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Abstract

The motivation for Calabi-Yau-like compactifications of the weakly coupled Eg ® Fg het-
erotic string theory, its particle spectrum and the issue of dilaton stabilization are briefly re-
viewed. Modular invariant models for hidden sector condensation and supersymmetry breaking
are described at the quantum level of the effective field theory. Their phenomenological and

cosmological implications, including a possible origin for R-parity, are discussed.
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1 The weakly coupled Eg ® Ey Heterotic String

1.1 Bottom up: the case for supergravity

The primary phenomenological motivation for supersymmetry (SUSY) is the observed large hier-
archy between the Z mass, characteristic of the scale of electroweak symmetry breaking, and the
reduced Planck scale mp:
8 18
my ~ 90GeV € mp = G—Nz2>< 10°°GeV.

This hierarchy can be technically understood in the context of SUSY. The conjunction of SUSY and
general relativity (GR) implies supergravity (SUGRA). The absence of observed SUSY partners
(sparticles) requires broken SUSY in the vacuum, and the observed particle spectrum constrains
the mechanism of SUSY-breaking in the observable sector: spontaneous SUSY-breaking is not
viable, leaving soft SUSY-breaking as the only option that preserves the technical SUSY solution
to the hierarchy problem. This means introducing SUSY-breaking operators of dimension three or
less—such as gauge invariant masses—into the Lagrangian for the SUSY extension of the Standard
Model (SM). The unattractiveness of these ad hoc soft terms suggests they arise from spontaneous
SUSY breaking in a “hidden sector” of the underlying theory. Based on the above facts, a number
of standard scenarios have emerged. These include: i) Gravity mediated SUSY-breaking, usually
understood as “minimal SUGRA” (mSUGRA) [1]. This scenario is typically characterized by
Mscalars = 10 ~ Mgravitino = 13 > Mgauginos = m1 at the weak scale. i) Anomaly mediated
SUSY-breaking [2, 3], in which my = mi = 0 classically; these models are characterized by ms >>
mg, m1, and typically mg > m1. An exception is the Randall-Sundrum (RS) “separable potential”,
construzcted [3] to mimic SUS\?—breaking on a brane spatially separated from our own in a fifth
dimension; in this scenario mZ < 0 and my arises first at two loops. In general, the scalar masses
at one loop depend on the details of Planck-scale physics [4]. #ii) Gauge mediated SUSY uses a
hidden sector that has renormalizable gauge interactions with the SM particles, and is typically

characterized by small m .
2

1.2 Top down: the case for superstring theory

Here the driving motivation is that superstring theory is at present the only known candidate for
reconciling GR with quantum mechanics. These theories are consistent in ten dimensions; in recent

years it was discovered that all the consistent [5] superstring theories are related to one another



by dualities, namely S-duality: @ — 1/, and T-duality: R — 1/R, where « is the fine structure
constant of the gauge group(s) at the string scale, and R is a radius of compactification from
dimension D to dimension D — 1. These theories, as well as D = 11 SUGRA, are now understood as
particular limits of M-theory. Recently, there has been considerable activity in type I and II theories,
or more generally in theories with branes. Similarly, the Horava-Witten (HW) scenario [6] and its
inspirations have received considerable attention. Compactification of one of the 11 dimensions of
M-theory gives the HW scenario with two 10-D branes, each having an Fg gauge group. As the
length of the 11th dimension is shrunk to zero, the two branes coincide, and the WCHS scenario [7]

is recovered. This is the scenario addressed here.

1.3 Calabi-Yau (like) compactification

The zero-slope (infinite string tension) limit of heterotic string theory is ten dimensional super-
gravity coupled to a supersymmetric Yang-Mills theory with an Fg ® Eg gauge group. To make
contact with the real world, six of these ten dimensions must be compact and here are assumed
to be of order mp ~ 1073?cm. If the topology of the extra dimensions were a six-torus, which
has a flat geometry, the 8-component spinorial parameter of N = 1 supergravity in ten dimensions
would appear as the four two-component parameters of N = 4 supergravity in four dimensions. A
Calabi-Yau (CY) manifold leaves only one of these spinors invariant under parallel transport; the
group of transformations under parallel transport (holonomy group) is the SU(3) subgroup of the
maximal SU(4) = SO(6) holonomy group of a six dimensional compact space. This breaks N =4
supersymmetry to N = 1 in four dimensions. The only phenomenologically viable supersymmetric
theory at low energies is N = 1, because it is the only one that admits complex representations
of the gauge group that are needed to describe quarks and leptons. For this solution, the clas-
sical equations of motion impose the identification of the affine connection of general coordinate
transformations on the compact space (described by three complex dimensions) with the gauge
connection of an SU(3) subgroup of one of the Eg’s: Eg 3 Eg® SU(3), resulting in Fg ® Eg as the
gauge group in four dimensions [8]. Since the early 1980’s, Eg has been considered the largest group
that is a phenomenologically viable candidate for a Grand Unified Theory (GUT) of the SM. Hence
FEs is identified as the gauge group of the “observable sector”, and the additional Ejy is attributed
to a “hidden sector”, that interacts with the former only with gravitational strength couplings.
Orbifolds, which are flat spaces except for points of infinite curvature, are more easily studied than
CY manifolds, and orbifold compactifications that closely mimic CY compactification, and that

yield realistic spectra with just three generations of quarks and leptons, have been found [9, 10].



In this case the surviving gauge group is Es ® G, ® Eg, G, € SU(3). The low energy effective field
theory is determined by the massless spectrum, i.e., the spectrum of states with masses very small
compared with the string tension and compactification scale. Massless bosons have zero triality
under an SU(3) which is the diagonal of the SU(3) holonomy group and the (broken) SU(3) sub-
group of one Fg. The ten-vectors Ay, M = 0,1,...9, appear in four dimensions as four-vectors
Ay, p=M =0,1,...3, and as scalars Ay, m = M — 3 = 1,---6. Under the decomposition
Eg 3 Eg ® SU(3), the Eg adjoint contains the adjoints of Eg and SU(3), and the representation
(27,3) +(27,3). Thus the massless spectrum includes gauge fields in the adjoint representation of
Es® G, ® Eg with zero triality under both SU(3)’s, and scalar fields in 27 + 27 of Fj, with triality
+1 under both SU(3)’s, together with their fermionic superpartners. The number of 27 and 27
chiral supermultiplets that are massless depends on the topology of the compact manifold. The

important point for phenomenology is the decomposition under Fg — SO(10) — SU(5):
(27) g, = (16 + 10 + 1) 55019y = ({5 + 10+ 1} + {5+ 5} + 1) g5 - (1.1)

A 5+ 10 + 1 contains one generation of quarks and leptons of the SM, a right-handed neutrino and
their scalar superpartners; a 5 + 5 contains the two Higgs doublets needed in the supersymmet-
ric extension of the SM and their fermion superpartners, as well as color-triplet supermultiplets.
While all the states of the SM and its minimal supersymmetric extension are present, there are no
scalar particles in the adjoint representation of the gauge group. In conventional models for grand
unification, these (or other large representations) are needed to break the GUT group to the SM. In
string theory, this symmetry breaking can be achieved by the Hosotani or “Wilson line”, mechanism
in which gauge flux is trapped around “holes” or “tubes” in the compact manifold, in a manner
reminiscent of the Arahonov-Bohm effect. The vacuum value of the trapped flux < [d¢™A,, >
has the same effect as an adjoint Higgs, without the difficulties of constructing a potential for large
Higgs representations that actually reproduces the observed vacuum. When this effect is included,

the gauge group in four dimensions is

Gobs @ Ghids  Gobs = Gsm ®G' ® G, Gsu ®G € Es, G, € SU(3),
Ghria € Fs, Goy = SU(?))C &® SU(2)L &® U(l)w (12)

There are many other four dimensional string vacua in addition to those described above. The
attractiveness of the above picture is that the requirement of N = 1 SUSY naturally results in
a phenomenologically viable gauge group and particle spectrum, and the gauge symmetry can be

broken to a product group embedding the SM without introducing large Higgs representations.



1.4 Gaugino Condensation and the Runaway Dilaton

The Fg® Fg string theory provides a hidden sector needed for spontaneous SUSY-breaking. Specif-
ically, if some subgroup G. of G4 is asymptotically free, with a S-function coefficient b. > bgy(3),
defined by the renormalization group equation (RGE)

dg.(1r)

o1 = el () + O(a)) (13)

confinement and fermion condensation will occur at a scale A, > Agcp, and hidden sector gaugino
condensation < A\ >g.# 0, may induce [11] supersymmetry breaking. To discuss supersymmetry
breaking in more detail, we need the low energy spectrum resulting from the ten-dimensional gravity
supermultiplet that consists of the 10-D metric gpsn, an antisymmetric tensor by, the dilaton ¢,
the gravitino 1j; and the dilatino x. For the class of CY and orbifold compactifications described
above, the massless bosons in four dimensions are the 4-D metric g,,,, the antisymmetric tensor b,
the dilaton ¢, and certain components of the tensors g,,,, and b,,,, that form the real and imaginary
parts, respectively, of complex scalars known as Kahler moduli. The number of moduli is related
to the number of particle generations (# of 27’s — # of 27’s). In three generation orbifold models
there are at least three moduli ¢; whose vev’s < Ret; > determine the radii of the three tori of
the compact space. They form chiral multiplets with fermions x* obtained from components of
PYm. The 4-D dilatino x forms a chiral multiplet with with a complex scalar field s whose vev
<s>=g?

Yang-Mills theory. The “universal” axion Ims is obtained by a duality transformation from the

— i6/87% determines the gauge coupling constant and the § parameter of the 4-D

antisymmetric tensor b,,: 9,Ims < €,,,,0"b”’. Because the dilaton couples to the (observable and
hidden) Yang-Mills sector, gaugino condensation induces a superpotential for the dilaton superfield!
S:

W (S) o e /b, (1.4)

The vacuum value < W(S) >x <e*S/bC> — ¢ 9 */be = A, is governed by the condensation scale A,
as determined by the RGE (1.3). If it is nonzero, the gravitino acquires a mass ms x< W >, and
local supersymmetry is broken.

The superpotential (1.4) results in a potential for the dilaton of the form V (s) o< e~ 28¢%/b which
has its minimum at vanishing vacuum energy and vanishing gauge coupling: < Res >— oo, g% — 0.

This is the notorious runaway dilaton problem. The effective potential for s is in fact determined

!Throughout T use capital Greek or Roman letters to denote a chiral superfield, and the corresponding lower case

letter to denote its scalar component.



from anomaly matching: dL.ff(s,u) — 0Lpiq(gauge), where u, (u) = <5\)\>gc, is the lightest
scalar bound state of the strongly interacting, confined gauge sector. Just as in QCD, the effective
low energy theory of bound states must reflect both the symmetries and the anomalies, i.e. the
quantum induced breaking of classical symmetries, of the underlying Yang-Mills theory. It turns out
that the effective quantum field theory (QFT) is anomalous under T-duality. Since this is an exact
symmetry of heterotic string perturbation theory, it means that the effective QFT is incomplete.
This is cured by including model dependent string-loop threshold corrections [12] as well as a
“Green-Schwarz” (GS) counter-term [13], analogous to the GS mechanism in 10-D SUGRA. This

introduces dilaton-moduli mixing, and the gauge coupling constant is now identified as

g>=2(), ¢!'=2Res— bz In(2Ret’), (1.5)
T

where b < by, = 30/87? is the coefficient of the GS term, and and / is the scalar component of
a linear superfield L that includes the two-form b,, and is dual to the chiral superfield S in the
supersymmetric version of the two-form/axion duality mentioned above. The GS term introduces
a second runaway direction, this time at strong coupling: V — —oo for ¢> — oco. The small
coupling behavior is unaffected, but the potential becomes negative for o = ¢/2r > .57. This
is the strong coupling regime, and nonperturbative string effects cannot be neglected; they are
expected [14] to modify the Kahler potential for the dilaton, and therefore the potential V' (¢,u). It
has been shown [15] that these contributions can indeed stabilize the dilaton. Retaining just one
or two terms of the suggested parameterizations [14, 16] of the nonperturbative string corrections:
ané’"/Qe’C"/‘/z or apl "e /t  the potential can be made positive-definite everywhere and the
parameters a,, ¢, can be chosen to fit two data points: the coupling constant g2 =~ 1/2 and the
cosmological constant A ~ 0. This is fine tuning, but it can be done with plausible (order 1)
values for the parameters c¢,,a,. If there are several condensates with different S-functions, the
potential is dominated by the condensate with the largest S-function coefficient b, and the result
is essentially the same as in the single condensate case, except that a small mass is generated for
the axion ¢ = Ims. In these models the presence of S-function coefficients generate mass hierarchies
that have interesting implications for cosmology and the spectrum of sparticles the supersymmetric

partners of the SM particles.



2 Modular invariant gaugino condensation

In this section I will summarize results [17, 18] from the study of modular (T-duality) invariant

effective Lagrangians for gaugino condensation. These are characterized in particular by

e Dilaton dominated supersymmetry breaking. The auxiliary fields of the T-moduli (or Kéhler
moduli) have vanishing vacuum values (vev’s): <FT> = 0, thus avoiding a potentially dan-

gerous source of flavor changing neutral currents (FCNC).

e The constraint of vanishing (or nearly so) vacuum energy leads to a variety of mass hierarchies

that involve the S-function coefficient of the condensing gauge group.

One starts above the (reduced) Planck scale mp with the heterotic string theory in 10 di-
mensions. Just below the string scale yus = gsmp, where g5 is the gauge coupling at the string
scale, physics is described by N = 1 modular invariant supergravity in four dimensions, where here
modular invariance refers to T-duality under which the Kahler moduli T' transform as

%, ad —bc =1, a,b,d,c € Z. (2.6)

Modular invariance — and in many compactifications [19] a U(1) gauge group factor called U(1)x

is broken by anomalies at the quantum level of the effective field theory, and the symme-

try is restored by an appropriate combination of threshold effects [12] and four dimensional GS

term(s) [13, 20]. The precise form of these loop effects in the Yang-Mills sector of the effective

supergravity theory have been determined by matching the string and field theory amplitudes at
the quantum level [21].

If an anomalous U(1) is present, the corresponding GS term leads to a Fayet-Illiopoulos (FI)
D-term in the effective Lagrangian [20] and some U (1)-charged scalars ¢ acquire vev's at a scale

up one or two orders of magnitude below the Planck scale such that the overall D-terms vanish:
1 a I 7I\nd| A2 1
WZQA H(t +t)"T g7 ) = §5X5Xaa (2.7)
77 A 1

where dx/ is the coefficient of the FI term, n“ is the modular weight of ¢*, q% is its charge
under the gauge group factor U(1),, and ¢, s are the scalar components of the Kihler moduli and
dilaton chiral superfields T, S. The function £(s, s) = £(s + s) is the dilaton field in the dual, linear
supermultiplet formulation; in the classical limit £ = (s 4 5)~!. The combination of fields that gets

a vacuum value is modular invariant. Thus modular invariance, as well as local supersymmetry,



is unbroken at this scale, and the moduli fields s,¢ remain undetermined [22]. The ¢“ vacuum is
generically characterized by a high degree of further degeneracy [23] that may lead to problems for
cosmology.

At a lower scale u., a gauge group G. in the hidden sector becomes strongly coupled, and
gauginos as well G.-charged matter condense. The potential generated for the moduli is T-duality
invariant and the Kahler moduli T" are stabilized at self-dual points with <FT> = 0, while <FS> # 0,
so that, in the absence of an anomalous U(1), supersymmetry breaking is dilaton mediated [17]. In
the presence of an anomalous U(1), vev's of D-terms are generically generated as well and tend to
dominate supersymmetry breaking; these may be problematic for phenomenology. On the plus side,
at least some of the degeneracy of the ¢ vacuum is lifted by ¢* couplings to the condensates [18].

To briefly summarize the phenomenology of these models, the condition of vanishing vacuum en-
ergy introduces the g-function coefficient of the condensing gauge group G. into the supersymmetry

breaking parameters in such a way as to generate a variety of mass hierarchies. Defining

1
be = W (3CC - C]C\/[) ) (28)
where C°(CY,) is the adjoint (matter) quadratic Casimir for G, in the absence of an anomalous
U(1) one has at the condensation scale [17] (one can also have my ~ mg > m3 if gauge-charged
2

matter couples to the GS term)

2
— a __ 4bC
my = ms, mi = —<ga(ptc)ms,
2 p) 9 2
b 2
myp = 5 me mg ~ b, “ms, mg = 0. (2.9)
c 2 2

where MMy 1 3 refer to observable sector scalars and gauginos, and the gravitino, respectively; mr s 4
are the Kahler moduli, dilaton and universal axion masses. The expression for mr assumes b > b,
where b is the S-function coefficient appearing in the modular invariance restoring GS term [13].
For example in the absence of Wilson lines, b = bg, =~ .57, and viable scenarios for electroweak
symmetry breaking [24] and for neutralinos as dark matter [25] require b, ~ .05 — .06. These
numbers give desirably large moduli and dilaton masses, while the scalar/gaugino mass ratio is
perhaps uncomfortably large, but no worse than in many other models.

When Wilson lines are present the condition b > b, may not hold; for example b, = b in
a Zs3 compactification [10] with an SO(10) hidden sector gauge group; this would give vanishing
T-moduli masses in the above class of models. However when an anomalous U (1) is present, the T-

moduli couplings to the condensates are modified, giving additional contributions to their masses,



and a hierarchy with respect to the gravitino mass can still be maintained [18]. In this scenario
the gaugino, dilaton and axion masses are determined only by the dilaton potential, as before.
A stable vacuum with a positive metric for the dilaton is most easily achieved in a “minimal”
class of models in which the number of Standard Model (SM) gauge singlets that get vev’s at the
scale up is equal to the number m of broken U(1)’s (in which case there are no massless “D-
moduli” [23] associated with the degeneracy of the U(1)-charged ¢ vacuum), or N replicas of
these with identical U(1) charges [yielding (N — 1)m D-moduli]. In this case the gaugino, dilaton

and axion?

masses are unchanged from (2.9). The most significant change from the above scenario
is a D-term contribution to scalar squared masses mZ that is proportional to their U(1) charges.
At weak coupling, and neglecting nonperturbative effects, this term dominates the one in (2.9) by a
factor b2 > 1, and is not positive semi-definite. Thus unless SM particles are uncharged under the
broken U(1)’s (or have charges that, in a well-defined sense [18], are orthogonal to those of the ¢
with large vev’s), these models are seriously challenged by the SM data: a very high scalar/gaugino

mass ratio for positive m32, and the danger of color and electromagnetic charge breaking if m3 < 0.

3 QFT quantum corrections

The above results were obtained at tree level in the effective supergravity theory for gaugino conden-
sation, which includes QFT and string quantum corrections to the strongly coupled gauge sector
whose elementary degrees of freedom have been integrated out, as well as the four dimensional
Green-Schwarz (GS) terms needed at the quantum level to cancel field theory anomalies. In addi-
tion, the logarithmically divergent and finite (“anomaly mediated” [2, 3, 27]) one-loop corrections
to soft supersymmetry-breaking parameters have been extensively studied [28, 4]. These analyses
did not include quadratically divergent loop corrections which are proportional to terms in the tree

Lagrangian, and are suppressed by the loop expansion parameter
e=1/167>% (3.10)

However, since some of these terms have coefficients proportional to the number of fields in the
effective supergravity theory, it has been argued that they may not be negligible. In particular, their
contributions to the cosmological constant [29] and to flavor changing neutral currents [30] have
been emphasized. Both are important for the phenomenology of the above condensation models;

thus we need to revisit [31] their effects.

2The possibility that an axion mass may be generated by higher dimension operators [16] is under study [26].



When local supersymmetry is broken, there is a quadratically divergent one-loop contribution

to the vacuum energy [32]
2

A 2
<V17100p> = 3972 <STrM >7 (3.11)
where M is the field-dependent mass matrix, and the gravitino contribution is gauge dependent.
For example in minimal supergravity [1] with IV,, chiral and N¢ Yang-Mills superfields, one obtains,

using the gravitino gauge fixing procedure of Ref [33].

2

A
(6V1_100p) D 677 (Nxmg — NGm?% + 2m2;;> . (3.12)

In the MSSM we have N, = 49 and Ng = 12. The much larger field content of a typical Z3 orbifold
compactification [34, 19] of the Eg ® Eg heterotic string has N, 2 300 and Ng < 65, suggesting [29]
that this contribution to the vacuum energy is always positive.

However, in order to maintain manifest supersymmetry, a supersymmetric regularization of
ultraviolet divergences must be used. Pauli-Villars (PV) regularization [35] meets this criterion.
The regulation of quadratic divergences requires a priori two subtractions; in the context of PV
regularization, the number S of subtractions is the number of PV fields for each light field. Once

the divergences are regulated (i.e. eliminated), we are left with the replacement

S
A*STeM? — STep® M? In(i®)ns, s = Y MghgInXg, (3.13)
g=1
where p represents the scale of new physics, and the parameter 7ng reflects the uncertainty in the
threshold for the onset of this new physics. The squared PV mass of the chiral supermultiplet ®¢
is Agu? (so Ay > 0), and n, = 1 is the corresponding PV signature. The sign of the effective
cut-off is determined by the sign of 75, which is positive definite only? if S < 3. Cancellation of
all the ultraviolet divergences of a general supergravity theory requires [37] at least 5 PV chiral
multiplets for every light chiral multiplet and even more PV supermultiplets to regulate gauge
loops. Therefore one cannot assume that the effective cut-offs are all positive.

More importantly, the Lagrangian constructed using a simple cut-off does not respect super-
symmetry. With a supersymmetric PV regularization, PV masses arise from quadratic couplings
in the superpotential

Wpy 3 ur(Z28) 25, 27, zk| = k. (3.14)

2See appendix C of [36]. and the discussion in [31].



Then the squared cut-off in (3.12) is replaced by suitably weighted linear combinations of PV

squared masses

A2 (MP)) = MK () KM ()i (2) s (2) (3.15)
that are generally field-dependent. Moreover, the couplings (3.14) induce additional terms pro-
portional to M? that cannot be obtained by a straight cut-off procedure. The resulting effective
Lagrangian takes the form [35]

Eélgff = Liree(9, K) + Elfloop = Liree(9r, Kr) + O(e lnAgff) + 0(62)7 (3.16)
where
Kr=K+ AK (3.17)
is the renormalized superpotential. The action obtained in this way is only perturbatively super-
symmetric:
58 = /d%a.c;ff — 0(2). (3.18)
Writing
€
AK =5 [NAY - 4NGAG + O(1)AZ| + OlelnAZ;)) + O(e), (3.19)

where Ay g grav are the effective cut-offs for chiral, gauge and gravity loops, and A,y is a generic
effective cutoff, if N,, Ng ~ ¢!, we must retain the full effective Lagrangian as derived from
Kpg. This amounts to resuming the leading terms in eNAsz, with the result, as dictated by
supersymmetry, just a correction to the Kahler potential. I will discuss the consequences of this

correction in the remainder of this section.

3.1 The vacuum energy

Consider first the possibility that we can choose the Z*-dependence of the PV Kihler potential
and superpotential such that the effective cutoffs are constant. For example, one needs PV super-
fields Z{DV with the same Kihler metric as the light superfields Z°: KIZM = K;;. If we introduce
superfields Y; with Kahler metric: K{/M = e’KKi;ﬁ1 = e XK' the superpotential coupling

Wey = nZlYr (3.20)

yields a constant squared mass M? = p? if p is constant, and the quantum corrected potential just

reads

2

Vojp =D+ e (FiKimFm —3m2§> + O(elnAZ;f). (3.21)
tree
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If supersymmetry breaking is F-term induced: (D) = 0, the tree level condition <FiK¢mFm = 3m%>
for vanishing vacuum energy is unmodified by these quantum corrections. ’
However not all PV masses can be chosen to be constant because of the anomaly associated
with Kihler transformations K (7, Z) — K(Z, Z)+F(Z)+ F(Z) that leave the classical Lagrangian
invariant. In the presence, for example, of an anomalous U(1)x, with generator T, there is a
quadratically divergent term proportional to TrTx A? that cannot be canceled by U(1)x-invariant
PV mass terms, since the contribution to TrTx from each pair in the invariant superpotential
cancels. As a consequence, there must be some PV masses o« e¢?VX, where Vx is the U(1)x vector

superfield. Similarly, in the presence of a Kahler anomaly there is a term
L1 100p D ceKin D, 2" DFZ™ A% (3.22)

that cannot be canceled unless some PV superfields have masses MI%V o e In addition, PV reg-
ulation of the gauge + dilaton sector requires some PV masses proportional to the field-dependent
string-scale gauge coupling constant: M3, o g2(s,3) = 2(s +5) L.

What might be the effects of this field-dependence on the condensation models described above?
The modular invariance of these models assures that the moduli T" are stabilized at self-dual points

with vanishing auxiliary fields: <FT> = 0. Supersymmetry breaking is dilaton-dominated and the

condition for vanishing vacuum energy at tree level in the effective theory relates <FS > to the

gravitino mass which in turn constrains the dilaton Kaher metric:

2 1 _ 1

with the approximate value of g inferred from low energy data. It is clear that (3.23) cannot be

= 29,2 ~ 4, (3.23)

classical

satisfied without a modification of the Ké&hler potential for the dilaton; the approach [15] used here
is to invoke nonperturbative string [14] and/or QFT [16] corrections to the dilaton Kéihler potential.
Avoiding dangerously large D-term contributions to scalar masses in the presence of an anomalous

U(1) may further require [18]

- <K5> ~ bgl ~ 30> — <KS>‘classical = 95/2 ~ 1/4a (324)

N W

suggesting that weak coupling may not be viable [6, 38, 39]. On the other hand, if A ~ Ce®! | with
Ca™ large and positive, it might be possible to reinterpret part of the needed modification of the

dilaton Kéhler potential in terms of perturbative quantum corrections [31].

11



3.2 Flavor Changing Neutral Currents
The tree potential of an effective supergravity theory includes a term
Viree 2 e K;K; K7W |2, (3.25)
and the quadratically divergent one-loop corrections generate a term
Vi_toop 3 eX KiKGRIIW|?, R = KRy K" (3.26)

where R;; is the Kahler Ricci tensor. The contribution (3.26) simply reflects the fact that the
leading divergent contribution in a nonlinear sigma model is a correction to the Kahler metric
proportional to the Ricci tensor (whence, e.g., the requisite Ricci flatness of two dimensional con-
formal field theories). Since the Ricci tensor involves a sum of Kédhler Riemann tensor elements
over all chiral degrees of freedom, a large, order Ny, coefficient may be generated [30]. However,
the supersymmetric completion of the potential in any given order in perturbation theory yields
(in the absence of D-term contributions) the scalar squared mass matrix

(m*); = 5im3 — (R) P, (3.27)

2 _
i = %

where R;km is an element of the Riemann tensor derived from the fully renormalized Kahler metric,
and F" is the auxiliary field for the chiral superfield ®*, evaluated by its equation of motion using
the quantum corrected Lagrangian. Since the latter is perturbatively modular invariant, the Kahler
moduli ¢/ are still stabilized at self-dual points with <FT> = 0. Classically we have RgSS’ =0
where the indices A, B refer to gauge-charged fields in the observable sector. This need not be true
at the quantum level. For example, if, as suggested above, the quantum correction to the Kahler

potential includes a term

1 9 CNX K
AK = WST‘I‘AEff ) 3271_2 €a y (328)
we get
- cN.
<RBs§> = 53132—7?20[26&[( (Kss +aKsKg), (3.29)
which is flavor diagonal, and therefore FCNC safe.
4 R-parity
The self-dual vacua
<tl> =T,y=1 or ¢/ (4.30)
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are invariant under (2.6) with

,I — bl dl —
. ’ 0 Fl=nil o m% (4.31)

b= ¢l =41 I =dl =0
c , a or d[:c[,a,[:[)’ 5

The hidden sector condensates that get vev’s break this further to a subgroup G with

imF = F =Y F!' = 2nin, (4.32)
I

under which A\;, — eiélmpAL = +Ar. Observable sector gauge-charged matter chiral supermulti-
plets transform as
A 5 T F A = R(F! n)oA, (4.33)

For example a Z3 orbifold has untwisted sector fields U4/, and twisted sector fields T4 and Y4/

with modular weights

2 2 2 2 2 2
AT\ _ sJ A_ (=242 4 Al _ (=2 & 2 J
(nl )U_5[7 ny = <3a3a3>a (nl )Y_ <3a3a3> +6[7 (434)
and moduli independent phases
U0, T —-25 & = _25_4s, §=30, (4.35)
3 3

with § = 27n for the subgroup defined by (4.32). If some modular covariant fields ¢ acquire large
vev’s that break some U(1) gauge factors near the string scale, the transformation property (4.33)
can be modified to include a discrete U(1), transformations such that the vacuum remains invariant.
Similarly, below the electroweak scale where the Higgs fields acquire vev’s the residual symmetry
involves a discrete transformation under the U(1),, of the SM such that R(H,) = R(Hy) =1 (the
presence of a u-term requires R(H,)R(H;) = 1). Then we obtain an effective R-parity that forbids
baryon and lepton number violation while allowing other MSSM couplings provided the remaining
MSSM chiral supermultiplets have R-charges R(®4) = R(F',n7',q%) that satisfy [40]

R(Q) _ eQiTrﬂ’ R(QC) _ 6721‘#,6’7 R(L) _ 62i7ra’ R(LC) _ 672i7ra7 (436)

with 3 # %, 0 < a, 8 < 1. Since these phases need not be 1, dimension-five operators that violate
baryon and lepton number will also be forbidden provided 35 4+ «a # n, which is an advantage over

the conventional definition of R-parity.
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5 Issues and open questions

Other issues relevant to the viability of the WCHS are under active investigation. They include
e Can the universal axion be identified with the QCD/Peccei-Quinn axion [26]?
e Will the LHC be able to distinguish the WCHS from other scenarios [41]7
e [s there a specific vacuum of the WCHS such that

— The B-function of the hidden sector condensing gauge group yields viable electroweak
symmetry breaking and dark matter scenarios [e.g. b. = .05 — .06 in the absence of an

anomalous U(1)]?

— D-term contributions to squark, slepton and Higgs masses are absent or highly sup-

pressed?
— The desired R-parity emerges [40]7
— A see-saw mechanism for neutrino masses is present [42]?
— A p-parameter of about a TeV is natural [43]7

— The correct Yukawa textures arise [44]7

In the present context suppression of Yukawa couplings could be due to string selection rules that
allow some superpotential couplings only in terms of very high dimension: W' 5 Q;Q5H Hziil oA,
with vev’s <¢A> ~ (.1 = .01)mpanck arising at the U (1) x-breaking scale Ap.

There is a complete classification of the observable [34] and hidden [19] sectors of Z3 orbifolds,
but only one of these [10] has been studied in detail, and it fails the above tests. A more complete
survey of heterotic string vacua could help to determine if any scenario of the class considered here
might be able to describe nature. A more general list of interesting questions about the relevance

of string theory to the real world can be found in [45].
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