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We investigate rf SQUIDs (Superconducting QUantum Interference Devices), coupled to a resonant 

input circuit, a readout tank circuit and a preamplifier, by numerically solving the corresponding 

Langevin equations and optimizing model parameters with respect to noise temperature.  We also 

give approximate analytic solutions for the noise temperature, which we reduce to parameters of 

the SQUID and the tank circuit in the absence of the input circuit. The analytic solutions agree with 

numerical simulations of the full circuit to within 10%, and are similar to expressions used to 

calculate the noise temperature of dc SQUIDs. The best device performance is obtained when Lβ ′ ≡ 

2πLI0/Φ0 is 0.6 - 0.8; L is the SQUID inductance, I0 the junction critical current and Φ0 the flux 

quantum. For a tuned input circuit we find an optimal noise temperature coptN fTfT /3, ≈ , where T, 

f and fc  denote temperature, signal frequency and junction characteristic frequency, respectively. 

This value is only a factor of 2 larger than the optimal noise temperatures obtained by approximate 

analytic theories  carried out previously in the limit Lβ ′ <<1. We study the dependence of the noise 
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temperature on various model parameters, and give examples using realistic device parameters of 

the extent to which the intrinsic noise temperature can be realized experimentally.  
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1. INTRODUCTION 

 

As a result of the continuing progress in computing speed, numerical simulation and noise 

optimization, a nonlinear electronic circuit  such as the rf SQUID (Superconducting Quantum 

Interference Device) coupled to a tank circuit has become an accessible problem.  Nonetheless, the 

optimization of all parameters may still be time-consuming. The noise performance of rf SQUIDs 

has been investigated analytically in the limit of either very large or very small values of the 

inductance parameter 00L /2 ΦLπIβ ≡≡≡≡′′′′  (where I0 is the junction critical current, L is the inductance 

of the SQUID loop and Φ0 is the flux quantum), assuming that the inductive coupling between the 

SQUID loop and the tank circuit is weak.1  The SQUID is coupled to a readout tank circuit, 

consisting of an inductance LT, capacitance CT and resistance RT in series, via a mutual inductance 

M = α(LLT)1/2 (Fig. 1). It turns out, however, that the optimal device parameters are outside the 

validity of these approaches. In a previous publication 2 (which we suggest the reader study before 

tackling this paper) we calculated and optimized the noise energy ε of rf SQUIDs by numerically 

solving the corresponding Langevin equations. We found that the best values were obtained for 

1≈′Lβ . For values of the noise parameter 00/2 ΦITπkΓ B≡≡≡≡   below about 2, we found the 

normalized noise energy )/2/( 00 RITΦkεe B====  (R is the junction resistance) to be )exp(5.0 LβΓ ′ , 

albeit for values of α   well above 0.2. Perhaps surprisingly the best values of e were only a factor 

of 2 above the prediction for the dispersive rf SQUID ( 1<′Lβ )  obtained by extrapolating the 

analytic results obtained, for example, by Danilov, Likharev and Snigirev,3 for 1<<<<<<<<′′′′Lβ  to values of 

Lβ ′′′′  near unity.  The numerical simulations in Ref. [2], however, neglected both the back-action of 

the rf SQUID on an input circuit and the back-action of the preamplifier following the tank circuit.  

A complete theory should include both the input circuit and the preamplifier. In this case the noise 

temperature TN is a more suitable figure of merit than the noise energy. One defines TN by 

considering the Nyquist noise of a resistor at temperature Ti in the input circuit (Fig. 1).  In the 
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classical regime, when Ti is increased from zero to its value at which the output noise power 

doubles, that value is equal to TN.  For a tuned input circuit, TN becomes independent of its 

parameters once they are optimized to minimize3 TN.  During the 1970s, the noise temperature of rf 

SQUID circuits was considered by several authors in both the dissipative3, 4, 5 and dispersive 

regimes3 1>>′Lβ  and 1<<′Lβ , respectively.  The most complete description, to our knowledge, is 

that of Danilov, et al.3 For Γ << 1, these authors studied the noise performance of both dc and rf 

SQUIDs in the limits 1>>′Lβ  and 1<<′Lβ .  In the dispersive regime, they found the minimum 

noise temperature of the rf SQUID coupled to a tuned input circuit was given by  

 

TN,min/T ≈ 2.5(1+Ttank/Tα2QβL' fd)f/fc  .      (1) 

 

Here, 00 /ΦRIfc =  is the characteristic frequency of the junction, f is the measurement frequency, fd 

is the rf drive frequency, Q denotes the tank circuit quality factor and Ttank is the effective 

temperature of the tank circuit resistor, including the noise contribution of the preamplifier. The 

approximate factor 2.5 results from )8.1(/2 1
2/1 J  , where J1 is the first-order Bessel function.  

When the second term in parentheses can be neglected one obtains cN ffTT /5.2/min, ≈ , which for, 

say, T = 4.2 K and cf  = 100 GHz, yields TN, min/f ≈ 100 µK /MHz.  We shall see below that the best 

predicted intrinsic noise temperatures are only slightly above this value, and are achieved for Lβ ′  of 

0.6-0.8 and α above about 0.2.  Furthermore, the noise temperature remains low up to Γ = 1 or even 

higher.  Our simulations are mostly for Q = 100, which is sufficient to achieve low values of TN.  As 

for the case of the noise energy discussed in Ref. 2, we were not able to duplicate the inverse 

scaling with α2Qfd, indicated in Eq. (1). 

The paper is organized as follows.  In Sec. 2, we introduce the full rf SQUID circuit and the 

Langevin equations describing it. While we solve this set of equations only for some cases, we 

minimize the noise temperature analytically for a tuned input circuit optimized for the parameters of 



 5 

this circuit, Φπ VfSSST VJJVToptN /)
~~~

( 2/12
, −= .  Here, VTS

~
(f) and JS

~
(f) denote the spectral density of 

the low frequency voltage VT across the tank circuit and the circulating current J in the SQUID loop 

in the absence of an input circuit, VJS
~

(f) is the cross correlation between the Fourier transforms of 

these quantities and VΦ is the modulus of the SQUID flux-to-voltage transfer function 

TIextTV )/( Φ∂∂ ; Φext is the flux applied to the SQUID and IT is the rf drive current of the tank circuit.  

The expression for TN,opt follows from a low frequency analysis of both dc3,6 and rf SQUID circuits,3 

and is re-derived in Appendix A1. In Sec. 3, we optimize TN,opt with respect to various model 

parameters, assuming a narrowband readout scheme following the tank circuit.  Section 4 is devoted 

to broadband readout schemes and the dependence of TN,opt on the drive frequency. Section 5 

contains our conclusions.  In Appendix A2, the analytic results derived in Appendix A1 are 

compared to numerical simulations. Appendix A3 contains a list of symbols.  

 

 

2. MODEL 

 

The circuit, shown in Fig.1, consists of three units coupled inductively: the input circuit, the 

SQUID loop and the tank circuit.  Before we describe these components, however, it is convenient 

first to discuss the preamplifier connected across the tank circuit.  

We assume that the preamplifier is based on a high electron mobility transistor7,8 (HEMT) and 

cooled to 4.2 K.  We characterize the preamplifier by an input impedance9 RA (which we assume to 

be real), and input voltage and current noise sources UNA and INA with spectral densities SUA and SIA, 

respectively, at or near the resonant frequency of the tank circuit.  For a typical cooled HEMT 

amplifier with an input impedance matched to 50 Ω, representative noise values are 

2/110 HzV10x1 −−−−−−−−====1/2
UA

S  and 2/112 HzA10x2 −−−−−−−−====1/2
IA

S .  We assume that the two noise sources 

are uncorrelated and have white spectral densities.  The current noise feeds into the tank circuit and 
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represents a backaction, while the voltage noise source appears only at the output of the 

preamplifier, amplified by the preamplifier gain.  For convenience in our formulation, we 

parameterise the current noise by the spectral density SIA = 4kBTA/RA.  We emphasize, however, that 

the temperature TA does not represent any physical temperature. For the optimal source 

resistance 1/21/2
IAUAopt /SSR ==== , one can easily relate TA to the optimal noise temperature10 of the 

preamplifier, TNA. Since TNA = SIARopt/2kB, we see that TNA = 2(Ropt/RA)TA. For the noise values listed 

above, we find Ropt = 50 Ω and TA = 7 K. 

The SQUID is characterized by the dimensionless parameters Lβ ′  and 0
2

0 /2 Φ= CRIc πβ ; C is 

the junction capacitance.  At temperature T, R produces a Nyquist current noise IN with a spectral 

density RTkB /4 , or 00/244 ΦπΓ ITkB⋅=  in dimensionless units.   

The tank circuit is driven by an  oscillating current drive IT with amplitude Id (id in units of I0) at 

frequency fd (in units of fc) and consists of an inductor LT, a capacitor CT and a resistor, RT 

representing losses in the tank circuit; RA appears in parallel with RT.  For ∞→AR  (as used in Ref. 

2 to calculate the noise energy) the tank circuit is characterized by the unloaded quality factor 

TTT RCLQ /)/( 2/1
0 =  and the normalized resonance frequency 2/1

0 )(2/1 TTc CLff π= .  For finite 

values of RA we define TTAA LCRQ /22 =  and an effective quality factor )/( 000, AAeff QQQQQ += .  

(This definition of 0,effQ  is  chosen so that, at resonance (frequency ωr) and in the absence of the 

SQUID loop and the input circuit, the linear tank circuit at zero temperature  delivers a voltage 

ILQIZU resTeffreal ω0,== , or, in dimensionless units, 2
0,0 LeffL iQfu γβ ′= .) 

We assume that RT produces Nyquist noise at temperature TT = T, corresponding to a voltage 

source UN,T with spectral density TBTRk4 [or, in normalized units, 00/244 ΦγπγΓ ITk RBRT ⋅= , 

where 0
2

0 // QfRR LLTR γβγ ′==  and 2/1)/( LLTL =γ ].  At this point, it is convenient to introduce 

the dimensionless spectral density for the preamplifier current noise siA = 4ΓAR/RA, where ΓA ≡ 
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2πkBTA/I0Φ0.  Using the result RA/R = βL′ fo γL
2 QA, we can also write the spectral density as siA = 

4ΓA/QA βL′ fo γL
2.   

At resonance, the tank circuit impedance is given by Zr = [RA
-1 + (Q0

2RT)
-1]-1.  Defining Ropt/Zr = 

κ we obtain the expressions TTeffopt CLQR /0,κ=  and AeffANA QQ /2 0ΓκΓ = , with 

00/2 ΦπΓ ITk NABNA = .  For the normalized spectral densities of the preamplifier voltage and current 

noise we obtain NALLeffAALLeffuA fQQfQs ΓγβκΓγβκ 0
2

0,0
22

0,
2 2/4 ′=′=  and 

0
2

0,0
2 /2/4 fQfQs LLeffNALLAAiA γβκΓγβΓ ′=′= , respectively.  At a fixed value of ΓNA, suA and siA 

scale as κ and 1/κ, respectively, so that κ has an optimal value.  We performed numerical 

simulations to optimize the system noise temperature, including siA and svA, done for ΓNA = 0.05, Γ = 

0.025, Qeff,0 = 100, α = 0.2 and several values of  f0 between 0.5 and 0.01, while optimizing fd, id, 

and βL'.  These simulations11 yielded only a weak dependence on κ in the range 0.1 - 1.  Below we 

consider this range of κ as "typical", although we have not performed a systematic investigation 

varying many model parameters.  Below, unless stated otherwise, we ignore the contribution of sUA 

which simply adds to the voltage output of the tank circuit.  

For the case in which the preamplifier weakly damps the tank circuit, for example, Q0 = 101 and 

QA = 10100, corresponding to QA/Q0 = 100 and Qeff,0 = 100, we find TA ≈ TNA QA/2κQ0.  In this limit, 

TA and thus ΓA can take large values:  for example, for ΓA = 10Γ = 0.25 and T = 4.2 K, we find TA = 

42 K and TNA /κ = 0.2 K.  Since for κ ≲ 10 the corresponding values of TNA are well below the noise 

temperature of any available semiconductor preamplifier, we use these parameters to represent a 

“quiet” preamplifier that has essentially no impact on the SQUID readout.  A second interesting 

limit is the matched case QA = Q0 for which κTA = TNA.  The same set of values for Γ, ΓA and T 

leads to TNA /κ = 42 K, which for κ > 0.3 or so is well above the noise temperature of good available 

semiconductor preamplifiers.  We refer to this situation as a “noisy” preamplifier that dominates the 

overall system noise temperature. 
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The input circuit consists of an inductor Li, a capacitor Ci and a resistor Ri that produces Nyquist 

noise at temperature Ti (Fig. 1).  The (unloaded) quality factor is iiii RCLQ /)/( 2/1
0 =  and the 

normalized resonance frequency is iii CLRIf 000 2/ πΦ= . The inductance Li is coupled to L via the 

coupling coefficient αi and to LT via αiT.  Later on we further assume that the input circuit resonates 

at a frequency well below the characteristic frequencies of the SQUID loop and the tank circuit. 

We next introduce the equations describing the full circuit. The fluxes through LT, Li and L are 

given by iiTTT IMMJIL ++= 1Φ , 1IMJMIL iTiiii ++=Φ  and iiext IMMILJ +++= 1ΦΦ , 

respectively. Here, Mi = αi(LLi)
1/2 is the mutual inductance between the input loop and the SQUID, 

MiT = αiT(LiLT)1/2  is the mutual inductance between the input circuit and the tank circuit, and I i is 

the current  in the input circuit.  In dimensionless units, with LLiLi /=γ , i1=I1/I0, j =  J/I0 and 

i i=I i/I0, we find  

 

][ 1 iLiiTLLLT iji γααγγβϕ ++′=  ,     (2a) 

 

][ 1iji LiTiiLiLiLi γααγγβϕ ++′=  ,     (2b) 

and 

][22 1 iLiiLLext iij γααγβπϕπϕ ++′+=  .    (2c) 

 

Here, fluxes through the input circuit and tank circuit inductors are normalized to Φ0/2π, and the 

flux through the SQUID is normalized to Φ0.  We solve these expressions for j, i1 and i i and insert 

the resulting functions into the differential equations introduced below.  For the tank circuit we find 

NAATCTTT IRUCII +++= /1 Φ&&  and, for RT > 0, TTNTCTTCT CRUUU /)( +−= Φ&& ; for RT = 0, this  

expression reduces to TCTU Φ&= . In dimensionless form these equations become 
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 NA
ALL

T

LL

cT
T i

Qff

u
ii +

′
+

′
+=

2
0

22
0

1 γβ
ϕ

γβ
&&

 ,    (3) 

 

 )(00 NTcTTcT uuQfu +−= ϕ&&  ,  (RT > 0)    (4a) 

and 

cTT u=ϕ&  .  (RT = 0)    (4b) 

 

For the input circuit, in analogy with the tank circuit, we find iCii IUC −=&  

and iNiiiCiiiiNiCiiCi CICRUCRUUU //)(/)( +−=+−= ΦΦ &&& .  In dimensionless form these 

equations are 

 

ci
LiLi

i u
f

i &
22

0

1

γβ ′
−=       (5) 

and 

)(00 Niciiiici uuQfu +−= ϕ&&  .     (6) 

 

 The noise voltage uNi has a spectral power density 4ΓiRi/R, where 00/2 ΦπΓ ITk iBi =  and 

iLiiLi QfRR 0
2

0 // γβ ′= .  For the untuned input with ∞→iC ,  a short calculation yields 

 

 Nii
i

LLii
i ui

Q

f
+

′
−=

0

2
0 βγϕ&  ,      (7) 

 

 which replaces Eqs. (5) and (6).  Note that the ratio f0i/Q0i is equal to Ri/2πLifc and is independent 

of Ci.  Finally, the equation for the SQUID loop is 
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ji Nc =+++ δδδβ sin&&& .     (8) 

 

For the currents, voltages and fluxes in the tank circuit  and input circuit, simple scaling relations 

hold with respect to γL and γLi: for the tank circuit  LLL γγiγi /)1()( TT ======== , 

)1()( =⋅= LTLLT γuγγu   and )1()( =⋅= LTLLT γϕγγϕ , and for the input circuit  

LiLiiLii ii γγγ /)1()( == , )1()( =⋅= LiiLiLii uu γγγ  and )1()( =⋅= LiiLiLii γϕγγϕ .  It is thus 

sufficient to consider the cases 1== LiL γγ . 

Equations (2) - (8) contain the variables δ, ϕT, ucT, ϕi and uci.  The 16 model parameters areLβ ′ , 

βc, id, ϕext, f, f0, f0i, Q0, Q0i, QA, α, αi, αiT, Γ, Γi, ΓA. An ab initio optimization of such a large number 

of parameters is obviously out of reach.  Instead, we give an approximate low frequency analysis of 

the noise temperature and combine it with numerical simulations for some special cases.  Details are 

discussed in Appendix A1. In brief, in the limit αiT = 0 and for 12 <<iα one finds that for a tuned 

input circuit the dimensionless noise temperature, optimized for αi and f0i , is given by 

 

ϕπ
Φ

π
Γ vsssf

I

Tk
vjjvT

optNB
optN /)~~~(

2
2

00

,
, −≅= .      (9) 

 

When the input circuit is at resonance one obtains ϕπΓ vssf jvTresN /~~
, ≈ .  Here, vTs~ , js~  and vjs~  

denote, respectively, the normalized spectral density of the tank circuit noise voltage vT, the 

circulating noise current j in the SQUID loop and the cross correlation between the Fourier 

transforms of vT and j, evaluated at αi = αiT = 0. The frequency f is normalized to the junction 

characteristic frequency fc.  We have set ϕv ≡  |dvT/dϕext|.  When the optimal frequency of the input 

signal is close to the input circuit resonance frequency the optimal value for Q0i is obtained from  
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LjvT
res

ioptiresii vssQQ βπαα ϕ ′=≈ /)~/~(2 2/1
0

2
,0

2 .   (10) 

 

Equation (9) is generic for both rf and dc SQUIDs,3,6 and, to an accuracy of  10-30%, describes the 

noise temperature of the SQUID coupled to the tuned input circuit. (cf. Appendix A2.  The case αiT  

> 0 is addressed in the appendices.) 

 

 

3. OPTIMIZED NOISE TEMPERATURE 

 

We first optimize Eq. (9) for the fixed values f0 = 0.1, αi = αiT = 0, Γ = 0.025, 0=cβ , Q0 = 100 

and ∞→AQ , and find ΓN,opt /f  ≈ 0.07.  The values of the model parameters we varied to optimize 

the noise temperature are: id = 0.62, fd = 0.106,  α = 0.72, ϕext = 0.28 and Lβ ′  =  0.68, yielding ϕv = 

1.29, vTs~  = 0.011, js~  = 0.15,  vjs~  =0.029 and e ≈ 0.6. Figure 2(a) shows (high frequency) spectra 

for suT and js~  for the above parameters. For comparison, Fig.  2(b) shows these spectra for the 

parameters that minimize the noise energy for the above fixed parameters and ϕext = 0.25: α = 0.73, 

fd = 0.1066, id = 0.37, Lβ ′  = 1.21, yielding e ≈ 0.5. Using these parameters we would have obtained 

a noise temperature some 30% higher than for case (a).  At first sight, the spectra in (a) and (b) 

appear similar.  The essential difference in (b) is a pronounced dip in suT at f = 0.11 which 

apparently helps to minimize e.  This dip is much less pronounced in (a).  We further note that the 

model parameters for both cases are similar, except that Lβ ′  is about a factor of 2 lower in case (a). 

We now investigate the ratio foptN /,Γ , optimized for several model parameters.  We first 

optimize for id, fd and Lβ ′  under the conditions cβ = 0, extϕ  = 0.25 and Γ = 0.025, and study 

foptN /,Γ  as a function of α. Figure 3 shows the resulting plot for the two cases Q0 = 100, QA → ∞ , 
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with 0=AΓ  (preamplifier absent, open squares) and Q0 = QA = 200, with 25.0=AΓ  (matched case, 

open circles). Table 1 lists the corresponding model parameters. In the absence of the preamplifier 

and for α > 0.4 we find foptN /,Γ  < 0.1 ( 4/, <foptN ΓΓ ); this value increases as α is reduced, for 

example, rising to about 0.15 for α = 0.2. 

For Q0 = QA = 200 the overall shape of foptN /,Γ  vs. α is similar to the case QA → ∞, although 

the absolute values are roughly a factor of 2 larger.  As for the case of the optimized noise energy,2 

the increase of foptN /,Γ   for decreasing α  scales much less strongly than α-2, as is predicted by Eq. 

(1).  The data are more consistent with an α-1 scaling, although the numerical data points are not 

sufficiently accurate to determine the exponent precisely.  Nonetheless, the plot shows that a large 

value of α is highly desirable. 

 Figure 4 shows foptN /,Γ  vs. Lβ ′  under various conditions (Q0 = 100 with QA → ∞ and Q0 = QA 

= 200, both cases for α = 0.2 and α optimized; id and fd optimized in all cases).  Table 2 lists the 

corresponding model parameters and spectral densities.  For all plots Γ = 0.025, ΓA = 0.25, Qeff,0 = 

100, f0 = 0.1, 0=cβ  and 25.0=extϕ . In the case QA → ∞, for optimized α, foptN /,Γ  reaches its 

minimum of about 0.07 ( 3/, ≈foptN ΓΓ ) near Lβ ′  = 0.7.  The minimum is very shallow, however, 

and foptN /,Γ   remains below 0.1 over almost the entire range.  To achieve such low noise 

temperatures, values of α  above 0.65 are required (Table 2).  When we choose α = 0.2, the noise 

temperature increases by a factor of about 2.5.  For Q0 = QA = 200, foptN /,Γ  increases by a factor 

of roughly 2 for variable α, increasing by another factor of 3 when α is fixed  at 0.2. In all cases, the 

minimum values of foptN /,Γ  are achieved in the range 0.5 < Lβ ′  < 1 which–in contrast to large 

values of α–are easy to realize experimentally.  Note that Eq. (1), which is valid for Lβ ′ <<1, 

predicts that the minimum noise temperature should be independent of Lβ ′ .  The minimum value of 

foptN ΓΓ /, is predicted to be about 2.5, which is close to the value we obtained numerically.  For the 
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case QA → ∞, using TT/T = 1 and Q = Q0, and for Lβ ′  ≈ 0.7, we expect the contribution 

)(/ 2
dLT fQTT βα ′ from the tank circuit to be  about 3.5, leading to foptN ΓΓ /, ≈ 11.  The value found 

numerically is 6-7; thus, Eq. (1) overestimates the tank circuit contribution for this case.  The same 

holds for Q0 = QA = 200 where, for α = 0.2, the minimum numerical values of foptN ΓΓ /,  are about 

13, while from Eq. (1), with TT/T = 10, we predict a value above 40. 

Finally, we examine the dependence of foptN /,Γ  on Γ and ΓA for the optimized parameters id, fd, 

α and Lβ ′  and fixed parameters QA = Q0 = 200 αi = αiT = 0, f0 = 0.1, ϕext = 0.25 and βc = 0.  For ΓA 

= 0 the spectral densities and particularly foptN /,Γ  vs. Γ  are approximately linear; Fig. 5(a) shows 

that ΓΓ 2.3/, ≈foptN .  The optimized parameters are listed in Table 3.  It is interesting to note that 

Lβ ′  decreases with increasing Γ, reaching a value of 0.26 for Γ = 1.6.  Such a decrease can be 

understood when  foptN /,Γ  is an increasing function of LβΓ ′ , as for the case of the noise energy, 

where an exponential growth with LβΓ ′  is predicted.12  This growth counteracts the minimum of 

foptN /,Γ  vs. Lβ ′  obtained for fixed Γ (Fig. 4).  When we increase ΓA for Γ = 0, the spectral 

densities follow power laws, with exponents between 1.2 and 1.6 [Fig. 5(b)].  In particular, 

6.1
, )/(250/ AAoptN Qf ΓΓ ≈ .  Here, the parameters id, fd, α and Lβ ′  stay more or less constant, 

showing that ΓA and Γ act quite differently on the noise temperature. 

 

 

4. BROADBAND, FAST READOUTS 

 

So far, we have determined the Fourier component of suT at the drive frequency by recording a 

time trace uT over typically 200 periods of the alternating current drive. Consequently, the 

bandwidth of our amplitude sensitive detector was typically 5⋅10-3 fd ≈ 5⋅10-4.  We next examine 
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cases where this bandwidth is much larger.  We also study situations in which the drive frequency 

becomes comparable with or even larger than the characteristic frequency. 

For a first test of such fast readouts we take parameters Q0 = 101, QA = 10100, f0 = 0.1, 21.1=′
Lβ  

α = 0.725, id = 0.369, fd = 0.1066, ϕext = 0.25, Γ = 0.025 and ΓA = 0.25, and use a bandwidth fd/8 (i. 

e. we take time traces uT over 8 periods of the current drive).  Figure 6 (a) shows the (high 

frequency) Fourier spectra of suT and js~  together with the low-frequency correlation functions vTs~ , 

js~  and vjs~ .  As we see, above f ≈ 0.01 the low-frequency functions increase.  This increase actually 

corresponds to the bump visible in Fig. 1.  From these low-frequency spectra, we infer the optimal 

noise temperature via Eq. (8), the best value of ii Q0
2α  via Eq. (10) and the noise energy via 

LvTse βΓπ ′= 2/~ .  The result is shown in Fig. 6(b).  It is evident that, at least for this set of 

parameters, the noise temperature deteriorates above frequencies of about 10-3, which are an upper 

limit for minimal noise temperatures. 

We next optimize TN,opt /f for Q0 = 100, QA→ ∞, Γ = 0.025, f0 = 0.1 and βc = 0, using a 

bandwidth fd/8.  The result is <TN,opt /f > ≈ 0.13, where the brackets denote averaging over the entire 

bandwidth.  The values of the model parameters we varied to optimize the noise temperature are: id 

= 0.56, fd = 0.1063, α = 0.916, ϕext = 0.278 and Lβ ′  = 0.628, yielding ϕv = 1.31.  Figure 7 shows (a) 

the corresponding noise power spectra and (b) the inferred values of foptN /,Γ  , fresN /,Γ , 

ii Q0
2α and e.  The low frequency limit of foptN /,Γ (≈0.065) is comparable to the optimized value 

using the narrowband readout. Again, above f ≈ 3 x 10-3 the ratio foptN /,Γ  and the spectral 

densities increase.  The broad bandwidth optimization, which puts an extra weight on the bump near 

f = 0.01, is thus not able to decrease the amplitude of the bump. 

In the next step we increase f0 to 0.5.  For narrow-band readout, the optimization routine finds 

ΓN,opt/f = 0.066 for parameters fd = 0.54, id = 0.894, α = 0.53, ϕext = 0.25 and Lβ ′  = 0.60.  For the 

spectral densities we obtain vTs~  = 0.092, js~ = 0.076 and vjs~ = 0.0036; in addition ϕv = 3.98.  For 
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these parameters, but now with a bandwidth of fd/8, Fig. 8 shows (a) the spectral densities suT, js~ , 

vTs~  and vjs~  and (b) the calculated values of ΓN,opt/f, ΓN,res/f,  e and ii Q0
2α .  In Fig. 8(a), we note that 

vTs~  is now very large and that, on the other hand, vjs~ becomes small.  Consequently, in Fig. 8(b), 

ΓN,opt/f and ΓN,res/f are almost indistinguishable.  Both functions remain flat up to frequencies of 

about 10-2 where the hump, already visible for the low-frequency drives, reappears, although in a 

less pronounced way.  

The above examples show that over a wide regime of drive frequencies and readout bandwidths 

there are some quantitative differences but no major qualitative changes.  With this finding in mind, 

in Fig. 9, we display the frequency evolution of the noise temperature for several cases.  As we see, 

ΓN,opt/f is flat when α is optimized for the case Q0 =100, QA→ ∞ (open squares).  For α = 0.2 and Q0 

=100, QA→ ∞, on the other hand, ΓN,opt/f starts to increase for drive frequencies below about 0.3 

(black circles).  The situation is similar to the case of the optimized noise energy where we found e 

to increase approximately as 3.0−
df .  In the case of the noise temperature, ΓN,opt/f scales 

approximately as 5.0−−−−
df   for α = 0.2 and fd < 0.2 (cf. dotted line which is given by the fit function 

2/1
0/043.0 f ).  For example, for fd = 0.01 the extrapolated value of ΓN,opt/f  is about 0.4, more than 5 

times above the minimum value.  We thus see clearly that, for reasonable values of α, the drive 

frequency cannot be too low.  For the case of the "noisy preamplifier", with Q0 = QA = 100, α = 0.2 

and ΓA = 0.25, for drive frequencies fd < 0.2, ΓN,opt/f increases by another factor of 2.5 compared to 

the isolated case (open circles).  We also show with grey circles simulations where, for the case Q0 

= QA = 100, α = 0.2 and ΓA = 0.25 we additionally added the preamplifier voltage noise to the 

output, assuming κ = 0.2 and ΓNA = 0.05.  The numerical data roughly follow the fit function 

5.0
00 /1.0/037.0 ff + .  The increase in ΓN,opt/f , compared to the isolated case, is enormous, showing 

that at least for these values of ΓNA the noise performance of the rf SQUID is limited by the 

preamplifier noise. In additional simulations (not shown), for ΓNA = 0.05 we also investigated the 
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case Q0 = 100, QA=10100 yielding essentially the same result.  For Q0 = QA=200 we further 

optimized κ and α and investigated the case Qeff,0 = 200 but did not achieve a significant 

improvement over the system noise temperature shown by the grey circles in Fig. 9.  We thus 

conclude that, unless the normalized drive frequencies approach unity or ΓNA is lower or at most 

comparable to Γ  the system noise temperature is dominated by the preamplifier. 

 

 

5. CONCLUSIONS 

 

We have seen that, as for the noise energy,2 numerical simulations of the rf SQUID based on 

Langevin equations yield extremely low values of the intrinsic optimal noise temperature.  The best 

values obtained are close to previous analytical estimates3, although differences occur away from 

this optimum.  For a noise parameter Γ = 0.025 we found ΓΓ ffoptN 307.0, ≈≈  (or 

coptN ffTT /3/, ≈  in absolute units) for Lβ ′  ≈ 0.8 (by contrast, from the analytic theory, which is 

valid for Lβ ′ <<1, one would have expected a noise temperature that is independent of Lβ ′ ). The 

linear relation Γ≈Γ foptN 3,  holds for Γ values up to about 2.  With increasing Γ the optimal value of 

Lβ ′  decreases, however, reaching a value of about 0.25 at Γ = 1.6 and fd = 0.1fc, for example.  In the 

low fluctuation limit the optimum noise temperature of the rf SQUID is a factor of 3 or so lower 

than for a dc SQUID with an optimized inductance parameter 1≈′
Lβ .  This factor increases for 

larger values of Γ, since for the dc SQUID the transfer function decreases strongly with Γ  while for 

the rf SQUD it remains essentially constant up to Γ ≈ 1. 

The drawback with the rf SQUID, however, is that to achieve low values of the noise 

temperature and noise energy the coupling coefficient α between the SQUID loop and the tank 

circuit needs to be large: the optimum value is α→1.  With a more realistic value α = 0.2 and for a 

tank circuit quality factor Q0 = 100, the noise temperature degrades by a factor of about 2.5 for a 
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reduction in drive frequency fd to a factor of 10 below the junction characteristic frequency fc.  The 

degradation becomes worse for lower values of fd.  Assuming fc = 100 GHz and fd = 1 GHz, we find 

that optN ,Γ  extrapolates to about 15fΓ, a value slightly higher than can be achieved with a dc SQUID 

(at low temperatures).  With respect to noise temperature, we have not systematically studied the 

dependence on Q0.  However, for the noise energy we found that an increase of Q0 improves e only 

modestly, by much less than indicated by the predicted proportionality3 to 0
2/1 Qα .  A similar 

dependence is also likely to hold for the noise temperature.  Experimentally it will certainly be 

difficult, although perhaps not impossible, to achieve reasonably large values of fd and α 

simultaneously.  Another issue regards the preamplifier.  We have seen that its noise current and its 

noise voltage add substantially to the SQUID noise temperature, and in many cases will dominate 

the system noise temperature.  

We give some realistic examples.  We assume fd = 1 GHz, T = 4.2 K, fc = 100 GHz and L = 40 

pH. The condition Lβ ′ ≈ 0.8 implies 0I ≈ 6.5 µA, leading to Γ ≈ 0.027, close to the value we used for 

our calculation.  For fc = 100 GHz, we find I0R ≈ 207 µV, corresponding to R ≈ 32 Ω.  For the 

optimal noise temperature 3Tf/fc, we find fT optN /, ≈ 0.12 K per GHz which, for f = 1 MHz, results 

in optNT ,  ≈ 120 µK.  The required value of α ≈ 0.6, however, is difficult to achieve.  For the more 

realistic value α = 0.2, we predict a value fT optN /,  ≈ 

0.7 K per GHz (or 0.7 K at 100 MHz; this value is comparable to that achieved with dc SQUIDs at 

4.2 K).  For comparison, between roughly 10 and 100 GHz, the best cold HEMTs have noise 

temperatures of about 0.5 K per GHz. 

To find the optimal parameters of the tank circuit, for convenience we assume a preamplifier 

with a noise temperature of 5 K (ΓNA = 0.032), Ropt = 50 Ω and κ = 0.2.  With BUAIANA kSST 2/1/21/2====  

and 1/21/2
IAUAopt /SSR ====  we obtain a current noise 2/1

IAS  of 1.67 pA/Hz1/2 and a voltage noise 1/2
UAS  of 

0.083 nV/ Hz1/2.  For the case QA = 10100, Q0 = 101 we obtain κ2
0/ QRR optT ≈  ≈ 25 mΩ.  With 
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TAA RRQQ /0 =⋅  we find AR ≈ 25 kΩ.  With TA  ≈  TNAQA/2κQ0 we obtain TA ≈ 1250 K, and for Γ ≈ 

0.027 we find AΓ ≈ 8.  The ratio ΓA/QA ≈ 8 x 10-4 is comparable to the one for the "noisy" amplifier 

(ΓA/QA = 1.25 x 10-3).  We thus expect our amplifier to dominate the SQUID noise temperature.  (A 

direct simulation, using the above parameters while varying fd and id confirmed this result, yielding 

foptn /,Γ = 4.0 or optNT ,  ≈ 150Tf/fc.)  Using 2
0 / TTT RCLQ =  we find TT CL / ≈ 2.5 Ω and, 

with TTCLf π2/10 ≈  , we obtain 02// fLCC TTT π=  ≈ 70 pF, LT  ≈ 390 pH and 2
Lγ ≈ 10. 

For the case Q0 = QA = 200 a similar calculation leads to TA = 25 K, ΓA = 0 .16, AR = 500 Ω, TR = 

12.5 mΩ, Ω= 5.2/ TT CL , TC  = 64 pF ,  TL  = 400 pH and 2
Lγ  ≈ 10. Since ΓA is only slightly 

below the value of our "noisy" preamplifier the resulting noise temperature will be only slightly 

better than the curves of Fig. 9.  Thus, by interpolation, we expect TN,opt ≈ 30Tf/fc excluding the 

preamplifier voltage noise, and TN,opt ≈ 150Tf/fc including it.  (A direct simulation confirmed this 

result, yielding TN,opt ≈ 140Tf/fc for the latter case.)  Our preamplifier thus clearly dominates the 

system noise temperature. 

Some final remarks are in order.  It will be challenging – to say the least – to achieve 

experimentally the ultimate noise temperature of the rf SQUID amplifier predicted by our 

simulations.  There are two over-riding reasons for this limitation.  First, in practice, it has proven 

very difficult13 to increase the coupling coefficient α to values much above about 0.2, whereas the 

lowest noise temperature requires α → 1.  It would be of considerable interest to revisit this issue 

experimentally.  Second, the lowest noise temperatures of cooled HEMTs are 1-3 K.14 Thus, when 

the rf SQUID is cooled to (say) 20 mK, one requires a power gain of well over 20 dB to make the 

noise from the HEMT negligible.  Such high levels of gain are difficult to achieve.  In contrast, the 

dc SQUID has a higher gain at a frequency of (say) 1 GHz–perhaps 30 dB–so that the noise 

temperature of the HEMT preamplifier is not a limiting factor when the SQUID is cooled to 20 mK.  

Thus, although the ultimate noise temperature of the rf SQUID amplifier may, in principle, be 
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comparable to or even lower than that of a dc SQUID amplifier, in practice, this seems unlikely to 

be realized. 

Furthermore, we note that the same issues of parasitic capacitance between the input coil and the 

SQUID washer apply to both rf and dc SQUIDs, limiting the upper frequency range to about 100 

MHz in the conventional mode of operation.  In the case of the dc SQUID, this drawback has been 

successfully overcome by means of the microstrip SQUID amplifier,15 but to our knowledge, this 

configuration has not yet been implemented for the rf SQUID. 

Finally, the dc SQUID is significantly easier to implement, particularly as a high-frequency 

amplifier.  At the Josephson frequency (say 10-20 GHz), the dc SQUID up-converts the signal 

parametrically and subsequently down-converts to the original signal frequency–without the need 

for any external rf signal.  For these reasons, the rf SQUID is unlikely to challenge the dc SQUID as 

an amplifier at frequencies above (say) 100 MHz. 
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APPENDIX A1: LOW FREQUENCY ANALYSIS OF THE RF SQUID CIRCUIT 

To analyze the low frequency behavior of the rf SQUID circuit shown in Fig. 1 we follow the 

strategy of refs. 3 and 6.  We investigate flux changes δΦ in the SQUID loop and relate them to the 

demodulated low frequency tank circuit voltage via ΦΦ+= δ)/(0 ddVVV TTT  

[ δϕϕ)/(0 ddvvv TTT += ].  Here, vT0 is the normalized low frequency voltage across the tank circuit 

at the (optimal) bias point in the absence of the input circuit and the noise induced by the 

preamplifier. The equivalent low frequency circuit is shown in Fig. A1.  The input circuit is 

described by an impedance Zi(ω) [ iiii CiLiRZ ωω /1++= , where 2/1)1(−=i )], and contains a 

voltage noise source Ui with spectral density 4kBTiRi.  We consider this circuit at low frequencies so 

that it produces negligible noise at the drive frequency of the tank circuit.  The SQUID loop with 

inductance L carries a noise current J0 with spectral density SJ0, to be determined numerically by 

solving Eqs. (2) - (8) in the limit 0== iTi αα . 

We describe the preamplifier by an input resistance RA and two independent noise sources.  The 

first is the short-circuit voltage noise source UNA with spectral density SUA which adds an equivalent 

noise to the voltage UT across the tank circuit without backaction on the tank circuit.  Its component 

at the drive frequency is subsequently down-converted to the low frequency output VT.  The second 

preamplifier noise source is the current noise, which induces a high-frequency current noise 

component, thereby increasing SUT and SVT.  For the moment, we absorb the high-frequency 

component into SVT0.  In our model we assume for simplicity that the preamplifier produces white 

noise, so that we need to consider a contribution adding noise at low frequencies.  The low-

frequency component couples into the SQUID loop via M and into the input loop via MiT.  The low-

frequency preamplifier current noise appears as a current noise source with spectral density SIA.  

The low-frequency equivalent circuit of the tank circuit thus consists of a resistor RA, an inductor LT 

and a current noise source INA with spectral density SIA.  Since there is no low frequency current 

through the arm consisting of RT and CT in Fig. 1, this can be omitted in the low frequency analysis.  
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Consequently, for RA >> ωLT the low frequency current I1 is given in leading order by INA (i1 = iNA).  

For the flux change δϕ  in the SQUID loop we consider low-frequency contributions coupled to the 

SQUID by the input circuit and the tank circuit. In dimensionless notation, using γL = γLi =1, we 

find πααβδϕ 2/)( 1 iiL ii +′= . 

For the noise current in the input circuit we have iiTiii ZIMJMiUI /)]([ 1++−= ω .  To lowest 

order, J is the fluctuating current J0 which is already present in the absence of an input circuit.  In 

dimensionless units, with iii /iωiZz = = iii fQifff 00
22

0 /)/1( −−  and γL = γLi = 1, we find 

))(/1( 10 iαjαfβ/iuzi iTiLiii ++++++++′′′′====  . In this first order approximation the shift of the input circuit 

resonance frequency due to the coupling to the SQUID is not taken into account; this is 

inconvenient for comparisons of the analytic formulas developed below with direct numerical 

simulations (Appendix A2). We thus go one step further and consider the full flux coupled into the 

SQUID loop. This leads to LMILMIJJ ii // 10 ++= .  In dimensionless units, with 2
iii zz α−= , 

we find iiTiiLii zijfiui /])(/[ 10 ααααβ +++′= .  

Assuming that the coupling parameter αiT is small, we keep the first order approximation for i1 

and for the flux change in the SQUID loop obtain 

iNAiLiLNAiTiiLNA zijzβifiuβi πααβπααπαδϕ 2/][2/)/(2/ 0
2 +′+′++′= . For the tank circuit voltage, 

we find  

][][]
2

/
[ 0

2
110 NALiNALiT

i
iNAL

T
TT ijciβ

f

u
iciβddv

vv αβαααα
π

ϕ +′+′++′+= ,   (A1) 

 

where ]/)/1[(2/)/(2/)/( 00
222

01 iiiiTiT fQifffddvzddvc −−−== απϕπϕ .  

Note that the above expressions take backaction into account only partially.  For example, the 

coupling between the tank circuit and the input loop reduces both Li and LT by a factor of )1( 2
iTα− . 

The change in LT, in particular, leads to a detuning of the tank circuit resonance frequency and an 
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increase in the voltage noise power svT0. This effect can be compensated by properly re-adjusting 

the drive frequency fd, as we shall see in Appendix A2. 

We next take the Fourier transform of Eq. (A1) and convert the result into the spectral density 

 

vjijLiA
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iT
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LivTvT scsc
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2

222
1

4

0

2

2
0

02
1

2 ˆ~||)(||4~ αβαΓαΓβα +′++′⋅+=  ,   (A2) 

 

where ALAvTvT Qfvss 0
222

0 /~ πβαΓ ϕ ′⋅+=  and  ALAjj Qfss 0
2

0 /4~ βαΓ ′⋅+= . In obtaining the 

expressions for vTs~  and js~  we assume there is no correlation between iNA and, respectively, vT and j0. 

We set ALARAAuA Qfs 044 βΓγΓ ′==  and iiLiRiiui Qfs 00 /44 βΓγΓ ′== . We further have   

})Im(~){Re(2)~~~~(ˆ 110
*

0
*
1

*
0012 vjvjLTTLvj scscvjcvjcsc

() +′=+′= βτβ ωωωωω  

                                                                        = 2||/})Im(~){Re( ivjivjiL zszszv πβ ϕ
(−′ , 

where 

)~Im()
~

Im()~Re()
~

Re(~
0000 ωωωω TTvj vjvjs += AAvj Qfvs 0

2 /2 παΓ ϕ⋅+≈  

and 

≈−= )~Re()
~

Im()~Im()
~

Re( 0000 ωωωω TTvj vjvjs
(

)Re()Im()Im()Re( 0000 ωωωω TT vjvj − . 

The asterisk denotes the complex conjugate, the tilde represents noise contributions for 0>AΓ  and 

the subscript ω is the frequency component of the Fourier transforms.  Again, we have assumed that 

the Fourier components of uA are not correlated with the other terms. 

In the expressions vTs~ , js~ , vjs~ and vjs
(

, apart from the low frequency noise contributions of the 

resistor RA, we should also make the high-frequency components of the preamplifier current and 

voltage noise more explicit.  We do so by using the more general forms AAvTvT Qass /~
0 Γ+= , 

AAjj Qbss /~
0 Γ+=  and AAvjvj Qcss /~ Γ+= , with coefficients a, b, c to be determined numerically.  

In Appendix A2 we see that in general the above correlation functions do not depend linearly on 
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ΓA/QA, The dependence is somewhat stronger than linear. Although it would be helpful to have 

analytic expressions for these coefficients, we were not able to obtain them.  As a result, in general, 

vTs~ , js~ , vjs~ and vjs
(

must be determined from the low frequency tank circuit voltage and the SQUID 

circulating current by numerically solving Eqs. (2) to (8) in the limit 0== iTi αα , that is, in the 

absence of the input loop.  

The noise floor in Eq. (A2) for Γi = 0 is 

vjijLiAiTLAivTFvT scscQfcss
)

2
222

1
4

0
22

1
2

, ˆ~||/||4~ αβααβΓα +′+′⋅+= , 

and we thus have 

2
00

2
1

2
, /||4 fQfcss iiLiiFvTvT βΓα ′+= . 

The normalized noise temperature, which we find via FvTvT ss ,2=  or  

2
0

2
10

2
, /||4 fQcfs iiLiNFvT βαΓ ′= , is 
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Inserting the above expressions for 2
1 || c  and vjsc

)
2ˆ we have 
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with iiiii fQifffz 00
222

0 /)/1( −−−= α . 

 

This expression must now be minimized first with respect to αi and later on with respect to f0i.  

In terms of αi the expression to be minimized is of the form 
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Although the minimization can be performed analytically, the resulting expression is quite 

complicated and we thus prefer an approximate treatment under the assumption that 2iα  is small, so 

that ii zz ≈ . We then minimize 4/~/||~
0

22222
0

22
jLiiiLivTi sQfvzsQf βααβπ ϕ ′+′ , and find 
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Inserting Eq. (A7) into Eq. (A5), we obtain 

 

Ai

Ai
iTvjivjijvTi

i

i
ioptN Qff

Qf
szszssz

fv

Qf

00

0
2

2

0

0
2

., }))Im(~){Re(~~|(|
ΓαπΓ

ϕ
α +−+= (

 .  (A8) 

 

Note that in Eq. (A8) opti ,α  is also contained iniz . Inserting the expression for iz  into Eq. (A8) we 

obtain 
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Under the resonance condition 2
,0 1/ optiiff α−= , this expression becomes 
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Equation (A10) can also be expressed as 
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where LvT vse βΓπ ϕ ′= 22/~~ .  In numerical simulations (Appendix A2), we find vjs
(

 to be very small 

and neglect it. From Eq. (A7), at resonance and assuming 2
iα <<1, we further obtain 

2/12/1
0

2
, )]/~(/~8[/)~/~(2 Γβπβπα ϕ jLLjvTresiopti sevssQ ′=′= . 

Using ΓA  = 0 and model parameters that lead to a small noise energy ( 2.1≈′Lβ , e~  ≈ 0.5, Γ/~
js  

≈ 4), we obtain iopti Q0
2
,α  ≈ 1.6 and, neglecting vjs

(
, fresN 9.3/, ≈ΓΓ . This value is more than a 

factor of 4 lower than the corresponding noise temperature of a dc SQUID for βL = 1 

( fresN 18/, ≈ΓΓ ).16 Even lower values can be obtained by re-optimizing all model parameters. We 

address this in Sec. 3. 
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Next, for iTα  = 0 we optimize Eq. (A9) with respect to f0i.  We assume 12 <<iα  and neglect vjs
(

. 

Then, with x = f0i/f and y = (1-x2)/x, from Eq. (A9) we find 

ϕα παΓ vysQssyQf vjijvTiiToptN /)~~~1()0( 0
22

0., +⋅+⋅≈= .  Note that for vjs~ > 0, y must be negative 

to obtain a minimum in )0(., =iToptN αΓ α . Optimizing for y yields )~~~(/~ 22
0

22
vjjvivjópt sssQsy −= , from 

which we find the optimal noise temperature 
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Equation (A12) is precisely the result found for the dc SQUID.6 

The optimal frequency f0i is obtained via opty  by solving 

 

 
)~~~(

~

/

)/(1
22

00

2
0

2
,

vjjvTi

vj

opti

iopti

sssQ

s

ff

ff

−
−= −−α

 .   (A13) 

 

In many cases we are interested in signal frequencies near f0i, that is, for f0i/f ≈ 1. Under these 

circumstances, we find 
resiioptii QQ 0

2
0

2 αα ≈ . 

One could perform a similar optimization to that above including the iTα  coupling term. The 

resulting expression would be somewhat complicated, and we have elected not to pursue this issue. 

We now address the preamplifier input voltage noise uNA, which adds a voltage spectral density 

uAs  to the output signal at the drive frequency.  After down-conversion, this results in an increased 

low-frequency noise voltage vNA across the tank circuit.  With κ = Ropt [RA
-1 + (Q0

2RT)
-1] = γL = 1, 

Qeff,0 = 100, f0 = 0.1 and βL = 0.8, this contribution can be estimated as 

AALLeffuA QfQs /4 0
22

0,
2 Γγβκ ′= , leading to a contribution of about 3000 to the coefficient a.  For 
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practical preamplifiers, this term may dominate vTs~  unless κ is small.  In addition, the low-

frequency voltage noise is further increased by the low-frequency voltage noise of the preamplifier, 

a contribution which we ignore here.  There is no direct contribution of preamplifer voltage noise to 

the coefficient b.  Due to the readjustment of various model parameters during the optimization of 

the noise temperature optN ,Γ , however, b depends indirectly on uAs .  We have seen in simulations 

that, when uAs  is increased for fixed AA Q/Γ , js~  systematically decreases (by a factor of more than 

2 when κ is varied between 0 and  1). 

One often considers the preamplifier noise temperature to be fixed.  In this case, 

NALLeffuA fQs Γγβκ 0
2

0,2 ′=  scales with κ while 0
2

0,/2 fQs LLeffNAiA γβκΓ ′=  scales as 1/κ.  Thus, the 

noise temperature has an optimal value.  In simulations using f0 = 0.5, 0.1 and 0.015 and QA = Q0 = 

200, ΓNA = 0.05, α = 0.2, and varying f0, id and Lβ ′ , we found a quite flat dependence of optN ,Γ  on κ 

in the range 0.1< κ <1. We further have 0
2

0,/ fQRR LLeffopt γβκ ′= .  Assuming Ropt, R, Qeff,0, f0 and Lβ ′  

to be fixed, we find 12 −∝ κγ L .  Thus, γL, which otherwise appears as a scaling parameter, is also 

fixed once a certain value of κ is chosen. 

 

APPENDIX A2: COMPARISON OF ANALYTIC RESULTS AND NUMERICAL 

SIMULATIONS 

We now return to numerical calculations and check the validity of Eq. (A2). We first consider 

the parameters 0=iTα  0=AΓ , Q0 = 101and QA = 10100 (to keep Qeff0 = 100). We further use our 

"standard" parameters f0 = 0.1, 21.1=′Lβ  α = 0.725, id = 0.369, fd = 0.1066, ϕext = 0.25 and Γ = ΓT = 

0.025.  In the limit αi = 0 we obtain ϕv = 1.092 and e = 0.564. For the spectral densities we find 

0132.00 =vTs , 119.0=js , 022.0=vjs  and 4102 −⋅≈vjs
(

; the value of vjs
(

is an upper limit. All 

spectral densities have a white power spectrum in the frequency range 710x5 −−−− to 410x5 −−−−  used for 
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the calculation.  We use these numbers, together with 2.0=iα , Q0i = 50 (which is close to the 

optimal Q0i,res ≈ 40) and 4
0 10−=if , to solve Eq. (A2) for two values of Γi  (0 and 510x1 −−−− ).  These 

results are shown in Fig. A2.  In terms of the voltage noise spectral density (Fig. A2, inset), 

numerical simulations and Eq. (A2) are in good agreement, although the numerical values of svT are 

somewhat lower than the analytical results.  The main graph of Fig. A2 shows the signal-to-noise 

ratio (SNR).  The numerical and analytical SNRs are close to each other. In particular, for the 

numerical SNR, the peak value is close to 1, showing that Γi ≈ 510x1 −−−−  at f ≈ 10-4 is the noise 

temperature for the above parameters. For the optimal noise temperature, from Eq. (A12) we would 

expect a value of about 0.95 x 10-5, whereas Eq. (A10) yields 1.14 x 10-5 for the noise temperature 

on resonance. We thus see that, in terms of noise temperature, our analytical and numerical results 

are in good agreement for the parameter set used here. 

For the above model parameters we next study the case ΓA > 0. We choose ΓA = 0.25, that is, 10Γ.  

Under the condition αi = αiT = 0 we obtain  vTs~  = 0.0138, js~  = 0.1255, vjs~  = 0.0224, and vjs
(

 = 6.4 

x 10-5.  These numbers are very close to those for ΓA = 0, and we use Q0i = 50 as above to calculate 

svT(f) and the SNR for αi = 0.2.  The results for the SNR for αi = 0.2 and αiT = 0  are shown in Fig. 

A3(a).  The numerical and analytical SNRs agree very well. By contrast, for αi = 0.2 and αiT = 0.2, 

we find that the numerical curve svT(f) has a white contribution that is a factor of about 2 larger than 

we predict from Eq. (A2) using the value of vTs~  obtained in the limit αiT = 0. As a consequence, the 

SNR predicted from Eq. (A2) is a factor of roughly 2 larger than the SNR obtained numerically [Fig. 

A3 (b), grey dashed line]. This difference is likely due to the change in the tank circuit inductance 

by a factor 21 iTα− , leading to an increase in f0 by a factor 21 iTα− .  To show this, in the simulations 

we re-adjusted the drive frequency by 2% to fd = 0.1088.  The white background in svT indeed 

decreases and the re-calculated SNR [Fig. A3 (b), solid grey line] becomes much closer to the 

analytical curve [Fig. A3 (b), solid black line]. 
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We next study lower values of QA. Current fluctuations in the resistor RA are a function of 

AA Q/Γ .  To first order, for a fixed value of Qeff,0, we thus expect the spectral densities vTs~ , js~  and 

vjs~ to be inversely proportional to QA, as indicated by the expressions  AAvTvT Qass /~
0 Γ+≈ , 

AAjj Qbss /~
0 Γ+≈  and AAvjvj Qcss /~ Γ+≈  given in Appendix A1.  On the other hand, there will be 

down-converted high frequency contributions to the noise power.  Also, at least for large 

fluctuations, the circuit may become detuned, leading to a non-linear dependence of the spectral 

densities on 1−
AQ  and AΓ .  For 1000 =effQ , 0=Γ , and 0== iTi αα , Fig. A4 shows vTs~ , js~ , vjs~ , 

ϕv  and the calculated expression fvsss optNvjjvT //]~~~[ ,
2/12 Γπ ϕ =−  as functions of AΓ / AQ  for fixed 

25.0=AΓ .  For the other parameters we set f0 = 0.1,  ϕext = 0.25, βc = 0,  fd = 0.108, id = 0.419, α = 

0.763 and Lβ ′  = 1.216 (these values actually minimize the noise energy for 025.0=Γ ). The 

spectral densities scale almost as 1−
AQ , although in the regime we investigated the exponent is 

actually about -1.05.  Next, for Q0 = QA = 200, Γ  = 0.025 and the other model parameters in Fig. 

A4, we investigate the spectral densities as functions of Γ and ΓA. Figure A5 (a) shows the 

dependence on Γ < 2 for ΓA = 0. For larger values, vϕ  and thus ΓN,opt  start to degrade strongly.  

While in the regime investigated vϕ  is essentially constant (it actually increases slightly), the  

spectral densities for Γ < 0.3 roughly follow a power law with an exponent close to 1.2.  In the 

figure, we show this as a dotted line for the resulting expression for foptN /,Γ , which scales as 7Γ1.2 

over the entire regime.  Figure A5 (b) shows the spectral densities vs. ΓA/QA for Γ  = 0.  Note that 

ΓA/QA runs over much larger values than in Fig. A4, where we varied QA.  The plot shows that vTs~ , 

js~  and vjs~  increase even more strongly than a power law.  Nonetheless the calculated function 

ΓN,opt/f is almost linear in the plot, scaling roughly as 4.1)(200 AA /QΓ  (dotted line).  Further, apart 

from the nonlinear increase, the values of the correlation functions are significantly larger than one 

would expect from the low frequency noise alone.  For example, for ΓA = 1 the low-frequency noise 
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contributions yield vTs~ ≈ 4⋅10-3, js~ ≈ 0.096 and vjs~ ≈ 0.0194. The simulated values are, respectively, 

factors of 4.3, 3.3 and 3.25 larger. To check whether or not the nonlinear dependence of the 

correlation functions on Γ and ΓA arises from detuned parameters id, fd etc. we also performed 

simulations where we varied id, fd, α and Lβ ′  to minimize ϕπΓ vsssf vjjvToptN /~~~/ 2
, −= .  Details are 

given in Sec. 3.  In brief, although foptN /,Γ decreases by a factor of about 2 compared to the case 

of Fig. A5, for Γ  = 0, the spectral densities as a function of ΓA again follow power laws, with 

exponents between 1.2 and 1.6 [see also Fig 6 (b)]; in particular, 6.1
, )/(250/ AAoptN Qf ΓΓ ≈ .  As a 

function of Γ for ΓA = 0, on the other hand, foptN /,Γ  turns out to be nearly linear, ΓΓ 3/, ≈foptN  

[Fig. 6 (a)].  Finally, Fig. A5 (c) shows the spectral densities vs. Γ  for ΓA = 1. For foptN /,Γ , by 

linear superposition we expect 2.1712.0/ ΓΓ +≈fN .  The fit shown as a dotted line is 

2.1716.0/ ΓΓ +≈fN , which is not too far from this expectation. 

We next study the SNR of a circuit with QA = Q0 = 200.  Model parameters are those used above.  

For ΓA = 0.25 and αi = αiT = 0 the simulations yield vTs~ = 0.0154, js~  = 0.1814, vjs~   = 0.0334, 

vjs
(

=3⋅10-5 and ϕv   = 1.036.  Inserting these values into the expression for the optimal noise 

temperature yields iiToptN f0, 125.0)0( ≈=αΓ , obtained at 45.10
2 ≈ii Qα , or 350 ≈iQ  for αi =0.2.  

Under resonance conditions we find iresN f0, 161.0≈Γ .  Figure A6 (a) shows simulation results for 

Q0i =30, f0i =10-4, αi = 0.2, αiT = 0 and two values of Γi   (0 and 1.5 x 10-5).  Again, the agreement of 

the SNR with the analytical curve is very good.  Finally, Fig. A6 (b) shows the SNR for the case αiT 

= 0.2 and Q0i  = 50.  Here, both with and without a re-adjustment of fd, the numerical SNR remains 

about 30 % below the analytical curve, indicating that for these parameters the analytical 

expressions somewhat underestimate the noise temperature. 

To conclude this appendix, we give an example for an untuned input circuit. One can obtain this 

case from the tuned circuit by setting f0i and Q0i = 0 while keeping the ratio ii Qfr 00 /=  (which 
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corresponds to the rolloff frequency of the input circuit) finite. We thus have firz ii /1 2 −−= α . 

Equation (A2) becomes 
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For the noise temperature, Eq. (A5) yields 

  +−
++

′
+

′
=

ϕϕ

απΓα
β

α
αβ

πΓ
v

fsrs

Qf

sz

v

s

r

f vjvji

A

A
iT

jL
i

i

i

L

vT
N

}/~)1{(

4

~||~ 2

0

22
2

2

2

22 (
 . (A15) 

 

For the simulations we chose r = 10-4 together with the parameters Q0 = 101, QA = 10100, 2.0=iα , 

0=iTα , f0 = 0.1, 21.1=′Lβ  α = 0.725, id = 0.369, fd = 0.1066, ϕext = 0.25, Γ = 0.025, ϕv = 1.092, 

0132.0~ =vTs , 119.0~ =js , 022.0~ =vjs  and 4102 −⋅≈vjs
(

.  The resulting curves svT(f) for =iΓ  0 and 

410x5 −−−−  are shown in Fig. A7(a).  For both values of iΓ , the numerical data lie below the analytical 

curves.  As a consequence, the analytical SNR is about 30% above the numerical SNR [Fig. A7(b)], 

and consequently the noise temperature is underestimated by about the same amount.  

We see that the analytical equations for the (optimized) noise temperature are in reasonable, 

although not perfect, agreement with the numerical results.  Accepting systematic errors in the 

range 10-30%, one can go a step further and optimize the expression 

ϕπΓ vsssf vjjvToptN /)~~~(/ 2
, −= , as is done in Secs. 3 and 4. 
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APPENDIX A3: SYMBOLS USED IN THIS PAPER (IN ADDITION TO THE 

SYMBOLS OF REFERENCE [2]) 

 

Ci: capacitance of input circuit 

2
2 ||/})Im(~){Re(ˆ ivjivjiLvj zszszvsc πβ ϕ

() −′= : expression appearing in Eq. (A2) 

f: frequency normalized to fc 

iii CLRIf 000 2/ πΦ= : normalized resonance frequency of input circuit 

ii = Ii/I0: normalized current through inductor Li 

Ii: current through inductor Li 

INA: noise current of preamplifier, assumed to have a white spectral density AAB RTk /4  

iNA: normalized noise current of preamplifier, assumed to have a white spectral density 

J0:  low frequency circulating current in SQUID loop in the limit αi = αiT = 0, QA → ∞ 

j0:  normalized low frequency circulating current in SQUID loop in the limit αi = αiT = 0,  

       QA → ∞ 

ω0j : Fourier component at frequency ω of normalized low frequency circulating current in 

SQUID loop in the limit αi = αiT = 0,  QA → ∞ 

ω0

~
j :  Fourier component at frequency ω of normalized low frequency circulating current in 

SQUID loop in the limit αi = αiT = 0,  QA < ∞,  0>AΓ  

Li:  Inductance of input circuit 

Mi:  mutual inductance between  input circuit and SQUID 

MiT:  mutual inductance between  input circuit and tank circiut 

TTAA LCRQ /2=  

)/( 000, AAeff QQQQQ += :  effective quality factor of tank circuit unloaded by SQUID 
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iiii RCLQ /)/( 2/1
0 =  quality factor of input circuit unloaded by SQUID 

RA:  effective input resistance of preamplifier 

Ri:  resistance of input circuit 

2/12/1 / IAVAopt SSR = :  optimal source resistance of preamplifier at drive frequency 

r = f0i/Q0i: rolloff frequency of untuned input circuit 

AABIA RTkS /4= :  spectral density of preamplifier noise current, assumed to be white  

2
0/4 LLAAiA fQs γβΓ ′= :  normalized spectral density of preamplifier noise current, assumed to 

be white 

SJ:  spectral density of circulating current noise in SQUID 

RISs Jj π2// 00Φ= :  normalized spectral density (at all frequencies) of circulating current 

noise in SQUID 

0js :  normalized spectral density (at all frequencies) of circulating current j in the absence of 

input circuit and noise due to RA (i. e. αi = αiT = 0, ∞→AQ  ) 

js~ :  normalized spectral density (at all frequencies) of circulating current j in SQUID in the 

absence of input circuit (αi = αiT = 0); AAjj Qbss /~
0 Γ+≈ ; b is a numerical coefficient 

SUA:  spectral density of short circuit voltage noise UNA of preamplifier at drive frequency 

suA = SUA/( I0RΦ0/2π) ALARAA Qf044 βΓγΓ ′== :  normalized spectral density of short circuit 

voltage noise UNA of preamplifier at drive frequency 

SUi:  spectral density of low-frequency voltage noise of input circuit resistor Ri 

iiLiRiiui Qfs 00 /44 βΓγΓ ′== :  normalized spectral density of low-frequency voltage noise of 

input circuit resistor Ri 

SVA:  low-frequency spectral density of short circuit voltage noise of preamplifier 

svA = SVA/( I0RΦ0/2π) =  ALARAA Qf044 βΓγΓ ′== :  normalized low-frequency spectral density 

of short circuit voltage noise of preamplifier 
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SVJ:  low-frequency cross spectral density between Fourier transforms of low frequency 

voltage across tank circuit and circulating current in SQUID in the absence of input circuit 

and noise due to RA (i. e. αi = αiT = 0, ∞→AQ  ). 

LVJvj ISs πγ2// 00Φ= :  normalized low-frequency cross spectral density between Fourier 

transforms of low frequency voltage across tank  circuit and circulating current in SQUID in 

the absence of input circuit and noise due to RA (i. e. αi = αiT = 0, ∞→AQ  ) 

vjs~ : normalized low-frequency cross spectral density between Fourier transforms of low 

frequency tank circuit voltage and circulating current in SQUID for αi = αiT = 0; 

 )~Im()
~

Im()~Re()
~

Re(~
0000 ωωωω TTvj vjvjs += AAvjvj Qcs /0 Γ+≈ , where c is a numerical 

coefficient 

=vjs
(

 )~Re()
~

Im()~Im()
~

Re( 00 ωωωω TT vjvj −  

0vTs :  normalized low-frequency noise spectral density of tank circuit voltage in the absence 

of input circuit and noise due to RA (i. e. αi = αiT = 0, ∞→AQ ). 

vTs~ :  normalized noise spectral density of tank circuit voltage in the absence of input circuit 

(αi = αiT = 0); AAvTvT Qass /~
0 Γ+= , where a is a numerical coefficient 

SVT: spectral density of low frequency voltage noise across the tank circuit in the presence of 

an input circuit and including the back action of the preamplifier 

svT = SV,T/[I0RΦ0/2π]: spectral density of normalized low frequency voltage noise SVT 

TA:  effective temperature of preamplifier input resistor RA 

Ti:  temperature of resistor in input circuit 

TN:  noise temperature 

BVAIANA kSST 2/2/12/1= : optimized noise temperature of preamplifier 

TN,opt:  noise temperature optimized for parameters αi , f0i of tuned input circuit 

TN,res:  noise temperature for tuned input circuit at resonance 
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Ttank:  effective temperature of tank circuit resistor, including noise of the preamplifier 

UA:  voltage across resistor RA 

uA=UA/I0R: normalized voltage across resistor RA 

UCi:  voltage across input circuit capacitor 

RIUu CiCi 0/= :  normalized noise voltage across capacitor Ci 

ULi:  voltage across input circuit inductor 

RIUu LiLi 0/= :  normalized noise voltage across inductor Ri 

UNA:  noise voltage added by preamplifier at drive frequency 

uNA:  normalized noise voltage added by preamplifier at drive frequency 

UNi :  voltage noise source with spectral density 4kBTiRi 

uNi=Ui/I0R: normalized noise voltage of resistor Ri 

URi:  voltage across input circuit resistor 

RIUu RiRi 0/= :  normalized voltage across resistor Ri 

VNA: low frequency noise voltage added by preamplifier 

vNA: low frequency normalized noise voltage added by preamplifier 

vT0:  normalized low-frequency voltage across tank circuit at optimal bias point in the absence 

of input circuit and noise due to RA (i. e. αi = αiT = 0, ∞→AQ ) 

ω0Tv :  Fourier component at frequency ω of vT0 

ω0
~

Tv :  Fourier component at frequency ω of normalized low frequency voltage across tank 

circuit for αi = αiT = 0 

VΦ:  Modulus of transfer function extT ddV Φ/  

|/| extT ddvv ϕϕ = :  normalized modulus of transfer function 

LLM iii /=α :  coupling coefficient between input circuit and SQUID 

TiiTiT LLM /=α :  coupling coefficient between input circuit and tank circuit 



 5 

LLiLi /=γ :  inductance scaling parameter between SQUID and input circuit; 

 throughout the manuscript calculations are for Liγ =1; 

 scaling:  LiLiiLii ii γγγ /)1()( == , )1()( =⋅= LiiLiLii uu γγγ , )1()( =⋅= LiiLiLii γϕγγϕ  

iiLiRi QfRR 00 // βγ ′== :  ratio between input resistor and junction resistor 

ALLARA QfRR 2
0/ γβγ ′== :  ratio between amplifier resistor and junction resistance  

00/2 ΦπΓ ITk ABA = :  noise parameter related to resistor RA 

00/2 ΦITπkΓ iBi ==== :  noise parameter related to resistor Ri 

002 Φ/ITπkΓ optN,BoptN, ==== :  normalized noise temperature optimized for parameters of input 

circuit 

00/2 ΦπΓ ITk NABNA = :  normalized optimal noise temperature of preamplifier 

002 Φ/ITπkΓ resN,BresN, ==== :  normalized noise temperature for input circuit at resonance 

1i IMJMILΦ iTiii ++++++++==== :  flux through input circuit inductor 

ϕ i =2πΦi/Φ0: normalized flux through input circuit inductor 

iiTTT IMMJILΦ ++++++++==== 1 :  flux through tank circuit inductor 

ϕ T =2πΦT/Φ0: normalized flux through tank circuit inductor 

κ = Ropt [RA
-1 + (Q0

2RT)
-1]:  ratio of optimal resistance of preamplifier to tank circuit 

impedance at resonance 

)1/(2 00, −= ffQ deffξ :  detuning parameter 
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α Q0 id ξ Lβ ′  vTs~  js~  vjs~  ϕv  

ii Q0
2α  fresN /,Γ  foptN /,Γ  

0.9 100 0.72 21.8 0.58 0.0069 0.16 0.022 0.97 6.3 0.106 0.078 
0.7 100 0.97 19.3 0.59 0.0067 0.1 0.015 1.03 6.9 0.080 0.065 
0.5 100 1.22 21.9 0.56 0.0057 0.08 0.005 0.80 15.6 0.085 0.083 
0.4 100 0.80 16.9 0.72 0.013 0.08 0.006 0.95 13.4 0.106 0.10 
0.2 100 0.67 5.9 0.81 0.059 0.16 0.022 1.88 6.7 0.16 0.16 
0.1 100 0.81 4.6 0.82 0.12 0.13 0.019 1.05 18.4 0.37 0.37 
0.9 200 0.65 7.45 0.31 0.033 0.84 0.15 1.36 2.9 0.38 0.13 
0.7 200 0.55 10.4 0.53 0.025 0.44 0.091 1.32 2.2 0.25 0.13 
0.5 200 0.6 10.4 0.71 0.036 0.31 0.082 1.45 2.1 0.23 0.15 
0.4 200 0.63 10.4 0.8 0.05 0.25 0.077 1.5 2.3 0.23 0.17 
0.2 200 0.63 6.6 0.92 0.14 0.45 0.13 1.98 1.9 0.4 0.35 
0.1 200 0.75 3.7 0.87 0.49 0.63 0.36 2.01 3.2 0.86 0.66 

 
Table 1   



 2 

  

 

Lβ ′  QA α id ξ vTs~  js~  vjs~  ϕv  e 
ii Q0

2α  fresN /,Γ
 

foptN /,Γ

 
0.1 ∞ 0.92 1.07 -4.2 0.025 0.76 0.13 1.41 7.79 8.0 0.31 0.094 
0.4 ∞ 0.86 0.55 7.3 0.017 0.36 0.07 1.42 1.31 2.4 0.17 0.074 
0.6 ∞ 0.77 0.47 12.3 0.011 0.18 0.034 1.22 0.74 2.1 0.11 0.071 
1 ∞ 0.73 0.62 19.3 0.01 0.1 0.019 1.09 0.54 1.8 0.09 0.075 
1.6 ∞ 0.68 0.32 18.1 0.015 0.091 0.013 0.97 0.62 1.6 0.12 0.111 
0.2 ∞ 0.2 1.12 2.1 0.085 0.19 0.096 1.09 22.7 19.6 19.6 0.24 
0.4 ∞ 0.2 0.87 4.4 0.050 0.14 0.05 1.18 5.6 7.9 7.9 0.18 
0.6 ∞ 0.2 0.77 4.5 0.069 0.17 0.057 1.69 2.5 4.0 4.0 0.17 
1.2 ∞ 0.2 0.65 8.2 0.097 0.24 -0.073 2.15 1.1 1.6 1.6 0.19 
1.4 ∞ 0.2 0.77 9.7 0.109 0.21 -0.067 1.75 1.6 1.9 1.9 0.24 
1.6 ∞ 0.2 0.72 9.2 0.140 0.19 -0.068 1.58 2.2 2.1 2.1 0.29 
2 ∞ 0.2 0.47 6.5 0.37 0.12 -0.081 1.91 3.2 2.8 2.8 0.33 
0.2 200 0.8 0.48 4.25 0.067 1.45 0.30 1.56 8.7 9.52 0.63 0.17 
0.4 200 0.75 0.67 7.75 0.04 0.69 0.15 1.47 2.9 5.45 0.36 0.14 
0.6 200 0.72 0.55 9.88 0.028 0.41 0.097 1.39 1.6 4.11 0.25 0.11 
1.2 200 0.85 0.48 13.9 0.019 0.26 0.055 1.07 0.86 2.9 0.21 0.13 
1.6 200 0.72 0.41 22.9 0.018 0.14 0.012 0.95 0.78 5.1 0.17 0.16 
2 200 0.57 0.4 26.5 0.106 0.094 0.015 1.18 2.42 7.0 0.27 0.26 
0.2 200 0.2 0.68 0.97 0.88 1.34 1.01 1.39 135 18 2.38 0.66 
0.4 200 0.2 0.52 1.91 0.64 1.09 0.79 2.05 23.7 5.8 1.28 0.43 
0.6 200 0.2 0.62 3.91 0.29 0.58 0.35 1.91 8.4 3.9 0.67 0.34 
1.2 200 0.2 0.32 3.78 0.28 0.66 0.23 2.94 1.7 1.2 0.46 0.39 
1.4 200 0.2 0.58 2.69 0.44 0.5 -0.18 2.78 2.6 1.5 0.53 0.49 

 
Table 2  
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Table 3.   

Γ ΓA α Lβ ′  id ξ vTs~  js~  vjs~  ϕv  foptN /,Γ  

0.025 0 0.7 0.6 0.39 13.3 0.013 0.14 0.031 1.2 0.078 
0.1 0 0.65 0.53 0.69 11.2 0.047 0.64 0.11 1.29 0.33 
0.4 0 0.68 0.52 0.58 9.4 0.23 2.85 0.55 1.41 1.33 
1.6 0 0.68 0.26 0.88 6.5 1.04 13.7 2.98 1.27 5.73 
0 0.0025 0.66 1.05 0.6 15.2 0.017 0.22 0.061 1.28 0.016 
0 0.01 0.56 1.15 0.45 11.2 0.11 1.08 0.33 1.42 0.16 
0 0.04 0.59 1.06 0.45 10.2 1.25 6.51 2.7 1.55 1.49 
0 0.08 0.6 1.06 0.4 9.2 4.06 15.2 7.3 1.59 4.85 
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Table 4   

 

f0 QA κ α 
Lβ ′  id ξ 

vTs~  js~  vjs~  ϕv  foptN /,Γ  

0.0884 ∞ 0 0.78 0.83 0.91 27.0 0.0045 0.086 0.008 0.84 0.07 
0.0625 ∞ 0 0.73 0.63 0.94 21.0 0.0023 0.096 0.0084 0.64 0.06 
0.0221 ∞ 0 0.91 0.69 0.72 17.0 0.0008 0.34 0.014 0.25 0.10 
0.5 ∞ 0 0.2 0.54 0.74 3.99 0.65 0.089 0.0006 8.31 0.09 
0.25 ∞ 0 0.2 0.60 0.62 4.25 0.18 0.098 0.029 4.46 0.09 
0.125 ∞ 0 0.2 0.49 0.64 3.50 0.086 0.12 0.060 2.11 0.12 
0.0625 ∞ 0 0.2 0.50 0.88 4.96 0.026 0.18 0.045 0.84 0.19 
0.03125 ∞ 0 0.2 0.48 0.83 4.16 0.013 0.28 0.049 0.47 0.23 
0.01563 ∞ 0 0.2 0.64 0.51 4.03 0.0078 0.59 0.060 0.30 0.33 
0.5 200 0 0.2 0.78 0.36 2.47 2.86 0.20 0.20 13.0 0.16 
0.25 200 0 0.2 0.80 0.34 3.26 1.00 0.28 0.28 5.94 0.22 
0.125 200 0 0.2 0.77 0.52 4.61 0.27 0.43 0.43 2.62 0.28 
0.0625 200 0 0.2 0.78 0.56 4.89 0.12 0.84 0.84 1.26 0.42 
0.03125 200 0 0.2 0.63 0.73 5.15 0.053 1.18 1.18 0.52 0.56 
0.01563 200 0 0.2 0.77 0.69 5.72 0.0241 2.31 2.31 0.28 0.81 
0.5 200 0.2 0.2 1.04 0.31 2.58 5.31 0.18 0.24 14.3 0.21 
0.25 200 0.2 0.2 0.90 0.37 4.00 1.87 0.27 0.28 5.85 0.35 
0.125 200 0.2 0.2 0.95 0.26 2.81 0.84 0.65 0.34 3.57 0.58 
0.0625 200 0.2 0.2 0.99 0.50 4.52 0.41 0.78 0.33 1.43 1.00 
0.03125 200 0.2 0.2 1.17 0.34 4.13 0.23 1.79 0.29 0.85 2.10 
0.01563 200 0.2 0.2 0.57 0.40 3.07 0.074 1.24 0.15 0.24 3.46 
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Figure Captions 

Fig. 1. Rf SQUID circuit including the SQUID, an input circuit and a readout tank circuit.  

The resistor RA in parallel with the tank circuit represents the input resistance of the 

preamplifier. The arrow between UT and VT indicates down-conversion of the voltage across 

the tank circuit. 

 

Fig. 2. Noise power js~  (in units of I0RΦ0/2π) of the circulating current j in the rf SQUID 

together with the noise power suT (in units of I0Φ0/2πR) of the voltage uT across the tank 

circuit. In (a) the parameters are chosen to optimize the noise temperature, in (b) to optimize 

the noise energy. The spectra have been averaged 100 times. 

 

Fig. 3. Optimized values of foptN /,Γ  as a function of α for Q0 =100, QA → ∞ (squares) and 

for Q0 = QA = 200, 25.0=AΓ  (circles). Other parameters are indicated in the figure. Selected 

model parameters are listed in Table 1. 

 

Fig. 4. foptN /,Γ , optimized for id, fd and α, vs. Lβ ′ .  Selected model parameters are listed in 

Table 2. 

 

Fig. 5.  Spectral densitiesvTs~ , js~  and vjs~ , modulus of transfer function vϕ and 

ϕπΓ vsssf vjjvToptN // 2
, −=  (a) vs. Γ  for ΓA = 0 and (b) vs. ΓA/QA for QA = 200 and Γ = 0. 

Other model parameters are Q0 = 200 αi = αiT = 0, f0 = 0.1, ϕext = 0.25 and βc = 0. Selected 

model parameters are listed in Table 3. 
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Fig. 6. (a) Spectral densities suT, js~ , vTs~  and vjs~ , and (b) calculated values of ΓN,opt/f, ΓN,res/f,  

e and 
resii Q2α  vs. frequency for a readout scheme with bandwidth fd/8. Model parameters are 

indicated in the graphs.  

 

Fig. 7. (a) Spectral densities suT, js~ , vTs~  and vjs~ , and (b) calculated values of ΓN,opt/f, ΓN,res/f,  

e and 
resii Q2α  vs. frequency for a readout scheme with bandwidth fd/8. The quantity ΓN,opt/f, 

averaged over the full bandwidth, has been optimized with respect to id, fd, α, ϕext and Lβ ′ . 

Model parameters are indicated in (a). 

 

Fig. 8. (a) Spectral densities suT, js~ , vTs~  and vjs~ , and (b) calculated values of ΓN,opt/f, ΓN,res/f,  

e and 
resii Q2α  vs. frequency for f0 = 0.5 and a bandwidth fd/8. Model parameters are indicated 

in (a). In (a) the grey curves on the high frequency side have been calculated for a narrow- 

band readout for comparison. 

 

Fig. 9. Dependence of foptN /,Γ on the tank circuit resonance frequency f0. Open squares and 

black circles correspond to the case Q0 =100, QA→ ∞. Open circles and grey circles 

correspond to the case Q0 = QA = 200, ΓA = 0.25. In all cases fd, id and Lβ ′  have been 

optimized. For the open squares α has been optimized as well while for the other cases α = 

0.2. Open circles are calculated in the absence of the preamplifier voltage noise while grey 

circles are calculated for κ = 0.2 and ΓNA = 0.05. Dotted line is function 5.0
0/043.0 f , dashed  

line is function 5.0
00 /1.0/037.0 ff + .   Selected model parameters are listed in Table 4. 
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Fig. A1.  Low frequency equivalent circuit for the rf SQUID coupled to a tuned input circuit. 

 

Fig. A2. Inset shows a comparison between the voltage noise spectral density calculated via 

Eq. (A2) and via numerical simulations (“num”) of the full circuit.  Main panel is the signal-

to-noise ratio (SNR) at Γi = 10-5 calculated from these data. Model parameters are αi = 0.2, αiT 

= 0, α= 0.725, Q0i = 50, QA = 10100, Q0=101, f0 = 0.1, f = 0.1066, ϕext = 0.25, Γ  = 0.025, 

0=AΓ , 21.1=′Lβ , βc = 0 and id = 0.369. Spectra were averaged 100 times. For the two 

values of Γi the same sequence of random numbers was used to provide reasonably smooth 

SNRs. 

 

Fig. A3. A comparison between the signal-to-noise ratio (SNR) at Γi = 10-5 calculated via Eq. 

(A2) and via numerical simulations of the full circuit for the model parameters indicated in 

the figures. Other parameters are α = 0.725, f0 = 0.1, fd = 0.1066, ϕext = 0.25, Γ  = 0.025, 

216.1=′Lβ , βc = 0 and id = 0.369. For the solid grey curve in (b) the drive frequency has been 

increased to fd = 0.1088. All spectra were averaged 100 times. For the two values of Γi 

required to calculate the SNR the same sequence of random numbers was used to provide 

reasonably smooth SNRs.  

 

Fig. A4. Spectral densitiesvTs~ ,  js~  and vjs~ , modulus of transfer function vϕ and 

ϕπΓ vsssf vjjvToptN /~~~/ 2
, −=  vs. ΓA/QA  for ΓA = 0.25 and Qeff,0 = 100, Γ  = 0, αi = αiT = 0.  

Quality factor QA runs between 10100 and 101. Other model parameters are f0 = 0.1, ϕext = 

0.25, βc = 0, fd = 0.108, id = 0.419, α = 0.763 and Lβ ′  = 1.216. 
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Fig. A5. Spectral densities vTs~ , js~  and vjs~ , modulus of transfer function vϕ and 

ϕπΓ vsssf vjjvToptN /~~~/ 2
, −=  (a) vs. Γ = ΓT  for ΓA = 0, (b) vs. ΓA/QA with QA = 200 and Γ = 

0 and (c)  vs. Γ = ΓT  for ΓA = 1. Other model parameters are Q0 = 200, αi = αiT = 0, f0 = 0.1, 

ϕext = 0.25, βc = 0, fd = 0.108, id = 0.419, α = 0.763 and Lβ ′  = 1.216. 

 

Fig. A6. A comparison between the signal-to-noise ratio (SNR) at (a) Γi = 1.5 x 10-5 and (b) 

Γi = 2 x 10-5, calculated via Eq. (A2) and via numerical simulations of the full circuit for the 

model parameters indicated in the figures. Other parameters are α = 0.7625, f0 = 0.1, fd = 

0.1081, ϕext = 0.25, Γ = 0.025, 216.1=′Lβ , βc = 0 and id = 0.419. For the solid grey curve in 

(b) the drive frequency has been increased to 0.1103. All spectra were averaged 100 times. 

For the two values of Γi required to calculate the SNR the same sequence of random numbers 

was used to provide a reasonably smooth SNRs. 

 

Fig. A7 (a) A comparison for the untuned case between the voltage noise spectral density 

calculated via Eq. (A14) and via numerical simulations (b) The signal-to-noise ratio (SNR) at 

Γi = 5 x 10-4 calculated from these data. Model parameters are αi = 0.2, αiT = 0, α= 0.725, Q0i 

= 50, QA = 10100, Q0=101, f0 = 0.1, f = 0.1066, ϕext = 0.25, Γ  = 0.025, 216.1=′Lβ , βc = 0 and 

id = 0.369. Spectra were averaged 100 times. The grey curve in (b) is a 10 point floating 

average over the numeric data. 
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Table captions 

 

Table 1.  Selected parameter values and some resulting quantities for the graphs in Fig. 3.  

Fixed parameters listed: α and Q0.  Other fixed parameters are Qeff,0 = 100, f0 = 0.1, 

0== iTi αα , 0=cβ , 25.0=extϕ , 025.0=Γ  and 25.0=AΓ .  Optimized parameters: id, ξ = 

2Qeff,0(fd/f0-1), and Lβ ′ .  Resulting quantities: vTs~  , js~ , vjs~ , ϕv , ii Q0
2α , 

ϕπΓ vssf jvTresN /~~/, =  and foptN /,Γ . 

 

Table 2.  Selected parameter values and some resulting quantities for the graphs in Fig. 4.  

Fixed parameters listed: Lβ ′ , QA and α  (for α = 0.2).  Other fixed parameters are Qeff,0 = 100, 

f0 = 0.1, 0== iTi αα , 0=cβ , 25.0=extϕ , 025.0=Γ  and 25.0=AΓ .  Optimized 

parameters: α  (for α ≠ 0.2), id, ξ, and Lβ ′ .  Resulting quantities: vTs~  , js~ , vjs~ , ϕv , e, ii Q0
2α , 

ϕπΓ vssf jvTresN /~~/, =  and foptN /,Γ . 

 

Table 3.  Selected parameter values and some resulting quantities for the graphs in Fig. 5.  

Fixed parameters listed: Γ, ΓA Lβ ′ , QA and α  (for α = 0.2).  Other fixed parameters are QA = 

Q0 = 200 αi = αiT = 0,  f0 = 0.1, ϕext = 0.25 and βc = 0.  Optimized parameters: α , Lβ ′ , id and ξ.  

Resulting quantities: vTs~  , js~ , vjs~ , ϕv and foptN /,Γ . 

 

Table 4.  Selected parameter values and some resulting quantities for the graphs in Fig. 9.  

Fixed parameters listed: f0, QA, κ, and α  (for α = 0.2).  For κ = 0 the preamplifier voltage 

noise has not been included in the calculation of foptN /,Γ .  For κ =  0, ΓNA = 0.05.  Other fixed 

parameters are Γ = 0.025, ΓA = 0.25, Qeff,0 = 100, αi = αiT = 0, ϕext = 0.25 and βc = 0.  

Optimized parameters: α , Lβ ′ , id and ξ.  Resulting quantities: vTs~  , js~ , vjs~ , ϕv and foptN /,Γ . 
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