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OBJECTIVE OF THE PROPOSAL 
 
This proposal addresses the national need to develop a high efficiency light source for 

general illumination applications. The goal is to perform research that would lead to the 

fabrication of a unique solid state, white-emitting light source. This source is based on an 

InGaN/GaN UV-emitting chip that activates a luminescent material (phosphor) to 

produce white light.  

 

White-light LEDs are commercially available which use UV from a GaN chip to excite a 

phosphor suspended in epoxy around the chip. Currently, these devices are relatively 

inefficient. This research will target one technical barrier that presently limits the 

efficiency of GaN based devices.  Improvements in efficiencies will be achieved by 

improving the internal conversion efficiency of the LED die, by improving the coupling 

between the die and phosphor(s) to reduce losses at the surfaces, and by selecting 

phosphors to maximize the emissions from the LEDs in conversion to white light.  The 

UCSD research team proposes for this project to develop new phosphors that have high 

quantum efficiencies that can be activated by the UV-blue (360-410 nm) light emitted by 

the GaN device.   

 
SCIENTIFIC ACHIEVEMENTS: DEVELOPMENT OF NEW PHOSPHORS 
 
Objective: The main goal for the UCSD team was to develop new phosphor materials 

with a very specific property: phosphors that could be excited at long UV-wavelengths 

(λ=350-410 nm).  The photoluminescence of these new phosphors must be activated 

with photons emitted from GaN based dies. The GaN diodes can be designed to emit 

UV-light in the same range (λ=350-410 nm). A second objective, which is also very 

important, is to search for alternate methods to fabricate these phosphors with special 

emphasis in saving energy and time and reduce pollution. 
 
Achievements: The UCSD group has pioneered a method, combustion synthesis, to 

rapidly produce multicomponent oxides. The combustion synthesis method is based in 

the use of metal nitrates (oxidizers) and a fuel (urea, carbohydrazide or hydrazine) that 

initiates a highly exothermic reaction, as described in more detail in [1,2]. As an example 

of this process, EuAlO3:Eu3+ is synthesized by reacting two precursors, Eu(NO3)3 and 
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Al(NO3)3 using hydrazine as a fuel in a controlled atmosphere which is heated below 

<200ºC to produce the combustion reaction. The powder obtained is red-emitting (λ=610 

nm) with strong absorption in the UV (λ= 365 nm). The product is then exposed to a 

heated ammonia flow which yields EuAlO3:Eu2+ green luminescent powders. Thus, a 

new phosphor material that absorbs efficiently photons in the range λ=250-400 nm and 

with a broad emission peak centered at λ=525 nm is synthesized.  

 

In this work we also found that combustion synthesis is a powerful technique to develop 

novel materials. Under pressurized conditions a new monoclinic structure (not reported 

in the literature) of europium-aluminum oxide has been developed. The luminescent 

properties of the new monoclinic material EuAl2O4 are similar to the AlEuO3:Eu2+. This 

material can be efficiently activated by long UV (350-420 nm) photons which makes it a 

promising phosphor for applications in solid state white-emitting lamps. A patent 

disclosure has been submitted to UCSD Technology Transfer & Intellectual Property 

Services (June 2003). 

 

With the same method is possible to produce Y2SiO5:Ce3+ a blue-emitting oxide 

phosphor that is efficiently excited at λ=365 nm. Figure 1 shows these three phosphors 

excited by UV at a wavelength of 365 nm and the corresponding luminescence spectrum 

of the blend of these three colors producing a white-emitting phosphor.  

 

Another white emitting phosphor developed in this research project is single host 

Y2SiO5:Ce3+,Tb3+. This new composition was made by combustion synthesis of nitrates 

that reacted with carbohydrazide (fuel) in air.  Tb3+ emission in Y2SiO5 is excited by long 

wavelengths via an energy transfer from Ce3+ to Tb3+. The non-radiative cerium to 

terbium transfer allows for an increased efficiency and has been found to occur via the 

inductive-resonant mechanism proceeding from the 5d levels of Ce3+ to the 5D3-level of 

Tb3+, as illustrated in Figure 2 [3].  Tb3+, which is normally excited at 250nm (short UV), 

can be excited at long UV wavelengths due to this energy transfer.  The optimum doping 

level of cerium has been found to be [Ce]=0.75 at.%.   High levels of terbium, [Tb]>3 

at.%, show a dominance of Tb3+ emission (5D3→7F6) with a strong peak at 550nm and a 

rather brilliant green emission. This allows for (Y0.9625Ce0.0075Tb0.03)2SiO5 to serve as an 

efficient single host for white emission. Compositions (Y0.9625Ce0.0075Tb0.03)2SiO5 and 

(Y0.95Ce0.02Tb0.03)2SiO5 were found to have chromaticity close to D65. 
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Figure 1. Y2SiO5:Ce3+ (blue), AlEuO3:Eu2+ (green) and AlEuO3:Eu3+ (red) phosphors 

produced by combustion synthesis. The luminescence spectrum of the 
blend of these phosphors produced a white color excited at λ=365 nm. 
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Figure 2. The energy level diagram for the transfer between Ce3+ and Tb3+ and 

emission of the pumped terbium via the 5D-5D3-7F6 pathway.  
 

Figure 3 shows the white emission from Y2SiO5:Ce3+,Tb3+ with long UV wavelength 

(λ=365 nm). This new material (Y2SiO5:Ce3+,Tb3+) produced by combustion synthesis is 

clearly more efficient (for white-emission) than other commercial lamp phosphor when 

exposed to long  wavelength UV photons.  

 

GE lamp 
phosphor 

UCSD 
Y2SiO5:Ce3+,Tb3+

Japanese lamp 
phosphor 

Figure 3. Y2SiO5:Ce3+,Tb3+ white emitting phosphor excited at UV-long wavelength 
(λ=365 nm) compared with two commercial lamp phosphors.  
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Another new efficient  phosphor (red-emitting) with extended excitation range to long UV 

wavelengths (max. at 365 nm) was developed. The composition is Y2O3:Eu,Bi has an 

excellent excitation spectrum in the long-UV  (320-380 nm) has shown in Figure 4. 
 

Excitation Spectra: Y2O3:Eu=.04,Bi=.005 (220-420nm)
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Figure 4. Excitation spectrum of the new Y2O3:Eu,Bi powder phosphor produced by 

combustion synthesis 
 
 
Figure 5 show the emissions of the optimum concentration of bismuth at 0.5% 

(Y2O3:Eu,Bi) and Y2O3:Eu excited at short UV wavelengths (Fig. 5(a)) and long UV 

wavelength (Fig. 5(b)).  As can be observed, when excited at short-wavelengths (�=254 

nm) the emission intensity in Y2O3:Eu is higher than Y2O3:Eu,Bi, while at an excitation of 

�=330 nm, the emission in the new phosphorY2O3:Eu,Bi is very high as compared to the 

Y2O3:Eu. 
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Figure 5. Emission spectra of Y2O3:Eu (Eu=4%) versus Y2O3:Eu,Bi (at 

Eu=4%,Bi=0.5%) at two different excitations. (a) At the characterisitic 
maximal excitation of 254 nm from Y2O3:Eu, and at (b) the characteristic 
maximal excitation of 330 nm from Y2O3:Eu,Bi. 

 
 
Electrophoretic deposition of white-emitting powders on of GaN-based diodes has been 

explored. Figure 6 shows the first successful example of direct electrophoretic coating 

on LED’s.  Deposition times of < 2 min. provide complete coverage.  This appears to be 

the best method of coupling the phosphor with the diode, in contrast to physical 

deposition techniques, where high temperature annealing would be necessary after the 

deposition.  
 

 
 
Figure 6. SEM picture showing the uniform coating distribution by electrophoretic 

deposition of luminescent phosphors on top of a GaN diode. 
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MILESTONES 
 

We have met and exceeded all of our milestones.   

 

Month 1-3:  White-emitting phosphor composition identification 

•  Purchase or synthesize compositions, samples to UCB for n measurement 

  We have synthesized new compositions of a white-emitting phosphor 

•  Evaluate and compare PL properties 

 `Figures 1, 3 and 5 demonstrate that we have developed high intensity, white 

light  emitting phosphors 

•  Fabricate targets for thin film deposition 

 UCB changed direction 

 

Month 4-6:  Optimization of deposition  

•  Deposition of phosphors onto LEDs provided by UC Berkeley 

  Figure 6 shows a phosphor coated LED 

•  Identify problems associated with small size device 

 Using our phosphors, we were able to electrophoretically deposit our phosphors 

on a GaN chip successfully.  Size is not a problem for electrophoretic deposition. 

• Provide LBNL with phosphor coated LEDs 

 UCB changed direction 

 

Month 7-12: Evaluate reproducibility 

•  Identify post-processing conditions that may improve properties 

 We have discovered that mixing a red-emitter such as Y2O3:Eu improves the 

spectral characteristics. 

•  Epitaxial growth of thin-film phosphors 

 UCB changed direction 

•  Phosphor samples sent to LBNL 

 Samples were sent 
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Conclusions  
 

We have fulfilled our objectives and milestones for this grant.  By means a low-cost 

combustion synthesis we have synthesized new phosphor materials with excellent 

luminescent properties for possible applications in GaN-based solid-state white-light 

emitting devices.  We have discovered five new phosphors: two green emitting, two red 

emitting and a white emitting that are efficiently excited by long UV radiation,  We have 

submitted three invention disclosures to the UCSD Technology Transfer Office  A new 

monoclinic structure of green luminescent EuAl2O4 has been discovered. We found that 

is possible to produce blue, green and red efficient phosphors than can be excited at 

long UV wavelengths.  Other possible materials for white-light devices were examined 

and a detailed compositional study were performed and the luminescent properties were 

evaluated. The electrophoretic deposition of luminescent powders directly on top of GaN 

LED was also investigated.  It was found that electrophoretic deposition is an excellent 

low temperature method for deposition of phosphor powders, and can be achieved in 

times < 2 min. 

 

Publications and Conference Presentations Resulting from this Grant 
 

1) O.E. Contreras, S. Srinivasan, F.A. Ponce, G.A. Hirata, F.E. Ramos and J. 

McKittrick, “Microstructural Analysis of Eu-Doped GaN Luminescent Powders,” 

Appl. Phys. Lett. 81 (2002) 1993. 

2) F.E. Ramos, R.Garcia, G.A. Hirata, E.J. Bosze and J. McKittrick “A New 

Combustion Synthesis Technique for Rare Earth-doped III-Nitride Luminescent 

Powders,” Modern Phys. Lett. B 15 (2001) 655. 

3) O. Ozuna, N. Rakov, F.E. Ramos, G.A. Hirata and J. McKittrick, “Synthesis and 

Luminescence Properties of Eu3+ activated Al2O3 and EuAlO3,” (submitted to 

Advanced Materials). 

4) O. Ozuna, N. Rakov, G.A. Hirata and J. McKittrick, “Luminesence Properties of 

(EuxAl1-x)2 Prepared by  Low Temperature Combustion Synthesis Technique,” 

Proceedings of 2002 International Conference on the Science and Technology of 

Emissive Displays and Lighting, Vol 1, 2002, pp. 93-96. 

5) E.J. Bosze, G.A. Hirata and J. McKittrick, “Combustion Synthesis Effects on the 

Powder Properties of Cerium Activated Yttrium Silicate Phosphor,” Proceedings 
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of 2002 International Conference on the Science and Technology of Emissive 

Displays and Lighting, Vol 1, 2002, pp. 117-120. 

6) G.A. Hirata, F.E. Ramos, E.J. Bosze and J. McKittrick, “Unusual Luminescence 

Behavior in Eu-activated Europium Aluminum Oxide,” Proceedings of 2002 

International Conference on the Science and Technology of Emissive Displays 

and Lighting, Vol 1, 2002, pp. 259-262 

7) E.J. Bosze, G.A. Hirata and J. McKittrick, “Luminescent Thin Films as 

Temperature Sensors,” Proceedings of 2002 International Conference on the 

Science and Technology of Emissive Displays and Lighting, Vol 1, 2002, pp. 

395-398 

8) O. Ozuna, N. Rakov, G.A. Hirata, J. McKittrick, “Pressure Influenced Combustion 

Synthesis of α and γ-Al2O3 Nanocrystalline Powders,” (submitted to Journal of 

Materials Research) 

9) F.E. Ramos, J. Carver, E.J. Bosze, G.A. Hirata and J. McKittrick, “Long UV-

Excited White Emitting Phosphors,” SPIE Conf. Proc., Vol. 4776, 2002. (in 

Press) SPIE Conference Proceedings, Optical Science and Technology: Solid 

State Lighting II, Vol. 4776, 2002, pp.  325-330 

10) E.J. Bosze, J. Carver, G.A. Hirata and J. McKittrick, “White Light Emission in 

Rare Earth Activated Yttrium-Oxyorthosilicates,” (in preparation) 

11) G.A. Hirata, O. Ozuna, N. Perea, J. McKittrick, F. Spada, S. Horiuchi, O. 

Contreas and E.J. Bosze, “Development of New Luminescent Materials with 

Strong UV Excitation for Applications in Solid State White Lamps,” (Submitted to 

Nature Materials) 

 

Patent Disclosures 
 

1. E.J. Bosze, G.A. Hirata, and J. McKittrick, “A White-emitting Phosphor Based on a 

Silicate Host Lattice,” Invention Disclosure Application No. SD2003-15. Submitted to 

UCSD Technology Transfer & Intellectual Property Services (July 2002). 

2. G.A. Hirata, E.J. Bosze, F. Ramos, and J. McKittrick, “Long-UV Excited Europium 

Aluminum Oxide Activated with Eu2+ (EuAlO3:Eu2+) Luminescent Powders,” Invention 

Disclosure Application No. SD2003-30. Submitted to UCSD Technology Transfer & 

Intellectual Property Services (August 2002). 
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3. G.A. Hirata, E.J. Bosze and J. McKittrick, “Development of a New Europium 

Aluminum Oxide Monoclinic Structure,” Invention Disclosure Application. Submitted 

to UCSD Technology Transfer & Intellectual Property Services (June 2003). 

 
Industrial Interactions 
 

Industrial contact with Cree Corp. and  Durel, Inc. have been established. In the near 

future we will discuss the possibility to provide them with our rare earth-doped phosphor 

materials for applications in electroluminescent solid-state light devices. 
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Introduction 
 
The research effort at UC Berkeley was a multi-part approach aimed at tackling three 

key problems presently limiting the efficiency of GaN-based LEDs for Solid-State 

Lighting applications. These key problems are: 1) low electrical conductivity of p-type 

GaN; 2) limited light extraction efficiency from the LED structure; 3) limited internal 

quantum efficiency due to built-in electric fields in polar InGaN/GaN and AlGaN/GaN 

quantum wells. 
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1. Improving electrical conductivity of p-type GaN 

 

The low electrical conductivity of p-type GaN results from the inherently low hole mobility 

and inherently high acceptor ionization energy in GaN [1]. Furthermore the maximum 

acceptor solubility is limited due to auto-compensating defects that are introduced at 

high doping levels in wide-gap semiconductors [2]. Consequences of the low 

conductivity are reduced wall plug efficiency due to electrical power wastefully dissipated 

in the resistive p-GaN film and p-electrode, and reduced internal quantum efficiency due 

to significant heating of the LED when operated at high current. Self-heating effects due 

to the high p-GaN resistivity also reduces the device lifetime and reliability [3]. The 

following approaches were investigated in an attempt to improve the conductivity of p-

GaN, to be explained in the Results and Discussion section. 

 1(a). Carbon doping of GaN grown by molecular-beam epitaxy (MBE) 
1(b). Carbon and magnesium co-doping of GaN grown by MBE 
1(c). Ultraviolet-assisted magnesium doping of GaN grown by MBE 

 

2. Improving light extraction efficiency from GaN-based LED structures 

  

Maximizing the fraction of photons generated within the semiconductor quantum wells 

that actually escapes out of the device structure is a major challenge for any LED design 

[4]. Even supposing 100% internal quantum efficiency is achieved, the overall wall plug 

efficiency of the LED will still be poor if the light extraction efficiency is low. Limitations to 

light extraction result mainly from total internal reflection at the GaN/air and/or 

GaN/sapphire interfaces, and absorption of these reflected rays within the device layers. 

Two approaches were investigated to understand and reduce the effects of these 

phenomena on GaN LED efficiency: 

 2(a). Measurement of absorption coefficients of magnesium-doped GaN 
 2(b). Processing of p-GaN surface to minimize wave-guide effects 

  

3. Improving internal quantum efficiency of LEDs by growing non-polar GaN without 

detrimental internal electric fields 
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Heterostructures utilizing GaN-based materials exhibit strong internal electric fields when 

grown in the C-axis direction, the growth axis used for all LED structures to date. The 

built-in fields result from the piezoelectric effect due to lattice strain along the polar C-

axis of the semiconductor heterostructure [5]. These electric fields have detrimental 

effects on device performance, the most serious of which is an increase in the radiative 

carrier lifetime (reducing internal quantum efficiency).  

 

Although the C-axis is polar and so suffers from piezoelectric effects, other crystal 

planes of GaN, such as the M-plane, are non-polar and do not experience built-in 

electric fields at heterostructures. Thus GaN-based LEDs grown in non-polar crystal 

orientations should in principle have substantially higher internal quantum efficiencies. 

The C-plane is the energetically preferred crystal facet of GaN so it is easier to grow 

films in the C-axis orientation. But researchers have recently reported growth of non-

polar M-plane GaN on unconventional substrates such as R-axis sapphire (rather than 

C-axis sapphire) [6]. Results achieved at UC Berkeley on growth and p-type doping of 

non-polar M-plane GaN on R-plane sapphire substrates will be presented in part 3 of the 

Results and Discussion section. 

   
Results and Discussion 
 

1(a). Carbon doping of GaN grown by molecular-beam epitaxy (MBE) 
 

Carbon is known to have a somewhat lower acceptor ionization energy than magnesium, 

and recently very high p-type conductivity was reported for zincblende-structure GaN 

films grown with carbon doping [7]. Besides the potential for higher p-type conductivity, 

carbon has other advantages over magnesium such as much lower volatility and 

diffusivity. Zincblende-structure GaN is a metastable phase difficult to synthesize on a 

production scale, and thus is not considered a viable material for solid-state lighting 

applications. Research is needed to determine whether the superior performance of 

carbon as an acceptor for zincblende-structure GaN is also applicable for the normal 

wurtzite-structure material. 

  

The Berkeley team extensively investigated carbon doping of wurtzite-structure GaN as 

a function of carbon concentration using different MBE growth conditions and two types 
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of carbon vapor dopant sources (CCl4 and CS2) [8,9]. However, significant p-type 

conductivity for wurtzite GaN could not be obtained using carbon as the acceptor 

dopant. The explanation for the lack of p-type conduction is that carbon dopants form 

pair defects on the growing wurtzite GaN surface, and the pairing behavior results in a 

very low fraction of net carbon acceptors compared to the total concentration of carbon 

in the crystal. This carbon pairing phenomenon apparently does not occur for the 

zincblende-structure GaN crystal surface [7]. 

 

Although no improvement in p-type conductivity was made, an interesting side effect of 

carbon doping was observed which could be useful in solid-state lighting applications. 

Figure 1 (following page) shows the photoluminescence spectrum of a representative 

carbon-doped GaN film. Strong yellow (~560 nm) and blue (~430 nm) luminescence 

bands are observed, which are related to defects introduced by carbon doping. The 

relative intensities of the yellow and blue bands can be controlled by adjusting the 

carbon concentration and/or by adding additional dopants. Films with intense yellow 

emission and low resistivity (0.1 ohm-cm, n-type) can be grown with C and Si co-doping.  
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Figure 1. Photoluminescence spectrum of a GaN:C film measured at 11 K. 
 

 
This material might be applied as a top n-contact layer in an LED structure, which would 

absorb some of the blue photons emitted from the InGaN quantum wells and convert 

them into yellow light. Thus white LEDs could be possible without using a phosphor 
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coating; the phosphors could be replaced by a carbon-doped GaN film to produce yellow 

emission. Such a design would simplify white LED fabrication and hence reduce cost. 

Further research is needed on the absorption and emission efficiencies of yellow-

emitting GaN:C to evaluate the technological feasibility of this approach. 

 

1(b). Carbon and magnesium co-doping of GaN grown by MBE 
 
The reason for the lack of p-type conductivity in wurtzite carbon-doped GaN was 

understood to be pairing of carbon defects on the growth surface [9]. These pairs consist 

of one carbon acceptor (on a nitrogen site) sitting adjacent to a carbon donor defect 

occupying a gallium or interstitial site. Since the pair consists of one acceptor and one 

donor, on the whole it contributes no holes for conduction. 

  

It was thought that a flux of magnesium supplied simultaneously with carbon would 

occupy gallium surface sites with magnesium acceptors and prevent formation of the 

undesirable carbon pair defects. This carbon and magnesium co-doping approach 

should then lead to higher p-type conductivity than magnesium doping alone. 

  

Preliminary experiments were made to test this hypothesis. Two GaN:Mg films were 

grown with all conditions maintained the same except for carbon doping. One sample 

was doped with a carbon concentration in the range 1018 cm-3 range, while the other was 

doped only with magnesium. The magnesium flux was controlled at a fairly low value 

(effusion cell temperature 335 C) so that the influence of the carbon doping could be 

seen clearly. The magnesium on its own is not expected to have a high enough 

concentration to cause significant p-type conductivity. 

 

Photoluminescence spectra for the two samples are shown in Figures 2 and 3 (following 

page). The spectra are clearly different. The carbon co-doped sample shows a dominant 

acceptor- bound exciton (A0X) peak, but the sample with only magnesium doping shows 

a dominant donor-bound exciton (D0X) peak as well as deep-level defect luminescence 

(2.3-2.4 eV). This indicates that the carbon co-doped sample contains a higher 

concentration of acceptors and is p-type conducting, while the sample with light 

magnesium doping only is n-type conducting. Unfortunately, due to problems with the 

experimental apparatus, the electrical properties of the films could not be evaluated, but 
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in this case the luminescence results are a valid proof of the benefit of carbon and 

magnesium co-doping. These preliminary results indicate that Mg co-doping could be 

the key to obtain p-type conduction with carbon. 
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Figure 2. Photoluminescence spectrum measured at 13 K for lightly-doped GaN:Mg   

(magnesium cell temperature = 335 C) 
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Figure 3. Photoluminescence spectrum measured at 13 K for Mg and C co-doped 

GaN, with Mg concentration similar to the sample of Fig. 2 
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1(c). Ultraviolet-assisted magnesium doping of GaN grown by MBE 
 

For magnesium doping above a critical limit, it is well known that the p-type conductivity 

actually decreases rather than increases [2]. This phenomenon results from exceeding 

the solubility of magnesium acceptors; additional magnesium atoms are incorporated as 

electrically inactive defects when the Fermi level moves close enough to the valence 

band. Intense ultraviolet irradiation during film growth could in theory circumvent the 

magnesium acceptor solubility problem by creating a photo-induced electron-hole 

plasma (EHP). Presence of such an EHP while the GaN crystal is growing would 

eliminate the auto-compensation phenomena that limit the maximum acceptor solubility 

under ordinary growth conditions. To assess the feasibility of this idea, heavily Mg-doped 

GaN films were prepared with the beam from a 200 W mercury arc lamp focused on the 

1 x 1 cm substrate during growth. The “illuminated” film was compared to a normal film 

grown without the Hg lamp. Aside from the UV illumination, all other growth conditions 

were reproduced as closely as possible.  

 

The near band-edge photoluminescence spectra suggest UV illumination during  

growth is indeed beneficial, as shown in Figure 4. The illuminated sample is dominated 

by acceptor-bound exciton emission, as would be expected for a conducting p-type film 

of high electrically active acceptor concentration. On the other hand, the reference 

sample shows only a weak acceptor-bound peak and is characterized mainly by free 

exciton emission. This suggests the majority of magnesium in the reference sample is 

incorporated as electrically inactive defects, which may also be responsible for its 

dramatically reduced overall luminescence intensity. Unfortunately, again due to 

equipment problems, electrical measurements could not be carried out on these 

samples. 
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Figure 4. Near band-edge photoluminescence spectra for GaN:Mg (TMg = 425 C) 

samples with and without ultraviolet illumination during crystal growth. 
 

 
It should be pointed out that the effects of UV illumination on GaN:Mg could be quite 

complicated. For example, photo-induced desorption of the volatile magnesium from the 

film surface could occur. So while these preliminary experiments are encouraging, 

additional work is needed to reproduce and better understand the results. 

 
2(a). Measurement of absorption coefficients of magnesium-doped GaN 
 
Heavily magnesium-doped GaN is known to absorb blue and near-ultraviolet light based 

on the results of photocurrent and photoluminescence measurements [10,11]. However, 

these types of measurements cannot obtain quantitative values for the absorption 

coefficient, the parameter that ultimately determines the light extraction efficiency, and 

hence the most important parameter for optical modeling of the LED. Despite this, there 

are hardly any reports of optical transmission data for p-type GaN films in the literature. 

 

The optical transmission spectra for p-type GaN:Mg and n-type GaN:Si films were 

measured using a standard spectrophotometer and compared with the spectra for 

nominally undoped films. The backs of the sapphire substrates (ordinarily rough) were  
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Figure 5. a) Transmission spectra for n-type and p-type GaN films, 2 m thick 

grown on sapphire by MBE; b) Absorption coefficients extracted from a) 

 

polished prior to the transmission measurements. The transmission spectra are shown in 

Figure 5 a) and the absorption coefficients extracted from this data are shown in Figure 

5 b). A constant reflectance of 17% was assumed, which may introduce minor errors in 

the absorption coefficients since the reflectance actually varies slightly with wavelength. 

 

The optical transmission of p-type GaN:Mg films is dramatically different from that of n-

type GaN:Si films. The absorption coefficient of GaN:Mg is substantially higher for all 

wavelengths in the range 350-600 nm. The increase in absorption associated with Mg 

doping is about a factor of 2 for wavelengths in the 400-450 nm range typically used for 

LEDs in solid-state lighting applications. Also the steep rise in absorption normally 

associated with the GaN energy band gap (365 nm) occurs at a lower energy (~400 nm) 

for p-type films. Thus both the magnitude and spectral dependence of the GaN 

absorption coefficient are significantly changed by Mg doping. 
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These results confirm our expectation that significant sub band-gap absorption occurs in 

p-type GaN layers. In terms of device design, the conclusion is that the p-type layer 

thickness should be made as thin as possible without compromising the electrical 

characteristics of the LED. At a minimum, the p-type layer has to be at least thick 

enough that it is not fully depleted of carriers by the p-n junction, i.e. more than 200 nm. 

 

2(b). Processing of p-GaN surface to minimize wave-guide effects 
 
A major limitation to the external light extraction efficiency of GaN-based LEDs is total 

internal reflection of emitted light at the various optical interfaces within the device. The 

internally reflected light is essentially wave-guided through the GaN film, allowing 

multiple passes for internal absorption. This detrimental effect could be eliminated by 

roughening one or both surfaces of the “waveguide” so that they become diffuse rather 

than specular reflectors. 

  

Using plasma etching to roughen the top p-GaN surface has been considered as method 

to eliminate the waveguide effect and increase external light extraction efficiency. 

However, it was found that plasma processing of p-type GaN surfaces tends to introduce 

defects which destroy the p-type conductivity [12]. Therefore this idea was not pursued 

further. 

 

3. MBE growth and doping of non-polar M-plane GaN 
 

The higher photoluminescence efficiency of AlGaN/GaN quantum wells grown in the M-

plane orientation has very recently been confirmed by two different groups [6,13]. 

However, no electroluminescent devices (e.g. LEDs) have been demonstrated with M-

plane GaN yet. The first obstacle toward this goal is proving that p-type doping of M-

plane GaN is in fact possible, which has not been reported so far in the literature. 

  

To overcome this problem, the UC Berkeley team has grown GaN films by MBE on R-

plane sapphire substrates and characterized the films by in-situ reflection high-energy 

electron diffraction (RHEED), x-ray diffraction, Hall effect, and photoluminescence 

measurements. 
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Usually MBE is initiated on C-plane sapphire by exposing the substrate to nitrogen 

plasma at ~700 C, which creates a thin AlN layer on the surface that acts as a good 

crystalline template for subsequent GaN growth [14]. However, for the R-plane sapphire 

substrates this nitridation procedure resulted in a spotty RHEED pattern, indicating 

roughening of the substrate surface. Such a rough surface is not desirable for 

subsequent GaN epitaxy. The roughening during nitridation of R-plane sapphire is 

probably due to the fact that the R crystal plane is terminated by both Al and O atoms, 

while the C-plane is terminated only by O atoms. On the basis of the in-situ RHEED 

observations, a modified MBE process was developed for growth on R-plane sapphire. 

The nucleation process consisted only of deposition and annealing of a gallium-rich low-

temperature GaN buffer layer [15] without nitriding the sapphire substrate. Both silicon-

doped films and magnesium-doped films were grown.  

 

X-ray diffraction scans (Figure 6) confirmed the non-polar crystal growth axis for the 

GaN films. For the films grown on R-sapphire, the (002) reflection for the polar GaN C-

axis is completely absent. Only the (110) reflection is observed; this result together with 

x-ray rocking curves confirms the film is epitaxial non-polar M-plane oriented GaN. 

Although the desired GaN crystal orientation was achieved, the x-ray results indicate the 

film structural quality on R-sapphire is poor compared to that of polar GaN on C-plane 

sapphire. This finding agrees with the results of other groups [6,16] and shows there is 

still much work to be done before a-plane GaN is optimized for use in LEDs. 

  22 



30 35 40 45 50 55 60 65

200

400

600

800

1000

1200

1400

1600

 

 

Al2O3 (024)   52.60

GaN (002)   34.60

not observed
GaN (110)   57.90

in
te

ns
ity

 (
ar

b)

2θ  (degrees)

Figure 6. X-ray normal scan for M-plane non-polar GaN:Mg film grown on R-plane 
sapphire substrate. 

 

Electrical properties of the films as determined by the Hall effect are shown in Table I. 

Si-doped and nominally undoped films show n-type conductivity, as is also typical of 

polar GaN grown on C-sapphire. However, the electron mobility of M-plane GaN is about 

a factor of 10 lower than for C-plane GaN layers grown by MBE [15]. This is not 

surprising given the poorer structural quality found by x-ray measurements. On the other 

hand, the magnesium-doped M-plane GaN films show encouraging electrical properties, 

with p-type conductivity actually higher than is found for C-plane GaN:Mg grown under 

similar conditions. This the first report of p-type conductivity in M-plane GaN. The 

improvement for M-plane GaN most likely reflects a higher sticking coefficient for Mg 

dopant atoms [17] on the M-plane versus the nitrogen-polar C-plane, leading to a higher 

acceptor and hence hole concentration. The hole mobility in GaN is inherently low and 

hence not significantly reduced by the crystal defects in the M-plane layer versus C-

plane layers of better structural quality. 
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Table I. Hall effect results for non-polar M-plane GaN films 
Doping Carrier concentration Mobility 
TSi = 850 C 1 1018 cm-3 (n-type) 18 cm2/Vs 
TMg = 350 C 3 1017 cm-3 (p-type) 5 cm2/Vs 
TMg = 400 C 6 1017 cm-3 (p-type) 2 cm2/Vs 

 

As an independent check for the Hall effect results indicating p-type conductivity, the 

samples were also characterized by photoluminescence (Figure 7). Due to the rather 

poor structural quality of the M-plane GaN layers, some key luminescence features such 

as the exciton peaks cannot be resolved. However, the broad emission band centered 

around 2.8 eV is similar to luminescence usually observed in p-type GaN:Mg grown on 

C-plane sapphire. The absence of any yellow luminescence (~2.2 eV) in Figure 7 also 

supports the fact that the sample is p-type conducting. 
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Figure 7. Photoluminescence spectrum for an M-plane non-polar GaN:Mg film. 

 

 

Conclusions 
 
A number of approaches have been investigated for improving the efficiency of GaN-

based LEDs for solid-state lighting applications. The areas targeted for improvement 

were the electrical conductivity of p-type GaN layers, light extraction efficiency through 
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studying and modifying LED optical properties, and internal quantum efficiency through 

elimination of built-in internal electric fields by changing the crystal growth axis. 

  

Unlike the case for zincblende-structure GaN, in the normal wurtzite polytype of GaN 

carbon doping on its own was not found to yield significant p-type conductivity. However, 

carbon doping introduces yellow and blue luminescence bands into GaN which might 

potentially be useful in solid-state lighting applications. Carbon and magnesium co-

doping was found to produce p-GaN films and could perhaps lead to higher p-type 

conductivity than magnesium doping alone. Exposing the film to intense ultraviolet light 

during growth appears to be a promising approach to increase the maximum electrically 

active magnesium acceptor concentration in GaN, and hence increase the p-type 

conductivity. 

  

The absorption coefficient in p-type GaN in the range 400-450 nm was found to be about 

twice as large as that of n-type GaN grown under similar conditions. This has important 

implications for modeling the LED light extraction efficiency and emphasizes the 

importance of optimizing the p-type GaN layer thickness. 

  

Non-polar M-plane oriented GaN films have been grown on R-plane sapphire substrates. 

For the first time, p-type conductivity was demonstrated in this non-polar crystal 

orientation, and the hole concentrations achieved are sufficient for fabrication of efficient 

LEDs. However, further work on growth optimization is needed to bring the crystalline 

quality of M-plane GaN on par with that of C-plane GaN. The absence of internal electric 

fields in quantum wells based on M-plane GaN should ultimately lead to a substantial 

increase in the internal quantum efficiency of LEDs. 
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