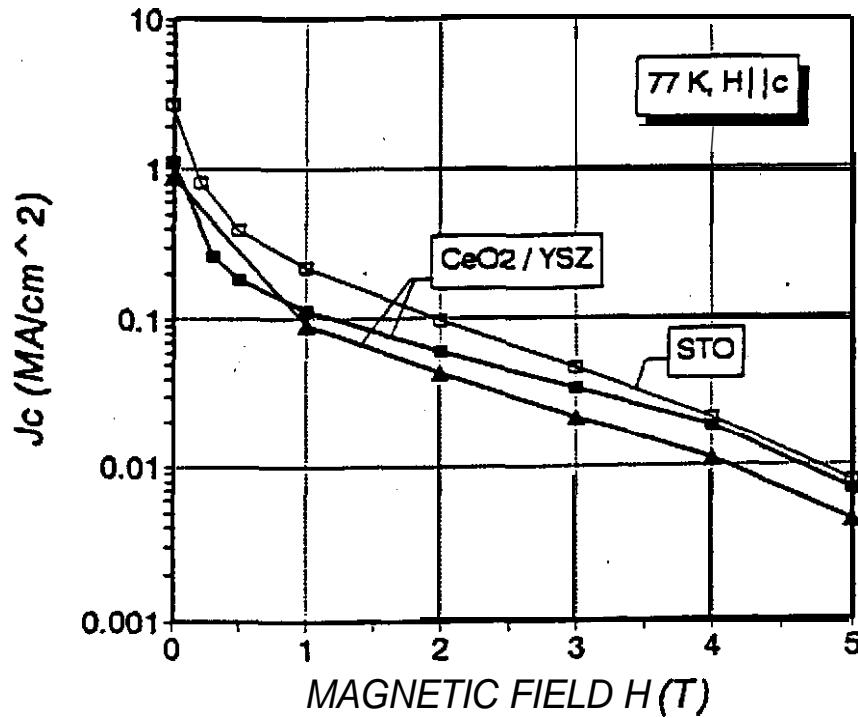


FIGURE 4

The field dependence of critical current density, J_c , for ~ 0.3 μm thick YBCO film on e-beam CeO_2 -buffered YSZ (100), and SrTiO_3 (100) (referred as STO) single crystal substrates.

4. CONCLUSIONS

WC demonstrated that **high** current YBCO **films** can be grown on buffer layers deposited by both **all** e-beam and a combination of e-beam and **rf** magnetron sputtering techniques. The microstructure of the e-beam YSZ **films** was porous as compared to that of the dense **sputtered** YSZ films. The **microstructure** of the thin &beam **CeO₂** **films** was **smooth**, crack-free, dense and **columnar**. We have **also** demonstrated that high critical current YBCO films **can** be **grown** on e-beam **CeO₂-buffered** YSZ (100) single crystal substrates **using** e-beam co-evaporated precursors followed by post-annealing.

REFERENCES

- 1) Y. Iijima, N. Tanabe, O. Kohno, and Y. Ikeda, *Appl. Phys. Len.* 60 (1992) 769
- 2) R. P. Reade, P. Berdahl, R. E. Russo, and S. M. Garrison, *Appl. Phys. Lett.* 61 (1992) 2231
- 3) M. Fukutomi, S. Aoki, K. Komori, R. Chatterjee, and H. Maeda, *Physica C* 219 (1994) 333
- 4) X. D. Wu et al., *Appl. Phys. Lett.* 67 (1995) 2397
- 5) K. Hasegawa et al., *Advances in Superconductivity IX, Proc. of the 9th Intl. Symp. On Superconductivity (ISS '96)*, eds. S. Nakajima, and M. Murakami, Sapporo, Japan 1996, pp 745-748
- 6) A. Goyal, D. P. Norton, J. Budai, M. Paranthaman, E. D. Specht, D. M. Kroeger, D. K. Christen, Q. He, B. Saffian, F. A. List, D. F. Lee, P. M. Martin, C. E. Klabunde, E. Hatfield and V. K. Sikka, *Appl. Phys. Lett.* 69 (1996) 1795
- 7) D. P. Norton, A. Goyal, J. D. Budai, D. K. Christen, D. M. Kroeger, E. D. Specht, Q. He, B. Saffian, M. Paranthaman, C. E. Klabunde, D. F. Lee, B. C. Sales, and F. A. List, *Science* 271 (1996) 755
- 8) M. Paranthaman, A. Goyal, F. A. List, E. D. Specht, D. F. Lee, P. M. Martin, Q. He, D. K. Christen, D. P. Norton, J. D. Budai, and D. M. Kroeger, *Physica C* 275 (1997) 266
- 9) M. Paranthaman, et al., *Advances in Superconductivity IX, Proc. of the 9th Intl. Symp. On Superconductivity (ISS '96)*, eds. S. Nakajima, and M. Murakami, Sapporo, Japan 1996, pp 669-672
- 10) Q. He, D. K. Christen, J. D. Budai, E. D. Specht, D. F. Lee, A. Goyal, D. P. Norton, M. Paranthaman, F. A. List, and D. M. Kroeger, *Physica C* 275 (1997) 155
- 11) F. A. List, A. Goyal, M. Paranthaman, D. P. Norton, E. D. Specht, D. F. Lee, and D. M. Kroeger, *Physica C* (1998) (in press)
- 12) R. Feenstra, T. B. Lindemer, J. D. Budai, and M. D. Galloway, *J. Appl. Phys.* 69 (1991) 6569
- 13) Chau-Yun Yang, S. E. Babcock, D. C. Larbalestier, A. Goyal, M. Paranthaman, and D. M. Kroeger, Materials Research Society 1997 Fall Meeting, Boston, MA, December 1997
- 14) A. Goyal, D. P. Norton, D. M. Kroeger, D. K. Christen, M. Paranthaman, E. D. Specht, J. I. Budai, Q. He, B. Saffian, F. A. List, D. F. Lee, E. Hatfield, C. E. Klabunde, P. M. Martin, M. Mathis, and C. Park, *J. Mater. Res.* 12 (1997) 2924